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1

In response to the poor performance of traditional Internet of Things (IoT) anomaly behavior detection
models, this study focuses on the advantages and problems of clustering algorithms such as K-means. The
clustering algorithm is improved and further optimized by combining echo state networks. A novel
anomaly behavior detection model based on an improved K-means algorithm Agglomerative Nesting
(AGNES) and Deep Echo State Network (DeepESN) is proposed. The core innovation of the model lies
in: first, improving the centroid update method of K-means to address edge point interference issues and
integrating AGNES to enhance adaptability to non-convex datasets; second, utilizing DeepESN optimized
with a sparse orthogonal weight matrix to capture temporal features; and finally, integrating the improved
clustering module and the optimized deep temporal feature extraction network to construct a complete
detection framework. To validate the model's performance, experiments are conducted on multiple
datasets: synthetic datasets, complex public benchmark datasets (ODDS) after dimensionality reduction,
and real-world local 10T environments (a “U”-shaped non-convex dataset with 320 samples). Key
evaluation metrics include detection accuracy, recall rate, latency, area under the curve, and mean
absolute error. Experimental results show that on the synthetic dataset, the detection accuracy of this
study's model ranges from 0.91 to 0.99, significantly outperforming random forest (0.69-0.79), k-nearest
neighbors (0.79-0.87), and standard k-means (0.83-0.91).After reducing the maximum iteration count,
the recall rate ranges from 80.86% to 93.27%, far exceeding the aforementioned comparison methods
(60.05% to 77.78%).0n public datasets, KM-A exhibits 181-258ms latency, while KM-A-E reduces
latency to 120-194ms via feature compression. The collective range of 120-258ms reflects model
adaptability across 10T tiers. In contrast, the latency ranges for Random Forest, K-nearest neighbors, and
standard K-means have latency ranges of 354ms to 1153ms. In actual local IoT “return” dataset
detection, the detection accuracy of this study's model for non-convex data is around 96.59% (overall
96.56%), far exceeding the model based on standard K-means (74.62%, overall, 73.44%). In local 10T
anomaly behavior detection, the average absolute error of this study's model is 5.90, significantly lower
than that of the standard K-means-based model (7.38). In receiver operating characteristic curve analysis,
the area under the curve of this study's model is 0.83, outperforming the standard K-means-based model
(0.66). The study demonstrates that the proposed detection model, based on AGNES and DeepESN, can
effectively enhance the efficiency and accuracy of anomaly detection in complex 10T environments,
thereby providing a solid foundation for the broader application of 10T technology.

Povzetek: Razviti model KM-A-E zdruzi izboljsani K-means+AGNES za robustno grucenje ne-konveksnih
podatkov in DeepESN (SORM) za casovne znacilke. Na sinteticnih, ODDS in lokalnih loT podatkih doseze
dobre rezultate.
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into three categories: statistical-based, machine learning-

As the Internet of Things (loT) technology and the 10T
industry rapidly develop, people's daily lives are closely
connected to loT activities, greatly improving their quality
of life and work efficiency [1]. Abnormal behavior
detection is a critical guarantee for the smooth and secure
operation of 10T activities, and is also a focus of current
research in the field of 10T security [2]. The algorithms for
detecting abnormal behavior in the 10T are mainly broken

traditional algorithms for detecting abnormal behavior
have many problems [3]. For example, Gaussian mixture
models rely heavily on data distribution assumptions and
perform poorly on data with non normal distributions [4].
The K-nearest neighbor algorithm relies on the selection
of neighboring points for anomaly detection, and the
computational complexity significantly increases with the
increase of data volume [5]. Self organized mapping
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requires a long time to train the network, and the results
are sensitive to initial conditions [6]. These issues
seriously affect the accuracy and stability of detecting
abnormal behavior in the 10T. The research focuses on the
basic logic and advantages of K-means and
Agglomerative Nesting (AGNES) algorithms, and
combines them with Deep Echo State Network
(DeepESN) for optimization to construct an 10T anomaly
behavior detection model based on K-means AGNES-
ESN (KM-A-E). This model aims to raise the accuracy
and real-time performance of anomaly detection, and
promote the application expansion of "loT+" technology.
The innovation lies in integrating and improving K-means
and AGNES algorithms, and utilizing DeepESN to
optimize time series classification, constructing an
efficient detection architecture, improving detection
accuracy, and reducing latency. The research aims to
address the following questions: the three major
shortcomings of existing time-series anomaly detection
methods, namely weak adaptability to complex data
structures, high latency bottlenecks, and insufficient recall
rates, as well as the difficulty of optimizing multiple key
indicators in a coordinated manner. The objectives of the
research are: to design a time-series and spatial feature
collaborative modeling framework, to achieve sub-second
latency concurrent detection, to significantly break
through the recall rate bottleneck while maintaining a high
accuracy balance, and to address the limitations of
fragmented optimization across multiple dimensions.

The research is divided into four sections. The first
section introduces the current research on the logic and
algorithms for detecting abnormal behavior in the loT
worldwide. The second section starts from algorithm
modules such as K-means, AGNES, and DeepESN to
establish a precise and real-time 10T anomaly behavior
detection model. The third section provides numerical
examples and practical application analysis of the
proposed abnormal behavior detection algorithm and
model to verify its reliability. The final section provides a
comprehensive summary and analysis of the article.

2 Related work

With the rapid advancement of loT technology and the
flourishing development of the loT industry, the
application of 10T in industries such as e-commerce,
online education, and remote healthcare is showing a
rapidly increasing trend [7]. The detection of abnormal
behavior in the 10T is an important barrier for the "loT+"
industry and citizens' personal privacy, and it is also an
important application direction for the continuous
expansion and deepening of 10T security technology [8].
However, in practical operation, the performance of
abnormal behavior detection in complex network
environments is not stable, so many researchers are
improving this problem. In response to the problems of
complex computation and low efficiency in extracting
abnormal features in traditional detection models, Gao et
al. designed an abnormal behavior detection method based
on memory enhanced autoencoder, which improved the
efficiency of extracting and classifying abnormal loT
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behavior features [9]. Li et al. designed an unsupervised
key indicator anomaly detection method to solve problems
such as low detection efficiency and high cost
consumption, which improved the efficiency of anomaly
behavior detection [10]. In response to the poor
performance of machine learning algorithms in
classification accuracy and multi class classification, Xu
et al. proposed a data-driven intrusion and anomaly
detection method, which saves the computational cost of
anomaly detection and improves the accuracy of
classification anomaly detection [11]. De Benedictis et al.
designed an industrial 10T anomaly detection architecture
based on digital twin and autonomous computing
paradigm to address the issues of decentralization and
heterogeneity in the industrial 10T, which raises the
accuracy of anomaly behavior detection in the industrial
loT [12].

In addition, AbuAlghanam O et al. designed a fusion
anomaly detection method based on improved isolation
forest to address the shortcomings of feature-based
anomaly detection systems, which improved the accuracy
of anomaly detection and enabled appropriate security
strategies [13]. Chander et al. proposed a novel meta
heuristic feature selection and deep learning enabled
anomaly detection model to address security issues in the
industrial 1oT. This model improved the accuracy of
identifying and classifying anomalous behaviors [14].
Huang et al. designed a dynamic sequence tensor recovery
algorithm to address the issues of offline operation, poor
real-time performance, and high computational cost of
tensor-based anomaly behavior detection algorithms. This
algorithm could detect temporal changes in anomalous
behavior data hidden within tensor structures [15]. Douiba
et al. proposed an abnormal behavior detection system
based on gradient boosting and decision tree improvement
to address the risk of abnormal behavior caused by the
increase in the number of 10T devices and mobility. The
system exhibited excellent performance in accuracy,
recall, and detection efficiency [16]. To address the
challenge of anomaly detection in dynamic loT data
streams under resource-constrained  environments,
Vashisth S et al. proposed a dynamic threshold
optimization method based on robust random cut forests.
By constructing adaptive data structures and introducing
dynamic adjustment mechanisms, this method could
effectively identify true anomalies, resist noise
interference, and ensure the robustness and high accuracy
of real-time monitoring while maintaining low
computational overhead [17]. To address the issues of
insufficient defense against new types of attacks and weak
privacy protection on loT-enabled online education
platforms, Zhang Z proposed a collaborative detection
method that integrates improved clustering algorithms
with software-defined wireless sensor networks. By
dynamically sensing physical threat boundaries through a
distributed sensor network and driving the clustering
engine to deeply analyze virtual behavior trajectories, this
method could real-time intercept unknown attacks, reduce
response latency, and simultaneously enhance the security
of the teaching system and the privacy protection
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capabilities of end-users [18]. These related work are
summarized in Table 1.

Table 1: Summary of related work.
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Model/Method Key methods Datasets Accuracy | Recall Latency | Other metrics | References
Xuemn?;z;ed Time- | Long Short-Term Memory (LSTM)
) encoder/decoder; Memory module; | ECG; Wafer | 0.85 65% - - [9]
series Autoencoder Sparse addressing loss
(TSMAE) P g
Interpretable
Temporal- LSTM + autoencoder; Dynamic | KDD99;
Relational graph  analysis; Explainability | NASA 0.89 85.20% | 300ms - [10]
Anomaly Detection | enhancement Turbofan
(ITRAD)
) Synthetic Minority Over-sampling
AUtOM.L ephanced Technique (SMOTE); Automated -
Classification . . . .| Not specified | 98.50% 90% - - [11]
Machine Learning (AutoML); Multi-
(AEC) i
class classification
Digital Twin- | Monitor-Analyze-Plan-Execute- European
Autonor_nlc Kn_owledge _(MAPE-K)_ loop; D_|g!tal Railway 94.30% 88.70% | 420ms ) [12]
Computing twin modeling; Real-time deviation Svstem
(DTAC) detection Y
. . UNSW- . .
Modified Isolation . . - . _ Training time
Forest Fusion (M- Fusm_n-based detection;  Modified NBlS,’ NLS 97.20% 85% - reduction: [13]
iForest) isolation rules KDD; 28.8%
KDDCUP99 °7
Metaheuristic Deer Hunting Optimization
Feature Selection- | Algorithm  (DHOA);  Cascaded | Industrial loT o 0 ) )
Cascaded RNN | Recurrent Neural Network (CRNN); | data 96.50% 88% (14]
(MFS-CRNN) Sparrow Search Algorithm (SSA)
Dynamic Sequence S N A
Tensor Recovery H|stor|gal tensor (_jecqmposmon, Abilene; 93% ) 260ms ) [15]
Dynamic tensor optimization GEANT
(DSTR)
Gradient Boosting NSL-KDD;
with Decision | Categorical Boosting (CatBoost); | 10T-23; BoT- o o ) )
Trees(CatBoost- Decision tree ensemble loT; Edge- 99.00% 92% [16]
DT) lloT

In Table 1, numerous researchers worldwide have
noticed the problems in detecting abnormal behavior in
the operation of the 10T and have conducted multiple
research efforts to address these issues. In addition,
accurate and real-time detection of abnormal behavior is a
prerequisite for expanding the use of the 10T in Industry
4.0 and digital society, and its importance is self-evident.
However, most of the above studies rely on labeled data
training and rarely discuss the adaptability of detection
models to high-dimensional data. Although some of the
above work (such as [7][10]) uses supervised learning,
mainstream research (such as [9][13]) still relies on a
small amount of labeled information to guide model
optimization or threshold setting. Furthermore, existing
methods generally suffer from weak non-convex data
adaptability, insufficient sensitivity to time-series
features, and high latency. Therefore, based on K-means,
the research combines AGNES and DeepESN algorithm
modules to improve the efficiency of dataset partitioning,
enhance the temporal nature of detection results, propose
KM-A-E algorithm, and ultimately establish an loT
abnormal behavior detection model based on clustering
and echo state network. KM-A-E is able to improve the
detection robustness and real-time performance of
complex scenes by fusing AGNES geometric adaptation
with deep temporal feature extraction and hierarchical
anomaly scoring mechanism through multimodal
clustering framework. Unlike cascaded architectures,
KM-A-E uses DeepESN's orthogonal matrix deep

modeling of long-term dependencies and shares dynamic
cluster features with spatial layers to achieve industrial-
grade lightweight deployment, working together to solve
the bottlenecks of sudden drift and long-cycle anomaly
detection. The research aims to provide a comprehensive
and innovative solution to address the latency and
efficiency issues of abnormal behavior detection in
practical 10T environments.

3 Methods and materials

This section is broken into two sub-sections. The first
section provides a detailed explanation of K-means and
AGNES, and proposes an improved K-means AGNES
(KM-A) clustering algorithm based on their shortcomings.
The second section combines KM-A with DeepESN to
perform secondary optimization on the abnormal behavior
detection model, proposing the KM-A-E algorithm to
further improve the real-time performance of the detection
model.

3.1 Abnormal behavior detection model
based on clustering algorithm

Security is a prerequisite for the application of the 10T in
many fields. However, traditional abnormal behavior
detection models are often affected by multiple factors,
resulting in poor detection accuracy and real-time
performance. In response to the above issues, research
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combines K-means clustering algorithm, AGNES
clustering algorithm, and ESN to optimize data
classification matching and timeliness, and proposes an
IoT abnormal behavior detection model based on KM-A-
E. It includes a clustering algorithm module and an ESN
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module, where the clustering algorithm module is
responsible for detecting abnormal behavior data. The
basic algorithm of this module is K-means, and its
clustering process is denoted in Figure 1.
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Figure 1: Clustering process of the K-means.

Figure 1 shows that the K-means algorithm first
randomly selects two sample points as initial cluster
centers. Next is to calculate the Euclidean distances
between the remaining points and these centers, and assign
the points to the nearest cluster. Then is to calculate the
mean of each point within the cluster and update the
cluster center. Based on the new center, it recalculates the
distance and adjusts the attribution of points. This process
is iteratively repeated until the cluster center stabilizes,
achieving the desired clustering effect. K-means ensures
maximum similarity of samples within a cluster through
iterative optimization [19]. The original dataset

X ={X, X,,..., X, } is divided into k clusters of n data,

where k <n . Each cluster in the set S ={S,,S,,...S,} of
clusters should meet the requirements shown in equation

(.
min > 3 -

i=1 xe§;
1
-5 3 x

xe$;

1
Hi

In equation (1), g is the mean of the data in cluster
S; » which is the centroid of cluster S, . According to
equation (1), the variance of data within each cluster S,

should be minimized. The Euclidean distance between the
data in each cluster and the corresponding centroid is
calculated, and the data are assigned to the cluster with the
smallest Euclidean distance from it. At this point, the
cluster can be expressed as denoted in equation (2).

S ={x:|x— ]| < |x— ] Vil< j<k} )

In equation (2), S,S; =¢; V1<i; j<k. At this
point, the K-means algorithm does not have the
performance to detect outliers. The study first improves

the mean update method of K-means, and the standard
deviation and edge point definitions of cluster S, are

shown in equation (3).

1
EZIIX—MIIZ

Xe$§;

o, =

®)
S, :{XeSi :||X—,ui||236i,}

In equation (3), o, is the standard deviation of cluster
S,; S, is the set of edge points; x is the data point in
cluster S,. The improved K-means first calculates the o,
ofeach S, and defines the data points x in §; that exceed
30, in S;. S; isremoved from S, to obtain the remaining
S\ iing =S;\S; . thereby achieving rapid

determination of centroid and avoiding edge point
interference. In the detection of abnormal behavior in the
10T, the improved K-means assigns the data farthest from

the centroid in each cluster to the abnormal cluster C™ |
and C™ can be expressed as equation (4).

c<m>:{x;||x—ui||2=dmax(y,ui)= Iy—ﬂillz} @)

In equation (4), m represents the number of
algorithm iterations, with an initial value of 1. d_,, means
the maximum Euclidean distance between the data and the
mean. y is any data point in set S (Remaining
clusters after the m—1 iteration), used to iterate and
calculate the maximum distance. The initial cluster
8 =S iy is the output of the improved K-means
algorithm. The outlier points from each anomaly cluster
are merged into anomaly cluster S, and then the C™

cluster

max
yeS,(mil)

generated from each iteration is merged into A™ S0 in

the m iteration, C™ and A™ can be expressed as
shown in equation (5).
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gm _ gmYcm
A _ Alm-D) Uc(m) (5)

t

A\nerge = U C(m)
m=1

In equation (5), A™ and A™? are the cumulative
sets of outliers from the mth and m-1th iterations,
respectively; A . isthe merged set of outliers generated

in all iterations; and t is the maximum number of
iterations. After separating abnormal data, the normal
clusters will become more compact, while the abnormal
clusters will become looser. When the objective function
C approaches a stable state, the abnormal data within the
normal cluster has been effectively cleared, where the
objective function C is shown in equation (6).

"=y

i=1 xeSi(m)

2

x— " (6)

In equation (6), J'™ is the objective function value of
the m th iteration; J™ is the updated centroid of the
cluster S after the m th iteration; S™ is the cluster

partition after the mth iteration (distinguished from S(™
). However, K-means has poor clustering performance on
non convex shaped datasets, while AGNES can
compensate for this drawback. AGNES adopts a bottom-
up hierarchical merging strategy, which builds a spatially
continuous structure by absorbing adjacent subclusters.
This solves the problem of destructive cutting of non-
convex data in traditional clustering and maintains the
intrinsic connectivity of the 10T device topology [20-21].
Therefore, the study combines AGNES to improve the
clustering algorithm module and enhance its adaptability
to various shape datasets. The study first sets the initial
number of clusters k. . as the estimated value, and makes

init
k. much larger than the final k,, . It obtains the initial
cluster S© from the improved algorithm and labels the
data scattered at the edges of the cluster as c?. remove

C” to obtain cluster S . The average distance calculation
method of AGNES is utilized to measure the distance
between different clusters [22], as shown in equation (7).

davg (Si’Sj) :||1ui _/uj ||2 (7)

final

Informatica 49 (2025) 235-250 239

In equation (7), d,, (S;,S;) is the average distance
between cluster S, and cluster S;; x and y; are the
centroids of cluster S, and cluster S, , respectively.
Finally, the algorithm merges the nearest S; and S into

a new cluster. In summary, the detection process of the
clustering algorithm module is shown in Figure 2.

In Figure 2, after inputting the dataset X , the number
of clusters k is initialized. It loops through merging the
nearest clusters until k =1, calculate the cohesion S of
each cluster, sort by data point size, separate outliers, and
finally output the results. Among them, the clustering

algorithm module takes the dataset X ={x,X,,...,X,},
maximum iteration number t, partition threshold « , and
data anomaly ratio y as inputs. Firstly, the module
determines the initial number of clusters k.. based on

init

X ={X,%,....,X,} , where k., =cvn is used. « , y,

init
and scale factor ¢ are determined by grid search: tested in
the range of 0.01 to 0.5 in the validation set and selected
based on the peak contour coefficient (« =0.01, y =0.5,

¢ =2). Afterwards, based on the centroid update operation,
the merged clusters S, S', and S are obtained, and the
average clustering comprehensive degree E (k) of each
cluster is obtained, as shown in equation (8).

oy _W(s)
Cd(l):|5i|——1
Sd(i)=15i,l;2\isr\1,i¢j{min{||xi —xj||2|xi €S,,X; € Sj}} o
. sd(i)—cd (i)
csd(l)zm
1 Kk

In equation (8), cd(i) sd(i) and csd(i) are the

intra cluster compactness, minimum intracluster
separation, and cluster comprehensiveness of data i,
respectively, all of which are indicators of clustering
effectiveness; W (S;) is the sum of the weight values of

the data in cluster S, .
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Determine the initial

Find and merge
the two clusters
that are closest

Calculate the distances between
different clusters and record
them in the distance matrix

Calculate and obtain
s,S,S

number of clusters

Calculate the average
clustering comprehensiveness
of each cluster

)

Yes
Reassign cluster labels No | Re-determine
k>2?

Sort clusters by the
number of data

k=k-1 S points they contain
Output Move anomalous data points to Calculate the local
merge the anomaly cluster outlier factor

Figure 2: Clustering algorithm module testing process.

Then is to calculate davg according to equation (7)
and merge the two nearest clusters. At this point, k =k -1
, and renumber accordingly; If k >1, recalculate E(k);
Otherwise, E(k) is used to calculate the Dispersion
Alteration Score (DAS), where
DAS(k)=E(k)—E(k+1) dynamically changes as the
number of clusters k increases, which is used to
characterize the degree of improvement in cluster
structure compactness. The optimal number of clusters k”
that maximizes DAS (k) is selected, and all clusters

{51S2...,S,.} corresponding to the division are output.

It arranges cluster S as [S,>|S,]>...>|S,.| based on
the number of data in each cluster, where
(1S, +[S,|+---+|Sp|) 2| X|* is satisfied and b is the
boundary. NC ={S, |i <b} is defined as a normal cluster

and AC :{Sj|i >b} as an abnormal cluster. Next is to

calculate the local anomaly factor of the normal cluster, as
shown in equation (9).

1 Ird, (0')

N ()] s ey Ik (%)
In equation (9), k represents the k th point closest to
data x for any data k; N, (x) represents all data within
the k th distance from data x, and N, (x)>k; Ird, ()

represents the locally reachable density of data. Finally,
based on the proportion of abnormal data y, the abnormal

data in the cluster is moved into the abnormal cluster

LOF, (x) 9)

A and output to complete the detection of abnormal

behavior. Therefore, the KM-A clustering algorithm
combines the advantages of K-means rapid partitioning
and AGNES non-convex structure processing. It
optimizes cluster purity through iterative dynamic
removal of edge points and introduces an inter-cluster
cohesion ranking mechanism to adaptively merge
neighboring clusters. This enables robust anomaly
detection for complex data sets in industrial loT and
improves adaptability to non-uniform topologies.

3.2 Optimization of time series classification
based on echo state network

The clustering algorithm module based on KM-A can
adapt to loT datasets of different shapes and perform high-
precision detection of abnormal behavior data present in
them. However, clustering algorithms perform poorly in
processing time-series data and cannot effectively capture
the temporal dependencies and dynamic changes of the
data. DeepESN can effectively capture time series data
through its internal dynamic memory units [23].
Therefore, the study introduces the DeepESN module to
optimize the temporal detection of the model and
construct an loT abnormal behavior detection model based
on KM-A-E. The structure of the DeepESN module is
shown in Figure 3.

In Figure 3, DeepESN consists of an input layer, a
hidden layer, and an output layer, with the hidden layer
consisting of multiple reservoir layers. Let the number of
input neurons in the model be k , the number of reservoir
layers be L (3), the number of neurons in each layer be N
(120), and the number of output neurons be M .
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Reservor layer-1

Reservor layer-2
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Reservor layer-L

W(z) W(NL)
Input layer
) 2
U(t) in X (t) X (t) X(NL) (t)
wo W@ Vo (N0
| Output layer | y(t)
Figure 3: model structure of DeepESN.
Permutation matrix Obtain the reservoir Calculate
multiplication with sparse —» . . —» RMSE of the
. weight matrix e
orthogonal matrix prediction
Obtain a new Continue multiplication ~ No Che_zck | f Yes
reservoir weight <— with sparse orthogonal <+ termination ﬂﬁiiﬁt—>
matrix matrix ;;;;\kcondltlons are
o met

Figure 4: SORM-Deep ESN reservoir generation process.

The updates of the firstand | th layers (1 >1) of Deep
ESN, as well as the output of Deep ESN, are shown in
Equation (10).

xY (t)= (1— a ) x" (t-1)+a" tanh (W "u (1) +WOxY (t —1))

x (t)= (1—a(') ) x) (t-1)+ a" tanh (W'x("l) (t)+V\7(')x“) (t —1))

y(t) — fou (W outX(l) (t))

In equation (10), a represents the leakage integral
rate (The research set it at 0.3), which is used to regulate
the state update speed of neurons in the reserve pool and
control the degree of information retention and forgetting;

u(t) represents input; x (t) means the internal state of
the first reserve pool layer, and x(')(t) represents the
internal state of the | th reserve pool layer; y(t)

represents the output of Deep ESN; W™ and W™
respectively represent the weight matrices from the input
hidden layer and the hidden layer to the output layer; W)
means the weight matrix within the | th reserve pool layer;

W' means the weight matrix between the I-1 to |
storage pool layers. However, the weight matrix randomly
generated by Deep ESNS may lead to network instability
and weak generalization ability in handling complex
temporal data. Sparse Orthogonal Recurrent Matrix
(SORM) can improve the stability and convergence speed
of networks, reduce computational resource consumption,
and maintain good dynamic response and memory
capabilities [24]. Therefore, the study introduces SORM
to update the weight matrix of the reserve pool of Deep
ESN. The reserve pool generation process of SORM-Deep
ESN is shown in Figure 4.

(10)

In Figure 4, the steps for generating internal
connections in the reserve pool of SORM-Deep ESN are
as follows: first, multiply the permutation matrix left and
right by the sparse orthogonal matrix to obtain the weight
matrix of the reserve pool. Next, calculate the Root Mean
Square Error (RMSE) of the prediction, compare the
calculated RMSE with the preset termination condition,
and if the RMSE meets the termination condition, output
the current weight matrix as the final reserve pool weight
matrix; If the RMSE does not meet the termination
condition, continue optimizing the weight matrix by
multiplying it with a sparse orthogonal matrix to generate
a new reserve pool weight matrix, and then recalculate the
RMSE until the termination condition is met. Among
them, the size of the SORM permutation matrix is fixed at
128%128 (matching the number of neurons in the reserve
pool), the sparsity rate is set to 50% through grid search
(balancing orthogonality and complexity), and the RMSE
termination threshold is set to 3% of the overall variance
of the dataset (dynamically calibrated based on the
fluctuation range of 120 hours of training data).The
improved SORM-Deep ESN module is used as a pre data
feature processor for the clustering algorithm module to
increase the temporal nature of the data to be detected. The
final constructed abnormal behavior detection model
based on KM-A-E has a structure shown in Figure 5.
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In Figure 5, KM-A-E adopts a dual-path collaborative
architecture: the temporal layer processes input data using
the SORM-DeepESN deep feature extractor (multiple
layers of cascaded reserve pools, as shown in Figure 3),
and utilizes a sparse orthogonal matrix to dynamically
optimize weight connections (iterative mechanism of the
permutation matrix, as shown in Figure 4), to produce

S. Lietal.

high-purity temporal features. The spatial layer integrates
K-means dynamic centroid iteration with AGNES non-
convex cluster real-time merging, achieving spatio-
temporal dependency collaborative modeling through
bidirectional feature channels, and ultimately outputs
anomaly detection results to enable efficient detection of
abnormal behavior in complex loT environments.

r— — — — — T ]
190 /] o0 ./ |00 OO |
Eistde Q.” ® O
|C>C,>/OD : DQOD<—D QOD<—D QOD|
|/oo @ O-0| |0 O-0 OOQ|

Figure 5: Structure of the KM-A-E based anomaly detection model.

4 Results

To verify the effectiveness and superiority of the KM-A-
E algorithm and abnormal behavior detection model
proposed by the research, the theoretical basis and
algorithm analysis were comprehensively studied, and
simulation experiments and actual environmental motion
experiments were conducted on different algorithms and
models. The experimental results were analyzed in detail,
and their performance in detecting abnormal behavior
accuracy and real-time performance was compared.

4.1 Simulation operation experiment

In the simulation experiment, the application environment
of the 10T abnormal behavior detection algorithm was
studied, and a suitable system development environment
was set up, which was divided into hardware environment
and software environment. The detailed configuration is
denoted in Table 2.

From Table 2, Windows 10 was selected as the
operating system for the study, and the virtual Internet
routing laboratory was used as the software platform to
simulate the 10T data environment. The study selected
random forest algorithm, K-nearest neighbor algorithm,
and K-means as comparative methods, and named them
M1, M2, and K, respectively. KM-A and KM-A-E
proposed in the study were taken as the research objects,
and they were named KM-A and KM-A-E respectively.

The study first set the maximum iteration number t =100
and used Scikit-learn to create a random artificial two-
dimensional dataset D1, which contains 50 mixed features
(30 numerical sensors + 20 category states), spans 120
days, injects 8.7% dynamic anomaly patterns
(point/context/collective), and can simulates gradual
failure scenarios in industrial equipment. The accuracy of
detecting abnormal behavior data in D1 was determined
by comparing algorithms, and the results are shown in
Figure 6.

In Figure 6(a) and Figure 6(b), the average detection
accuracy of KM-A-E reached 97.51% + 0.62% (95% ClI
[96.90%, 98.12%]), significantly outperforming K
(88.53% + 1.12%, t = 19.27, p < 0.001), and improved by
14.27 percentage points compared to M1 (t=25.34,
p<0.001). KM-A also demonstrated superiority (95.47% +
1.23%, Cl [94.25%, 96.69%]), improving by 6.94%
compared to the baseline K (t=15.41, p<0.001). In the
dynamic anomaly detection scenario, the detection
accuracy variability of KM-A-E was only +0.63%,
significantly lower than M2's +3.25% (p<0.001),
validating the proposed method's stability advantage in
mixed feature environments. Next, the study set the
maximum iteration number t=60 . By exploring the
recall rates of different algorithms for detecting abnormal
behavior data in D1, the detection efficiency of the
algorithms was determined, and the results are denoted in
Table3.

Table 2: System development environment.

System development environment

AMD Ryzen 7 5800X

Hardware environment Installed memory 32.00GB

NVIDIA RTX 3070
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Windows 10 is running on a 64-bit operating system

Software environment Virtual Internet Routing Lab
Scikit-learn
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Figure 6: Difference in anomaly detection accuracy.
Table3: Difference in abnormal detection recall rates.
. Recall rates (%)
Number of experiments L 2 m A AE
1 69.39 65.30 77.38 85.66 91.05
2 71.92 61.29 75.82 87.90 93.27
3 70.86 65.62 77.55 80.86 90.70
4 68.72 60.53 77.78 84.85 93.21
5 69.31 64.89 76.13 85.05 91.22
6 72.50 65.74 74.94 82.94 90.20
7 68.63 60.62 76.29 84.41 91.53
8 72.15 60.05 76.04 85.20 89.93
9 68.09 65.62 75.09 87.51 91.39
10 73.52 61.68 75.30 87.39 89.84
Mean 70.51 63.13 76.23 85.18 91.23
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Figure 7: Difference in anomaly detection latency.

In Table 3, the average recall rate of KM-A-E reached  significantly outperforming K (76.23% + 0.87%, t =
91.23% + 1.18% (95% CI [90.40%, 92.06%]), 41.25, p < 0.001) and M1 (70.51% =+ 1.76%, t=33.18,
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p<0.001). KM-A also performed exceptionally well
(85.18% + 1.97%, Cl [83.76%, 86.60%]), which was
22.05% higher than M2 (t=29.73, p<0.001). The t-test
validated that KM-A-E had the best recall rate stability
(standard deviation 1.18%), significantly better than M2's
2.78% (p=0.007), and its highest single recall rate reached
93.27% (second experiment), exceeding K's optimal value
by 17.45%, confirming the efficiency and stability of the
proposed method in dynamic anomaly detection. On this
basis, the research selected the ODDS public dataset after
dimensionality reduction to simulate more complex loT
data environments. This dataset integrated 28 multi-
domain subsets, with feature dimensions ranging from 6
to 1,000 dimensions, and anomaly ratios ranging from
0.5% to 34.8% (average 7.8%). It covers real-world
physical sensor time series data such as spacecraft
vibration and network intrusion. By comparing the delay
time in the process of abnormal behavior detection using
algorithms, the real-time performance was determined.
The experimental results are shown in Figure 7.

As shown in Figure 7(a) and Figure 7(b), the average
delay of KM-A-E was 158.33 + 3.1 ms (95% CI [155.2,
161.5]), which was significantly reduced by 28.3%
compared to KM-A (220.90 £ 4.7 ms) (t = 13.25, p <
0.001), and a 63.7% increase in speed compared to K
(436.33 £ 9.3 ms) (t = 35.18, p < 0.001). Furthermore,
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KM-A-E (709.24 ms) was 77.7% lower than M1 (158.33
ms) (t = 47.92, p < 0.001), and the coefficient of variation
(standard deviation/mean) of 15.8% was the lowest (M2
was 31.2%). The highest single response reached 120 ms
(14th response), meeting the millisecond-level industrial
detection requirements. To further verify the performance
changes of KM-A and KM-A-E under concept drift and
adversarial conditions, four drift conditions and four
adversarial conditions were set up for the study. The
results are shown in Table 4.

In Table 4, under periodic drift conditions (6=0.1), the
KM-A-E model demonstrated an accuracy of 0.93+0.02
(95% CI [0.90, 0.96]) and a recall rate of 0.88+0.03 (ClI
[0.84, 0.92]). t-tests confirmed that its adaptation time was
72% shorter than that of sudden drift (p<0.001). In
adversarial scenarios, KM-A experienced accuracy
fluctuations of up to 12% when subjected to white-box
FGSM attacks (¢=0.05) (t=5.34, p=0.003), while KM-A-
E maintained an accuracy of 0.82 + 0.03 (CI [0.78, 0.86])
under data poisoning. In addition, the study sequentially
incorporated max Euclidean distance, Mahalanobis, and
density-based distance metrics into KM-A and KM-A-E,
respectively, to validate the effectiveness of the selected
max Euclidean distance calculation by examining the
performance differences. The results are shown in Table
5.

Table 4: Performance changes under concept drift and adversarial conditions.

Condition type Specific scenario | Strength Model Accuracy Recall Latency (ms) Bandwidth (MB/min)
N KM-A 0.89 0.85 32.5 15.3
Periodic drift 5=0.1 KM-AE 0.93 0.88 351 171
. _ KM-A 0.82 0.79 35.8 16.9
Drift gradient Incremental drift 5=0.3 KM-AE 0.90 0.84 382 19.0
Sudden drift 5=0.5 KM-A 0.74 0.71 41.6 19.4
) KM-A-E 0.86 0.80 43.9 215
. . . KM-A 0.68 0.65 47.2 22.3
Mixed drift 807 KM-A-E 0.82 0.78 49.8 24.6
. N KM-A 0.83 0.80 33.7 16.2
White-box FGSM | e=0.05  meniaE 0.91 0.86 36.5 184
- KM-A 0.75 0.72 36.9 17.8
Adversarial Black-Dox GAN | &=0.12 A E 0.86 0.81 39.3 20.1
gradient Data boisonin KM-A 0.71 0.69 40.3 19.1
P 9 KM-AE 0.82 0.79 42.6 22.7
. _ KM-A 0.78 0.75 45.7 20.5
Evasion attack £=0.08 KM-AE 0.88 083 172 233

Table 5: Validation of the effectiveness of the distance measurement method.

Distance measurement method Models Abnormal recall rate | False positive rate Calculation time (ms) | Contour coefficient
Euclidean dist KM-A 0.89 0.07 18.3 0.75
max Euclidean distance KM-A-E | 092 0.04 22.7 0.82
Mahalanobis KM-A 0.83 0.09 28.9 0.67
KM-A-E | 0.87 0.06 354 0.76
density-based distance metrics KM-A 0.85 0.05 432 0.73
KM-A-E | 0.88 0.05 51.7 0.79

As shown in Table 5, in the comparison of distance
measurement methods, the max Euclidean distance
achieved the highest anomaly recall rate of 0.92 + 0.01
(95% CI [0.90, 0.94]), significantly outperforming
Mahalanobis (0.87 £ 0.02,t=8.12, p <0.001) and density-
based distance metrics (0.88 = 0.01, t = 6.34, p < 0.001).
Additionally, the computational latency of the max
Euclidean distance was 22.7 + 1.3 ms (Cl [21.1, 24.3]),

which was 36.1% faster than Mahalanobis (35.4 ms, t =
9.43, p < 0.001) and 56.1% faster than density-based
distance metrics (51.7 ms, t = 15.21, p < 0.001). The
contour coefficient of max Euclidean distance (0.82) was
also significantly higher than that of Mahalanobis (0.76)
(t=7.85, p<0.001), confirming the comprehensive
advantage of max Euclidean distance in terms of accuracy
and efficiency.
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4.2 Practical application testing experiment

The running status of abnormal behavior detection
algorithms in simulation is an important criterion for
measuring the performance of detection models.
However, due to the influence of uncontrollable factors on
the audience, the operating status of detection models in
actual 10T data environments often differs from
simulation. Therefore, the study conducted model
practical application detection experiments in a small-
scale local 10T experimental environment. In addition, the
study only selected the K-means based anomaly behavior
detection model as the comparative method named S0, and
the KM-A-based and KM-A-E-based detection models as
the research objects named S-KA and S-KAE,
respectively. To verify the adaptability of the model to
data sets of different shapes, the study first conducted
detection experiments in a local 10T by setting up a "back"
shaped data environment, and the results are shown in
Figure 8.

As shown in Figure 8(a), in an environment with 320
data points (264 “[a]” type and 56 others), the detection
accuracy of the “[E]” type data was 74.62%, that of the
others was 67.86%, and the overall accuracy was 73.44%.
Its low performance stems from the poor adaptability of
traditional K-means to non-convex data, leading to high
misclassification rates for peripheral points. This was
confirmed through accuracy rate t-testing (p < 0.001),
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which revealed the model's inherent defects in non-
homogeneous topologies, with no signs of overfitting. As
shown in Figure 8(b), S-KA achieved an accuracy rate of
92.42% for “[@]” pattern data, 87.50% for other data, and
91.56% overall. The improvement stems from the AGNES
mechanism in the spatial layer, which dynamically merges
non-convex clusters (e.g., optimizing the boundaries of
the “[E]” shape), effectively modeling complex shapes.
The t-test (overall improvement of 24.6%) demonstrated
its strong adaptability, with no systematic bias in errors,
ruling out overfitting in small samples. As shown in
Figure 8(c), S-KAE achieved an overall accuracy rate of
96.56% (96.59% for “[E]” character-shaped data and
96.43% for other data) across 320 data points,
significantly higher than SO (73.44%) and S-KA
(91.56%). Its standard deviation of error was as low as 2.1
(S-KAE error range [-9,14], S-KA [-26,7]), with the
spatial layer dynamic centroid update effectively
capturing the “[B]” edge structure, and the temporal
leakage integral resulting in an anomaly point offset rate
of only 3.4%, validating the model's robustness.
Subsequently, the study imported abnormal behavior data
into the local loT, and determined its detection
performance by comparing the differences in detection
coefficient changes of different models. The experimental
results are shown in Figure 9.

(a) Results of SO

(b) Results of S-KA

(c) Results of S-KAE

Figure 8: Grid-shaped data detection experiment.
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Figure 9: Detection coefficient curve and error analysis.
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As shown in Figure 9(a) and Figure 9(b), the detection
coefficient of S-KAE at 160 minutes (38) precisely
matched the real data (38), with an error of 0. However,
the error of S-KA was -8 (S-KA: 46, Real Data: 38), and
SO0 had a high error of 22 (SO: 16, Real Data: 38). The high
accuracy of S-KAE stemmed from its spatio-temporal
collaborative mechanism: the spatial layer dynamically
updated the centroid to real-time capture sudden changes
in device behavior, while the temporal layer filtered short-
term noise using a leakage integrator. The average error of
S-KAE across all time periods was 3.8 (standard deviation

True-positive rate
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7.1), with no continuous one-sided bias (e.g., S-KA had
continuous negative errors between 100 and 160 minutes),
validating the robustness of the S-KAE model. The
training loss-to-validation loss ratio was only 1.08 (S-KA:
1.31, SO: 1.82), eliminating small-scale environmental
overfitting, attributed to the collaborative optimization
capabilities of the two-stage design. Afterwards, the study
conducted receiver operating characteristic curve (ROC)
and area under curve (AUC) analysis on the model, as
shown in Figure 10.

False-positive rate
(a) ROC analysis

101

0.8 _ ]
306}
©
>
S
z 0.4F
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chance leve SO S-KA S-KAE
Models
(b) AUC analysis

Figure 10: ROC and AUC analysis for different models.

Table 6: Comprehensive performance comparison of different methods on the UNSW-NB15 dataset.

Detection Performance Computational efficiency Deployment adaptability
Methods g‘;g&%z Fglsifive rate Inference Training Model volume Egﬁsrg% tion Protocol

rate (%) E’%) delay(ms) time (s) (MB) 0 /sampFe) compatibility
TSMAE 85.2 6.7 12.3 1850 45.8 0.28 0.72
ITRAD 82.4 7.2 10.8 320 32.6 0.24 0.83
AEC 87.3 5.9 15.6 2760 67.9 0.35 0.65
DTAC 89.1 4.8 18.9 1980 54.2 0.32 0.78
M-iForest 86.5 5.4 8.7 150 15.3 0.18 0.91
MFS-CRNN 88.3 4.3 22.7 3520 87.5 0.42 0.68
DSTR 90.7 3.9 11.5 420 38.4 0.27 0.85
CatBoost-DT 92.1 3.2 9.8 280 41.2 0.23 0.95
KM-A 94.5 2.7 8.3 680 29.7 0.2 0.98
KM-A-E 96.2 1.8 9.1 980 31.6 0.21 0.99

As shown in Figure 10(a) and Figure 10(b), ROC
curve analysis showed that S-KAE had the highest AUC
(0.827, 95% confidence interval [0.786, 0.868]),
outperforming S-KA (0.747, CI [0.707, 0.787]) and SO
(0.658, CI [0.614, 0.702]). Its high discriminative power
stemmed from the dynamic centroid update of the spatial
layer for adaptive anomaly pattern mutations, while the
leakage integral of the temporal layer ensured early
detection (TPR = 0.6 at FPR = 0.1). The model calibration
was excellent (calibration slope 0.95), with minimal error
in matching predicted probabilities to actual frequencies (
+0.04). Under category imbalance with an anomaly rate
of 17.5% (56/320), S-KAE suppressed bias through a two-
stage mechanism (AUC remains stable). Based on a
sample size of 320 and a calibration slope of 0.95 (close
to the ideal value of 1), the single test result was still
statistically significant at an abnormality rate of 17.5%.
Therefore, the single test result was valid and did not need

to be averaged from multiple tests. To further validate the
comprehensive performance of the proposed method in
complex multimodal anomaly detection tasks compared
with other state-of-the-art methods, the study selected
methods from [9]-[16] (TSMAE, ITRAD, AEC, DTAC,
M-iForest, MFS-CRNN, DSTR, CatBoost-DT) as
comparison methods. These methods encompassed state-
of-the-art (SOTA) technical approaches such as
reconstruction models, ensemble learning, sequence
modeling, and deep forests, representing the current
optimal methods for multimodal detection. To establish a
unified data benchmark, the study adopted the UNSW-
NB15 benchmark dataset, which includes real-world loT
anomaly annotations, as a unified testing platform for
heterogeneous device networks. It contained 49-
dimensional features (protocol type/service
type/connection status, etc.) and annotations for nine types
of attack behaviors, integrating 2.5 million mixed protocol
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(Modbus/TCP+HTTP) traffic records generated by real
10T devices. The experimental results are shown in Table
6.

As shown in Table 6, in the comprehensive
performance evaluation, KM-A-E achieved the optimal
anomaly detection rate of 96.2 + 0.3% (95% CI [95.9%,
96.5%]), significantly outperforming CatBoost-DT
(92.1% + 0.4%, t = 14.37, p < 0.001). with a false positive
rate as low as 1.8 £ 0.1% (95% ClI [1.7%, 1.9%]), a 66.7%
decrease compared to M-iForest (t=22.15, p<0.001). KM-
A achieved the lowest inference latency of 8.3ms, making
it the optimal solution for real-time performance (4.6%
lower than M-iForest, t=3.18, p=0.012). At the
deployment level, KM-A maintained the lowest model
size of 29.7 MB (22.7% lower than DSTR, t=7.21,
p<0.001) and the lowest energy consumption of 0.20
J/sample (11.1% lower than M-iForest, t=5.43, p=0.002),
while achieving 0.99 protocol compatibility.

4.3 Parameter sensitivity verification

In this section, the study verified the sensitivity of the
main parameters involved in the model. First was the edge
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point removal threshold. To verify the validity of the study
setting for 3o, the study preset different threshold
gradients for verification. The experimental results are
shown in Table 7.

In Table 7, in the edge point removal threshold
sensitivity experiment (¢ gradient: o / 30/ 50), when
3o was used, the accuracy reached 0.89 + 0.02 (95% ClI
[0.86, 0.92]), and the recall rate was 0.87 + 0.03 (95% CI
[0.83, 0.91]), significantly outperforming 5¢'s recall rate
of 0.71 (p=0.008, t=-4.32). The t-test showed that 3o
only increased the delay by 2.6 ms compared to o
(p=0.13, t=1.58), but memory usage was optimized by
53% (30 51.3 MB, o 54.6 MB, p=0.02), and the
training time remained at 48.7 + 1.2 s. Subsequently, the
study validated the effectiveness of the clustering process
parameters, including the partitioning threshold « , the
proportion of data anomalies y, and the initial number of

clusters k. ., with the results shown in Table 8.

init !

Table 7: Edge point removal threshold sensitivity verification.

Parameter category Parameters Gradient value Accuracy Recall rate Delay (ms) Memory (MB) Training time (s)
o 0.92 0.92 35.2 48.7 42.1
Edge point removal (o2
threshold multipler 30 0.89 0.87 37.8 51.3 48.7
50 0.85 0.71 39.5 54.6 52.3
Table 8: Sensitivity verification of clustering process parameters.
Parameter category | Parameters | Gradient value Accuracy Recall rate Delay (ms) Memory (MB) Training time (s)
0.001 0.89 0.82 34.7 49.1 45.3
o 0.01 0.91 0.91 36.5 50.5 49.6
0.1 0.90 0.85 38.2 52.8 53.7
0.3 0.92 0.88 35.9 49.8 46.5
Clustering process v 0.5 0.91 0.91 36.2 50.2 49.1
parameters 0.7 0.87 0.84 37.6 51.7 52.8
Jn 0.88 083 34.1 48.3 42.7
Kinie 2Jn 091 091 36.0 50.9 49.8
4Jn 0.90 0.89 40.3 62.4 68.2
Table 9: DeepESN hyperparameter sensitivity verification.
Parameter category | Parameters Gradient value Accuracy Recall rate | Delay (ms) | Memory (MB) Training time (s)
60 0.89 0.84 21.3 385 35.1
N 120 0.93 0.88 35.1 67.2 48.2
240 0.94 0.85 72.6 128.9 83.7
0.1 0.85 0.79 33.2 64.1 413
E;gg;igm ters a 0.3 0.93 0.88 35.1 67.2 485
0.6 0.91 0.86 37.5 68.9 52.4
1 0.89 0.85 28.7 513 39.6
L 3 0.93 0.88 35.1 67.2 48.7
5 0.92 0.87 53.4 105.6 72.3

In Table 8, in the clustering parameter sensitivity
experiment, when « = 0.01, the accuracy reached 0.91
0.01 (95% CI [0.89, 0.93]), which was significantly higher
than when « = 0.1 by 1.1% (t = 2.87, p = 0.032). When
y = 0.5, the accuracy remained at 0.91 while reducing

memory usage to 50.2 + 0.8 MB, with no significant

difference compared to y = 0.3 (49.8 MB) (t=1.03,p =

0.32). When k;;, = 24/, the recall rate was 0.91 + 0.02
(Cl1 [0.88, 0.94]), an improvement of 9.7% compared to
k., = /n (0.83) (t=4.15, p=0.004), with only a 1.9 ms

increase in latency (p = 0.28). Finally, the effectiveness of
the number of reserve pool layers L , the number of
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neurons per layer N, and the leakage integral rate a in
the DeepESN hyperparameters was verified, and the
results are shown in Table 9.

In Table 9, in the DeepESN hyperparameter
experiments, when N =120, the accuracy reached 0.93 £
0.01 (95% CI [0.91, 0.95]), a significant improvement of
4.5% compared to N = 60 (t = 8.14, p < 0.001), but the
latency increased by 13.8 ms (t=5.22, p=0.002). a =0.3
improved the recall rate by 11.4% ( a =0.30.88, a
=0.10.79, t=7.33, p<0.001) compared to a =0.1 while
maintaining an accuracy of 0.93 (Cl [0.91, 0.95]).L =3
layers reduced training time by 32.9% (L =348.7 s,L =
572.3 s, t=9.06, p<0.001) and improved accuracy by 1.1%
(L =30.88,L =50.79, t=7.33, p<0.001) compared to L
=5 layers reduced training time by 32.9% (L =348.7s,L
= 572.3s, t=9.06, p<0.001) and improved accuracy by
1.1% (L =30.93,L =5 0.92), with memory remaining
stable at 67.2£2.4MB (p>0.05).

5 Discussion and conclusion

In response to the problems of low efficiency and poor
real-time performance of traditional loT abnormal
behavior detection models, the KM-A clustering
algorithm was proposed and combined with the ESN
algorithm to finally propose an 10T abnormal behavior
detection model based on KM-A-E. The model improves
the accuracy and real-time performance of abnormal
behavior detection by optimizing the clustering
performance of K-mean on datasets of different shapes
and increasing the temporal weights of data features. The
experimental results showed that in the simulation
experiment, the detection accuracy of KM-A and KM-A-
E in the manual dataset was between 0.91-0.99. The
detection accuracy range of other algorithms was 0.69-
0.91. After reducing the maximum number of iterations to
60, the recall rates of KM-A and KM-A-E for abnormal
behavior detection ranged from 80.86% to 93.27%. The
recall rate of other algorithms was between 60.05% and
77.78%. In the public dataset, the delay time of KM-A and
KM-A-E was between 120ms-258ms. At this point, the
delay of other algorithms was between 354ms and
1153ms. In practical application testing experiments, the
detection models S-KA and S-KAE, with KM-A and KM-
A-E as the core, achieved detection accuracies of 92.42%
and 96.59%, respectively, for " [a]" shaped data. The
detection accuracy of model SO with K-means as the core
was 74.62%. When detecting abnormal behavior in the
local 10T, the detection coefficient error of S-KA and S-
KAE was between 0-26. In ROC analysis, the AUC values
of S-KA and S-KAE were 0.75 and 0.83, respectively.

At this point, the AUC value of SO was 0.66. Compared
with state-of-the-art methods, the KM-A-E and KM-A
latency (181-258 ms) outperformed DSTR (260 ms in
[15]), attributed to the direct mapping mechanism of the
reserve pool in DeepESN eliminating gradient iteration
calculations and SORM orthogonalization reducing
matrix operations to O (1) complexity. However, this
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comes at the cost of introducing decision boundary
blurring and hardware pre-configuration dependencies.
KM-A-E achieved a 96.59% accuracy, significantly
outperforming TSMAE (85% in Reference [9]), due to the
dynamic fusion of geometric features through AGNES
hierarchical clustering, and approached M-iForest (97.2%
in [13]) with a <0.61% accuracy gap in exchange for a 23-
fold delay compression (Pareto frontier validation
confirms this trade-off) [25]. Its cross-scenario
generalization capability benefited from DeepESN's
adaptive adjustment of the leakage integral rate to data
drift. In summary, research has practical application value
in improving the accuracy and real-time performance of
abnormal behavior detection in the 10T. However, the
research model is insufficiently sensitive to contextual
anomalies in domain semantic interpretation (such as
multi-step collaborative attacks) due to the lack of
behavioral logic association modeling in the current
feature space, which does not cover network topology-
level semantic reasoning. To address this issue, future
research will focus on constructing a knowledge graph-
driven semantic engine: integrating device metadata and
threat intelligence, analyzing behavioral logic through
spatiotemporal rule chains, strengthening cross-domain
anomaly reasoning capabilities, and achieving protocol-
level attack detection.
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