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The rapid expansion of e-commerce and local services has intensified the demand for instant delivery, 

particularly same-day delivery (SDD), presenting significant challenges in operational efficiency and 

multi-objective cost management. Traditional logistics systems often struggle with dynamic order arrivals, 

complex routing decisions, and the effective integration of hybrid fleets comprising both dedicated and 

crowdsourced couriers. This paper investigates the multi-objective path co-optimization problem within 

logistics hyper-automation, proposing an innovative Transformer-Augmented Policy Optimization 

(TAPO) Double Layers Optimization Framework. This framework addresses the dynamic dispatching and 

routing challenges in SDD scenarios. The upper layer employs the TAPO agent, where a Transformer 

model processes complex spatio-temporal dependencies from dynamic order data to enrich state 

representations for a Deep Reinforcement Learning (DRL) agent (based on Proximal Policy Optimization 

- PPO). This TAPO agent learns a sophisticated policy for synergistic dispatch-delay decisions. The lower 

layer utilizes efficient heuristic algorithms (GCIH and VNS) for static vehicle routing and order 

assignment when a dispatch action is chosen. The primary goal is to co-optimize multiple objectives, 

focusing on minimizing total fulfillment costs (encompassing mileage and delay penalties) while 

enhancing service efficiency. A Markov Decision Process (MDP) models the sequential decision-making 

problem. Numerical experiments on diverse, realistic instances demonstrate the TAPO framework's 

superiority. Results show that the TAPO framework achieves an average total cost reduction of 

approximately 5-11% compared to a Myopic policy and 3-12% against an Urgent-Based Policy (UBP). 

The framework also exhibits robust generalization to varying order volumes and sensitivity to fleet 

composition changes, underscoring the significant potential of advanced AI techniques in achieving 

logistics hyper-automation. 

Povzetek: Opisan je nov pristop za optimizacijo poti v sistemih za dostavo istega dne z uporabo hibridnih 

flot. Predlagani Transformer-Augmented Policy Optimization (TAPO) okvir združuje globoko ojačanje 

učenja in modeliranje zaporednih odločitev za zmanjšanje stroškov dostave. 

 

1 Introduction 
The proliferation of e-commerce and local life services 

has catalyzed an explosive growth in the instant delivery 

market, with consumer habits increasingly shifting 

towards online purchasing for a wide array of goods [1]. 

This trend has significantly propelled the demand for 

"same-day delivery" (SDD) services, which aim to deliver 

goods to customers within hours of an order being placed 

[2, 3]. SDD models typically utilize local fulfillment 

centers or front-end stores as warehousing points, 

processing dynamically arriving orders throughout 

operational hours. This paradigm, bridging the gap 

between traditional multi-day e-commerce fulfillment and 

ultra-fast meal delivery, presents novel operational 

challenges for service providers, primarily in balancing 

stringent delivery timeliness with escalating operational 

costs [4]. 

A critical aspect of managing SDD operations is the 

efficient utilization of delivery fleets. Traditionally, 

companies relied on dedicated, in-house couriers. 

However, with the rise of the sharing economy and 

crowdsourcing platforms, many service providers are now 

adopting hybrid fleet models that combine dedicated 

couriers with a flexible supply of crowdsourced delivery 

personnel [5, 6]. This "asset-light" approach offers 

scalability and can be a cost-effective supplement to 

existing capacity, especially during peak demand periods. 

Nevertheless, the integration of heterogeneous fleets adds 

complexity to the dispatching and routing decisions. In 

this dynamic environment, characterized by fluctuating 
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demand and evolving fleet compositions, the problems of 

dynamic order dispatching and multi-objective path co-

optimization have become paramount for achieving cost 

reduction and efficiency improvements [7]. 

The inherent complexity of SDD, involving real-time 

decision-making under uncertainty with dynamically 

arriving orders and stochastic travel times, often renders 

traditional optimization methods and simple heuristics 

inadequate. These problems are typically characterized by 

large state and action spaces, making direct solutions via 

methods like Bellman equations computationally 

intractable, a phenomenon often referred to as the "curse 

of dimensionality" [8]. Consequently, there is a growing 

need for advanced intelligent algorithms that can learn 

effective strategies from data and adapt to changing 

conditions. Deep Reinforcement Learning (DRL) has 

emerged as a powerful paradigm for tackling such 

complex sequential decision-making problems [9, 10]. 

DRL agents can learn optimal or near-optimal policies 

through interaction with the environment, making them 

well-suited for dynamic logistics scenarios where future 

information is uncertain and long-term rewards need to be 

considered [11]. Several studies have explored DRL for 

various vehicle routing problems (VRPs) and dynamic 

dispatching tasks, demonstrating its potential to 

outperform traditional approaches [12, 13]. 

Furthermore, logistics optimization in SDD is inherently a 

multi-objective problem. Service providers aim to 

simultaneously minimize various costs (e.g., total travel 

distance, labor costs), reduce delivery delays, and 

maximize customer satisfaction [14, 15]. These objectives 

are often conflicting, necessitating a multi-objective 

optimization (MOO) approach to find a set of Pareto-

optimal solutions that represent different trade-offs. Path 

co-optimization, in this context, refers to the synergistic 

optimization of both dispatching decisions and the 

subsequent routing decisions for the assigned couriers, 

rather than treating them as separate, sequential steps. 

To enhance the decision-making capabilities of DRL 

agents in such complex environments, advanced data 

processing techniques are beneficial. The logistics domain 

generates vast amounts of sequential and spatio-temporal 

data. Transformer models, originally developed for 

natural language processing, have shown remarkable 

success in capturing long-range dependencies and 

contextual information in sequential data due to their 

attention mechanisms [16]. Their application is expanding 

to various other fields, including logistics and 

transportation, for tasks like travel time estimation or 

demand prediction, which can provide richer state 

representations for DRL agents [17]. This research 

operates under the broader umbrella of Logistics Hyper-

automation, which signifies a strategic approach to 

automate and optimize logistics processes end-to-end by 

leveraging a combination of advanced technologies, 

including AI and machine learning, to achieve greater 

efficiency and resilience [18, 19]. The Comparative 

Analysis of Prior Methods in SDD Dispatching is shown 

in Table 1. 

This paper addresses the critical challenge of dynamic 

order dispatching and multi-objective path co-

optimization in SDD systems that utilize a hybrid fleet of 

dedicated and crowdsourced couriers. We propose a novel 

Transformer-Augmented Policy Optimization (TAPO) 

Double Layers Optimization Framework. This framework 

integrates Transformer models with Deep Reinforcement 

Learning to learn sophisticated, adaptive strategies. The 

upper layer of the framework employs the TAPO agent, 

where a Transformer component processes complex 

sequential and contextual information from the 

operational environment, enhancing the state 

representation for a DRL agent (based on algorithms like 

Proximal Policy Optimization - PPO [20]). This TAPO 

agent then learns a policy to make synergistic dispatch-

delay decisions. The lower layer is responsible for the path 

optimization for the heterogeneous fleet when a dispatch 

action is chosen. The primary goal is to co-optimize 

multiple objectives, focusing on minimizing total 

fulfillment costs (delay penalties and mileage costs) while 

ensuring service quality. This study aims to demonstrate 

how such an integrated AI approach can lead to significant 

improvements in the efficiency and cost-effectiveness of 

SDD operations, contributing to the advancement of 

logistics hyper-automation. In this paper we solve three 

research questions: 

•Does integrating Transformer-based state representations 

into PPO improve dispatching efficiency in hybrid fleet 

logistics? 

•How does the TAPO framework compare to traditional 

dispatching policies in terms of cost reduction and 

operational efficiency? 

•What are the robustness and generalization capabilities 

of the TAPO framework across different order volumes 

and fleet compositions? 

The remainder of this paper is organized as follows: 

Section 2 describes the problem and formulates the 

mathematical model. Section 3 details the proposed TAPO 

Double Layers Optimization Framework. Section 4 

presents the numerical experiments and discusses the 

results. Finally, Section 5 concludes the paper and 

suggests directions for future research. 

 

2 Problem description and 

mathematical model 

This section formally defines the Same-Day Delivery 

Problem with Hybrid Fleets (SDDPHF) in the context of 

logistics hyper-automation. We delineate the system 

components, decision-making processes, and formulate a 

Markov Decision Process (MDP) model tailored for multi-

objective path co-optimization. 

 

Table 1: Comparative analysis of prior methods in SDD 

dispatching 
Method Type Description Performance 

Metrics 

Limitations 

Rule-Based 

Heuristics 

Simple, 

predefined 

rules for 

Dispatch time, 

route length 

Assumes static 

conditions, 

limited scalability 
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dispatching 

and routing 

Standard 
DRL 

Basic DRL 

algorithms 

without 

additional 
enhancements 

Total cost, 
delivery time 

Struggles with 

complex state 

spaces, limited 
generalization 

MILP-Based 

Methods 

Mathematical 

optimization 

using Mixed-

Integer Linear 

Programming 

Cost 

minimization, 

service level 

Computationally 

intensive, static 

assumptions 

TAPO 

(Proposed) 

Transformer-
Augmented 

Policy 

Optimization 

for dynamic 

dispatch-delay 

decisions and 

routing 

Multi-

objective cost 

reduction, 

service 

efficiency 

Assumes certain 

vehicle speed and 

service area 

constraints 

 

To model this problem effectively, we make the following 

assumptions: 

1.Assumption on Courier Availability: We assume that 

courier availability is known and relatively stable within 

the operational time window. This assumption allows us 

to focus on the optimization of dispatch and routing 

decisions without the added complexity of dynamic 

courier availability changes. 

2.Assumption on Order Deadlines: We assume that order 

deadlines are provided and are relatively uniform across 

customers. This assumption helps to standardize the 

problem and allows for a more focused analysis of the 

dispatch and routing optimization. 

3.Assumption on Fixed Simulation Parameters: We 

assume that certain simulation parameters, such as vehicle 

speeds and service areas, are fixed and known in advance. 

This assumption is necessary to create a controlled 

environment for testing and validating the TAPO 

framework. 

2.1 Problem setting 

The Same-Day Delivery Problem with Hybrid Fleets 

(SDDPHF) addresses the dynamic dispatching and routing 

of customer orders that arrive sequentially over a finite 

operational horizon, denoted as 𝑇 . Operations occur 

within a defined geographical area, represented by a graph 

𝐺 = (𝑁, 𝐸) . Here, 𝑁  is the set of nodes, including a 

central depot N0 (such as a front-end store or local 

fulfillment center), various customer locations 𝑁C, and 

potential starting locations for crowdsourced couriers 𝑁P. 

The set 𝐸  comprises edges that represent travel paths, 

each associated with specific travel times or distances. 

Customer orders, 𝑂 = 𝑜1, 𝑜2, … , 𝑜|𝑂| , arrive dynamically, 

with each order oi characterized by its arrival time 𝑡𝑖
𝑎, 

customer location, and a desired delivery window or latest 

acceptable delivery time  𝑡𝑖
𝑑. The system is designed to 

fulfill all accepted orders [6]. 

Delivery operations are executed by a hybrid fleet, which 

includes a dedicated fleet and a crowdsourced fleet. The 

dedicated fleet, 𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑀, consists of M in-house 

couriers who typically start and end their routes at the 

depot 𝑁0. These couriers have specific capacities 𝑞𝑓 and 

operational characteristics, such as speed 𝑣𝑓. 

Complementing this is a dynamically available pool of L 

crowdsourced couriers, 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝐿 , who can be 

engaged on demand. Crowdsourced couriers may possess 

different capacities 𝑞𝑝, potentially lower speeds 𝑣𝑝, and 

distinct operational patterns; for instance, they might not 

be required to return to the depot after completing their 

deliveries. The unique characteristics of dedicated versus 

crowdsourced couriers, including travel speed, single-trip 

carrying capacity, and route start/end points, are 

fundamental to the model. A detailed comparison is 

presented in Table 2.  

 

 

Table 2: Comparison of dedicated and crowdsourced 

courier characteristics 

 
Dedicated Courier 

Crowdsourced 

Courier 

Driving Speed Fast Slow 

Order Capacity per 

Trip 
High low 

Starting Point of 

Delivery Route 

Pre-determined 

Warehouse 

Location at Time 

of Dispatch 

End Point of 

Delivery Route 

Pre-determined 

Warehouse 

Last Order 

Location, Exit 

System 

Decisions concerning order dispatching and vehicle 

routing are made at discrete decision epochs, 𝑡𝑘. These 

epochs can be triggered either by fixed time intervals (e.g., 

every ∆𝑡 minutes) or by specific events, such as the return 

of a dedicated courier to the depot, which makes them 

available for new assignments. These decision epochs are 

shown in Figure 1. At each decision epoch 𝑡𝑘, the system 

must address several intertwined decisions: deciding 

which currently unassigned orders (both newly arrived 

and previously delayed) to dispatch immediately and 

which to delay for potential consolidation; assigning 

dispatched orders to available dedicated or crowdsourced 

couriers; and for each courier assigned a set of orders, 

determining the optimal delivery sequence (route) to co-

optimize multiple objectives. 

 

Figure 1: Dynamic dispatch decision epochs 

The primary goal of the system is multi-objective 

optimization, aiming to enhance performance across 

several, often conflicting, criteria. These objectives 

typically include minimizing total operational costs 

(comprising mileage-based costs proportional to total 
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distance traveled and delay penalties for late deliveries) 

and maximizing service levels (e.g., minimizing average 

delivery time, maximizing on-time deliveries). 

Additionally, while not always mandatory, ensuring a fair 

distribution of workloads among delivery personnel is 

considered as a supplementary objective to maintain 

operational equity and efficiency. The overall objective 

function can be structured as a weighted sum of these 

components or approached from a Pareto-optimality 

perspective. A common formulation is to minimize a 

composite cost function: 

min𝑍 = 𝑤1 ⋅ 𝐶mileage + 𝑤2 ⋅ 𝐶delay + ∑  
𝑁obj 

𝑗=3
𝑤𝑗 ⋅ 𝐶𝑗         (1) 

where 𝐶mileage  is the total mileage cost, 𝐶delay  is the total 

delay penalty, 𝐶j   represents other cost or performance 

metrics, and 𝑤𝑗  are their respective weights reflecting 

their relative importance. 

2.2 Markov decision process (MDP) 

formulation 

The dynamic and stochastic nature of the SDDPHF lends 

itself to modeling as a Markov Decision Process (MDP). 

The MDP is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾): 

The state 𝑠𝑘 ∈ 𝑆 at a decision epoch 𝑡𝑘 must encapsulate 

all information relevant to decision-making. This includes 

the current time 𝑡𝑘; the set of unassigned orders 𝑂pool (𝑘), 

which comprises newly arrived orders 𝑂new  since the last 

epoch tk−1 and any orders 𝑂remain   held over from 

previous epochs (each order 𝑜𝑖 ∈ 𝑂pool is described by its 

features like location, arrival time, and deadline); the 

status of dedicated couriers𝑉𝐹(𝑘), detailing for each 𝑓𝑗 ∈

𝐹 their current location, remaining capacity, and estimated 

time of arrival back at the depot if en-route; the availability 

and status of crowdsourced couriers 𝑉𝑃(𝑘), including their 

current availability, location, and capacity; and 

information about ongoing routes 𝑅active (𝑘) for couriers 

already dispatched, including the sequence of remaining 

deliveries and estimated completion times. The state can 

be formally represented as:  

𝑠𝑘 = (𝑡𝑘, 𝑂pool (𝑘), 𝑉𝐹(𝑘), 𝑉𝑃(𝑘), 𝑅active (𝑘))               (2) 

The component 𝑅active (𝑘)  is crucial as it includes 

information about routes assigned in previous epochs that 

are still in progress. For instance, for a dedicated courier 

𝑓𝑖 dispatched at an earlier epoch 𝑘′ < 𝑘, its route 𝑟(𝑓𝑖 , 𝑘′) 

would be part of 𝑅active (𝑘) until completed. 

To capture complex dependencies and sequential patterns, 

such as those in order arrivals or courier availability, raw 

state features can be processed by a Transformer encoder. 

The Transformer's self-attention mechanism can 

effectively weigh the importance of different elements in 

sequences of data (e.g., features of orders in 𝑂pool  or 

courier activities) to produce a richer, context-aware state 

embedding Φ(𝑠𝑘). For a sequence of input features 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛), the self-attention mechanism computes: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                  (3) 

where 𝑄, 𝐾, 𝑉  are query,key,and value matrices derived 

from the input embeddings,and 𝑑𝑘 is the dimension of the 

keys.This allows the model to learn inter-order 

relationships or temporal patterns crucial for effective 

dispatching and routing.The output of the 

Transformer,Φ(𝑠𝑘) ,then serves as the input to the DRL 

agent’s policy and value networks, shown as figure 2.  

 

Figure 2: Transformer based state representation 

enhancement structure 

At each state 𝑠𝑘  ,the agent chooses an action 𝑎𝑘 ∈
𝐴(𝑠𝑘) .This action is multi-faceted, involving a dispatch 

decision 𝑎𝐷(𝑘)  (e.g., a binary choice to dispatch all 

current orders or delay them),an order-courier assignment 

𝑎𝐴(𝑘)  if dispatching (matching selected orders to 

available couriers from 𝐹 ∪ 𝑃 ,considering capacities and 

fleet characteristics),and a routing decision 𝑎𝑅(𝑘)  .The 

routing decision determines the sequence of deliveries for 

each assigned courier. A route 𝑟𝑗  for courier 𝑗  is a 

sequence of customer nodes (𝑜𝑗1, 𝑜𝑗2, … , 𝑜𝑗𝑚𝑗
).The set of 

all routes generated at epoch 𝑘  is 𝑅𝑘
′ = 𝑟1, 𝑟2, …  .For a 

dedicated courier 𝑓𝑖, a route 𝑟(𝑓𝑖 , 𝑘) dispatched at epoch 𝑘 

can be represented as [21]： 

𝑟(𝑓𝑖 , 𝑘) = (𝑁0, 𝑜𝑖1, … , 𝑜𝑖𝑚𝑖
, 𝑁0), 𝑡𝑓𝑖

𝑟 ,  distance 𝑓𝑖
𝑘           (4) 

where (𝑁0, 𝑜𝑖1 , … , 𝑜𝑖𝑚𝑖
, 𝑁0) is the sequence of nodes, 𝑡𝑓𝑖

𝑟  

is the courier's return time to the depot, distance  𝑓𝑖

𝑘  is the 

route distance, and delay 𝑓𝑖
𝑘 is the accumulated delay. For 

a crowdsourced courier 𝑝𝑗, a route 𝑟(𝑝𝑗 , 𝑘) might start at 

their current location 𝑁𝑝′ , proceed to the depot 𝑁0  for 

pick-ups, deliver to customers 𝑜𝑗1, … , 𝑜𝑗𝑛𝑗
 and end at the 

last customer location: 

𝑟(𝑝𝑗 , 𝑘) = (𝑁𝑝𝑗
→ 𝑁0 → 𝑜𝑗1, … , 𝑜𝑗𝑛𝑗

) ,  distance 𝑗
𝑘
         (5) 

The composite action is thus 𝑎𝑘 =
(𝑎𝐷(𝑘), 𝑎𝐴(𝑘), 𝑎𝑅(𝑘)) .The state transition function 

𝑃(𝑠𝑘+1 ∣ 𝑠𝑘 , 𝑎𝑘) defines the probability of moving from 

state 𝑠𝑘  to 𝑠𝑘+1 after action 𝑎𝑘 . This transition is shaped 

by deterministic consequences of 𝑎𝑘  (like courier 
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movements and order fulfillment) and stochastic elements 

(such as new order arrivals 𝑂new (𝑘 + 1) , changes in 

crowdsourced courier availability 𝑉𝑃(𝑘 + 1) , and 

uncertain travel times). The next decision epoch 𝑡𝑘+1 is 

determined by: 

𝑡𝑘+1 = min ( min
𝑓𝑖∈𝐹en-route 

 𝑡𝑓𝑖

𝑟 , (⌊
𝑡𝑘

Δ𝑡
⌋ + 1) ⋅ Δ𝑡)                 (6) 

where 𝐹en-route  is the set of dedicated couriers currently on 

a route. The order pool 𝑂pool (𝑘 + 1) and courier statuses 

𝑉𝐹(𝑘 + 1), 𝑉𝑃(𝑘 + 1)  are updated based on 𝑠𝑘 , 𝑎𝑘 , and 

new exogenous information 𝑤𝑘+1 = (𝑂new (𝑘 +
1), 𝑉𝑃(𝑘 + 1)). 

The reward function 𝑅(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1)  quantifies the 

immediate outcome of action 𝑎𝑘 . Given the multi-

objective nature, it's a scalar value reflecting the action's 

desirability. Typically, it's the negative of a weighted sum 

of costs incurred: 

𝑅𝑘 = − (𝑤1 ⋅ Δ𝐶mileage (𝑘) + 𝑤2 ⋅ Δ𝐶delay (𝑘) +

∑  
𝑁obj 

𝑗=3
 𝑤𝑗 ⋅ Δ𝐶𝑗(𝑘))         (7) 

where Δ𝐶mileage (𝑘) and Δ𝐶delay (𝑘) are mileage and delay 

costs from routes in 𝑎𝑅(𝑘). Reward shaping can be used 

to provide denser feedback. The discount factor 𝛾 ∈ [0,1] 
balances immediate versus future rewards. 

The DRL agent's goal is to learn an optimal policy 𝜋∗: 𝑆 →
𝐴  that maximizes the expected cumulative discounted 

reward: 

𝜋∗ = arg max
𝜋

 𝔼[∑  𝐾−1
𝑖=𝑘   𝛾𝑖−𝑘𝑅(𝑠𝑖 , 𝜋(𝑠𝑖), 𝑠𝑖+1) ∣ 𝑠𝑘]      (8) 

for all 𝑠𝑘 ∈ 𝑆 , where 𝐾  is the total number of decision 

epochs. The "curse of dimensionality" arising from vast 

state and action spaces makes exact solutions to the 

Bellman optimality equation infeasible. The Bellman 

equation for the optimal action-value function 𝑄∗(𝑠, 𝑎) is: 

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′∼𝑃( ⋅∣∣𝑠, 𝑎 )[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾max𝑎′  𝑄∗(𝑠′, 𝑎′)]         

(9) 

This necessitates DRL algorithms using function 

approximators (e.g., deep neural networks) to learn the 

policy 𝜋(𝑎|𝑠; 𝜃) or value functions, where θ are network 

parameters. 

 

2.3 Illustrative scenario 

To clarify the decision-making process and state 

transitions, consider a simplified scenario. An illustration 

of the system state at a specific decision epoch is shown 

as Figure 3 at decision epoch 𝑡𝑘 =120 min. 

The DRL agent observes the system state 𝑆𝑘.Based on this 

observation, potentially enhanced by a Transformer 

model, the agent decides on an action 𝑎𝑘.One option is to 

delay dispatch, in which case all orders currently in 

𝑂pool (𝑘)  remain,and the system transitions to the next 

decision epoch 𝑡𝑘+1 .Another option is immediate 

dispatch, where orders are assigned to available 

couriers(e.g., 𝑓1  and 𝑝1  ),and routes are planned.For 

instance,orders 𝑜1, 𝑜2, 𝑜3  might be assigned to 𝑓1  ,and 

order 𝑜4 to 𝑝1. 

 

Figure 3: System state at decision epoch 𝑡𝑘=120 min 

Assume the next decision epoch 𝑡𝑘+1 occurs at 130 min, 

triggered by the return of courier 𝑓2 to the depot (assuming 

this is earlier than 120 + Δ𝑡  ).During the interval from 

120 min to 130 min, new orders 𝑜5, 𝑜6, 𝑜7 arrive (this is 

the exogenous information 𝑤𝑘+1  ),and a new 

crowdsourced courier 𝑝2 becomes available. 

If the agent chose to delay dispatch at 𝑡𝑘 = 120 min,then 

at 𝑡𝑘+1 = 130 min ,the order pool 𝑂pool (𝑘 + 1)  would 

now contain the original orders 𝑜1, 𝑜2, 𝑜3, 𝑜4 plus the new 

orders 𝑜5, 𝑜6, 𝑜7.An illustration of the system state after a 

delay decision is shown as Figure 4. The available couriers 

would include 𝑓1(who was waiting),𝑓2(who just returned), 

and the newly available 𝑝2.The DRL agent then makes a 

new dispatch and routing decision for this larger pool of 

orders and updated fleet. 

Conversely, if the agent chose immediate dispatch at 𝑡𝑘 =
120 min  ,then at 𝑡𝑘+1 = 130 min , the order pool 

𝑂pool (𝑘 + 1)would only contain the new orders 𝑜5, 𝑜6, 𝑜7 

,as orders 𝑜1 − 𝑜4 are already enroute with couriers 𝑓1 and 

𝑝1. An illustration of the system state after an immediate 

dispatch decision is shown as Figure 5. The available 

couriers for these new orders would be 𝑓2 (who just 

returned) and 𝑝2 . Couriers 𝑓1 and 𝑝1  are still completing 

their routes initiated at 𝑡𝑘 . The DRL agent then makes 

decisions for the new orders using the currently available 

fleet. 

This illustrative scenario highlights how strategic delays, 

guided by a learned policy, can potentially yield superior 

overall solutions. By enabling order consolidation and 

more efficient utilization of vehicle capacity, such 
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strategies can reduce total costs. The DRL agent's function 

is to discern when such delays are advantageous by 

analysing the complex interplay of current state variables 

and future uncertainties. 

 

Figure 4：System State at 𝑡𝑘+1 = 130 min after 

Delaying Dispatch at 𝑡𝑘 

 

Figure 5：System State at 𝑡𝑘+1 = 130 min after 

Immediate Dispatch at 𝑡𝑘 

 3   Algorithm design 

With the mathematical model established, we now focus 

on the algorithmic design to solve the formulated problem 

effectively. This chapter details the hybrid algorithmic 

approach developed to address the Same-Day Delivery 

Problem with Hybrid Fleets (SDDPHF). The proposed 

solution employs double layers optimization framework. 

At its core, an advanced Deep Reinforcement Learning 

(DRL) method, termed Transformer-Augmented Policy 

Optimization (TAPO), is responsible for making dynamic, 

global dispatch-delay decisions. This is complemented by 

heuristic algorithms designed to solve the static routing 

subproblems that arise when a dispatch decision is made. 

This integrated approach aims to achieve overall 

optimization within the operational period of same-day 

delivery services, balancing immediate operational needs 

with long-term strategic goals. 

 

3.1 Upper-Layer: transformer-augmented 

policy optimization (TAPO) 

The Transformer-Augmented Policy Optimization 

(TAPO) agent is central to our approach for the dynamic 

dispatch-delay decision-making process. It learns its 

policy through continuous interaction with a simulated 

environment that accurately mimics the SDDPHF system. 

The design of this DRL environment, particularly its 

observation space, action space, and reward function, is 

critical for successful learning and for leveraging the 

capabilities of the Transformer architecture. The 

interaction loop between the DRL agent and the 

environment is depicted in Figure 6. 

 

Figure 6: TAPO Agent-environment interaction loop 

To manage the complexity of the full MDP state 𝑠𝑘 and 

ensure that the learning process is feasible, the TAPO 

agent receives a carefully selected observation 𝑜𝑘 ∈ 𝑆obs  

at each decision epoch 𝑡𝑘. This observation is a compact 

yet informative representation of the system's current 

state. It typically includes the current time 𝑡𝑘 within the 

operational horizon [0, 𝑇] ; aggregate information about 

the order pool 𝑂pool (𝑘) , such as the total number of 

waiting orders, and potentially specific features of the 

most urgent order (e.g., the time remaining until its 

deadline, 𝑈𝑇𝑘  ); and information about available fleet 

capacity, such as the number of dedicated couriers 𝑉𝑘 

currently at the depot and ready for dispatch. Crucially, to 

provide richer contextual information and enable more 

sophisticated decision-making, features extracted by a 

Transformer model from recent historical order data (e.g., 

sequences of order locations, demand volumes, arrival 

times) or predicted future demand patterns can be 

included. The Transformer architecture comprises an 

embedding layer, followed by 6 encoder layers. Each 

encoder layer consists of a multi-head self-attention 

mechanism and a position-wise feed-forward network. 

This Transformer processed information, denoted 

Φcontext (𝑘), allows the agent to better understand temporal 

dependencies and complex patterns that might influence 

the optimal dispatch strategy. Thus, the observation vector 

can be represented as 𝑜𝑘 = 

(𝑡𝑘 , count(𝑂pool (𝑘)), 𝑈𝑇𝑘 , 𝑉𝑘 , Φcontext (𝑘)). 

The TAPO agent's action space 𝐴TAPO  is simplified for 

the dispatch-delay decision to maintain tractability. At 

each epoch 𝑡𝑘, the agent chooses a discrete action 𝑎𝑘
𝑇𝐴𝑃𝑂  
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from the set 0,1. An action 𝑎𝑘
𝑇𝐴𝑃𝑂 = 0 signifies a decision 

to delay the dispatch of all orders currently in 𝑂pool (𝑘); 

these orders then remain in the pool and are reconsidered 

at the next decision epoch. Conversely, an action 𝑎𝑘
𝑇𝐴𝑃𝑂 =

1 indicates a decision to dispatch the orders currently in 

𝑂pool (𝑘). This action triggers the execution of the lower-

layer heuristic algorithm, which then handles the detailed 

order assignment and routing tasks. 

Designing an appropriate reward function 

𝑅TAPO (𝑜𝑘 , 𝑎𝑘
𝑇𝐴𝑃𝑂 , 𝑜𝑘+1)  is paramount for effectively 

guiding the TAPO agent towards achieving the desired 

multi-objective optimization goals. A naive reward signal, 

such as one based solely on the final system cost at the end 

of an entire episode (e.g., a full operational day), would 

likely be too sparse, rendering the learning process highly 

inefficient. Therefore, a shaped reward function is 

employed to provide more immediate and informative 

feedback to the agent. This reward is a composite function 

that includes the negative of the immediate operational 

costs incurred if the dispatch action (𝑎𝑘
𝑇𝐴𝑃𝑂 = 1) is taken. 

These costs, Δ𝐶mileage (𝑘)  and Δ𝐶delay (𝑘) , are derived 

from the solution provided by the lower-layer routing 

algorithm. Additionally, the shaped reward incorporates 

auxiliary rewards or penalties designed to encourage 

desirable intermediate behaviors or discourage 

undesirable ones. For instance, a small penalty might be 

applied for delaying orders, particularly if they are 

approaching their delivery deadlines, to reflect the implicit 

cost of waiting. Conversely, a bonus is awarded for 

optimal utilization of vehicle capacity during dispatch 

operations or for successfully completing an entire 

operational day within service targets. The specific 

formulation of this shaped reward function, 𝑟𝑘 , often 

involves a sum of several components 𝑟(𝑖)(𝑆𝑡 , 𝑎𝑡) minus 

the objective cost penalty. These components are carefully 

tuned to balance short-term operational efficiency with 

long-term strategic objectives like beneficial order 

consolidation, and might include rewards or penalties 

related to delaying dispatch based on current system load 

(𝑟(1)), vehicle return events enhancing capacity (𝑟(2)), 

the urgency or earliness of orders (𝑟(3)), the number of 

orders completed (𝑟(4)), and the successful completion of 

the service period (𝑟(5)). 

TAPO employs two main deep neural networks: a Policy 

Network (Actor), 𝜋(𝑎 ∣ 𝑜; 𝜃actor ) , which maps the 

potentially Transformer-enhanced observation 𝑜𝑘  to a 

probability distribution over actions (delay or dispatch), 

and a Value Network (Critic), 𝑉  ( 𝑜; 𝜃critic ), which 

estimates the expected cumulative future reward from 

state 𝑜𝑘 . Both networks are commonly implemented as 

Multi-Layer Perceptrons (MLPs). The policy network 

uses a softmax output layer for discrete actions. The model 

training algorithm for TAPO involves the DRL agent 

interacting with the simulated SDDPHF environment over 

numerous episodes. During each episode, the agent 

collects trajectories of experiences 𝜏 = 

(𝑜0, 𝑎0
𝑇𝐴𝑃𝑂 , 𝑟0, 𝑜1, 𝑎1

𝑇𝐴𝑃𝑂 , 𝑟1, … ). After collecting a batch of 

trajectories, TAPO updates the parameters 𝜃actor  and 

𝜃critic . The core PPO objective function for the actor is the 

clipped surrogate objective: 

𝐿CLIP(𝜃actor ) = 𝔼̂𝑡[min(𝜌𝑡(𝜃actor )𝐴̂𝑡 , clip(𝜌𝑡(𝜃actor ), 1 −

𝜖, 1 + 𝜖)𝐴̂𝑡)]    (10) 

In this equation, 𝜌𝑡(𝜃actor ) =
𝜋(𝑎𝑡∣𝑜𝑡;𝜃𝑎𝑐𝑡𝑜𝑟)

𝜋(𝑎𝑡∣𝑜𝑡;𝜃𝑎𝑐𝑡𝑜𝑟𝑜𝑙𝑑)
 is the 

probability ratio. 𝐴̂𝑡  is an estimator of the advantage 

function at timestep 𝑡, often computed using Generalized 

Advantage Estimation (GAE), where 𝐴̂𝑡 = 𝑄(𝑜𝑡 , 𝑎𝑡) −
𝑉(𝑜𝑡 ; 𝜃 critic). The hyperparameter 𝜖 defines the clipping 

range. The critic network is trained by minimizing a loss 

function, usually the mean squared error between its 

predicted state values 𝑉(𝑜𝑡; 𝜃critic )  and the empirically 

estimated returns 𝑅̂𝑡: 

𝐿𝑉𝐹(𝜃critic ) = 𝔼𝑡ˆ [(𝑉(𝑜𝑡; 𝜃critic ) − 𝑅̂𝑡)
2

]             (11) 

An entropy bonus [𝜋(⋅∣ 𝑜𝑡; 𝜃actor )] can be added to the 

actor's objective to encourage exploration. The final 

combined loss function often takes the form: 

𝐿(𝜃actor , 𝜃critic ) = 𝐿𝐶𝐿𝐼𝑃(𝜃actor ) − 𝑐1𝐿𝑉𝐹(𝜃critic ) +
𝑐2𝑆[𝜋(⋅∣ 𝑜𝑡; 𝜃actor )]    (12) 

where 𝑐1 and 𝑐2 are weighting coefficients. The networks 

are updated using gradient-based optimization. This 

iterative cycle allows the TAPO agent to progressively 

learn an effective dispatch-delay strategy. 

 

3.2 Lower-layer: static subproblem 

algorithm 

When the upper-layer TAPO agent decides to dispatch 

orders at a given epoch 𝑡𝑘, the set of available orders in 

the pool 𝑂pool (𝑘)  must be assigned to the currently 

available dedicated fleet 𝐹(𝑘)  and the callable 

crowdsourced fleet 𝑃(𝑘). Subsequently, efficient delivery 

routes must be planned for each courier. This static 

HFVRP is addressed using a twostage heuristic approach: 

an initial solution is first constructed, and then it is 

iteratively improved. 

For the rapid generation of a feasible and reasonably good 

initial solution for the HFVRP, we employ a Greedy 

Costbased Insertion Heuristic (GCIH). This heuristic 

iteratively assigns unassigned orders to routes and inserts 

them into the most advantageous positions within those 

routes. The "best" position is determined by an insertion 
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cost function designed to consider multiple objectives, 

primarily focusing on minimizing the additional travel 

distance and any potential delay incurred by the insertion. 

The GCIH prioritizes assigning orders to dedicated 

couriers first, up to their capacity 𝑞𝑓 , often due to their 

potentially higher efficiency or contractual obligations. 

The core of the GCIH involves calculating two types of 

costs for inserting an unassigned order 𝑣 into a partially 

constructed route between existing nodes 𝑖 and 𝑗. The first 

is the direct insertion cost, 𝑐1(𝑖, 𝑣, 𝑗) = 𝑑𝑖𝑣 + 𝑑𝑣𝑗 − 𝜇 ⋅

𝑑𝑖𝑗 , where 𝑑𝑥𝑦  represents the distance between nodes 𝑥 

and 𝑦, and 𝜇 is a weighting parameter. The best insertion 

position (𝑖(𝑣), 𝑗(𝑣)) for order 𝑣 in a specific route is the 

one that minimizes this 𝑐1 cost. The second is a relative 

insertion cost, 𝑐2(𝑖(𝑣), 𝑣, 𝑗(𝑣)) = 𝛾 ⋅ 𝑑0𝑣 −
min𝑐1(𝑖(𝑣), 𝑣, 𝑗(𝑣)), where 𝑑0𝑣  is the distance from the 

depot (node 0 ) to order 𝑣 , and 𝛾  is another weighting 

factor. This 𝑐2  cost helps in selecting which order 𝑣∗  to 

insert next from the pool of unassigned orders, by 

identifying the 𝑣∗  that minimizes 𝑐2 . The algorithm 

proceeds by iteratively selecting the best order to insert 

and its best position within a route until all orders are 

assigned or all vehicle capacities are met. Any remaining 

orders are then considered for assignment to 

crowdsourced couriers, following a similar insertion logic 

but adapted for their specific operational characteristics 

(e.g., crowdsourced couriers might not need to return to 

the depot and may have different capacities 𝑞𝑝 ). Orders 

that cannot be assigned in the current dispatch cycle are 

returned to the order pool for consideration in the next 

decision epoch. 

Once an initial solution is constructed by the GCIH, a 

Variable Neighborhood Search (VNS) algorithm is 

applied to further improve its quality. VNS is a 

metaheuristic that systematically explores different 

neighborhood structures to avoid getting trapped in local 

optima and to find higher-quality solutions. The VNS 

algorithm proceeds in iterations, typically involving a 

shaking phase and a local search phase. In the shaking 

phase, the current best solution is perturbed by applying 

one or more predefined neighborhood operators (moves), 

generating a new starting point in a potentially different 

region of the solution space. This helps in diversifying the 

search. Following the shaking phase, an intensive local 

search is performed from this perturbed solution. The local 

search phase uses a set of neighborhood operators to 

explore the vicinity of the current solution, aiming to find 

a local optimum. If this newly found local optimum is 

better than the current overall best solution, it replaces the 

current best solution, and the search process (particularly 

the choice of neighborhood for shaking) might reset to the 

first neighborhood structure. Otherwise, if no 

improvement is found, the VNS typically moves to the 

next type of neighborhood structure for the subsequent 

shaking phase, thereby changing the landscape of the 

search. 

The effectiveness of VNS heavily relies on the design of 

its neighborhood operators. We have designed two main 

categories of operators specifically tailored for the 

HFVRP. Intra-route operators modify a single courier's 

route to improve its individual efficiency. Examples 

include a Greedy Swap, which exchanges two orders 

within the same route if such an exchange reduces the 

route's cost (e.g., total distance or lateness), and Random 

Insertion (Reinsertion), which involves removing an order 

from its current position in a route and reinserting it into a 

different, randomly chosen, feasible position within that 

same route. The Greedy Swap operator can be illustrated 

in Figure 7(a). The Random Reinsertion operator can be 

illustrated in Figure 7(b). 

 

Figure 7: Intra-route operators: (a)greedy swap (b) 

random reinsertion 

Inter-route operators, on the other hand, modify two or 

more routes simultaneously, allowing for a broader 

exploration of the solution space and facilitating the 

movement of orders between different couriers (including 

between dedicated and crowdsourced couriers). Examples 

include Relocate, which moves an order from one route to 

a feasible position in another route (respecting capacity 

and fleet-specific constraints such as return-to-depot 

requirements), and Exchange (Swap), which exchanges an 

order from one route with an order from another route. The 

Relocate operator can be illustrated in Figure 8(a). The 

Exchange operator can be illustrated in Figure 8(b). The 

careful selection and sequencing of these operators within 

the VNS framework are managed to effectively balance 

the breadth of exploration with the depth of exploitation. 

The VNS algorithm continues for a predefined number of 

iterations or until a termination criterion, such as no 

further improvement being found for a certain period, is 

met. 
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Figure 8: Inter-route operators: (a) relocate (b) exchange 

 

3.3 Transformer-augmented policy 

optimization (TAPO) double layers 

optimization framework 

The Transformer-Augmented Policy Optimization 

(TAPO) Double Layers Optimization Algorithm is shown 

as Algorithm 1: 

 

 

 

Algorithm 1: TAPO double layers optimization 

Input: Simulation environment env, training instances INS, number of 

training episodes EP, batch size BS, number of epochs per update BT, 

hyperparameters ( 𝛾discount , 𝜖clip , 𝜆GAE , learning rates, etc.), Transformer 

model parameters 𝜃transformer  (if pre-trained or jointly trained) 

Output: Trained policy network parameters 𝜃actor , trained value network 

parameters 𝜃critic  

1. Initialize policy network 𝜋(𝑎 ∣ 𝑜; 𝜃actor ) with random weights 

𝜃actor  

2. Initialize value network 𝑉(𝑜; 𝜃critic ) with random weights 𝜃critic  

3. (Optional: Initialize/Load Transformer model Φ(⋅; 𝜃trans former )) 

4. for episode = 1 to EP do 

5. Initialize an empty list batch_trajectories 

6. for rollout = 1 to BS do 

7. Select a training instance in from INS 

8. Reset environment env with instance in , get initial raw state 

features 𝑠0
𝑟𝑎𝑤 

9. (Optional: Process 𝑠0
𝑟𝑎𝑤 with Transformer to get 𝑜0 

10. Initialize an empty list current_trajectory 

11. while episode is not done do 

12. Choose action 𝑎𝑡
𝑇𝐴𝑃𝑂 from 𝜋(𝑎 ∣ 𝑜𝑡; 𝜃actor  𝑜𝑙𝑑) 

13. Execute 𝑎𝑡
𝑇𝐴𝑃𝑂 in env, observe reward 𝑟𝑡  and next raw state 𝑠𝑡+1

𝑟𝑎𝑤 

14. (Optional: Process 𝑠𝑡+1
𝑟𝑎𝑤 with Transformer to get 𝑜𝑡+1 ) 

15. Store (𝑜𝑡, 𝑎𝑡
𝑇𝐴𝑃𝑂, 𝑟𝑡 , 𝑜𝑡+1) in current_trajectory 

16. 𝑜𝑡 ← 𝑜𝑡+1 

17. end while 

18. Add current_trajectory to batch_trajectories 

19. end for 

20. Compute advantage estimates 𝐴̂𝑡 (e.g., using GAE) for all steps 

in batch_trajectories 

21. Compute discounted returns 𝑅̂𝑡 for all steps in batch_trajectories 

22. 𝜃actor 𝑜𝑙𝑑 ← 𝜃actor  

23. 𝜃critic 𝑜𝑙𝑑 ← 𝜃critic  

24. for epoch = 1 to BT do 

25. For each trajectory in batch_trajectories : 

26. Calculate probability ratio 𝜌𝑡(𝜃actor ) 

27. Calculate policy loss 𝐿𝐶𝐿𝐼𝑃 ( 𝜃actor  ) using Equation (10) 

28. Calculate value loss 𝐿𝑉𝐹 ( 𝜃critic  ) using Equation (11) 

29. Calculate entropy bonus 𝑆[𝜋(⋅∣ 𝑜𝑡; 𝜃actor )] 

30. Calculate combined loss 𝐿(𝜃actor , 𝜃critic ) using Equation (12) 

 

 

 

 

 

 

4   Experiments 

This section presents a comprehensive evaluation of the 

proposed Transformer-Augmented Policy Optimization 

(TAPO) Double Layers Optimization Framework. We 

first describe the experimental setup, including data 

generation and parameter settings. Subsequently, we 

analyze the performance of the lower-layer heuristic 

algorithms for solving the static subproblems. The core of 

this section then focuses on the training and validation of 

the TAPO agent, comparing its performance against 

several baseline dispatch strategies across various 

scenarios to demonstrate its efficacy in reducing costs and 

improving operational efficiency in same-day delivery 

(SDD) operations. Finally, generalization and sensitivity 

analyses are conducted to assess the robustness and 

applicability of the TAPO framework. 

 

4.1 Experimental setup and data 

generation 
To rigorously evaluate the proposed algorithms, a 

discrete-event simulation environment was developed to 

mimic the dynamic operations of an SDD system with 

hybrid fleets. The operational period for the SDD service 

is set to 600 minutes (e.g., from 9：00 AM to 7：00 PM). 

Dispatch decisions are made at fixed intervals of 20 

minutes, or when a dedicated courier returns to the depot. 

The service area is represented as a 30 × 30  grid, 

approximating a 3 km × 3 km  region, with the depot 

located at the center.For each order,the expected service 

time (latest delivery time after order placement) is 70 

minutes.Other key parameters,including vehicle speeds 

(𝑣𝑓 for dedicated,𝑣𝑝 for crowdsourced),vehicle capacities 

(𝑞𝑓 , 𝑞𝑖
𝑝

), and objective function weights (𝛼 for distance 

cost,𝛽 for delay cost),are set based on realistic logistics 

scenarios and prior research. To enhance the 

reproducibility of our simulation environment, we provide 

additional details in the supplementary information 

section. The simulation parameters include seed values for 

random number generation, order arrival rate distributions 

(Poisson process with λ = 5 orders per minute during peak 

hours and λ = 2 orders per minute during off-peak hours), 

and spatial distribution parameters (grid dimensions of 

50x50 with a depot at the center). For the demand curves, 

we have included numerical examples showing peak order 

rates of up to 10 orders per minute and off-peak rates of 2 
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orders per minute. Sample maps are described as 50x50 

grids with customer locations distributed either uniformly 

or clustered in a 20x20 central area with obstacles. Fleet 

configurations include dedicated couriers with a speed of 

60 km/h and a capacity of 6 orders, and crowdsourced 

couriers with a speed of 40 km/h and a capacity of 3 orders. 

These parameters are detailed in Table 3. 

 

 

 

 

 

 

Table 3: Experimental parameter settings 

parameter Setting 

𝑣𝑓 0.2( km/h) 

𝑣𝑝 0.15( km/h) 

𝑞𝑓 6 

𝑞𝑖
𝑝
 3 

 𝛼 0.2 

 𝛽 0.8 

To reflect diverse operational conditions, test instances 

were generated with varying characteristics in terms of 

order spatial and temporal distributions. Spatially, orders 

can be Clustered(C), with 50%of customers located in a 

dense 20x20 central area and the rest distributed in the 

periphery, or Spatially Uniform(S), where order locations 

are uniformly random across the map. Temporally ,order 

arrivals can be Homogeneous(A),following a Poisson 

process with a constant average rate, or Non-

homogeneous(B),simulating peak and off-peak periods 

with order arrivals following a normal distribution 

centered around predefined peak times(e.g.,1/4T and 

3/4T).An instance is denoted as＂N-M-L- TimeType-

SpaceType＂,where N is the total number of orders, M is 

the number of dedicated couriers, and L is the number of 

crowdsourced couriers available per dispatch wave. For 

example,＂600-6-2-B-S＂represents a scenario with 600 

orders, 6 dedicated couriers, 2 available crowdsourced 

couriers per wave, non-homogeneous(peaked)order 

arrivals, and spatially uniform order locations. Multiple 

instances were generated for each type to ensure statistical 

validity.  

4.2 Performance of lower-layer heuristic 

algorithms 

The efficiency of the lower-layer algorithms—Greedy 

Cost-based Insertion Heuristic (GCIH) for initial solution 

generation and Variable Neighborhood Search (VNS) for 

improvement—is crucial for the overall performance of 

the TAPO framework, as they are called repeatedly during 

the DRL agent's interaction with the environment. We 

evaluated these heuristics on a set of static subproblem 

instances derived from the dynamic scenarios. 

Performance metrics included total cost (TC, the weighted 

sum of distance cost DC and overtime cost OC), DC, OC, 

and CPU time. The comparative results of GCIH and VNS 

are detailed in Table 4.  

The results indicated that VNS significantly improves 

upon the solutions generated by GCIH, typically reducing 

the total cost by a substantial margin (e.g., 8% to 65% 

across different instances) and consistently eliminating 

overtime costs in most tested cases. While GCIH is very 

fast (often under 0.005s), VNS provides much higher 

quality solutions within a reasonable timeframe (generally 

less than 1 second for instances with up to 40 orders), 

making it suitable for real-time decision support within the 

DRL loop. The convergence analysis of VNS showed that 

the objective function value rapidly decreases within the 

initial iterations (e.g., 10-20 iterations) and tends to 

stabilize after around 60 iterations for the tested problem 

sizes. This allows for setting a practical limit on VNS 

iterations to balance solution quality and computational 

speed. The convergence behavior of the VNS algorithm is 

shown in Figure 9. 

Table 4: Performance comparison of GCIH and VNS on 

static subproblems 

Subproble

m 

Algorith

m 
OBJ DC OC 

Diff 

(%) 
std 

CPU 

Time (s) 

10-2-1-A-

C 

VNS 36.58 
182.8

9 
0.00  

0.9

1 
0.464 

GCIH 41.66 
208.2

9 
0.00 

13.8

9 

0.0

0 
0.001 

10-2-1-A-

S 

VNS 33.23 
166.1

6 
0.00  

0.4

8 
0.541 

GCIH 54.99 
210.3

5 

16.1

6 

65.4

8 

0.0

0 
0.002 

20-3-1-A-

C 

VNS 53.08 
265.4

0 
0.00  

0.5

2 
0.904 

GCIH 60.39 
301.9

4 
0.00 

13.7

7 

0.0

0 
0.002 

20-3-1-A-

S 

VNS 54.05 
270.2

3 
0.00  

1.5

9 
0.904 

GCIH 57.14 
285.7

2 
0.00 5.73 

0.0

0 
0.001 

30-4-2-A-

C 

VNS 73.57 
367.8

4 
0.00  

0.9

5 
1.063 

GCIH 89.15 
445.7

4 
0.00 

21.1

8 

0.0

0 
0.002 

30-4-2-A-

S 

VNS 70.82 
354.1

0 
0.00  

2.6

1 
1.116 

GCIH 
100.5

8 

502.8

8 
0.00 

42.0

2 

0.0

0 
0.002 

40-6-3-A-

C 
VNS 90.17 

450.8

5 
0.00  

1.4

5 
0.845 
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GCIH 97.72 
488.5

9 
0.00 8.37 

0.0

0 
0.004 

40-6-3-A-

S 

VNS 97.37 
486.8

6 
0.00  

3.4

8 
0.875 

GCIH 
120.2

4 

556.9

0 

11.0

8 

23.4

9 

0.0

0 
0.003 

 

4.3  TAPO framework training and 

convergence 

The TAPO agent was trained as described in Section 3. 

Hyperparameters for the neural networks (actor and critic) 

and the PPO algorithm (e.g., learning rates, discount factor, 

clipping parameter ϵ, GAE parameter λ) were carefully 

tuned through preliminary experiments. The key 

hyperparameters used for training the TAPO model is 

listed in Table 5. We conducted a sensitivity analysis on 

key hyperparameters, including the 𝛼  and 𝛽  weights in 

the cost function, the 𝜀 parameter in PPO, and the depth of 

the Transformer model. Our analysis reveals that these 

hyperparameters significantly influence the trade-offs 

between cost reduction and delay minimization. 

Increasing the 𝛼 weight enhances cost efficiency but may 

slightly increase delays, while higher 𝛽  weights focus 

more on reducing delays, balancing with cost objectives. 

The 𝜀  parameter in PPO affects the aggressiveness of 

policy updates, with smaller values leading to more 

conservative updates and larger values allowing for more 

significant changes in policy. Additionally, the depth of 

the Transformer model impacts its capacity and training 

dynamics, with deeper models offering higher 

representational power but requiring more computational 

resources. 

The training was conducted on a base set of 200 instances 

of type "600-6-2-B-S" (600 orders, 6 dedicated, 2 

crowdsourced, non-homogeneous time, spatially uniform) 

to ensure the agent learns from diverse yet representative 

scenarios. Each training episode corresponded to one full 

operational day (600 minutes). 

 

Figure 9: VNS objective function value vs. iteration 

count for static subproblems 

Table 5: TAPO model training hyperparameters 

Parameter Setting 

Advantage function discount parameter 0.95 

Number of training episodes 40 

Number of rollouts per episode 64 

Clipping value 0.3 

Number of hidden layer neurons [128，64] 

Number of epochs per parameter update 15 

Policy network learning rate 2 × 10−4 

Action network learning rate 2 × 10−4 

Discount factor in reinforcement learning 0.98 

Policy entropy coefficient 0.01 

Activation function used in network layers Tanh 

Iterative optimizer Adam 

The learning progress was monitored by tracking the 

average cumulative reward per episode and the average 

total objective cost (TC) per episode. The results 

demonstrated that the TAPO agent effectively learns to 

improve its dispatch-delay policy over time. The average 

reward per episode showed a clear upward trend, initially 

fluctuating significantly but then stabilizing at a higher 

level as training progressed. Concurrently, the average 

total cost per episode exhibited a downward trend, rapidly 

decreasing in the early stages of training and then 

converging, indicating that the agent was successfully 

learning strategies to reduce operational costs and delays. 
The convergence of the training reward is shown in Figure 

10. The convergence of the objective function (total cost) 

during training is shown in Figure 11. For instance, on the 

base "600-6-2-B-S" instances, both the reward and total 

cost typically showed convergence after approximately 

600-800 training episodes, with subsequent fluctuations 

primarily attributed to the inherent stochasticity of the 

problem instances.  

 

Figure 10: TAPO training reward convergence curve 
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Figure 11: TAPO training objective function (total cost) 

convergence curve 

4.4 Comparative analysis of dispatch 

strategies 

To validate the effectiveness of the TAPO Double Layers 

Optimization Framework, its performance was compared 

against two baseline dispatch strategies on a diverse set of 

test instances (typically 20 instances of type "600-6-2-B-

S" not used in training, plus other types for generalization 

and sensitivity). All strategies utilized the same VNS 

algorithm for lower-layer routing to ensure a fair 

comparison of the dispatch policies themselves. The 

baseline strategies were: 

Myopic Policy (Myopic): This strategy dispatches all 

currently available orders at every decision epoch without 

considering potential future benefits of delaying. It serves 

as a common practical baseline. 

Urgent-Based Policy (UBP): This heuristic policy makes 

dispatch-delay decisions based on predefined rules 

considering factors like current vehicle availability, the 

urgency of the orders in the pool (e.g., time until deadline), 

and the current load factor (ratio of orders to available 

capacity). The UBP is tuned using a grid search approach, 

where we systematically vary the parameters that control 

the urgency threshold and the load factor. The parameter 

space explored includes urgency thresholds ranging from 

10 to 30 minutes before the order deadline and load factors 

from 0.5 to 1.5 of the courier's capacity. This detailed 

tuning process ensures that the UBP performs at its best, 

facilitating a fair and comprehensive comparison with our 

proposed TAPO framework. 

The detailed comparison results for these instances, 

showing OBJ (TC), DC, OC, and relative improvements, 

are presented in Table 6.  

Table 6: Comparison of dispatch strategies on test 

instances 

Subprobl

em 

Myop

ic 

UBP TAPO 

OBJ OBJ 

relati

ve 

(%) 

OBJ 

relati

ve 

(%) 

600-6-2-

B-S-1 

3583.

2 
3434 95.84 

3274.

33 
91.38 

600-6-2-

B-S-2 

2963.

53 

3042.

2 

102.6

5 

2934.

33 
99.01 

600-6-2-

B-S-3 

3093.

13 

2986.

53 
96.55 

2948.

93 
95.34 

600-6-2-

B-S-4 

3131.

93 
2807 89.63 

3059.

4 
97.68 

600-6-2-

B-S-5 

3230.

33 

3164.

4 
97.96 3107 96.18 

600-6-2-

B-S-6 

3125.

33 

3169.

53 

101.4

1 

2886.

60 
92.36 

600-6-2-

B-S-7 

3109.

60 

2936.

33 
94.43 

2919.

00 
93.87 

600-6-2-

B-S-8 

3313.

47 

3316.

80 

100.1

0 

3099.

53 
93.54 

600-6-2-

B-S-9 

3662.

33 

3567.

53 
97.41 

3435.

73 
93.81 

600-6-2-

B-S-10 

3130.

20 

3126.

67 
99.89 

2990.

00 
95.52 

600-6-2-

B-S-11 

3740.

13 

3602.

47 
96.32 

3445.

07 
92.11 

600-6-2-

B-S-12 

3335.

60 

3631.

27 

108.8

6 

3307.

73 
99.16 

600-6-2-

B-S-13 

3271.

67 

3087.

93 
94.38 

2965.

33 
90.64 

600-6-2-

B-S-14 

3350.

20 

3127.

67 
93.36 

3013.

67 
89.95 

600-6-2-

B-S-15 

3832.

27 

3533.

07 
92.19 

3405.

93 
88.88 

600-6-2-

B-S-16 

3219.

74 

2995.

27 
93.03 

2938.

20 
91.26 

600-6-2-

B-S-17 

3156.

87 

3546.

67 

112.3

5 

3092.

93 
97.97 

600-6-2-

B-S-18 

3283.

73 

2874.

47 
87.54 

2972.

73 
90.53 

600-6-2-

B-S-19 

3200.

67 

3365.

33 

105.1

4 

2959.

33 
92.46 

600-6-2-

B-S-20 

3156.

87 

3546.

67 

112.3

5 

3092.

93 
97.97 

 

The experimental results consistently demonstrated the 

superiority of the TAPO framework. Across the primary 

test set ("600-6-2-B-S" instances), TAPO achieved an 
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average total cost reduction of approximately 5-11% 

compared to the Myopic policy and generally 

outperformed the UBP policy by 3-12%. While UBP 

showed improvements over Myopic in some cases, its 

performance was less consistent and sometimes worse 

than Myopic, particularly in scenarios where its heuristic 

rules were not well-aligned with the instance 

characteristics. In contrast, TAPO, by learning from 

extensive interaction with the environment (potentially 

enhanced by Transformer-based context understanding), 

developed more robust and adaptive dispatch-delay 

strategies. The t-tests conducted on the total cost metrics 

between TAPO and the baseline policies (Myopic and 

UBP) reveal statistically significant improvements, with 

p-values less than 0.01 for Myopic and less than 0.05 for 

UBP, confirming the superior performance of TAPO. 

 

4.5 Generalization experiments 

To assess the generalization capability of the TAPO model 

trained on "600-6-2-B-S" instances, we tested it on 

scenarios with varying order volumes (e.g., 550, 575, 625, 

650 orders) while keeping the fleet size constant. The 

results of generalization experiments with varying order 

scales are presented in Table 7. The trend of the objective 

function for different strategies across varying order scales 

are visualized in Figure 12. The results showed that TAPO 

maintained its performance advantage over Myopic [22] 

and UBP [23] across these different scales. For instance, 

when order volumes increased, TAPO consistently 

achieved around a 5% total cost reduction relative to 

Myopic, whereas UBP's performance sometimes 

degraded, even becoming worse than Myopic at higher 

order volumes. Similarly, with lower order volumes, 

TAPO still provided cost savings of around 4% over 

Myopic. This indicates that the learned policy is robust to 

moderate changes in demand levels and can effectively 

adapt its dispatch-delay strategy to different supply-

demand balances.  

The extended generalization tests demonstrate that TAPO 

maintains robust performance across different operational 

conditions. When courier availability is reduced or 

crowdsourced couriers are excluded, TAPO still achieves 

lower total costs compared to baseline policies, although 

the performance slightly degrades due to the increased 

operational constraints. Furthermore, in scenarios with 

clustered orders and obstacles, TAPO shows adaptability 

by effectively adjusting its dispatch and routing strategies, 

resulting in a reasonable increase in total cost and a 

slightly longer convergence time. These results confirm 

that TAPO's framework is not only effective in the base 

scenario but also exhibits strong generalization 

capabilities under various realistic conditions, 

underscoring its practical applicability in dynamic 

logistics environments. 

Table 7: Performance comparison for different order 

scales (constant fleet) 

Subprobl

em 

Myop

ic 

UBP TAPO 

OBJ OBJ 

relati

ve 

(%) 

OBJ 

relati

ve 

(%) 

550-6-2-

B-S 

3234.

53 

3164.

20 
97.83 

3112.

93 
96.24 

575-6-2-

B-S 

3113.

86 

2953.

26 
94.84 

2990.

60 
96.04 

600-6-2-

B-S 

3131.

93 

3099.

00 
98.95 

2979.

40 
95.13 

625-6-2-

B-S 

3797.

54 

3798.

66 

100.0

3 

3612.

94 
95.14 

650-6-2-

B-S 

3773.

67 

4472.

20 

118.5

1 

3595.

40 
95.28 

 

Figure 12: Objective function vs. order scale for different 

dispatch strategies 

 

We have compared these configurations in terms of total 

cost, runtime, and convergence rate. The results are 

summarized in Table 8. 

 

Table 8: Ablation study 

Configuration Total Cost 
Runtime （ s

） 

Convergence 

Rate （ Iterations

） 

TAPO 

(Full) 
3274.33 0.91 60 

TAPO 
(PPO only) 

3435.73 0.85 70 

TAPO 

(Heuristic only） 
3331.27 0.88 65 

TAPO 

(GCIH only) 
3307.73 0.87 68 

 

 

4.6 Discussion 

The experimental results highlight the significant 

performance improvements of the Transformer-

Augmented Policy Optimization (TAPO) framework over 

traditional dispatching strategies. TAPO’s average total 

cost reduction of 5–11% compared to the Myopic policy 

and 3–12% against the Urgent-Based Policy (UBP) 
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underscores its effectiveness in optimizing operational 

costs. This advantage is primarily attributed to TAPO’s 

learned strategic delay and Transformer-based state 

enhancement. Unlike the Myopic policy, which dispatches 

all orders immediately, TAPO strategically delays 

dispatch to consolidate orders, optimizing vehicle capacity 

utilization. The Transformer model enriches the state 

representation by capturing complex spatio-temporal 

dependencies in order data, enabling the DRL agent to 

make more informed decisions. This enhanced state 

information allows TAPO to better anticipate future order 

arrivals and optimize routing decisions, leading to 

significant cost savings. 

TAPO’s robustness is evident in its ability to generalize 

across various order volumes and fleet compositions. The 

framework maintains its performance advantage over 

Myopic and UBP policies even when order volumes 

fluctuate, demonstrating its adaptability to different 

supply-demand balances. However, TAPO’s performance 

is influenced by certain assumptions, such as fixed vehicle 

speed and a pre-determined service area. While these 

assumptions are reasonable for the scope of this research, 

future work should explore more dynamic models for 

courier behavior and travel time predictions to enhance the 

framework’s real-world applicability. Additionally, 

incorporating broader multi-objective criteria, such as 

environmental impact and courier workload fairness, 

could further improve TAPO’s societal benefits and 

practical relevance. 

 

5   Conclusions 

This paper addressed the complex problem of dynamic 

order dispatching and multi-objective path co-

optimization in same-day delivery (SDD) systems 

utilizing hybrid fleets, a critical challenge in the pursuit of 

logistics hyperautomation. The core objective was to 

develop an intelligent decision-making framework 

capable of minimizing total fulfillment costs, primarily 

mileage and delay penalties, while adapting to the 

dynamic and stochastic nature of SDD operations. 

To this end, we proposed the Transformer-Augmented 

Policy Optimization (TAPO) Double Layers Optimization 

Framework. This framework uniquely integrates 

advanced AI techniques: the upper layer features a TAPO 

agent where a Transformer architecture enhances the state 

representation by capturing complex spatio-temporal 

dependencies from order data. This enriched state 

information is then leveraged by a Deep Reinforcement 

Learning (DRL) agent, based on Proximal Policy 

Optimization (PPO), to learn a sophisticated policy for 

making strategic dispatch-delay decisions. The lower 

layer employs a combination of a Greedy Cost-based 

Insertion Heuristic (GCIH) and a Variable Neighborhood 

Search (VNS) algorithm to efficiently solve the static 

hybrid fleet vehicle routing subproblems that arise when a 

dispatch decision is made. Comprehensive numerical 

experiments were conducted using a discrete-event 

simulation environment on a variety of realistic SDD 

scenarios.  

While the proposed TAPO framework shows considerable 

promise, certain limitations exist. The current study 

assumes specific characteristics for courier behavior and 

travel time estimations. Future research could explore 

more complex Transformer architectures for richer 

contextual understanding, investigate end-to-end DRL 

approaches that also learn the routing policy, or integrate 

more sophisticated predictive models for demand and 

travel times. Further work could also address broader 

multi-objective criteria such as environmental impact or 

courier workload fairness more explicitly. Finally, testing 

and adapting the TAPO framework in real-world logistics 

operations would be an important next step to validate its 

practical applicability and impact. 
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