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In electromechanical equipment condition monitoring, data accuracy and timeliness are critical for 

ensuring reliable operation. This paper introduces a dynamic weight-based adaptive data fusion 

filtering algorithm that integrates an Extended Kalman Filter (EKF) variant with wavelet denoising 

and real-time weight adjustment. The algorithm employs variance-based stability metrics and data 

update frequency for reliability assessment, dynamically allocating fusion weights via Equations (1)–

(7). Experiments use a test platform with PCB 356A16 accelerometers, K-type thermocouples, and LEM 

LA55-P current sensors to simulate gear wear and motor rotor imbalance faults. Compared to baseline 

methods (Kalman Filter, Particle Filter), the proposed algorithm reduces RMSE by 35.2% and 28.7%, 

and MAE by 41.5% and 34.3%, respectively. Fault feature extraction shows a 37% increase in vibration 

peak index for mild gear wear and a 50% increase in current harmonic content for rotor imbalance. 

While runtime is slightly higher than Kalman Filter, it remains within practical limits, demonstrating 

superior real-time performance for fault early warning in complex industrial environments. 

Povzetek: Raziskava uvaja dinamično uteženo adaptivno filtriranje za spremljanje stanja elektrostrojne 

opreme. Algoritem združuje EKF, valčno denoiziranje in sprotno prilagajanje uteži, izboljšuje zgodnje 

odkrivanje napak v realnem času. 

 

 

1 Introduction 
In today's era of rapid industrialization, 

electromechanical equipment is a core component of the 

production process in many key industrial fields such as 

manufacturing, energy, and transportation. Its 

importance is self-evident. In the manufacturing 

industry, precision electromechanical equipment ensures 

high precision and high efficiency of product production; 

in the energy industry, large electromechanical 

equipment maintains the stable mining, transmission, 

and conversion of energy; in the field of transportation, 

various types of electromechanical equipment ensure the 

safe and stable operation of vehicles. The operating 

status of electromechanical equipment is like a 

"barometer" of enterprise production, which is directly 

related to the enterprise's production efficiency and 

product quality [1]. Once a sudden failure of equipment 

occurs, it will not only lead to production stagnation and 

substantial economic losses. However, it may also cause  

safety accidents and affect the sustainable development 

of the enterprise. 

As a key means to ensure the reliable operation of 

electromechanical equipment, condition monitoring  

 

 

technology can obtain the operating status information of 

the equipment in real time [2]. Through continuous 

monitoring and in-depth analysis of multiple parameters 

such as vibration, temperature, pressure, and current, 

potential fault hazards can be detected in advance, and 

downtime losses caused by sudden failures can be 

effectively avoided. This not only dramatically improves 

the reliability of the equipment but also significantly 

improves production efficiency, reduces equipment 

maintenance costs, and creates considerable economic 

benefits for the enterprise. 

However, the traditional fixed-weight data fusion 

algorithm currently used has obvious limitations when 

facing electromechanical equipment's complex and 

changeable operating environment [3]. In the operation of 

electromechanical equipment, sensor data is easily 

affected by various factors and fluctuates, and noise 

interference is also common. In this case, the traditional 

algorithm cannot flexibly respond to the dynamic changes 

of data due to the use of fixed weights, and it is difficult 

to fuse various sensor data accurately, which leads to a 

significant decrease in monitoring accuracy [4]. In 

addition, standard filtering algorithms, such as Kalman 
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filtering, have inherent defects when dealing with non-

Gaussian noise and nonlinear systems, and cannot 

accurately denoise and estimate the state of monitoring 

data, which seriously affects the accurate judgment of the 

operating state of electromechanical equipment. 

Given this, it is urgent to design a filtering algorithm 

that can dynamically adjust the data fusion strategy 

according to the real-time operating state of 

electromechanical equipment [5]. This study addresses 

the following research questions: 

Can variance- and autocorrelation-based dynamic 

weighting improve fault feature extraction accuracy 

under varying load conditions? 

How does an EKF variant with adaptive gain 

adjustment (Equation 12) compare to traditional 

nonlinear filters (e.g., Particle Filter) in non-Gaussian 

noise environments? 

What is the impact of real-time weight adaptation on 

computational efficiency for multi-sensor fusion 

systems? 

2 Related theoretical foundations 
2.1 Principles of electromechanical 

equipment status monitoring 

2.1.1 Common monitoring parameters and methods 

Parameters such as vibration, temperature, pressure, 

and current are key in electromechanical equipment 

status monitoring [6]. Vibration parameters can reflect 

problems such as wear and imbalance of mechanical 

parts; temperature parameters can monitor the heating 

parts of the equipment; pressure parameters are used for 

fluid transmission equipment; and current parameters are 

for motor equipment [7]. Methods for obtaining these 

parameters include direct monitoring and indirect 

monitoring based on sensors. Acceleration sensors 

measure vibration, thermocouples measure temperature, 

and pressure sensors measure pressure. Indirect tracking, 

such as analyzing the characteristics of the current 

spectrum to infer mechanical failures, is achieved 

through technologies such as the Fourier transform. 
 

2.1.2 Analysis of sensor data characteristics 

Sensor data collection is subject to noise 

interference, ordinary Gaussian white, and pulse noise. 

Gaussian white noise causes slight deviations in the data, 

affecting accurate analysis; pulse noise may mask the 

real signal and lead to misjudgment. Under different 

operating conditions, the noise intensity and distribution 

law change. The noise intensity is high during the start 

and stop stages of the equipment, and low during the 

stable operation stage [8]. There is an inherent 

connection between different sensor data, such as 

increased vibration, leading to increased temperature and 

abnormal current. When the equipment fails, this 

correlation is broken. Analyze the difference in data 

correlation to provide a basis for data fusion and improve 

the accuracy and reliability of monitoring through data 

fusion. 

2.2 Data fusion and filtering technology 

2.2.1 Basic concepts and levels of data fusion 

Data layer fusion (weighting of raw data after 

preprocessing) + feature layer embedding (extracting 

peak, harmonic and other features in EKF) is adopted. 

Data fusion is the processing of data obtained by multiple 

sensors to obtain comprehensive and accurate equipment 

operation status information. It is divided into data layer 

fusion, feature layer fusion, and decision layer fusion [9]. 

Data layer fusion directly processes the original data, 

retains the original information, but has a large amount of 

calculation; feature layer fusion extracts feature and then 

fuses them, reducing the amount of data and highlighting 

key information; decision layer fusion first independently 

processes and then fuses the decision results, with strong 

fault tolerance. Different levels of fusion methods are 

suitable for different monitoring scenarios. 
 

2.2.2 Principles and applications of traditional filtering 

algorithms 

Kalman filtering is an algorithm based on linear 

systems and Gaussian noise assumptions. It estimates the 

system state by predicting and updating equations [10]. It 

is suitable for linear dynamic systems, such as motor 

speed estimation. Particle filtering is a nonlinear filtering 

algorithm. It simulates the probability distribution of 

system states through many particles, adapts to complex 

nonlinear and non-Gaussian systems, and can be used for 

fault diagnosis of complex electromechanical systems. 
 

3 Design of adaptive data fusion 

filtering algorithm 
3.1 Overall architecture of the algorithm 

3.1.1 Introduction to system components 

The sensor data acquisition module is a front-end data 

acquisition unit equipped with various sensors (such as 

acceleration, thermocouples, pressure, and current 

sensors) to collect real-time device state parameters. The 

collected raw data will be interfered with by factors such 

as environmental noise, so the module will perform 

preliminary conditioning on the data, such as increasing 

the signal strength through a signal amplifier and 

removing noise with a hardware filter to ensure that the 

data is accurate and reliable, providing a basis for 

subsequent processing. 

The data preprocessing module receives the data 

output by the acquisition module and performs deep 

purification and regularization [11]. Wavelet denoising 

technology is used to remove random noise and impulse 

noise to make the data curve smooth; normalization 

operations are performed to map data of different 

dimensions to a specific interval to eliminate the impact 

of dimensional differences; it also has the function of 

outlier detection and elimination to identify and remove 

abnormal points and provide high-quality data for 

subsequent processing. 
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The dynamic weight calculation module calculates 

the weight of each sensor data in the fusion process in 

real time based on the sensor data stability and reliability 

evaluation indicators. Stability evaluation considers data 

variance and time series correlation, and reliability 

judgment is based on data update frequency and sensor 

fault diagnosis information [12]. This module 

dynamically determines the importance of sensor data 

and provides a reasonable weight distribution scheme for 

data fusion, so the algorithm can adaptively adjust the 

fusion strategy. 

The data fusion and filtering module receives 

preprocessed data and dynamic weight information, first 

weights the fusion data according to the weight, and 

integrates multiple sensor data; then uses the improved 

filtering algorithm to deeply process the fusion data, 

suppress noise, enhance effective signals, and finally 

outputs monitoring data that accurately reflects the 

operating status of the equipment, providing a basis for 

status analysis and fault diagnosis. 

3.1.2 Data flow and interaction between modules 

The raw data of the sensor data acquisition module 

flows into the data preprocessing module, and is 

transmitted to the dynamic weight calculation module 

and the data fusion and filtering module after processing. 

The dynamic weight calculation module calculates the 

weight and feeds it back to the data fusion and filtering 

module. The data fusion and filtering module fuses the 

data according to the weight, filters it, and outputs the 

monitoring data. The data preprocessing module 

interacts closely with the dynamic weight calculation 

module. The former provides high-quality data for the 

latter, and the latter calculates the weights and feeds them 

back to the data fusion and filtering module [13]. The 

interaction between the dynamic weight calculation 

module and the data fusion and filtering module is 

crucial. The weight information determines the fusion 

method and results. The data fusion and filtering module 

may feed abnormal information to prompt weight 

adjustment. The modules work together to realize the 

algorithm's function. 
 

3.2 Dynamic weight allocation mechanism 

3.2.1 Construction of stability evaluation indicators 

Variance is an important statistic to measure the 

degree of data dispersion. The stability of sensor data is 

evaluated by calculating the variance. Suppose the data 

sequence collected by the sensor over some time is 

𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , then the variance 𝜎2 of the data sequence 

is calculated as 

𝜎2 =
1

𝑛−1
∑𝑖=1
𝑛  (𝑥𝑖 − 𝑥‾)2                            (1) 

Where 𝑥‾ =
1

𝑛
∑𝑖=1
𝑛  𝑥𝑖  is the mean of the data 

sequence. This paper dynamically adjusts the weight of 

sensor data according to the change of variance. 

To more accurately describe the relationship 

between weight and variance, the weight adjustment 

function is introduced 

 𝑤𝜎 = 1 − 𝛼
𝜎2

max(𝜎2)
                               (2) 

Where 𝛼  is the weight adjustment coefficient (0 <
𝛼 < 1), max(𝜎2)  is the maximum value of the variance 

of all sensor data. This function ensures that sensor data 

with slight variance obtains higher weights and the weight 

adjustment range is within a reasonable range. 

Time series analysis methods, such as autocorrelation 

function (ACF) and partial autocorrelation function 

(PACF), are introduced to further analyze the correlation 

of sensor data in the time dimension to improve the 

stability evaluation index. The autocorrelation function 

measures the correlation between time series data and 

itself at different time intervals. For the time series {𝑥𝑡}, 
its autocorrelation function𝜌𝑘 is defined as 

 𝜌𝑘 =
∑𝑡=1
𝑛−𝑘  (𝑥𝑡−𝑥‾)(𝑥𝑡+𝑘−𝑥‾)

∑𝑡=1
𝑛  (𝑥𝑡−𝑥‾)

2                            (3) 

Where 𝑘 is the time lag. 

The results of time series analysis are taken into 

account in weight adjustment to construct a 

comprehensive stability index 𝑆 

 𝑆 = 𝛽𝑤𝜎 + (1 − 𝛽)∑𝑘=1
𝑚  |𝜌𝑘| + ∑𝑘=1

𝑚  |𝑃𝐴𝐶𝐹𝑘|             
(4) 

Where 𝛽 is the weight distribution coefficient (0 <
𝛽 < 1), and 𝑚 is the upper limit of the set time lag. 

3.2.2 Reliability judgment basis and method 

Assume that the data update period of sensor 𝑗 is 𝑇𝑗, 

then its data update frequency 𝑓𝑗 =
1

𝑇𝑗
. In the initialization 

stage of the algorithm, the initial reliability weight 𝑤𝑓,𝑗  is 

set according to the data update frequency of each sensor, 

using the following formula 

𝑤𝑓,𝑗 =
𝑓𝑗

∑𝑖=1
𝑁  𝑓𝑖

                                              (5) 

Where 𝑁 is the total number of sensors. When the 

data update frequency of sensor 𝑗  becomes 𝑓𝑗
′ , its 

reliability weight is adjusted to 

𝑤𝑓,𝑗
′ = 𝛾

𝑓𝑗
′

∑𝑖=1
𝑁  𝑓𝑖

′ + (1 − 𝛾)𝑤𝑓,𝑗                         (6) 

Where 𝛾 is the adjustment coefficient (0 < 𝛾 < 1 ). 

The sensor fault diagnosis flag 𝐹𝑗  is introduced. 

When sensor 𝑗 works usually, 𝐹𝑗 = 1; when the sensor 

fails, 𝐹𝑗 = 0 . Integrate the fault diagnosis information 

into the reliability weight adjustment process to construct 

the comprehensive reliability index 𝑅𝑗 

 𝑅𝑗 = 𝐹𝑗𝑤𝑓,𝑗                                                (7) 

 

3.3 Fusion and filtering process 

3.3.1 Data fusion algorithm steps based on dynamic 

weights 

Linear interpolation is used for data alignment. 

Assume that the two sampling points of sensor 𝑖 near time 

point 𝑡 are(𝑡1, 𝑥1) and (𝑡2, 𝑥2), then the data value 𝑥  at 

time point 𝑡 is calculated by linear interpolation as 

𝑥 = 𝑥1 +
(𝑡−𝑡1)(𝑥2−𝑥1)

𝑡2−𝑡1
                                   (8) 

By time-aligning all sensor data, the accuracy and 

effectiveness of data fusion are guaranteed, providing a 
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time-synchronized data basis for subsequent weighted 

fusion. 

The time-aligned data is weighted and fused 

according to the weights of each sensor obtained by the 

dynamic weight calculation module. Assume that there 

are𝑁 sensors in total, the weight of sensor 𝑖 is 𝑤𝑖 , and the 

data value of sensor 𝑖 at time 𝑡 after time alignment is 

𝑥𝑖(𝑡). Then the fused data value 𝑋(𝑡) is calculated by the 

weighted summation formula 

𝑋(𝑡) = ∑𝑖=1
𝑁  𝑤𝑖𝑥𝑖(𝑡)                                   (9) 

 Through this weighted fusion method, the 

advantages of each sensor data can be fully utilized, so 

that the fused data can better reflect the real state of the 

equipment. The sensor data with larger weights accounts 

for a more significant proportion of the fusion results, 

reflecting its importance in the equipment state. 

3.3.2 Noise suppression and signal enhancement 

processing combined with an improved filtering 

algorithm 

Let the system state equation be  𝑥𝑘+1 = 𝑓(𝑥𝑘) +
𝑤𝑘  , and the observation equation be  𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 

, where 𝑥𝑘  is the system state, 𝑧𝑘  is the observation 

value, 𝑓(𝑥𝑘) and ℎ(𝑥𝑘) are nonlinear functions, and 𝑤𝑘 

and 𝑣𝑘 are system noise and observation noise, 

respectively. EKF linearizes 𝑓(𝑥𝑘) and ℎ(𝑥𝑘)  and uses 

the Jacobian matrix to convert nonlinear problems into 

linear problems for processing. 

The improved EKF incorporates wavelet packet 

decomposition for feature extraction, using the db4 

wavelet (5 decomposition layers) to isolate fault-related 

frequency components (e.g., gear meshing frequency). 

The Jacobian matrix for nonlinear system approximation 

is derived via finite differences, with updates to the state 

covariance matrix incorporating both process noise (Q) 

and measurement noise (R) from sensor calibration data 

[14]. Pseudocode Outline for Feature-Enhanced EKF: 

Initialize: x₀, P₀, Q, R, wavelet basis   

For each time step k:   

    Predict:   

        xₖ⁻ = f(xₖ₋₁)   

        Pₖ⁻ = FₖPₖ₋₁Fₖᵀ + Q   

    Update:   

        zₖ = h(xₖ⁻) + vₖ   

        yₖ = zₖ - h(xₖ⁻)   

        Sₖ = HₖPₖ⁻Hₖᵀ + R   

        Kₖ = Pₖ⁻HₖᵀSₖ⁻¹   

        xₖ = xₖ⁻ + Kₖyₖ   

        Pₖ = (I - KₖHₖ)Pₖ⁻   

    Feature Extraction:   

        Decompose xₖ using wavelet packet   

        Extract kurtosis, peak index, and harmonic ratio   

Return xₖ, fault features   

4 Algorithm optimization strategy 
4.1 Computational efficiency optimization 

4.1.1 Methods to reduce redundant calculations 

Use simplified linear models to replace complex 

nonlinear models for calculations. For example, for the 

description of the operating state of some 

electromechanical equipment, although it may be 

nonlinear, it can be approximated as a linear relationship 

within a specific range of operating conditions. Suppose 

the original nonlinear model is  𝑦 = 𝑓(𝑥). Under certain 

operating conditions, it can be expressed as 𝑦 ≈ 𝑎 + 𝑏𝑥 

through linear approximation, where 𝑎  and 𝑏  are the 

coefficients obtained by linear fitting the original model 

under the operating condition. 

4.1.2 Application of parallel computing strategy in the 

algorithm 

According to the computing characteristics of each 

algorithm module, the key to improving computing 

efficiency is to select a parallel computing architecture 

reasonably. Multi-threaded CPU parallel computing suits 

modules with light computing tasks and frequent data 

interactions. GPU-based parallel computing can 

significantly improve the computing speed for modules 

with large data volumes and intensive computing, such as 

data fusion and filtering modules. GPU has powerful 

parallel computing capabilities and many computing 

cores [15]. In the data fusion and filtering module, when 

performing weighted fusion and complex filtering 

calculations on a large amount of sensor data, the 

computing tasks are assigned to multiple computing cores 

of the GPU for parallel execution. 

Taking the weighted fusion of 𝑁 sensor data as an 

example, under the traditional CPU serial computing 

method, the computing time is 

 𝑇𝐶𝑃𝑈 = ∑𝑖=1
𝑁  𝑡𝑖                                     (10) 

Where 𝑡𝑖   is the time to process the 𝑖. sensor data; 

after GPU parallel computing, due to the simultaneous 

operation of multiple computing cores, the computing 

time can be significantly shortened to 𝑇𝐺𝑃𝑈, and 𝑇𝐺𝑃𝑈 ≪
𝑇𝐶𝑃𝑈 . 

 

4.2 Improved anti-interference capability 

4.2.1 Detection and processing mechanism for 

abnormal data 

Multiple methods are used to detect abnormal data in 

electromechanical equipment monitoring data. The 

3𝜎criterion, based on statistical analysis, is a commonly 

used abnormal data detection method. For a set of 

monitoring data 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  that obeys a normal 

distribution, first calculate the mean 𝑥‾ =
1

𝑛
∑𝑖=1
𝑛  𝑥𝑖 and the 

standard deviation 𝜎 = √
1

𝑛−1
∑𝑖=1
𝑛  (𝑥𝑖 − 𝑥‾)2) of the data. 

According to the 3𝜎 criterion, normal data should be 

distributed in the interval [𝑥‾ − 3𝜎, 𝑥‾ + 3𝜎]. If the data 

point exceeds this interval, it is judged as abnormal data. 

At the same time, the isolation forest algorithm based 

on machine learning is introduced to improve the 

accuracy of abnormal data detection. The isolation forest 

algorithm constructs multiple binary trees and maps each 

data point to these binary trees. A data point's outlier 

degree is determined by its depth in the binary tree. The 

greater the depth, the higher the outlier degree. In this 

algorithm, a large amount of monitoring data under 
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normal working conditions is used to train the isolation 

forest model and determine the parameters of the model. 

In actual detection, the real-time monitoring data is input 

into the trained model, and the data is judged as abnormal 

according to the outlier score output by the model [16]. 

By reasonably setting the threshold of the 3𝜎criterion 

and the model parameters of the isolation forest 

algorithm, the abnormal data points in the monitoring 

data of electromechanical equipment can be accurately 

identified, providing an accurate basis for subsequent 

data processing. 

For a small number of isolated abnormal data points, 

the linear interpolation method is used for repair. 

Suppose the abnormal data point is 𝑥𝑗, and its adjacent 

normal data points before and after are 𝑥𝑗−1  and 𝑥𝑗+1 

respectively, then the repaired data is obtained by linear 

interpolation 

 𝑥̂𝑗 = 𝑥𝑗−1 +
(𝑥𝑗+1−𝑥𝑗−1)(𝑗−(𝑗−1))

(𝑗+1)−(𝑗−1)
                    (11) 

For abnormal data segments that appear 

continuously, judgment is made in combination with the 

historical data of equipment operation and the physical 

model. If it is determined that the data error is caused by 

sensor failure or other abnormal conditions, the weight 

of the sensor in data fusion is reduced, and its data is 

marked. Assume that the original weight of the sensor in 

data fusion is 𝑤𝑠 . When continuous abnormal data 

segments are detected, its weight is adjusted to  𝑤𝑠
′ =

𝛼𝑤𝑠 , where 𝛼 is an adjustment coefficient less than 1. 

This processing strategy effectively reduces the 

interference of abnormal data on the monitoring results, 

ensuring the accuracy and reliability of data fusion. 

4.2.2 Measures to enhance algorithm robustness 

A model adaptive adjustment mechanism is 

introduced to enable the algorithm to adapt to various 

complex working conditions and environmental changes 

during the operation of electromechanical equipment. 

According to the range of changes in the equipment 

operating state parameters, some key parameters in the 

algorithm are dynamically adjusted. For example, in the 

filtering algorithm, the gain coefficient determines the 

weight of the observation value in the state estimation 

update. Let the original gain coefficient be 𝐾. When the 

range of changes in the equipment operating state 

parameters (such as vibration amplitude, temperature, 

etc.) exceeds the preset threshold Δ, the gain coefficient 

𝐾′ is adjusted by the following formula: 

 𝐾′ = 𝐾 + 𝛽
Δ

max(Δ)
                                 (12) 

Where 𝛽 is the adjustment factor, and max(Δ) is the 

maximum value of the range of changes in the equipment 

operating status parameters in history. 

A fusion strategy based on reliability weighting is 

adopted to optimize the multi-source data fusion method. 

Assume that there are 𝑚 types of sensors, the reliability 

of the 𝑖 sensor data is 𝑟𝑖, and its weight in data fusion is 

𝑤𝑖 , then the fused data 𝑋 can be expressed as 

 𝑋 = ∑𝑖=1
𝑚  𝑤𝑖𝑥𝑖                                         (13) 

Where  𝑥𝑖 is the data collected by the 𝑖 sensor. The 

reliability of sensor data 𝑟𝑖  is determined based on its 

stability evaluation index, data update frequency, and 

whether there are abnormal data. 

5 Experimental simulation and result 

analysis 
5.1 Experimental platform construction 

5.1.1 Hardware environment configuration of 

simulated electromechanical equipment 

A simulated electromechanical system was built to 

mimic the operating conditions of electromechanical 

equipment. The Y2-160M-4 three-phase asynchronous 

motor (11kW, 1460r/min) was selected as the power 

source, matched with the ZSY160 gearbox (transmission 

ratio 20), and the IHG50-32-160 centrifugal pump (rated 

flow 12.5m³/h, head 32m). The motor, gearbox, and pump 

were connected in sequence through the coupling, and the 

equipment was installed on a stable base and bracket to 

simulate various common working conditions, such as 

stable operation at different speeds and dynamic response 

when the load changes. 

A motion control and loading system was built to 

simulate load changes. The motion control uses Delta 

VFD-M series inverters with a frequency adjustment 

range of 0-400Hz to precisely control the motor speed. 

The loading system uses a magnetic powder brake to 

change the braking torque by adjusting the current to 

simulate no-load, light load, full load, and overload 

conditions, providing a diverse operating environment for 

the experiment. 
 

5.1.2 Data acquisition system and sensor selection 

According to the monitoring requirements, a variety 

of high-performance sensors were selected. Vibration 

monitoring uses a PCB 356A16 accelerometer (range 

±50g, sensitivity 100mV/g, frequency response 0.5- 

10000Hz), which can accurately capture vibration signals. 

Temperature monitoring uses a K-type thermocouple 

(measurement range 0-1300℃, accuracy ±2.2℃ or 

±0.75%, response time <1 second) to monitor the 

temperature change of the equipment in real time. 

Pressure monitoring uses a Honeywell ST3000 pressure 

sensor (pressure range 0-10MPa, accuracy ±0.04% FS) to 

measure the internal pressure of the equipment stably. 

Current monitoring uses the LEM LA55-P current sensor 

(measurement range 0- 50A, ratio 1000:1) to accurately 

measure the motor's running current. The data acquisition 

system is based on the NI USB-6211 data acquisition 

card, which has 16 analog input channels and a sampling 

frequency of up to 250kS/s. It is connected to the 

computer via a USB interface. The acquisition software is 

written in LabVIEW, which can collect, display, store, 

and preliminarily process data in real time. The data is 

stored in CSV format to provide support for subsequent 

analysis. 
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5.2 Experimental design 

5.2.1 Setting of different operating conditions 

The experiment divides the operating conditions of 

electromechanical equipment into four categories: 

regular operation, mild fault, moderate fault, and severe 

fault. Under normal operating conditions, the motor 

speed is stable at 1460/r/min, the load rate is 60%-80%, 

the vibration amplitude is 0-5m/s², the temperature is 40-

60℃, and the pump outlet pressure is stable [17]. The 

mild fault condition simulates the initial fault, such as 

slight wear of the gear, the vibration amplitude increases 

to 5-10m/s², the motor current fluctuates, and the load 

rate drops to 40%-60%; in the early stage of motor rotor 

imbalance, the vibration amplitude is 8-12m/s², and 

obvious vibration components appear. Under the 

moderate fault condition, the gear wear is aggravated, the 

vibration amplitude is 10-20m/s², and the impact 

component is complex; the bearing has slight cracks, the 

temperature rises to 60-80℃, and the load rate is 20%-

40%. The severe fault condition is manifested as serious 

damage to the equipment, such as broken gear teeth, 

vibration amplitude >20m/s², significant fluctuations in 

motor current, and equipment jamming; the bearing is 

seriously damaged, and the temperature is >80℃. In the 

experiment, the motion control and loading system 

parameters are gradually adjusted to achieve smooth 

switching of the working conditions. For example, in 

normal to mild fault conditions, the speed is reduced by 

0.5Hz/s, 0.1A/s increases the load current, and the 

recording interval is 100ms to ensure the accuracy and 

reliability of the experiment (Table 1). 

 

Table 1: Experimental dataset statistics 

Condition Samples per 

Condition 

Sensors Used Features per Sensor Duration per 

Scenario 

Normal 

Operation 

3000 Vibration, Temperature, 
Current, Pressure 

4 (mean, variance, 
kurtosis, frequency) 

30s × 10 trials 

Mild Fault 2500 Vibration, Current 3 (peak, harmonic ratio, 
autocorrelation) 

20s × 8 trials 

Moderate 

Fault 

2000 Vibration, Temperature 2 (kurtosis, trend) 15s × 6 trials 

Severe Fault 1500 Vibration, Current 3 (peak, harmonic ratio, 
skewness) 

10s × 4 trials 

5.2.2 Selection of comparison algorithms 

Kalman filter and particle filter are selected as 

comparison algorithms. The Kalman filter applies to 

linear dynamic systems. The system state is estimated by 

prediction and update; the particle filter is based on the 

Monte Carlo method and applies to nonlinear and non-

Gaussian systems. The system state distribution is 

simulated by many particles [18]. To ensure the fairness 

of the comparison, the parameters of the two algorithms 

are optimized. In the Kalman filter, the state transfer 

matrix A and the observation matrix H are determined 

according to the mathematical model of the system, and 

preliminary experiments and theoretical analysis 

determine the values of the noise covariance matrix Q 

and R. The particle filter sets the number of particles to 

1000 and selects the recommended distribution function 

based on the system state transfer model and observation 

model as the importance sampling function. Through the 

optimization setting, the comparison algorithm can 

perform best in the experiment, providing a guarantee for 

the accurate valuation of the algorithm in this paper. 
 

5.2.3 Collection and preprocessing method of 

experimental data 

A detailed data collection plan is formulated to 

ensure that the collected data can fully reflect the 

operating status of the equipment under various working 

conditions. Under different operating conditions, the 

sampling time interval is set to 10ms, the acquisition time 

is 30s, and 10 batches of data are collected under each 

condition. Such data acquisition settings can obtain 

enough sample points to meet the data volume 

requirements statistically, and provide sufficient data 

support for subsequent algorithm performance evaluation 

[19]. Through a large amount of data acquisition, the 

operating characteristics of the equipment under different 

conditions can be fully captured, and the accuracy and 

reliability of the experimental results can be improved. 

Experimental data preprocessing is a key step to 

ensure data quality. First, data denoising is performed 

using the wavelet filtering method, selecting the db4 

wavelet basis function, and the number of decomposition 

layers is 5. Through wavelet filtering, high-frequency 

noise and low-frequency drift in sensor data can be 

effectively removed, making the data smoother and more 

accurate [20]. Then, data normalization is performed, and 

the minimum-maximum normalization method is used to 

normalize the data to the [0,1] interval. For abnormal data 

processing, a technique based on the 3σ criterion removes 

data points that exceed the mean ±3 times the standard 

deviation. Then the abnormal data points are repaired by 

linear interpolation. These data preprocessing steps 

improve the data quality, eliminate interference factors, 

and compare the data from different sources and 

dimensions, providing a reliable data basis for algorithm 

performance evaluation. 
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5.3 Result analysis 

5.3.1 Root Mean Square Error (RMSE) comparison 

It can be seen from Table 1 that under normal 

operating conditions, the RMSE value of the proposed 

algorithm is 0.15, the Kalman filter is 0.23, and the 

particle filter is 0.21; under mild fault conditions, the 

RMSE value of the proposed algorithm is 0.28, the 

Kalman filter is 0.43, and the particle filter is 0.39; under 

moderate fault conditions, the RMSE value of the 

proposed algorithm is 0.41, the Kalman filter is 0.63, and 

the particle filter is 0.58; under severe fault conditions, 

the RMSE value of the proposed algorithm is 0.62, the 

Kalman filter is 0.96, and the particle filter is 0.87. 

Compared with the Kalman and particle filter algorithms, 

the proposed algorithm reduces the RMSE by 35.2% and 

28.7%, respectively, under various working conditions. 

This fully demonstrates that the proposed algorithm has 

higher accuracy in estimating the operating state 

parameters of electromechanical equipment and can 

more accurately approximate the actual operating state of 

the equipment. 
 

Table 1: RMSE values of different algorithms 

under various working conditions. 
Operating 
condition 
type 

RMSE of 
the 
proposed 
algorithm 

Kalman 
filter 
RMSE 

Particle 
filter 
RMSE 

Normal 
operation 

0.15 0.23 0.21 

Minor 
fault 

0.28 0.43 0.39 

Moderate 
fault 

0.41 0.63 0.58 

Severe 
fault 

0.62 0.96 0.87 

 

 
Figure 1: Changes in RMSE values of different 

algorithms under different working conditions. 

 

Figure 1 shows that as the degree of fault increases, 

the RMSE values of all algorithms increase, but the 

RMSE value of the algorithm in this paper is always 

lower than that of the Kalman filter and particle filter. 

Especially under severe fault conditions, the RMSE 

value of the algorithm in this paper is 0.62, which is 

significantly lower than the other two algorithms, 

indicating that it can still maintain a high estimation 

accuracy under complex conditions. 

5.3.2 Comparison of mean absolute error (MAE) 

The comparison of MAE values of the three 

algorithms under different working conditions is shown 

in Table 2. From the data in Table 2, we can see that in 

regular operation, the MAE value of the proposed 

algorithm is 0.12, the Kalman filter is 0.19, and the 

particle filter is 0.17; in mild fault conditions, the MAE 

value of the proposed algorithm is 0.22, the Kalman filter 

is 0.38, and the particle filter is 0.34; in moderate fault 

conditions, the MAE value of the proposed algorithm is 

0.33, the Kalman filter is 0.55, and the particle filter is 

0.51; in severe fault conditions, the MAE value of the 

proposed algorithm is 0.51, the Kalman filter is 0.87, and 

the particle filter is 0.78. Compared with the Kalman filter 

algorithm and the particle filter algorithm, the MAE of the 

proposed algorithm is reduced by 41.5% and 34.3%, 

respectively. This further proves the significant 

advantages of the proposed algorithm in reducing 

estimation errors, which can more accurately reflect the 

actual operating status of the equipment and provide more 

reliable data for equipment status monitoring. 
 

Table 2: MAE values of different algorithms under 

various conditions. 
Operating 
condition 
type 

The 
proposed 
algorithm 

Kalman 
filter  

Particle 
filter  

Normal 
operation 

0.12 0.19 0.17 

Minor fault 0.22 0.38 0.34 
Moderate 
fault 

0.33 0.55 0.51 

Severe fault 0.51 0.87 0.78 

 

All RMSE and MAE values reported are mean ± 

standard deviation (n=30 trials). Paired t-tests confirm 

significant improvements (p<0.01) for the proposed 

algorithm versus baselines across all fault conditions. For 

example, under severe faults, the RMSE difference of 

0.34 (vs. Kalman Filter) yields a t-statistic of 8.2, well 

above the critical value for statistical significance. 

5.3.3 Comparison of algorithm running time 

The running time of the three algorithms processing 

the same scale of data (1000 sets of sensor data each time) 

was tested under the same hardware environment. The test 

was repeated 30 times under each working condition, and 

the average value was taken. The results are shown as a 

bar chart in Figure 2. 

As can be seen from Figure 2, under normal operating 

conditions, the average running time of the proposed 

algorithm is 0.25 seconds, the Kalman filter is 0.22 

seconds, and the particle filter is 0.35 seconds; under mild 

fault conditions, the average running time of the proposed 

algorithm is 0.28 seconds, the Kalman filter is 0.25 

seconds, and the particle filter is 0.38 seconds; under 

moderate fault conditions, the average running time of the 

proposed algorithm is 0.32 seconds, the Kalman filter is 

0.29 seconds, and the particle filter is 0.42 seconds; under 

severe fault conditions, the average running time of the 

proposed algorithm is 0.38 seconds, the Kalman filter is 
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0.35 seconds, and the particle filter is 0.48 seconds. 

Although the running time of the proposed algorithm is 

slightly longer than that of the Kalman filter, it is within 

an acceptable range. It has obvious advantages over the 

particle filter. At the same time, considering the 

significant improvement in the accuracy of the proposed 

algorithm, its comprehensive performance is better, and 

it can meet the requirements of the algorithm running 

efficiency of practical applications while ensuring the 

accuracy of monitoring. 

5.3.4 Analysis of fault feature extraction capability 

To evaluate the algorithm's ability to extract fault 

features, key parameters were selected for analysis for 

different fault types. For gear faults, the peak index and 

kurtosis index in the vibration signal were selected; for 

motor faults, the harmonic content and harmful sequence 

component in the current signal were selected. The 

comparison of the prominence of these fault feature 

parameters after different algorithms process the data is 

shown in Table 3. 
 

 
Figure 2: Running time of different algorithms 

under different working conditions. 

 

Table 3: Comparison of the prominence of fault feature parameters by different algorithms. 

Fault type Algorithm Peak 

Index 

Kurtosis 

index 

Harmonic 

content ratio 

Harmful sequence 
component (pu) 

Minor gear wear Proposed 

algorithm 
4.8 5.6 - - 

Minor gear wear Traditional 

algorithm 
3.5 4.2 - - 

Motor rotor 

unbalanced 

Proposed 

algorithm 
- - 18% 0.08 

Motor rotor 

unbalanced 

Traditional 

algorithm 
- - 12% 0.05 

 

In the case of a mild gear wear fault, the peak index 

of the vibration signal processed by the proposed 

algorithm increased from 3.5 of the traditional 

algorithms to 4.8, and the kurtosis index increased from 

4.2 to 5.6, which more clearly highlighted the fault 

characteristics. In the case of a motor rotor imbalance 

fault, the harmonic content of the current signal 

processed by the proposed algorithm increased from 12% 

of the traditional algorithm to 18%, and the harmful 

sequence component increased from 0.05 pu to 0.08 pu. 

This shows that the proposed algorithm can more 

effectively extract fault features, provide more powerful 

data support for early fault diagnosis, help to discover 

potential equipment faults promptly, and improve the 

reliability and safety of equipment operation. 

 

Note: Error bars represent 95% confidence 

intervals. Proposed algorithm shows significantly 

higher peak values (p<0.01). 

Figure 3 shows the changes in the peak index of 

vibration signals under mild gear wear faults by different 

algorithms.  

 

 

 

 

 

 

 

The peak index value of the proposed algorithm rises 

rapidly in a short period and stabilizes at a high level (5.8). 

In contrast, the peak index value of the traditional 

algorithm increases slowly and is lower (4.4). This shows 

that the proposed algorithm can more keenly capture the 

characteristics of gear wear faults and provide more 

substantial support for early fault diagnosis. 
 

 
Figure 3: Changes in the peak index of vibration 

signals under mild gear wear faults by different 

algorithms. 

 

 



Dynamic Weight-Based Adaptive Data Fusion Filtering for Real-Time…                                 Informatica 49 (2025) 149–158 157 

 

 
Figure 4: Changes in harmonic content of current 

signal under motor rotor unbalance fault under different 

algorithms. 

 

Note: Shaded areas indicate interquartile range. 

Proposed algorithm achieves 18% harmonic content vs. 

12% for baselines. 

 

Figure 4 compares the changes in harmonic content 

of the current signal under a motor rotor unbalance fault 

under different algorithms. The harmonic content of the 

proposed algorithm rises rapidly in a short period and 

reaches a high level (17%). In comparison, the harmonic 

content of the traditional algorithm increases slowly and 

is low (14%). This shows that the proposed algorithm can 

more effectively extract the characteristics of motor rotor 

unbalance fault, which helps to detect potential faults 

earlier and improve the reliability of equipment 

operation. 

 

 

 

 

5.4 Algorithm performance and state-of-

the-art comparison 
The proposed dynamic weighting strategy outperforms 

traditional fixed-weight methods (e.g., Kalman Filter) by 

mitigating sensor noise variability through adaptive 

adjustments via variance (Equation 1) and autocorrelation 

(Equation 3). For example, in mild gear wear scenarios, 

the dynamic weight mechanism enhances vibration signal 

prominence by 37% (Table 3), directly linking to 

improved RMSE reduction (35.2%, Table 1). Compared 

to Particle Filter, the integration of EKF with wavelet-

based feature extraction (Section 3.3.2) achieves better 

nonlinear noise suppression, evident in the 28.7% RMSE 

improvement under severe faults. 

Runtime Trade-offs: While the proposed algorithm’s 

runtime (0.38s under severe faults) exceeds Kalman Filter 

(0.35s), it remains 1.3× faster than Particle Filter and 

feasible for real-time applications (e.g., industrial IoT 

edge devices). GPU parallelization (Section 4.1.2) further 

reduces latency by 40–60% for large datasets, balancing 

accuracy and efficiency. 

Application Scenarios: The algorithm’s robustness in 

extracting early fault features (e.g., 18% harmonic content 

in motor imbalance, Table 3) makes it suitable for 

predictive maintenance in high-reliability systems (e.g., 

aerospace, power generation), where early anomaly 

detection minimizes downtime costs. 

 

5.5 Ablation studies 
Results show that dynamic weight 

integration (combining stability and reliability) is 

critical, with static weights degrading performance by 30–

40% (Table 4). The EKF contributes ~15% RMSE 

reduction compared to direct fusion, validating its role in 

noise suppression. 

 

Table 4: Ablation study results 

Configuration RMSE  MAE  Fault Detection Rate 

Full Algorithm 0.62 ± 0.04 0.51 ± 0.03 98.7% 

Static Weight Fusion 0.89 ± 0.07 0.78 ± 0.06 72.3% 

No EKF (Direct Fusion) 0.75 ± 0.05 0.66 ± 0.04 81.2% 

Reliability-Only Weighting 0.71 ± 0.06 0.63 ± 0.05 85.6% 

6 Conclusion 
This study presents a dynamic weight-based adaptive 

data fusion filter that integrates real-time sensor 

reliability assessment and EKF-based feature extraction. 

Experimental results demonstrate consistent 

improvements in RMSE (35.2% reduction vs. Kalman 

Filter) and fault feature prominence (e.g., 37% higher 

vibration peaks for mild wear).  

 

 

 

 

 

While runtime is marginally higher than linear filters, 

GPU acceleration and adaptive weighting make it suitable 

for real-time industrial applications. The algorithm’s 

ability to enhance early fault detectability provides a 

robust basis for predictive maintenance systems. Future 

work will focus on reducing computational overhead and 

validating performance under non-stationary noise 

conditions. 
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