
https://doi.org/10.31449/inf.v49i32.9278 Informatica 49 (2025) 23–38 23

Transformer-Augmented Deep Reinforcement Learning for Multi-

Objective Path Co-Optimization in Same-Day Delivery with Hybrid

Fleets

Wei Tang1,2, Wanyang Zhou3*, Qianlan Wang1, Cuixia Zhang1

1Anhui Research Center for Economic and Social Development, Tongling University, City of Tongling Anhui province

244061，China
2College of Business Administration and Accountancy, De La Salle University - Dasmariñas, City of Dasmariñas Cavite,

4115, Philippines
3College of Tourism and E-commerce, Baise University, City of Baise Guangxi province 533000, China

E-mail: vzaibv2285844@outlook.com
*Corresponding author

Keywords: same-day delivery, crowdsourced delivery, dynamic dispatching, multi-objective path co-optimization

Received: May 18, 2025

The rapid expansion of e-commerce and local services has intensified the demand for instant delivery,

particularly same-day delivery (SDD), presenting significant challenges in operational efficiency and

multi-objective cost management. Traditional logistics systems often struggle with dynamic order arrivals,

complex routing decisions, and the effective integration of hybrid fleets comprising both dedicated and

crowdsourced couriers. This paper investigates the multi-objective path co-optimization problem within

logistics hyper-automation, proposing an innovative Transformer-Augmented Policy Optimization

(TAPO) Double Layers Optimization Framework. This framework addresses the dynamic dispatching and

routing challenges in SDD scenarios. The upper layer employs the TAPO agent, where a Transformer

model processes complex spatio-temporal dependencies from dynamic order data to enrich state

representations for a Deep Reinforcement Learning (DRL) agent (based on Proximal Policy Optimization

- PPO). This TAPO agent learns a sophisticated policy for synergistic dispatch-delay decisions. The lower

layer utilizes efficient heuristic algorithms (GCIH and VNS) for static vehicle routing and order

assignment when a dispatch action is chosen. The primary goal is to co-optimize multiple objectives,

focusing on minimizing total fulfillment costs (encompassing mileage and delay penalties) while

enhancing service efficiency. A Markov Decision Process (MDP) models the sequential decision-making

problem. Numerical experiments on diverse, realistic instances demonstrate the TAPO framework's

superiority. Results show that the TAPO framework achieves an average total cost reduction of

approximately 5-11% compared to a Myopic policy and 3-12% against an Urgent-Based Policy (UBP).

The framework also exhibits robust generalization to varying order volumes and sensitivity to fleet

composition changes, underscoring the significant potential of advanced AI techniques in achieving

logistics hyper-automation.

Povzetek: Opisan je nov pristop za optimizacijo poti v sistemih za dostavo istega dne z uporabo hibridnih

flot. Predlagani Transformer-Augmented Policy Optimization (TAPO) okvir združuje globoko ojačanje

učenja in modeliranje zaporednih odločitev za zmanjšanje stroškov dostave.

1 Introduction
The proliferation of e-commerce and local life services

has catalyzed an explosive growth in the instant delivery

market, with consumer habits increasingly shifting

towards online purchasing for a wide array of goods [1].

This trend has significantly propelled the demand for

"same-day delivery" (SDD) services, which aim to deliver

goods to customers within hours of an order being placed

[2, 3]. SDD models typically utilize local fulfillment

centers or front-end stores as warehousing points,

processing dynamically arriving orders throughout

operational hours. This paradigm, bridging the gap

between traditional multi-day e-commerce fulfillment and

ultra-fast meal delivery, presents novel operational

challenges for service providers, primarily in balancing

stringent delivery timeliness with escalating operational

costs [4].

A critical aspect of managing SDD operations is the

efficient utilization of delivery fleets. Traditionally,

companies relied on dedicated, in-house couriers.

However, with the rise of the sharing economy and

crowdsourcing platforms, many service providers are now

adopting hybrid fleet models that combine dedicated

couriers with a flexible supply of crowdsourced delivery

personnel [5, 6]. This "asset-light" approach offers

scalability and can be a cost-effective supplement to

existing capacity, especially during peak demand periods.

Nevertheless, the integration of heterogeneous fleets adds

complexity to the dispatching and routing decisions. In

this dynamic environment, characterized by fluctuating

mailto:vzaibv2285844@outlook.com

24 Informatica 49 (2025) 23–38 W. Tang et al.

demand and evolving fleet compositions, the problems of

dynamic order dispatching and multi-objective path co-

optimization have become paramount for achieving cost

reduction and efficiency improvements [7].

The inherent complexity of SDD, involving real-time

decision-making under uncertainty with dynamically

arriving orders and stochastic travel times, often renders

traditional optimization methods and simple heuristics

inadequate. These problems are typically characterized by

large state and action spaces, making direct solutions via

methods like Bellman equations computationally

intractable, a phenomenon often referred to as the "curse

of dimensionality" [8]. Consequently, there is a growing

need for advanced intelligent algorithms that can learn

effective strategies from data and adapt to changing

conditions. Deep Reinforcement Learning (DRL) has

emerged as a powerful paradigm for tackling such

complex sequential decision-making problems [9, 10].

DRL agents can learn optimal or near-optimal policies

through interaction with the environment, making them

well-suited for dynamic logistics scenarios where future

information is uncertain and long-term rewards need to be

considered [11]. Several studies have explored DRL for

various vehicle routing problems (VRPs) and dynamic

dispatching tasks, demonstrating its potential to

outperform traditional approaches [12, 13].

Furthermore, logistics optimization in SDD is inherently a

multi-objective problem. Service providers aim to

simultaneously minimize various costs (e.g., total travel

distance, labor costs), reduce delivery delays, and

maximize customer satisfaction [14, 15]. These objectives

are often conflicting, necessitating a multi-objective

optimization (MOO) approach to find a set of Pareto-

optimal solutions that represent different trade-offs. Path

co-optimization, in this context, refers to the synergistic

optimization of both dispatching decisions and the

subsequent routing decisions for the assigned couriers,

rather than treating them as separate, sequential steps.

To enhance the decision-making capabilities of DRL

agents in such complex environments, advanced data

processing techniques are beneficial. The logistics domain

generates vast amounts of sequential and spatio-temporal

data. Transformer models, originally developed for

natural language processing, have shown remarkable

success in capturing long-range dependencies and

contextual information in sequential data due to their

attention mechanisms [16]. Their application is expanding

to various other fields, including logistics and

transportation, for tasks like travel time estimation or

demand prediction, which can provide richer state

representations for DRL agents [17]. This research

operates under the broader umbrella of Logistics Hyper-

automation, which signifies a strategic approach to

automate and optimize logistics processes end-to-end by

leveraging a combination of advanced technologies,

including AI and machine learning, to achieve greater

efficiency and resilience [18, 19]. The Comparative

Analysis of Prior Methods in SDD Dispatching is shown

in Table 1.

This paper addresses the critical challenge of dynamic

order dispatching and multi-objective path co-

optimization in SDD systems that utilize a hybrid fleet of

dedicated and crowdsourced couriers. We propose a novel

Transformer-Augmented Policy Optimization (TAPO)

Double Layers Optimization Framework. This framework

integrates Transformer models with Deep Reinforcement

Learning to learn sophisticated, adaptive strategies. The

upper layer of the framework employs the TAPO agent,

where a Transformer component processes complex

sequential and contextual information from the

operational environment, enhancing the state

representation for a DRL agent (based on algorithms like

Proximal Policy Optimization - PPO [20]). This TAPO

agent then learns a policy to make synergistic dispatch-

delay decisions. The lower layer is responsible for the path

optimization for the heterogeneous fleet when a dispatch

action is chosen. The primary goal is to co-optimize

multiple objectives, focusing on minimizing total

fulfillment costs (delay penalties and mileage costs) while

ensuring service quality. This study aims to demonstrate

how such an integrated AI approach can lead to significant

improvements in the efficiency and cost-effectiveness of

SDD operations, contributing to the advancement of

logistics hyper-automation. In this paper we solve three

research questions:

•Does integrating Transformer-based state representations

into PPO improve dispatching efficiency in hybrid fleet

logistics?

•How does the TAPO framework compare to traditional

dispatching policies in terms of cost reduction and

operational efficiency?

•What are the robustness and generalization capabilities

of the TAPO framework across different order volumes

and fleet compositions?

The remainder of this paper is organized as follows:

Section 2 describes the problem and formulates the

mathematical model. Section 3 details the proposed TAPO

Double Layers Optimization Framework. Section 4

presents the numerical experiments and discusses the

results. Finally, Section 5 concludes the paper and

suggests directions for future research.

2 Problem description and

mathematical model

This section formally defines the Same-Day Delivery

Problem with Hybrid Fleets (SDDPHF) in the context of

logistics hyper-automation. We delineate the system

components, decision-making processes, and formulate a

Markov Decision Process (MDP) model tailored for multi-

objective path co-optimization.

Table 1: Comparative analysis of prior methods in SDD

dispatching
Method Type Description Performance

Metrics

Limitations

Rule-Based

Heuristics

Simple,

predefined

rules for

Dispatch time,

route length

Assumes static

conditions,

limited scalability

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 25

dispatching

and routing

Standard
DRL

Basic DRL

algorithms

without

additional
enhancements

Total cost,
delivery time

Struggles with

complex state

spaces, limited
generalization

MILP-Based

Methods

Mathematical

optimization

using Mixed-

Integer Linear

Programming

Cost

minimization,

service level

Computationally

intensive, static

assumptions

TAPO

(Proposed)

Transformer-
Augmented

Policy

Optimization

for dynamic

dispatch-delay

decisions and

routing

Multi-

objective cost

reduction,

service

efficiency

Assumes certain

vehicle speed and

service area

constraints

To model this problem effectively, we make the following

assumptions:

1.Assumption on Courier Availability: We assume that

courier availability is known and relatively stable within

the operational time window. This assumption allows us

to focus on the optimization of dispatch and routing

decisions without the added complexity of dynamic

courier availability changes.

2.Assumption on Order Deadlines: We assume that order

deadlines are provided and are relatively uniform across

customers. This assumption helps to standardize the

problem and allows for a more focused analysis of the

dispatch and routing optimization.

3.Assumption on Fixed Simulation Parameters: We

assume that certain simulation parameters, such as vehicle

speeds and service areas, are fixed and known in advance.

This assumption is necessary to create a controlled

environment for testing and validating the TAPO

framework.

2.1 Problem setting

The Same-Day Delivery Problem with Hybrid Fleets

(SDDPHF) addresses the dynamic dispatching and routing

of customer orders that arrive sequentially over a finite

operational horizon, denoted as 𝑇 . Operations occur

within a defined geographical area, represented by a graph

𝐺 = (𝑁, 𝐸) . Here, 𝑁 is the set of nodes, including a

central depot N0 (such as a front-end store or local

fulfillment center), various customer locations 𝑁C, and

potential starting locations for crowdsourced couriers 𝑁P.

The set 𝐸 comprises edges that represent travel paths,

each associated with specific travel times or distances.

Customer orders, 𝑂 = 𝑜1, 𝑜2, … , 𝑜|𝑂| , arrive dynamically,

with each order oi characterized by its arrival time 𝑡𝑖
𝑎,

customer location, and a desired delivery window or latest

acceptable delivery time 𝑡𝑖
𝑑. The system is designed to

fulfill all accepted orders [6].

Delivery operations are executed by a hybrid fleet, which

includes a dedicated fleet and a crowdsourced fleet. The

dedicated fleet, 𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑀, consists of M in-house

couriers who typically start and end their routes at the

depot 𝑁0. These couriers have specific capacities 𝑞𝑓 and

operational characteristics, such as speed 𝑣𝑓.

Complementing this is a dynamically available pool of L

crowdsourced couriers, 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝐿 , who can be

engaged on demand. Crowdsourced couriers may possess

different capacities 𝑞𝑝, potentially lower speeds 𝑣𝑝, and

distinct operational patterns; for instance, they might not

be required to return to the depot after completing their

deliveries. The unique characteristics of dedicated versus

crowdsourced couriers, including travel speed, single-trip

carrying capacity, and route start/end points, are

fundamental to the model. A detailed comparison is

presented in Table 2.

Table 2: Comparison of dedicated and crowdsourced

courier characteristics

Dedicated Courier

Crowdsourced

Courier

Driving Speed Fast Slow

Order Capacity per

Trip
High low

Starting Point of

Delivery Route

Pre-determined

Warehouse

Location at Time

of Dispatch

End Point of

Delivery Route

Pre-determined

Warehouse

Last Order

Location, Exit

System

Decisions concerning order dispatching and vehicle

routing are made at discrete decision epochs, 𝑡𝑘. These

epochs can be triggered either by fixed time intervals (e.g.,

every ∆𝑡 minutes) or by specific events, such as the return

of a dedicated courier to the depot, which makes them

available for new assignments. These decision epochs are

shown in Figure 1. At each decision epoch 𝑡𝑘, the system

must address several intertwined decisions: deciding

which currently unassigned orders (both newly arrived

and previously delayed) to dispatch immediately and

which to delay for potential consolidation; assigning

dispatched orders to available dedicated or crowdsourced

couriers; and for each courier assigned a set of orders,

determining the optimal delivery sequence (route) to co-

optimize multiple objectives.

Figure 1: Dynamic dispatch decision epochs

The primary goal of the system is multi-objective

optimization, aiming to enhance performance across

several, often conflicting, criteria. These objectives

typically include minimizing total operational costs

(comprising mileage-based costs proportional to total

26 Informatica 49 (2025) 23–38 W. Tang et al.

distance traveled and delay penalties for late deliveries)

and maximizing service levels (e.g., minimizing average

delivery time, maximizing on-time deliveries).

Additionally, while not always mandatory, ensuring a fair

distribution of workloads among delivery personnel is

considered as a supplementary objective to maintain

operational equity and efficiency. The overall objective

function can be structured as a weighted sum of these

components or approached from a Pareto-optimality

perspective. A common formulation is to minimize a

composite cost function:

min𝑍 = 𝑤1 ⋅ 𝐶mileage + 𝑤2 ⋅ 𝐶delay + ∑  
𝑁obj

𝑗=3
𝑤𝑗 ⋅ 𝐶𝑗 (1)

where 𝐶mileage is the total mileage cost, 𝐶delay is the total

delay penalty, 𝐶j represents other cost or performance

metrics, and 𝑤𝑗 are their respective weights reflecting

their relative importance.

2.2 Markov decision process (MDP)

formulation

The dynamic and stochastic nature of the SDDPHF lends

itself to modeling as a Markov Decision Process (MDP).

The MDP is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾):

The state 𝑠𝑘 ∈ 𝑆 at a decision epoch 𝑡𝑘 must encapsulate

all information relevant to decision-making. This includes

the current time 𝑡𝑘; the set of unassigned orders 𝑂pool (𝑘),

which comprises newly arrived orders 𝑂new since the last

epoch tk−1 and any orders 𝑂remain held over from

previous epochs (each order 𝑜𝑖 ∈ 𝑂pool is described by its

features like location, arrival time, and deadline); the

status of dedicated couriers𝑉𝐹(𝑘), detailing for each 𝑓𝑗 ∈

𝐹 their current location, remaining capacity, and estimated

time of arrival back at the depot if en-route; the availability

and status of crowdsourced couriers 𝑉𝑃(𝑘), including their

current availability, location, and capacity; and

information about ongoing routes 𝑅active (𝑘) for couriers

already dispatched, including the sequence of remaining

deliveries and estimated completion times. The state can

be formally represented as:

𝑠𝑘 = (𝑡𝑘, 𝑂pool (𝑘), 𝑉𝐹(𝑘), 𝑉𝑃(𝑘), 𝑅active (𝑘)) (2)

The component 𝑅active (𝑘) is crucial as it includes

information about routes assigned in previous epochs that

are still in progress. For instance, for a dedicated courier

𝑓𝑖 dispatched at an earlier epoch 𝑘′ < 𝑘, its route 𝑟(𝑓𝑖 , 𝑘′)

would be part of 𝑅active (𝑘) until completed.

To capture complex dependencies and sequential patterns,

such as those in order arrivals or courier availability, raw

state features can be processed by a Transformer encoder.

The Transformer's self-attention mechanism can

effectively weigh the importance of different elements in

sequences of data (e.g., features of orders in 𝑂pool or

courier activities) to produce a richer, context-aware state

embedding Φ(𝑠𝑘). For a sequence of input features 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛), the self-attention mechanism computes:

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (3)

where 𝑄, 𝐾, 𝑉 are query,key,and value matrices derived

from the input embeddings,and 𝑑𝑘 is the dimension of the

keys.This allows the model to learn inter-order

relationships or temporal patterns crucial for effective

dispatching and routing.The output of the

Transformer,Φ(𝑠𝑘) ,then serves as the input to the DRL

agent’s policy and value networks, shown as figure 2.

Figure 2: Transformer based state representation

enhancement structure

At each state 𝑠𝑘 ,the agent chooses an action 𝑎𝑘 ∈
𝐴(𝑠𝑘) .This action is multi-faceted, involving a dispatch

decision 𝑎𝐷(𝑘) (e.g., a binary choice to dispatch all

current orders or delay them),an order-courier assignment

𝑎𝐴(𝑘) if dispatching (matching selected orders to

available couriers from 𝐹 ∪ 𝑃 ,considering capacities and

fleet characteristics),and a routing decision 𝑎𝑅(𝑘) .The

routing decision determines the sequence of deliveries for

each assigned courier. A route 𝑟𝑗 for courier 𝑗 is a

sequence of customer nodes (𝑜𝑗1, 𝑜𝑗2, … , 𝑜𝑗𝑚𝑗
).The set of

all routes generated at epoch 𝑘 is 𝑅𝑘
′ = 𝑟1, 𝑟2, … .For a

dedicated courier 𝑓𝑖, a route 𝑟(𝑓𝑖 , 𝑘) dispatched at epoch 𝑘

can be represented as [21]：

𝑟(𝑓𝑖 , 𝑘) = (𝑁0, 𝑜𝑖1, … , 𝑜𝑖𝑚𝑖
, 𝑁0), 𝑡𝑓𝑖

𝑟 , distance 𝑓𝑖
𝑘 (4)

where (𝑁0, 𝑜𝑖1 , … , 𝑜𝑖𝑚𝑖
, 𝑁0) is the sequence of nodes, 𝑡𝑓𝑖

𝑟

is the courier's return time to the depot, distance 𝑓𝑖

𝑘 is the

route distance, and delay 𝑓𝑖
𝑘 is the accumulated delay. For

a crowdsourced courier 𝑝𝑗, a route 𝑟(𝑝𝑗 , 𝑘) might start at

their current location 𝑁𝑝′ , proceed to the depot 𝑁0 for

pick-ups, deliver to customers 𝑜𝑗1, … , 𝑜𝑗𝑛𝑗
 and end at the

last customer location:

𝑟(𝑝𝑗 , 𝑘) = (𝑁𝑝𝑗
→ 𝑁0 → 𝑜𝑗1, … , 𝑜𝑗𝑛𝑗

) , distance 𝑗
𝑘
 (5)

The composite action is thus 𝑎𝑘 =
(𝑎𝐷(𝑘), 𝑎𝐴(𝑘), 𝑎𝑅(𝑘)) .The state transition function

𝑃(𝑠𝑘+1 ∣ 𝑠𝑘 , 𝑎𝑘) defines the probability of moving from

state 𝑠𝑘 to 𝑠𝑘+1 after action 𝑎𝑘 . This transition is shaped

by deterministic consequences of 𝑎𝑘 (like courier

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 27

movements and order fulfillment) and stochastic elements

(such as new order arrivals 𝑂new (𝑘 + 1) , changes in

crowdsourced courier availability 𝑉𝑃(𝑘 + 1) , and

uncertain travel times). The next decision epoch 𝑡𝑘+1 is

determined by:

𝑡𝑘+1 = min (min
𝑓𝑖∈𝐹en-route

 𝑡𝑓𝑖

𝑟 , (⌊
𝑡𝑘

Δ𝑡
⌋ + 1) ⋅ Δ𝑡) (6)

where 𝐹en-route is the set of dedicated couriers currently on

a route. The order pool 𝑂pool (𝑘 + 1) and courier statuses

𝑉𝐹(𝑘 + 1), 𝑉𝑃(𝑘 + 1) are updated based on 𝑠𝑘 , 𝑎𝑘 , and

new exogenous information 𝑤𝑘+1 = (𝑂new (𝑘 +
1), 𝑉𝑃(𝑘 + 1)).

The reward function 𝑅(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) quantifies the

immediate outcome of action 𝑎𝑘 . Given the multi-

objective nature, it's a scalar value reflecting the action's

desirability. Typically, it's the negative of a weighted sum

of costs incurred:

𝑅𝑘 = − (𝑤1 ⋅ Δ𝐶mileage (𝑘) + 𝑤2 ⋅ Δ𝐶delay (𝑘) +

∑  
𝑁obj

𝑗=3
 𝑤𝑗 ⋅ Δ𝐶𝑗(𝑘)) (7)

where Δ𝐶mileage (𝑘) and Δ𝐶delay (𝑘) are mileage and delay

costs from routes in 𝑎𝑅(𝑘). Reward shaping can be used

to provide denser feedback. The discount factor 𝛾 ∈ [0,1]
balances immediate versus future rewards.

The DRL agent's goal is to learn an optimal policy 𝜋∗: 𝑆 →
𝐴 that maximizes the expected cumulative discounted

reward:

𝜋∗ = arg max
𝜋

 𝔼[∑  𝐾−1
𝑖=𝑘   𝛾𝑖−𝑘𝑅(𝑠𝑖 , 𝜋(𝑠𝑖), 𝑠𝑖+1) ∣ 𝑠𝑘] (8)

for all 𝑠𝑘 ∈ 𝑆 , where 𝐾 is the total number of decision

epochs. The "curse of dimensionality" arising from vast

state and action spaces makes exact solutions to the

Bellman optimality equation infeasible. The Bellman

equation for the optimal action-value function 𝑄∗(𝑠, 𝑎) is:

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′∼𝑃(⋅∣∣𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾max𝑎′  𝑄∗(𝑠′, 𝑎′)]

(9)

This necessitates DRL algorithms using function

approximators (e.g., deep neural networks) to learn the

policy 𝜋(𝑎|𝑠; 𝜃) or value functions, where θ are network

parameters.

2.3 Illustrative scenario

To clarify the decision-making process and state

transitions, consider a simplified scenario. An illustration

of the system state at a specific decision epoch is shown

as Figure 3 at decision epoch 𝑡𝑘 =120 min.

The DRL agent observes the system state 𝑆𝑘.Based on this

observation, potentially enhanced by a Transformer

model, the agent decides on an action 𝑎𝑘.One option is to

delay dispatch, in which case all orders currently in

𝑂pool (𝑘) remain,and the system transitions to the next

decision epoch 𝑡𝑘+1 .Another option is immediate

dispatch, where orders are assigned to available

couriers(e.g., 𝑓1 and 𝑝1),and routes are planned.For

instance,orders 𝑜1, 𝑜2, 𝑜3 might be assigned to 𝑓1 ,and

order 𝑜4 to 𝑝1.

Figure 3: System state at decision epoch 𝑡𝑘=120 min

Assume the next decision epoch 𝑡𝑘+1 occurs at 130 min,

triggered by the return of courier 𝑓2 to the depot (assuming

this is earlier than 120 + Δ𝑡).During the interval from

120 min to 130 min, new orders 𝑜5, 𝑜6, 𝑜7 arrive (this is

the exogenous information 𝑤𝑘+1),and a new

crowdsourced courier 𝑝2 becomes available.

If the agent chose to delay dispatch at 𝑡𝑘 = 120 min,then

at 𝑡𝑘+1 = 130 min ,the order pool 𝑂pool (𝑘 + 1) would

now contain the original orders 𝑜1, 𝑜2, 𝑜3, 𝑜4 plus the new

orders 𝑜5, 𝑜6, 𝑜7.An illustration of the system state after a

delay decision is shown as Figure 4. The available couriers

would include 𝑓1(who was waiting),𝑓2(who just returned),

and the newly available 𝑝2.The DRL agent then makes a

new dispatch and routing decision for this larger pool of

orders and updated fleet.

Conversely, if the agent chose immediate dispatch at 𝑡𝑘 =
120 min ,then at 𝑡𝑘+1 = 130 min , the order pool

𝑂pool (𝑘 + 1)would only contain the new orders 𝑜5, 𝑜6, 𝑜7

,as orders 𝑜1 − 𝑜4 are already enroute with couriers 𝑓1 and

𝑝1. An illustration of the system state after an immediate

dispatch decision is shown as Figure 5. The available

couriers for these new orders would be 𝑓2 (who just

returned) and 𝑝2 . Couriers 𝑓1 and 𝑝1 are still completing

their routes initiated at 𝑡𝑘 . The DRL agent then makes

decisions for the new orders using the currently available

fleet.

This illustrative scenario highlights how strategic delays,

guided by a learned policy, can potentially yield superior

overall solutions. By enabling order consolidation and

more efficient utilization of vehicle capacity, such

28 Informatica 49 (2025) 23–38 W. Tang et al.

strategies can reduce total costs. The DRL agent's function

is to discern when such delays are advantageous by

analysing the complex interplay of current state variables

and future uncertainties.

Figure 4：System State at 𝑡𝑘+1 = 130 min after

Delaying Dispatch at 𝑡𝑘

Figure 5：System State at 𝑡𝑘+1 = 130 min after

Immediate Dispatch at 𝑡𝑘

 3 Algorithm design

With the mathematical model established, we now focus

on the algorithmic design to solve the formulated problem

effectively. This chapter details the hybrid algorithmic

approach developed to address the Same-Day Delivery

Problem with Hybrid Fleets (SDDPHF). The proposed

solution employs double layers optimization framework.

At its core, an advanced Deep Reinforcement Learning

(DRL) method, termed Transformer-Augmented Policy

Optimization (TAPO), is responsible for making dynamic,

global dispatch-delay decisions. This is complemented by

heuristic algorithms designed to solve the static routing

subproblems that arise when a dispatch decision is made.

This integrated approach aims to achieve overall

optimization within the operational period of same-day

delivery services, balancing immediate operational needs

with long-term strategic goals.

3.1 Upper-Layer: transformer-augmented

policy optimization (TAPO)

The Transformer-Augmented Policy Optimization

(TAPO) agent is central to our approach for the dynamic

dispatch-delay decision-making process. It learns its

policy through continuous interaction with a simulated

environment that accurately mimics the SDDPHF system.

The design of this DRL environment, particularly its

observation space, action space, and reward function, is

critical for successful learning and for leveraging the

capabilities of the Transformer architecture. The

interaction loop between the DRL agent and the

environment is depicted in Figure 6.

Figure 6: TAPO Agent-environment interaction loop

To manage the complexity of the full MDP state 𝑠𝑘 and

ensure that the learning process is feasible, the TAPO

agent receives a carefully selected observation 𝑜𝑘 ∈ 𝑆obs

at each decision epoch 𝑡𝑘. This observation is a compact

yet informative representation of the system's current

state. It typically includes the current time 𝑡𝑘 within the

operational horizon [0, 𝑇] ; aggregate information about

the order pool 𝑂pool (𝑘) , such as the total number of

waiting orders, and potentially specific features of the

most urgent order (e.g., the time remaining until its

deadline, 𝑈𝑇𝑘); and information about available fleet

capacity, such as the number of dedicated couriers 𝑉𝑘

currently at the depot and ready for dispatch. Crucially, to

provide richer contextual information and enable more

sophisticated decision-making, features extracted by a

Transformer model from recent historical order data (e.g.,

sequences of order locations, demand volumes, arrival

times) or predicted future demand patterns can be

included. The Transformer architecture comprises an

embedding layer, followed by 6 encoder layers. Each

encoder layer consists of a multi-head self-attention

mechanism and a position-wise feed-forward network.

This Transformer processed information, denoted

Φcontext (𝑘), allows the agent to better understand temporal

dependencies and complex patterns that might influence

the optimal dispatch strategy. Thus, the observation vector

can be represented as 𝑜𝑘 =

(𝑡𝑘 , count(𝑂pool (𝑘)), 𝑈𝑇𝑘 , 𝑉𝑘 , Φcontext (𝑘)).

The TAPO agent's action space 𝐴TAPO is simplified for

the dispatch-delay decision to maintain tractability. At

each epoch 𝑡𝑘, the agent chooses a discrete action 𝑎𝑘
𝑇𝐴𝑃𝑂

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 29

from the set 0,1. An action 𝑎𝑘
𝑇𝐴𝑃𝑂 = 0 signifies a decision

to delay the dispatch of all orders currently in 𝑂pool (𝑘);

these orders then remain in the pool and are reconsidered

at the next decision epoch. Conversely, an action 𝑎𝑘
𝑇𝐴𝑃𝑂 =

1 indicates a decision to dispatch the orders currently in

𝑂pool (𝑘). This action triggers the execution of the lower-

layer heuristic algorithm, which then handles the detailed

order assignment and routing tasks.

Designing an appropriate reward function

𝑅TAPO (𝑜𝑘 , 𝑎𝑘
𝑇𝐴𝑃𝑂 , 𝑜𝑘+1) is paramount for effectively

guiding the TAPO agent towards achieving the desired

multi-objective optimization goals. A naive reward signal,

such as one based solely on the final system cost at the end

of an entire episode (e.g., a full operational day), would

likely be too sparse, rendering the learning process highly

inefficient. Therefore, a shaped reward function is

employed to provide more immediate and informative

feedback to the agent. This reward is a composite function

that includes the negative of the immediate operational

costs incurred if the dispatch action (𝑎𝑘
𝑇𝐴𝑃𝑂 = 1) is taken.

These costs, Δ𝐶mileage (𝑘) and Δ𝐶delay (𝑘) , are derived

from the solution provided by the lower-layer routing

algorithm. Additionally, the shaped reward incorporates

auxiliary rewards or penalties designed to encourage

desirable intermediate behaviors or discourage

undesirable ones. For instance, a small penalty might be

applied for delaying orders, particularly if they are

approaching their delivery deadlines, to reflect the implicit

cost of waiting. Conversely, a bonus is awarded for

optimal utilization of vehicle capacity during dispatch

operations or for successfully completing an entire

operational day within service targets. The specific

formulation of this shaped reward function, 𝑟𝑘 , often

involves a sum of several components 𝑟(𝑖)(𝑆𝑡 , 𝑎𝑡) minus

the objective cost penalty. These components are carefully

tuned to balance short-term operational efficiency with

long-term strategic objectives like beneficial order

consolidation, and might include rewards or penalties

related to delaying dispatch based on current system load

(𝑟(1)), vehicle return events enhancing capacity (𝑟(2)),

the urgency or earliness of orders (𝑟(3)), the number of

orders completed (𝑟(4)), and the successful completion of

the service period (𝑟(5)).

TAPO employs two main deep neural networks: a Policy

Network (Actor), 𝜋(𝑎 ∣ 𝑜; 𝜃actor) , which maps the

potentially Transformer-enhanced observation 𝑜𝑘 to a

probability distribution over actions (delay or dispatch),

and a Value Network (Critic), 𝑉 (𝑜; 𝜃critic), which

estimates the expected cumulative future reward from

state 𝑜𝑘 . Both networks are commonly implemented as

Multi-Layer Perceptrons (MLPs). The policy network

uses a softmax output layer for discrete actions. The model

training algorithm for TAPO involves the DRL agent

interacting with the simulated SDDPHF environment over

numerous episodes. During each episode, the agent

collects trajectories of experiences 𝜏 =

(𝑜0, 𝑎0
𝑇𝐴𝑃𝑂 , 𝑟0, 𝑜1, 𝑎1

𝑇𝐴𝑃𝑂 , 𝑟1, …). After collecting a batch of

trajectories, TAPO updates the parameters 𝜃actor and

𝜃critic . The core PPO objective function for the actor is the

clipped surrogate objective:

𝐿CLIP(𝜃actor) = 𝔼̂𝑡[min(𝜌𝑡(𝜃actor)𝐴̂𝑡 , clip(𝜌𝑡(𝜃actor), 1 −

𝜖, 1 + 𝜖)𝐴̂𝑡)] (10)

In this equation, 𝜌𝑡(𝜃actor) =
𝜋(𝑎𝑡∣𝑜𝑡;𝜃𝑎𝑐𝑡𝑜𝑟)

𝜋(𝑎𝑡∣𝑜𝑡;𝜃𝑎𝑐𝑡𝑜𝑟𝑜𝑙𝑑)
 is the

probability ratio. 𝐴̂𝑡 is an estimator of the advantage

function at timestep 𝑡, often computed using Generalized

Advantage Estimation (GAE), where 𝐴̂𝑡 = 𝑄(𝑜𝑡 , 𝑎𝑡) −
𝑉(𝑜𝑡 ; 𝜃 critic). The hyperparameter 𝜖 defines the clipping

range. The critic network is trained by minimizing a loss

function, usually the mean squared error between its

predicted state values 𝑉(𝑜𝑡; 𝜃critic) and the empirically

estimated returns 𝑅̂𝑡:

𝐿𝑉𝐹(𝜃critic) = 𝔼𝑡ˆ [(𝑉(𝑜𝑡; 𝜃critic) − 𝑅̂𝑡)
2

] (11)

An entropy bonus [𝜋(⋅∣ 𝑜𝑡; 𝜃actor)] can be added to the

actor's objective to encourage exploration. The final

combined loss function often takes the form:

𝐿(𝜃actor , 𝜃critic) = 𝐿𝐶𝐿𝐼𝑃(𝜃actor) − 𝑐1𝐿𝑉𝐹(𝜃critic) +
𝑐2𝑆[𝜋(⋅∣ 𝑜𝑡; 𝜃actor)] (12)

where 𝑐1 and 𝑐2 are weighting coefficients. The networks

are updated using gradient-based optimization. This

iterative cycle allows the TAPO agent to progressively

learn an effective dispatch-delay strategy.

3.2 Lower-layer: static subproblem

algorithm

When the upper-layer TAPO agent decides to dispatch

orders at a given epoch 𝑡𝑘, the set of available orders in

the pool 𝑂pool (𝑘) must be assigned to the currently

available dedicated fleet 𝐹(𝑘) and the callable

crowdsourced fleet 𝑃(𝑘). Subsequently, efficient delivery

routes must be planned for each courier. This static

HFVRP is addressed using a twostage heuristic approach:

an initial solution is first constructed, and then it is

iteratively improved.

For the rapid generation of a feasible and reasonably good

initial solution for the HFVRP, we employ a Greedy

Costbased Insertion Heuristic (GCIH). This heuristic

iteratively assigns unassigned orders to routes and inserts

them into the most advantageous positions within those

routes. The "best" position is determined by an insertion

30 Informatica 49 (2025) 23–38 W. Tang et al.

cost function designed to consider multiple objectives,

primarily focusing on minimizing the additional travel

distance and any potential delay incurred by the insertion.

The GCIH prioritizes assigning orders to dedicated

couriers first, up to their capacity 𝑞𝑓 , often due to their

potentially higher efficiency or contractual obligations.

The core of the GCIH involves calculating two types of

costs for inserting an unassigned order 𝑣 into a partially

constructed route between existing nodes 𝑖 and 𝑗. The first

is the direct insertion cost, 𝑐1(𝑖, 𝑣, 𝑗) = 𝑑𝑖𝑣 + 𝑑𝑣𝑗 − 𝜇 ⋅

𝑑𝑖𝑗 , where 𝑑𝑥𝑦 represents the distance between nodes 𝑥

and 𝑦, and 𝜇 is a weighting parameter. The best insertion

position (𝑖(𝑣), 𝑗(𝑣)) for order 𝑣 in a specific route is the

one that minimizes this 𝑐1 cost. The second is a relative

insertion cost, 𝑐2(𝑖(𝑣), 𝑣, 𝑗(𝑣)) = 𝛾 ⋅ 𝑑0𝑣 −
min𝑐1(𝑖(𝑣), 𝑣, 𝑗(𝑣)), where 𝑑0𝑣 is the distance from the

depot (node 0) to order 𝑣 , and 𝛾 is another weighting

factor. This 𝑐2 cost helps in selecting which order 𝑣∗ to

insert next from the pool of unassigned orders, by

identifying the 𝑣∗ that minimizes 𝑐2 . The algorithm

proceeds by iteratively selecting the best order to insert

and its best position within a route until all orders are

assigned or all vehicle capacities are met. Any remaining

orders are then considered for assignment to

crowdsourced couriers, following a similar insertion logic

but adapted for their specific operational characteristics

(e.g., crowdsourced couriers might not need to return to

the depot and may have different capacities 𝑞𝑝). Orders

that cannot be assigned in the current dispatch cycle are

returned to the order pool for consideration in the next

decision epoch.

Once an initial solution is constructed by the GCIH, a

Variable Neighborhood Search (VNS) algorithm is

applied to further improve its quality. VNS is a

metaheuristic that systematically explores different

neighborhood structures to avoid getting trapped in local

optima and to find higher-quality solutions. The VNS

algorithm proceeds in iterations, typically involving a

shaking phase and a local search phase. In the shaking

phase, the current best solution is perturbed by applying

one or more predefined neighborhood operators (moves),

generating a new starting point in a potentially different

region of the solution space. This helps in diversifying the

search. Following the shaking phase, an intensive local

search is performed from this perturbed solution. The local

search phase uses a set of neighborhood operators to

explore the vicinity of the current solution, aiming to find

a local optimum. If this newly found local optimum is

better than the current overall best solution, it replaces the

current best solution, and the search process (particularly

the choice of neighborhood for shaking) might reset to the

first neighborhood structure. Otherwise, if no

improvement is found, the VNS typically moves to the

next type of neighborhood structure for the subsequent

shaking phase, thereby changing the landscape of the

search.

The effectiveness of VNS heavily relies on the design of

its neighborhood operators. We have designed two main

categories of operators specifically tailored for the

HFVRP. Intra-route operators modify a single courier's

route to improve its individual efficiency. Examples

include a Greedy Swap, which exchanges two orders

within the same route if such an exchange reduces the

route's cost (e.g., total distance or lateness), and Random

Insertion (Reinsertion), which involves removing an order

from its current position in a route and reinserting it into a

different, randomly chosen, feasible position within that

same route. The Greedy Swap operator can be illustrated

in Figure 7(a). The Random Reinsertion operator can be

illustrated in Figure 7(b).

Figure 7: Intra-route operators: (a)greedy swap (b)

random reinsertion

Inter-route operators, on the other hand, modify two or

more routes simultaneously, allowing for a broader

exploration of the solution space and facilitating the

movement of orders between different couriers (including

between dedicated and crowdsourced couriers). Examples

include Relocate, which moves an order from one route to

a feasible position in another route (respecting capacity

and fleet-specific constraints such as return-to-depot

requirements), and Exchange (Swap), which exchanges an

order from one route with an order from another route. The

Relocate operator can be illustrated in Figure 8(a). The

Exchange operator can be illustrated in Figure 8(b). The

careful selection and sequencing of these operators within

the VNS framework are managed to effectively balance

the breadth of exploration with the depth of exploitation.

The VNS algorithm continues for a predefined number of

iterations or until a termination criterion, such as no

further improvement being found for a certain period, is

met.

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 31

Figure 8: Inter-route operators: (a) relocate (b) exchange

3.3 Transformer-augmented policy

optimization (TAPO) double layers

optimization framework

The Transformer-Augmented Policy Optimization

(TAPO) Double Layers Optimization Algorithm is shown

as Algorithm 1:

Algorithm 1: TAPO double layers optimization

Input: Simulation environment env, training instances INS, number of

training episodes EP, batch size BS, number of epochs per update BT,

hyperparameters (𝛾discount , 𝜖clip , 𝜆GAE , learning rates, etc.), Transformer

model parameters 𝜃transformer (if pre-trained or jointly trained)

Output: Trained policy network parameters 𝜃actor , trained value network

parameters 𝜃critic

1. Initialize policy network 𝜋(𝑎 ∣ 𝑜; 𝜃actor) with random weights

𝜃actor

2. Initialize value network 𝑉(𝑜; 𝜃critic) with random weights 𝜃critic

3. (Optional: Initialize/Load Transformer model Φ(⋅; 𝜃trans former))

4. for episode = 1 to EP do

5. Initialize an empty list batch_trajectories

6. for rollout = 1 to BS do

7. Select a training instance in from INS

8. Reset environment env with instance in , get initial raw state

features 𝑠0
𝑟𝑎𝑤

9. (Optional: Process 𝑠0
𝑟𝑎𝑤 with Transformer to get 𝑜0

10. Initialize an empty list current_trajectory

11. while episode is not done do

12. Choose action 𝑎𝑡
𝑇𝐴𝑃𝑂 from 𝜋(𝑎 ∣ 𝑜𝑡; 𝜃actor 𝑜𝑙𝑑)

13. Execute 𝑎𝑡
𝑇𝐴𝑃𝑂 in env, observe reward 𝑟𝑡 and next raw state 𝑠𝑡+1

𝑟𝑎𝑤

14. (Optional: Process 𝑠𝑡+1
𝑟𝑎𝑤 with Transformer to get 𝑜𝑡+1)

15. Store (𝑜𝑡, 𝑎𝑡
𝑇𝐴𝑃𝑂, 𝑟𝑡 , 𝑜𝑡+1) in current_trajectory

16. 𝑜𝑡 ← 𝑜𝑡+1

17. end while

18. Add current_trajectory to batch_trajectories

19. end for

20. Compute advantage estimates 𝐴̂𝑡 (e.g., using GAE) for all steps

in batch_trajectories

21. Compute discounted returns 𝑅̂𝑡 for all steps in batch_trajectories

22. 𝜃actor 𝑜𝑙𝑑 ← 𝜃actor

23. 𝜃critic 𝑜𝑙𝑑 ← 𝜃critic

24. for epoch = 1 to BT do

25. For each trajectory in batch_trajectories :

26. Calculate probability ratio 𝜌𝑡(𝜃actor)

27. Calculate policy loss 𝐿𝐶𝐿𝐼𝑃 (𝜃actor) using Equation (10)

28. Calculate value loss 𝐿𝑉𝐹 (𝜃critic) using Equation (11)

29. Calculate entropy bonus 𝑆[𝜋(⋅∣ 𝑜𝑡; 𝜃actor)]

30. Calculate combined loss 𝐿(𝜃actor , 𝜃critic) using Equation (12)

4 Experiments

This section presents a comprehensive evaluation of the

proposed Transformer-Augmented Policy Optimization

(TAPO) Double Layers Optimization Framework. We

first describe the experimental setup, including data

generation and parameter settings. Subsequently, we

analyze the performance of the lower-layer heuristic

algorithms for solving the static subproblems. The core of

this section then focuses on the training and validation of

the TAPO agent, comparing its performance against

several baseline dispatch strategies across various

scenarios to demonstrate its efficacy in reducing costs and

improving operational efficiency in same-day delivery

(SDD) operations. Finally, generalization and sensitivity

analyses are conducted to assess the robustness and

applicability of the TAPO framework.

4.1 Experimental setup and data

generation
To rigorously evaluate the proposed algorithms, a

discrete-event simulation environment was developed to

mimic the dynamic operations of an SDD system with

hybrid fleets. The operational period for the SDD service

is set to 600 minutes (e.g., from 9：00 AM to 7：00 PM).

Dispatch decisions are made at fixed intervals of 20

minutes, or when a dedicated courier returns to the depot.

The service area is represented as a 30 × 30 grid,

approximating a 3 km × 3 km region, with the depot

located at the center.For each order,the expected service

time (latest delivery time after order placement) is 70

minutes.Other key parameters,including vehicle speeds

(𝑣𝑓 for dedicated,𝑣𝑝 for crowdsourced),vehicle capacities

(𝑞𝑓 , 𝑞𝑖
𝑝

), and objective function weights (𝛼 for distance

cost,𝛽 for delay cost),are set based on realistic logistics

scenarios and prior research. To enhance the

reproducibility of our simulation environment, we provide

additional details in the supplementary information

section. The simulation parameters include seed values for

random number generation, order arrival rate distributions

(Poisson process with λ = 5 orders per minute during peak

hours and λ = 2 orders per minute during off-peak hours),

and spatial distribution parameters (grid dimensions of

50x50 with a depot at the center). For the demand curves,

we have included numerical examples showing peak order

rates of up to 10 orders per minute and off-peak rates of 2

32 Informatica 49 (2025) 23–38 W. Tang et al.

orders per minute. Sample maps are described as 50x50

grids with customer locations distributed either uniformly

or clustered in a 20x20 central area with obstacles. Fleet

configurations include dedicated couriers with a speed of

60 km/h and a capacity of 6 orders, and crowdsourced

couriers with a speed of 40 km/h and a capacity of 3 orders.

These parameters are detailed in Table 3.

Table 3: Experimental parameter settings

parameter Setting

𝑣𝑓 0.2(km/h)

𝑣𝑝 0.15(km/h)

𝑞𝑓 6

𝑞𝑖
𝑝
 3

 𝛼 0.2

 𝛽 0.8

To reflect diverse operational conditions, test instances

were generated with varying characteristics in terms of

order spatial and temporal distributions. Spatially, orders

can be Clustered(C), with 50%of customers located in a

dense 20x20 central area and the rest distributed in the

periphery, or Spatially Uniform(S), where order locations

are uniformly random across the map. Temporally ,order

arrivals can be Homogeneous(A),following a Poisson

process with a constant average rate, or Non-

homogeneous(B),simulating peak and off-peak periods

with order arrivals following a normal distribution

centered around predefined peak times(e.g.,1/4T and

3/4T).An instance is denoted as＂N-M-L- TimeType-

SpaceType＂,where N is the total number of orders, M is

the number of dedicated couriers, and L is the number of

crowdsourced couriers available per dispatch wave. For

example,＂600-6-2-B-S＂represents a scenario with 600

orders, 6 dedicated couriers, 2 available crowdsourced

couriers per wave, non-homogeneous(peaked)order

arrivals, and spatially uniform order locations. Multiple

instances were generated for each type to ensure statistical

validity.

4.2 Performance of lower-layer heuristic

algorithms

The efficiency of the lower-layer algorithms—Greedy

Cost-based Insertion Heuristic (GCIH) for initial solution

generation and Variable Neighborhood Search (VNS) for

improvement—is crucial for the overall performance of

the TAPO framework, as they are called repeatedly during

the DRL agent's interaction with the environment. We

evaluated these heuristics on a set of static subproblem

instances derived from the dynamic scenarios.

Performance metrics included total cost (TC, the weighted

sum of distance cost DC and overtime cost OC), DC, OC,

and CPU time. The comparative results of GCIH and VNS

are detailed in Table 4.

The results indicated that VNS significantly improves

upon the solutions generated by GCIH, typically reducing

the total cost by a substantial margin (e.g., 8% to 65%

across different instances) and consistently eliminating

overtime costs in most tested cases. While GCIH is very

fast (often under 0.005s), VNS provides much higher

quality solutions within a reasonable timeframe (generally

less than 1 second for instances with up to 40 orders),

making it suitable for real-time decision support within the

DRL loop. The convergence analysis of VNS showed that

the objective function value rapidly decreases within the

initial iterations (e.g., 10-20 iterations) and tends to

stabilize after around 60 iterations for the tested problem

sizes. This allows for setting a practical limit on VNS

iterations to balance solution quality and computational

speed. The convergence behavior of the VNS algorithm is

shown in Figure 9.

Table 4: Performance comparison of GCIH and VNS on

static subproblems

Subproble

m

Algorith

m
OBJ DC OC

Diff

(%)
std

CPU

Time (s)

10-2-1-A-

C

VNS 36.58
182.8

9
0.00

0.9

1
0.464

GCIH 41.66
208.2

9
0.00

13.8

9

0.0

0
0.001

10-2-1-A-

S

VNS 33.23
166.1

6
0.00

0.4

8
0.541

GCIH 54.99
210.3

5

16.1

6

65.4

8

0.0

0
0.002

20-3-1-A-

C

VNS 53.08
265.4

0
0.00

0.5

2
0.904

GCIH 60.39
301.9

4
0.00

13.7

7

0.0

0
0.002

20-3-1-A-

S

VNS 54.05
270.2

3
0.00

1.5

9
0.904

GCIH 57.14
285.7

2
0.00 5.73

0.0

0
0.001

30-4-2-A-

C

VNS 73.57
367.8

4
0.00

0.9

5
1.063

GCIH 89.15
445.7

4
0.00

21.1

8

0.0

0
0.002

30-4-2-A-

S

VNS 70.82
354.1

0
0.00

2.6

1
1.116

GCIH
100.5

8

502.8

8
0.00

42.0

2

0.0

0
0.002

40-6-3-A-

C
VNS 90.17

450.8

5
0.00

1.4

5
0.845

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 33

GCIH 97.72
488.5

9
0.00 8.37

0.0

0
0.004

40-6-3-A-

S

VNS 97.37
486.8

6
0.00

3.4

8
0.875

GCIH
120.2

4

556.9

0

11.0

8

23.4

9

0.0

0
0.003

4.3 TAPO framework training and

convergence

The TAPO agent was trained as described in Section 3.

Hyperparameters for the neural networks (actor and critic)

and the PPO algorithm (e.g., learning rates, discount factor,

clipping parameter ϵ, GAE parameter λ) were carefully

tuned through preliminary experiments. The key

hyperparameters used for training the TAPO model is

listed in Table 5. We conducted a sensitivity analysis on

key hyperparameters, including the 𝛼 and 𝛽 weights in

the cost function, the 𝜀 parameter in PPO, and the depth of

the Transformer model. Our analysis reveals that these

hyperparameters significantly influence the trade-offs

between cost reduction and delay minimization.

Increasing the 𝛼 weight enhances cost efficiency but may

slightly increase delays, while higher 𝛽 weights focus

more on reducing delays, balancing with cost objectives.

The 𝜀 parameter in PPO affects the aggressiveness of

policy updates, with smaller values leading to more

conservative updates and larger values allowing for more

significant changes in policy. Additionally, the depth of

the Transformer model impacts its capacity and training

dynamics, with deeper models offering higher

representational power but requiring more computational

resources.

The training was conducted on a base set of 200 instances

of type "600-6-2-B-S" (600 orders, 6 dedicated, 2

crowdsourced, non-homogeneous time, spatially uniform)

to ensure the agent learns from diverse yet representative

scenarios. Each training episode corresponded to one full

operational day (600 minutes).

Figure 9: VNS objective function value vs. iteration

count for static subproblems

Table 5: TAPO model training hyperparameters

Parameter Setting

Advantage function discount parameter 0.95

Number of training episodes 40

Number of rollouts per episode 64

Clipping value 0.3

Number of hidden layer neurons [128，64]

Number of epochs per parameter update 15

Policy network learning rate 2 × 10−4

Action network learning rate 2 × 10−4

Discount factor in reinforcement learning 0.98

Policy entropy coefficient 0.01

Activation function used in network layers Tanh

Iterative optimizer Adam

The learning progress was monitored by tracking the

average cumulative reward per episode and the average

total objective cost (TC) per episode. The results

demonstrated that the TAPO agent effectively learns to

improve its dispatch-delay policy over time. The average

reward per episode showed a clear upward trend, initially

fluctuating significantly but then stabilizing at a higher

level as training progressed. Concurrently, the average

total cost per episode exhibited a downward trend, rapidly

decreasing in the early stages of training and then

converging, indicating that the agent was successfully

learning strategies to reduce operational costs and delays.
The convergence of the training reward is shown in Figure

10. The convergence of the objective function (total cost)

during training is shown in Figure 11. For instance, on the

base "600-6-2-B-S" instances, both the reward and total

cost typically showed convergence after approximately

600-800 training episodes, with subsequent fluctuations

primarily attributed to the inherent stochasticity of the

problem instances.

Figure 10: TAPO training reward convergence curve

34 Informatica 49 (2025) 23–38 W. Tang et al.

Figure 11: TAPO training objective function (total cost)

convergence curve

4.4 Comparative analysis of dispatch

strategies

To validate the effectiveness of the TAPO Double Layers

Optimization Framework, its performance was compared

against two baseline dispatch strategies on a diverse set of

test instances (typically 20 instances of type "600-6-2-B-

S" not used in training, plus other types for generalization

and sensitivity). All strategies utilized the same VNS

algorithm for lower-layer routing to ensure a fair

comparison of the dispatch policies themselves. The

baseline strategies were:

Myopic Policy (Myopic): This strategy dispatches all

currently available orders at every decision epoch without

considering potential future benefits of delaying. It serves

as a common practical baseline.

Urgent-Based Policy (UBP): This heuristic policy makes

dispatch-delay decisions based on predefined rules

considering factors like current vehicle availability, the

urgency of the orders in the pool (e.g., time until deadline),

and the current load factor (ratio of orders to available

capacity). The UBP is tuned using a grid search approach,

where we systematically vary the parameters that control

the urgency threshold and the load factor. The parameter

space explored includes urgency thresholds ranging from

10 to 30 minutes before the order deadline and load factors

from 0.5 to 1.5 of the courier's capacity. This detailed

tuning process ensures that the UBP performs at its best,

facilitating a fair and comprehensive comparison with our

proposed TAPO framework.

The detailed comparison results for these instances,

showing OBJ (TC), DC, OC, and relative improvements,

are presented in Table 6.

Table 6: Comparison of dispatch strategies on test

instances

Subprobl

em

Myop

ic

UBP TAPO

OBJ OBJ

relati

ve

(%)

OBJ

relati

ve

(%)

600-6-2-

B-S-1

3583.

2
3434 95.84

3274.

33
91.38

600-6-2-

B-S-2

2963.

53

3042.

2

102.6

5

2934.

33
99.01

600-6-2-

B-S-3

3093.

13

2986.

53
96.55

2948.

93
95.34

600-6-2-

B-S-4

3131.

93
2807 89.63

3059.

4
97.68

600-6-2-

B-S-5

3230.

33

3164.

4
97.96 3107 96.18

600-6-2-

B-S-6

3125.

33

3169.

53

101.4

1

2886.

60
92.36

600-6-2-

B-S-7

3109.

60

2936.

33
94.43

2919.

00
93.87

600-6-2-

B-S-8

3313.

47

3316.

80

100.1

0

3099.

53
93.54

600-6-2-

B-S-9

3662.

33

3567.

53
97.41

3435.

73
93.81

600-6-2-

B-S-10

3130.

20

3126.

67
99.89

2990.

00
95.52

600-6-2-

B-S-11

3740.

13

3602.

47
96.32

3445.

07
92.11

600-6-2-

B-S-12

3335.

60

3631.

27

108.8

6

3307.

73
99.16

600-6-2-

B-S-13

3271.

67

3087.

93
94.38

2965.

33
90.64

600-6-2-

B-S-14

3350.

20

3127.

67
93.36

3013.

67
89.95

600-6-2-

B-S-15

3832.

27

3533.

07
92.19

3405.

93
88.88

600-6-2-

B-S-16

3219.

74

2995.

27
93.03

2938.

20
91.26

600-6-2-

B-S-17

3156.

87

3546.

67

112.3

5

3092.

93
97.97

600-6-2-

B-S-18

3283.

73

2874.

47
87.54

2972.

73
90.53

600-6-2-

B-S-19

3200.

67

3365.

33

105.1

4

2959.

33
92.46

600-6-2-

B-S-20

3156.

87

3546.

67

112.3

5

3092.

93
97.97

The experimental results consistently demonstrated the

superiority of the TAPO framework. Across the primary

test set ("600-6-2-B-S" instances), TAPO achieved an

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 35

average total cost reduction of approximately 5-11%

compared to the Myopic policy and generally

outperformed the UBP policy by 3-12%. While UBP

showed improvements over Myopic in some cases, its

performance was less consistent and sometimes worse

than Myopic, particularly in scenarios where its heuristic

rules were not well-aligned with the instance

characteristics. In contrast, TAPO, by learning from

extensive interaction with the environment (potentially

enhanced by Transformer-based context understanding),

developed more robust and adaptive dispatch-delay

strategies. The t-tests conducted on the total cost metrics

between TAPO and the baseline policies (Myopic and

UBP) reveal statistically significant improvements, with

p-values less than 0.01 for Myopic and less than 0.05 for

UBP, confirming the superior performance of TAPO.

4.5 Generalization experiments

To assess the generalization capability of the TAPO model

trained on "600-6-2-B-S" instances, we tested it on

scenarios with varying order volumes (e.g., 550, 575, 625,

650 orders) while keeping the fleet size constant. The

results of generalization experiments with varying order

scales are presented in Table 7. The trend of the objective

function for different strategies across varying order scales

are visualized in Figure 12. The results showed that TAPO

maintained its performance advantage over Myopic [22]

and UBP [23] across these different scales. For instance,

when order volumes increased, TAPO consistently

achieved around a 5% total cost reduction relative to

Myopic, whereas UBP's performance sometimes

degraded, even becoming worse than Myopic at higher

order volumes. Similarly, with lower order volumes,

TAPO still provided cost savings of around 4% over

Myopic. This indicates that the learned policy is robust to

moderate changes in demand levels and can effectively

adapt its dispatch-delay strategy to different supply-

demand balances.

The extended generalization tests demonstrate that TAPO

maintains robust performance across different operational

conditions. When courier availability is reduced or

crowdsourced couriers are excluded, TAPO still achieves

lower total costs compared to baseline policies, although

the performance slightly degrades due to the increased

operational constraints. Furthermore, in scenarios with

clustered orders and obstacles, TAPO shows adaptability

by effectively adjusting its dispatch and routing strategies,

resulting in a reasonable increase in total cost and a

slightly longer convergence time. These results confirm

that TAPO's framework is not only effective in the base

scenario but also exhibits strong generalization

capabilities under various realistic conditions,

underscoring its practical applicability in dynamic

logistics environments.

Table 7: Performance comparison for different order

scales (constant fleet)

Subprobl

em

Myop

ic

UBP TAPO

OBJ OBJ

relati

ve

(%)

OBJ

relati

ve

(%)

550-6-2-

B-S

3234.

53

3164.

20
97.83

3112.

93
96.24

575-6-2-

B-S

3113.

86

2953.

26
94.84

2990.

60
96.04

600-6-2-

B-S

3131.

93

3099.

00
98.95

2979.

40
95.13

625-6-2-

B-S

3797.

54

3798.

66

100.0

3

3612.

94
95.14

650-6-2-

B-S

3773.

67

4472.

20

118.5

1

3595.

40
95.28

Figure 12: Objective function vs. order scale for different

dispatch strategies

We have compared these configurations in terms of total

cost, runtime, and convergence rate. The results are

summarized in Table 8.

Table 8: Ablation study

Configuration Total Cost
Runtime （ s

）

Convergence

Rate （ Iterations

）

TAPO

(Full)
3274.33 0.91 60

TAPO
(PPO only)

3435.73 0.85 70

TAPO

(Heuristic only）
3331.27 0.88 65

TAPO

(GCIH only)
3307.73 0.87 68

4.6 Discussion

The experimental results highlight the significant

performance improvements of the Transformer-

Augmented Policy Optimization (TAPO) framework over

traditional dispatching strategies. TAPO’s average total

cost reduction of 5–11% compared to the Myopic policy

and 3–12% against the Urgent-Based Policy (UBP)

36 Informatica 49 (2025) 23–38 W. Tang et al.

underscores its effectiveness in optimizing operational

costs. This advantage is primarily attributed to TAPO’s

learned strategic delay and Transformer-based state

enhancement. Unlike the Myopic policy, which dispatches

all orders immediately, TAPO strategically delays

dispatch to consolidate orders, optimizing vehicle capacity

utilization. The Transformer model enriches the state

representation by capturing complex spatio-temporal

dependencies in order data, enabling the DRL agent to

make more informed decisions. This enhanced state

information allows TAPO to better anticipate future order

arrivals and optimize routing decisions, leading to

significant cost savings.

TAPO’s robustness is evident in its ability to generalize

across various order volumes and fleet compositions. The

framework maintains its performance advantage over

Myopic and UBP policies even when order volumes

fluctuate, demonstrating its adaptability to different

supply-demand balances. However, TAPO’s performance

is influenced by certain assumptions, such as fixed vehicle

speed and a pre-determined service area. While these

assumptions are reasonable for the scope of this research,

future work should explore more dynamic models for

courier behavior and travel time predictions to enhance the

framework’s real-world applicability. Additionally,

incorporating broader multi-objective criteria, such as

environmental impact and courier workload fairness,

could further improve TAPO’s societal benefits and

practical relevance.

5 Conclusions

This paper addressed the complex problem of dynamic

order dispatching and multi-objective path co-

optimization in same-day delivery (SDD) systems

utilizing hybrid fleets, a critical challenge in the pursuit of

logistics hyperautomation. The core objective was to

develop an intelligent decision-making framework

capable of minimizing total fulfillment costs, primarily

mileage and delay penalties, while adapting to the

dynamic and stochastic nature of SDD operations.

To this end, we proposed the Transformer-Augmented

Policy Optimization (TAPO) Double Layers Optimization

Framework. This framework uniquely integrates

advanced AI techniques: the upper layer features a TAPO

agent where a Transformer architecture enhances the state

representation by capturing complex spatio-temporal

dependencies from order data. This enriched state

information is then leveraged by a Deep Reinforcement

Learning (DRL) agent, based on Proximal Policy

Optimization (PPO), to learn a sophisticated policy for

making strategic dispatch-delay decisions. The lower

layer employs a combination of a Greedy Cost-based

Insertion Heuristic (GCIH) and a Variable Neighborhood

Search (VNS) algorithm to efficiently solve the static

hybrid fleet vehicle routing subproblems that arise when a

dispatch decision is made. Comprehensive numerical

experiments were conducted using a discrete-event

simulation environment on a variety of realistic SDD

scenarios.

While the proposed TAPO framework shows considerable

promise, certain limitations exist. The current study

assumes specific characteristics for courier behavior and

travel time estimations. Future research could explore

more complex Transformer architectures for richer

contextual understanding, investigate end-to-end DRL

approaches that also learn the routing policy, or integrate

more sophisticated predictive models for demand and

travel times. Further work could also address broader

multi-objective criteria such as environmental impact or

courier workload fairness more explicitly. Finally, testing

and adapting the TAPO framework in real-world logistics

operations would be an important next step to validate its

practical applicability and impact.

References

[1] He P, Wen J, Ye S, et al. Logistics and freight

issues and challenges in China: a systematic

literature review[J]. Transport Policy, 2020, 98:

60-70.

[2] Voccia S A, Campbell A M, Thomas B W. The

same-day delivery problem for online

purchases[J]. Transportation Science, 2019,

53(1): 167-184.

[3] Klapp M A, Erera A L, Toriello A. The dynamic

dispatch waves problem for same-day delivery[J].

European Journal of Operational Research, 2018,

271(2): 519-534.

[4] Boysen N, Fedtke S, Schwerdfeger S. Last-mile

delivery concepts: a survey and classification of

approaches from a logistics perspective[J]. OR

Spectrum, 2021, 43(1): 1-48.

[5] Archetti C, Savelsbergh M, Speranza M G. The

vehicle routing problem with occasional

drivers[J]. European Journal of Operational

Research, 2016, 254(2): 472-480.

[6] Arslan A M, Agatz N, Kroon L, et al.

Crowdsourced delivery—A dynamic pickup and

delivery problem with ad hoc drivers[J].

Transportation Science, 2019, 53(1): 222-235.

[7] Pillac V, Gendreau M, Guéret C, et al. A review

of dynamic vehicle routing problems[J].

European Journal of Operational Research, 2013,

225(1): 1-11.

[8] Powell W B. Approximate dynamic

programming: Solving the curses of

dimensionality[M]. John Wiley & Sons, 2007.

[9] Sutton R S, Barto A G. Reinforcement learning:

An introduction[M]. MIT press, 2018.

Transformer-Augmented Deep Reinforcement Learning for Multi… Informatica 49 (2025) 23-38 37

[10] Arulkumaran K, Deisenroth M P, Brundage M, et

al. Deep reinforcement learning: A brief

survey[J]. IEEE Signal Processing Magazine,

2017, 34(6): 26-38.

[11] Nazari M, Oroojlooy A, Snyder L V, et al.

Reinforcement learning for solving the vehicle

routing problem[C]//Advances in neural

information processing systems. 2018: 9839-

9849.

[12] Chen X, Ulmer M W, Thomas B W. Deep Q-

learning for same-day delivery with vehicles and

drones[J]. European Journal of Operational

Research, 2022, 298(3): 939-952.

[13] Ma Y, Hao X, Hao J, et al. A hierarchical

reinforcement learning based optimization

framework for large-scale dynamic pickup and

delivery problems[C]//Advances in Neural

Information Processing Systems. 2021, 34:

23609-23620.

[14] Deb K. Multi-objective optimization using

evolutionary algorithms[M]. John Wiley & Sons,

2001.

[15] Jozefowiez N, Semet F, Talbi E G. Multi-

objective vehicle routing problems[J]. European

journal of operational research, 2008, 189(2):

293-309.

[16] Vaswani A, Shazeer N, Parmar N, et al. Attention

is all you need[C]//Advances in neural

information processing systems. 2017: 5998-

6008.

[17] Yan Y, Deng Y, Cui S, et al. A policy gradient

approach to solving dynamic assignment problem

for on-site service delivery[J]. Transportation

Research Part E: Logistics and Transportation

Review, 2023, 178: 103260.

[18] Hofmann E, Rüsch M. Industry 4.0 and the

current status as well as future prospects on

logistics[J]. Computers in industry, 2017, 89: 23-

34.

[19] Phiboonbanakit, T., Horanont, T., Huynh, V. N.,

& Supnithi, T [J]. A Hybrid Reinforcement

Learning-Based Model for the Vehicle Routing

Problem in Transportation Logistics. IEEE

Access, 9, 163325-163347,2021.

[20] Schulman J, Wolski F, Dhariwal P, et al.

Proximal policy optimization algorithms[J].

arXiv preprint arXiv:1707.06347, 2017.

[21] Liao Z, Chen Y, Duan C, et al. Cardiac telocytes

inhibit cardiac microvascular endothelial cell

apoptosis through exosomal miRNA-21-5p-

targeted cdip1 silencing to improve angiogenesis

following myocardial infarction[J]. Theranostics,

2021, 11: 268-291.

[22] Xiao Y, Zhao J, Yu Y, et al. SimpleCNN-UNet:

An optic disc image segmentation network based

on efficient small-kernel convolutions[J]. Expert

Systems with Applications, 2024, 256: 124935.

[23] Yuan T, Jin F, Li Q. Analysis and Comparison of

Integrated Planar Transformers for 22-kW On-

Board Chargers[J]. IEEE Transactions on Power

Electronics, 2024, 39(8): 11368-11385.

38 Informatica 49 (2025) 23–38 W. Tang et al.

