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In response to the poor performance of traditional Internet of Things (IoT) anomaly behavior detection 

models, this study focuses on the advantages and problems of clustering algorithms such as K-means. The 

clustering algorithm is improved and further optimized by combining echo state networks. A novel 

anomaly behavior detection model based on an improved K-means algorithm Agglomerative Nesting 

(AGNES) and Deep Echo State Network (DeepESN) is proposed. The core innovation of the model lies 

in: first, improving the centroid update method of K-means to address edge point interference issues and 

integrating AGNES to enhance adaptability to non-convex datasets; second, utilizing DeepESN optimized 

with a sparse orthogonal weight matrix to capture temporal features; and finally, integrating the improved 

clustering module and the optimized deep temporal feature extraction network to construct a complete 

detection framework. To validate the model's performance, experiments are conducted on multiple 

datasets: synthetic datasets, complex public benchmark datasets (ODDS) after dimensionality reduction, 

and real-world local IoT environments (a “U”-shaped non-convex dataset with 320 samples). Key 

evaluation metrics include detection accuracy, recall rate, latency, area under the curve, and mean 

absolute error. Experimental results show that on the synthetic dataset, the detection accuracy of this 

study's model ranges from 0.91 to 0.99, significantly outperforming random forest (0.69–0.79), k-nearest 

neighbors (0.79–0.87), and standard k-means (0.83–0.91).After reducing the maximum iteration count, 

the recall rate ranges from 80.86% to 93.27%, far exceeding the aforementioned comparison methods 

(60.05% to 77.78%).On public datasets, KM-A exhibits 181-258ms latency, while KM-A-E reduces 

latency to 120-194ms via feature compression. The collective range of 120-258ms reflects model 

adaptability across IoT tiers. In contrast, the latency ranges for Random Forest, K-nearest neighbors, and 

standard K-means have latency ranges of 354ms to 1153ms. In actual local IoT “return” dataset 

detection, the detection accuracy of this study's model for non-convex data is around 96.59% (overall 

96.56%), far exceeding the model based on standard K-means (74.62%, overall, 73.44%). In local IoT 

anomaly behavior detection, the average absolute error of this study's model is 5.90, significantly lower 

than that of the standard K-means-based model (7.38). In receiver operating characteristic curve analysis, 

the area under the curve of this study's model is 0.83, outperforming the standard K-means-based model 

(0.66). The study demonstrates that the proposed detection model, based on AGNES and DeepESN, can 

effectively enhance the efficiency and accuracy of anomaly detection in complex IoT environments, 

thereby providing a solid foundation for the broader application of IoT technology. 

Povzetek: Razviti model KM-A-E združi izboljšani K-means+AGNES za robustno gručenje ne-konveksnih 

podatkov in DeepESN (SORM) za časovne značilke. Na sintetičnih, ODDS in lokalnih IoT podatkih doseže 

dobre rezultate. 

 

 

1 Introduction 
As the Internet of Things (IoT) technology and the IoT 

industry rapidly develop, people's daily lives are closely 

connected to IoT activities, greatly improving their quality 

of life and work efficiency [1]. Abnormal behavior 

detection is a critical guarantee for the smooth and secure 

operation of IoT activities, and is also a focus of current 

research in the field of IoT security [2]. The algorithms for 

detecting abnormal behavior in the IoT are mainly broken  

 

into three categories: statistical-based, machine learning-

based, and deep learning-based. However, these  

traditional algorithms for detecting abnormal behavior 

have many problems [3]. For example, Gaussian mixture 

models rely heavily on data distribution assumptions and 

perform poorly on data with non normal distributions [4].  

The K-nearest neighbor algorithm relies on the selection 

of neighboring points for anomaly detection, and the 

computational complexity significantly increases with the 

increase of data volume [5]. Self organized mapping 
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requires a long time to train the network, and the results 

are sensitive to initial conditions [6]. These issues 

seriously affect the accuracy and stability of detecting 

abnormal behavior in the IoT. The research focuses on the 

basic logic and advantages of K-means and 

Agglomerative Nesting (AGNES) algorithms, and 

combines them with Deep Echo State Network 

(DeepESN) for optimization to construct an IoT anomaly 

behavior detection model based on K-means AGNES-

ESN (KM-A-E). This model aims to raise the accuracy 

and real-time performance of anomaly detection, and 

promote the application expansion of "IoT+" technology. 

The innovation lies in integrating and improving K-means 

and AGNES algorithms, and utilizing DeepESN to 

optimize time series classification, constructing an 

efficient detection architecture, improving detection 

accuracy, and reducing latency. The research aims to 

address the following questions: the three major 

shortcomings of existing time-series anomaly detection 

methods, namely weak adaptability to complex data 

structures, high latency bottlenecks, and insufficient recall 

rates, as well as the difficulty of optimizing multiple key 

indicators in a coordinated manner. The objectives of the 

research are: to design a time-series and spatial feature 

collaborative modeling framework, to achieve sub-second 

latency concurrent detection, to significantly break 

through the recall rate bottleneck while maintaining a high 

accuracy balance, and to address the limitations of 

fragmented optimization across multiple dimensions. 

The research is divided into four sections. The first 

section introduces the current research on the logic and 

algorithms for detecting abnormal behavior in the IoT 

worldwide. The second section starts from algorithm 

modules such as K-means, AGNES, and DeepESN to 

establish a precise and real-time IoT anomaly behavior 

detection model. The third section provides numerical 

examples and practical application analysis of the 

proposed abnormal behavior detection algorithm and 

model to verify its reliability. The final section provides a 

comprehensive summary and analysis of the article. 

2 Related work 
With the rapid advancement of IoT technology and the 

flourishing development of the IoT industry, the 

application of IoT in industries such as e-commerce, 

online education, and remote healthcare is showing a 

rapidly increasing trend [7]. The detection of abnormal 

behavior in the IoT is an important barrier for the "IoT+" 

industry and citizens' personal privacy, and it is also an 

important application direction for the continuous 

expansion and deepening of IoT security technology [8]. 

However, in practical operation, the performance of 

abnormal behavior detection in complex network 

environments is not stable, so many researchers are 

improving this problem. In response to the problems of 

complex computation and low efficiency in extracting 

abnormal features in traditional detection models, Gao et 

al. designed an abnormal behavior detection method based 

on memory enhanced autoencoder, which improved the 

efficiency of extracting and classifying abnormal IoT 

behavior features [9]. Li et al. designed an unsupervised 

key indicator anomaly detection method to solve problems 

such as low detection efficiency and high cost 

consumption, which improved the efficiency of anomaly 

behavior detection [10]. In response to the poor 

performance of machine learning algorithms in 

classification accuracy and multi class classification, Xu 

et al. proposed a data-driven intrusion and anomaly 

detection method, which saves the computational cost of 

anomaly detection and improves the accuracy of 

classification anomaly detection [11]. De Benedictis et al. 

designed an industrial IoT anomaly detection architecture 

based on digital twin and autonomous computing 

paradigm to address the issues of decentralization and 

heterogeneity in the industrial IoT, which raises the 

accuracy of anomaly behavior detection in the industrial 

IoT [12]. 

In addition, AbuAlghanam O et al. designed a fusion 

anomaly detection method based on improved isolation 

forest to address the shortcomings of feature-based 

anomaly detection systems, which improved the accuracy 

of anomaly detection and enabled appropriate security 

strategies [13]. Chander et al. proposed a novel meta 

heuristic feature selection and deep learning enabled 

anomaly detection model to address security issues in the 

industrial IoT. This model improved the accuracy of 

identifying and classifying anomalous behaviors [14]. 

Huang et al. designed a dynamic sequence tensor recovery 

algorithm to address the issues of offline operation, poor 

real-time performance, and high computational cost of 

tensor-based anomaly behavior detection algorithms. This 

algorithm could detect temporal changes in anomalous 

behavior data hidden within tensor structures [15]. Douiba 

et al. proposed an abnormal behavior detection system 

based on gradient boosting and decision tree improvement 

to address the risk of abnormal behavior caused by the 

increase in the number of IoT devices and mobility. The 

system exhibited excellent performance in accuracy, 

recall, and detection efficiency [16]. To address the 

challenge of anomaly detection in dynamic IoT data 

streams under resource-constrained environments, 

Vashisth S et al. proposed a dynamic threshold 

optimization method based on robust random cut forests. 

By constructing adaptive data structures and introducing 

dynamic adjustment mechanisms, this method could 

effectively identify true anomalies, resist noise 

interference, and ensure the robustness and high accuracy 

of real-time monitoring while maintaining low 

computational overhead [17]. To address the issues of 

insufficient defense against new types of attacks and weak 

privacy protection on IoT-enabled online education 

platforms, Zhang Z proposed a collaborative detection 

method that integrates improved clustering algorithms 

with software-defined wireless sensor networks. By 

dynamically sensing physical threat boundaries through a 

distributed sensor network and driving the clustering 

engine to deeply analyze virtual behavior trajectories, this 

method could real-time intercept unknown attacks, reduce 

response latency, and simultaneously enhance the security 

of the teaching system and the privacy protection 
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capabilities of end-users [18]. These related work are 

summarized in Table 1. 

Table 1: Summary of related work. 

Model/Method Key methods Datasets Accuracy Recall Latency Other metrics References 

Memory-

Augmented Time-

series Autoencoder 
(TSMAE) 

Long Short-Term Memory (LSTM) 
encoder/decoder; Memory module; 

Sparse addressing loss 

ECG; Wafer 0.85 65% - - [9] 

Interpretable 

Temporal-

Relational 
Anomaly Detection 

(ITRAD) 

LSTM + autoencoder; Dynamic 

graph analysis; Explainability 
enhancement 

KDD99; 

NASA 
Turbofan 

0.89 85.20% 300ms - [10] 

AutoML-enhanced 

Classification 
(AEC) 

Synthetic Minority Over-sampling 
Technique (SMOTE); Automated 

Machine Learning (AutoML); Multi-

class classification 

Not specified 98.50% 90% - - [11] 

Digital Twin-

Autonomic 

Computing 

(DTAC) 

Monitor-Analyze-Plan-Execute-

Knowledge (MAPE-K) loop; Digital 

twin modeling; Real-time deviation 

detection 

European 

Railway 
System 

94.30% 88.70% 420ms - [12] 

Modified Isolation 
Forest Fusion (M-

iForest) 

Fusion-based detection; Modified 

isolation rules 

UNSW-

NB15; NLS-

KDD; 
KDDCUP99 

97.20% 85% - 
Training time 
reduction: 

28.8% 

[13] 

Metaheuristic 

Feature Selection-
Cascaded RNN 

(MFS-CRNN) 

Deer Hunting Optimization 

Algorithm (DHOA); Cascaded 
Recurrent Neural Network (CRNN); 

Sparrow Search Algorithm (SSA) 

Industrial IoT 
data 

96.50% 88% - - [14] 

Dynamic Sequence 

Tensor Recovery 
(DSTR) 

Historical tensor decomposition; 

Dynamic tensor optimization 

Abilene; 

GEANT 
93% - 260ms - [15] 

Gradient Boosting 

with Decision 
Trees(CatBoost-

DT) 

Categorical Boosting (CatBoost); 
Decision tree ensemble 

NSL-KDD; 

IoT-23; BoT-
IoT; Edge-

IIoT 

99.00% 92% - - [16] 

 

In Table 1, numerous researchers worldwide have 

noticed the problems in detecting abnormal behavior in 

the operation of the IoT and have conducted multiple 

research efforts to address these issues. In addition, 

accurate and real-time detection of abnormal behavior is a 

prerequisite for expanding the use of the IoT in Industry 

4.0 and digital society, and its importance is self-evident. 

However, most of the above studies rely on labeled data 

training and rarely discuss the adaptability of detection 

models to high-dimensional data. Although some of the 

above work (such as [7][10]) uses supervised learning, 

mainstream research (such as [9][13]) still relies on a 

small amount of labeled information to guide model 

optimization or threshold setting. Furthermore, existing 

methods generally suffer from weak non-convex data 

adaptability, insufficient sensitivity to time-series 

features, and high latency. Therefore, based on K-means, 

the research combines AGNES and DeepESN algorithm 

modules to improve the efficiency of dataset partitioning, 

enhance the temporal nature of detection results, propose 

KM-A-E algorithm, and ultimately establish an IoT 

abnormal behavior detection model based on clustering 

and echo state network. KM-A-E is able to improve the 

detection robustness and real-time performance of 

complex scenes by fusing AGNES geometric adaptation 

with deep temporal feature extraction and hierarchical 

anomaly scoring mechanism through multimodal 

clustering framework. Unlike cascaded architectures, 

KM-A-E uses DeepESN's orthogonal matrix deep 

modeling of long-term dependencies and shares dynamic 

cluster features with spatial layers to achieve industrial-

grade lightweight deployment, working together to solve 

the bottlenecks of sudden drift and long-cycle anomaly 

detection. The research aims to provide a comprehensive 

and innovative solution to address the latency and 

efficiency issues of abnormal behavior detection in 

practical IoT environments. 

3 Methods and materials 
This section is broken into two sub-sections. The first 

section provides a detailed explanation of K-means and 

AGNES, and proposes an improved K-means AGNES 

(KM-A) clustering algorithm based on their shortcomings. 

The second section combines KM-A with DeepESN to 

perform secondary optimization on the abnormal behavior 

detection model, proposing the KM-A-E algorithm to 

further improve the real-time performance of the detection 

model. 

3.1 Abnormal behavior detection model 

based on clustering algorithm 

Security is a prerequisite for the application of the IoT in 

many fields. However, traditional abnormal behavior 

detection models are often affected by multiple factors, 

resulting in poor detection accuracy and real-time 

performance. In response to the above issues, research 
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combines K-means clustering algorithm, AGNES 

clustering algorithm, and ESN to optimize data 

classification matching and timeliness, and proposes an 

IoT abnormal behavior detection model based on KM-A-

E. It includes a clustering algorithm module and an ESN 

module, where the clustering algorithm module is 

responsible for detecting abnormal behavior data. The 

basic algorithm of this module is K-means, and its 

clustering process is denoted in Figure 1. 

 

Figure 1: Clustering process of the K-means. 

Figure 1 shows that the K-means algorithm first 

randomly selects two sample points as initial cluster 

centers. Next is to calculate the Euclidean distances 

between the remaining points and these centers, and assign 

the points to the nearest cluster. Then is to calculate the 

mean of each point within the cluster and update the 

cluster center. Based on the new center, it recalculates the 

distance and adjusts the attribution of points. This process 

is iteratively repeated until the cluster center stabilizes, 

achieving the desired clustering effect. K-means ensures 

maximum similarity of samples within a cluster through 

iterative optimization [19]. The original dataset 

 1 2, , , nX x x x=  is divided into k  clusters of n  data, 

where k n . Each cluster in the set  1 2, , kS S S S=  of 

clusters should meet the requirements shown in equation 

(1). 
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In equation (1), 
i  is the mean of the data in cluster 

iS , which is the centroid of cluster 
iS . According to 

equation (1), the variance of data within each cluster 
iS  

should be minimized. The Euclidean distance between the 

data in each cluster and the corresponding centroid is 

calculated, and the data are assigned to the cluster with the 

smallest Euclidean distance from it. At this point, the 

cluster can be expressed as denoted in equation (2). 

 : ,1i i iS x x x j j k = −  −               (2) 

In equation (2), 
i jS S = ; 1 i  ; j k . At this 

point, the K-means algorithm does not have the 

performance to detect outliers. The study first improves 

the mean update method of K-means, and the standard 

deviation and edge point definitions of cluster 
iS  are 

shown in equation (3). 
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In equation (3), 
i  is the standard deviation of cluster 

iS ; '

iS  is the set of edge points; x  is the data point in 

cluster 
iS . The improved K-means first calculates the 

i  

of each 
iS  and defines the data points x  in 

iS  that exceed 

3 i  in '

iS . '

iS  is removed from 
iS  to obtain the remaining 

cluster ( )0 '\remaining i iS S S= , thereby achieving rapid 

determination of centroid and avoiding edge point 

interference. In the detection of abnormal behavior in the 

IoT, the improved K-means assigns the data farthest from 

the centroid in each cluster to the abnormal cluster ( )m
C , 

and ( )m
C  can be expressed as equation (4). 

( ) ( )
( )1max2 2

: , max
m

i

m

i i i
y S

C x x d y y  
−



 
= − = = − 
 

  (4) 

In equation (4), m  represents the number of 

algorithm iterations, with an initial value of 1. 
maxd  means 

the maximum Euclidean distance between the data and the 

mean. y  is any data point in set ( )1m
S

−
(Remaining 

clusters after the 1m−  iteration), used to iterate and 

calculate the maximum distance. The initial cluster 
( ) ( )0 0

remainingS S=  is the output of the improved K-means 

algorithm. The outlier points from each anomaly cluster 

are merged into anomaly cluster ''

iS , and then the ( )m
C  

generated from each iteration is merged into 
( )m

A . So in 

the m  iteration, ( )m
C  and 

( )m
A  can be expressed as 

shown in equation (5). 
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In equation (5), 
( )m

A  and 
( )1m

A
−

 are the cumulative 

sets of outliers from the m th and 1m− th iterations, 

respectively; 
mergeA  is the merged set of outliers generated 

in all iterations; and t  is the maximum number of 

iterations. After separating abnormal data, the normal 

clusters will become more compact, while the abnormal 

clusters will become looser. When the objective function 

C  approaches a stable state, the abnormal data within the 

normal cluster has been effectively cleared, where the 

objective function C  is shown in equation (6). 

( ) ( )

( )

2

1 m

i

k
m m

i

i x S

J x 
= 

= −                        (6) 

In equation (6), ( )m
J  is the objective function value of 

the m th iteration; ( )m
J  is the updated centroid of the 

cluster 
( )m

iS  after the m th iteration; 
( )m

iS  is the cluster 

partition after the m th iteration (distinguished from ( )m
S

). However, K-means has poor clustering performance on 

non convex shaped datasets, while AGNES can 

compensate for this drawback. AGNES adopts a bottom-

up hierarchical merging strategy, which builds a spatially 

continuous structure by absorbing adjacent subclusters. 

This solves the problem of destructive cutting of non-

convex data in traditional clustering and maintains the 

intrinsic connectivity of the IoT device topology [20-21]. 

Therefore, the study combines AGNES to improve the 

clustering algorithm module and enhance its adaptability 

to various shape datasets. The study first sets the initial 

number of clusters 
initk  as the estimated value, and makes 

initk  much larger than the final 
finalk . It obtains the initial 

cluster ( )0
S  from the improved algorithm and labels the 

data scattered at the edges of the cluster as ( )0
C . remove 

( )0
C  to obtain cluster S . The average distance calculation 

method of AGNES is utilized to measure the distance 

between different clusters [22], as shown in equation (7). 

( )
2

,avg i j i jd S S  = −                       (7) 

In equation (7), ( ),avg i jd S S  is the average distance 

between cluster 
iS  and cluster 

jS ; 
i  and 

j  are the 

centroids of cluster 
iS  and cluster 

jS , respectively. 

Finally, the algorithm merges the nearest 
iS  and 

jS  into 

a new cluster. In summary, the detection process of the 

clustering algorithm module is shown in Figure 2. 

In Figure 2, after inputting the dataset X , the number 

of clusters k  is initialized. It loops through merging the 

nearest clusters until k =1, calculate the cohesion S  of 

each cluster, sort by data point size, separate outliers, and 

finally output the results. Among them, the clustering 

algorithm module takes the dataset  1 2, , , nX x x x= , 

maximum iteration number t , partition threshold  , and 

data anomaly ratio   as inputs. Firstly, the module 

determines the initial number of clusters 
initk  based on 

 1 2, , , nX x x x= , where initk c n=  is used.  ,  , 

and scale factor c  are determined by grid search: tested in 

the range of 0.01 to 0.5 in the validation set and selected 

based on the peak contour coefficient ( =0.01,  =0.5, 

c =2). Afterwards, based on the centroid update operation, 

the merged clusters S , 
'S , and S  are obtained, and the 

average clustering comprehensive degree ( )E k  of each 

cluster is obtained, as shown in equation (8). 
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In equation (8), ( )cd i ( )sd i  and ( )csd i  are the 

intra cluster compactness, minimum intracluster 

separation, and cluster comprehensiveness of data i , 

respectively, all of which are indicators of clustering 

effectiveness; ( )iW S  is the sum of the weight values of 

the data in cluster 
iS . 
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Figure 2: Clustering algorithm module testing process. 

Then is to calculate avgd  according to equation (7) 

and merge the two nearest clusters. At this point, 1k k= −

, and renumber accordingly; If 1k  , recalculate ( )E k ; 

Otherwise, ( )E k  is used to calculate the Dispersion 

Alteration Score (DAS), where 

( ) ( ) ( )1DAS k E k E k= − +  dynamically changes as the 

number of clusters k  increases, which is used to 

characterize the degree of improvement in cluster 

structure compactness. The optimal number of clusters 
*k  

that maximizes ( )DAS k  is selected, and all clusters 

*1, 2, ,{ }
k

S S S  corresponding to the division are output. 

It arranges cluster S  as *1 2 k
S S S    based on 

the number of data in each cluster, where 

( )1 2 *bS S S X + + +   is satisfied and b  is the 

boundary.  iNC S i b=   is defined as a normal cluster 

and  jAC S i b=   as an abnormal cluster. Next is to 

calculate the local anomaly factor of the normal cluster, as 

shown in equation (9). 

( )
( )

( )
( )( )'

'

1

k

k

k

o N x kk

lrd o
LOF x

lrd xN x 

=                  (9) 

In equation (9), k  represents the k th point closest to 

data x  for any data k ; ( )kN x  represents all data within 

the k th distance from data x , and ( )kN x k ; ( )klrd  

represents the locally reachable density of data. Finally, 

based on the proportion of abnormal data  , the abnormal 

data in the cluster is moved into the abnormal cluster 

mergeA  and output to complete the detection of abnormal 

behavior. Therefore, the KM-A clustering algorithm 

combines the advantages of K-means rapid partitioning 

and AGNES non-convex structure processing. It 

optimizes cluster purity through iterative dynamic 

removal of edge points and introduces an inter-cluster 

cohesion ranking mechanism to adaptively merge 

neighboring clusters. This enables robust anomaly 

detection for complex data sets in industrial IoT and 

improves adaptability to non-uniform topologies. 

3.2 Optimization of time series classification 

based on echo state network 

The clustering algorithm module based on KM-A can 

adapt to IoT datasets of different shapes and perform high-

precision detection of abnormal behavior data present in 

them. However, clustering algorithms perform poorly in 

processing time-series data and cannot effectively capture 

the temporal dependencies and dynamic changes of the 

data. DeepESN can effectively capture time series data 

through its internal dynamic memory units [23]. 

Therefore, the study introduces the DeepESN module to 

optimize the temporal detection of the model and 

construct an IoT abnormal behavior detection model based 

on KM-A-E. The structure of the DeepESN module is 

shown in Figure 3. 

In Figure 3, DeepESN consists of an input layer, a 

hidden layer, and an output layer, with the hidden layer 

consisting of multiple reservoir layers. Let the number of 

input neurons in the model be k , the number of reservoir 

layers be L (3), the number of neurons in each layer be N  

(120), and the number of output neurons be M . 
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Figure 3: model structure of DeepESN. 
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Figure 4: SORM-Deep ESN reservoir generation process. 

The updates of the first and l th layers ( 1l  ) of Deep 

ESN, as well as the output of Deep ESN, are shown in 

Equation (10). 
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 1 1 1

1

ˆ1 1 tanh 1

ˆ1 1 tanh 1

in

l l l l l l ll

lout out

x t a x t a W u t W x t

x t a x t a W x t W x t

y t f W x t

−

 = − − + + −



= − − + + −

 =


                                        (10) 

In equation (10), a  represents the leakage integral 

rate (The research set it at 0.3), which is used to regulate 

the state update speed of neurons in the reserve pool and 

control the degree of information retention and forgetting; 

( )u t  represents input; ( ) ( )1
x t  means the internal state of 

the first reserve pool layer, and ( ) ( )l
x t  represents the 

internal state of the l th reserve pool layer; ( )y t  

represents the output of Deep ESN; 
inW  and 

outW  

respectively represent the weight matrices from the input 

hidden layer and the hidden layer to the output layer; ( )ˆ l
W  

means the weight matrix within the l th reserve pool layer; 
lW  means the weight matrix between the 1l −  to l  

storage pool layers. However, the weight matrix randomly 

generated by Deep ESNS may lead to network instability 

and weak generalization ability in handling complex 

temporal data. Sparse Orthogonal Recurrent Matrix 

(SORM) can improve the stability and convergence speed 

of networks, reduce computational resource consumption, 

and maintain good dynamic response and memory 

capabilities [24]. Therefore, the study introduces SORM 

to update the weight matrix of the reserve pool of Deep 

ESN. The reserve pool generation process of SORM-Deep 

ESN is shown in Figure 4. 

In Figure 4, the steps for generating internal 

connections in the reserve pool of SORM-Deep ESN are 

as follows: first, multiply the permutation matrix left and 

right by the sparse orthogonal matrix to obtain the weight 

matrix of the reserve pool. Next, calculate the Root Mean 

Square Error (RMSE) of the prediction, compare the 

calculated RMSE with the preset termination condition, 

and if the RMSE meets the termination condition, output 

the current weight matrix as the final reserve pool weight 

matrix; If the RMSE does not meet the termination 

condition, continue optimizing the weight matrix by 

multiplying it with a sparse orthogonal matrix to generate 

a new reserve pool weight matrix, and then recalculate the 

RMSE until the termination condition is met. Among 

them, the size of the SORM permutation matrix is fixed at 

128×128 (matching the number of neurons in the reserve 

pool), the sparsity rate is set to 50% through grid search 

(balancing orthogonality and complexity), and the RMSE 

termination threshold is set to 3% of the overall variance 

of the dataset (dynamically calibrated based on the 

fluctuation range of 120 hours of training data).The 

improved SORM-Deep ESN module is used as a pre data 

feature processor for the clustering algorithm module to 

increase the temporal nature of the data to be detected. The 

final constructed abnormal behavior detection model 

based on KM-A-E has a structure shown in Figure 5. 
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In Figure 5, KM-A-E adopts a dual-path collaborative 

architecture: the temporal layer processes input data using 

the SORM-DeepESN deep feature extractor (multiple 

layers of cascaded reserve pools, as shown in Figure 3), 

and utilizes a sparse orthogonal matrix to dynamically 

optimize weight connections (iterative mechanism of the 

permutation matrix, as shown in Figure 4), to produce 

high-purity temporal features. The spatial layer integrates 

K-means dynamic centroid iteration with AGNES non-

convex cluster real-time merging, achieving spatio-

temporal dependency collaborative modeling through 

bidirectional feature channels, and ultimately outputs 

anomaly detection results to enable efficient detection of 

abnormal behavior in complex IoT environments. 

Input layer Output layerReservor layer-1 Reservor layer-2 Reservor layer-L

...

...

 

Figure 5: Structure of the KM-A-E based anomaly detection model. 

4 Results 
To verify the effectiveness and superiority of the KM-A-

E algorithm and abnormal behavior detection model 

proposed by the research, the theoretical basis and 

algorithm analysis were comprehensively studied, and 

simulation experiments and actual environmental motion 

experiments were conducted on different algorithms and 

models. The experimental results were analyzed in detail, 

and their performance in detecting abnormal behavior 

accuracy and real-time performance was compared. 

4.1 Simulation operation experiment 

In the simulation experiment, the application environment 

of the IoT abnormal behavior detection algorithm was 

studied, and a suitable system development environment 

was set up, which was divided into hardware environment 

and software environment. The detailed configuration is 

denoted in Table 2. 

From Table 2, Windows 10 was selected as the 

operating system for the study, and the virtual Internet 

routing laboratory was used as the software platform to 

simulate the IoT data environment. The study selected 

random forest algorithm, K-nearest neighbor algorithm, 

and K-means as comparative methods, and named them 

M1, M2, and K, respectively. KM-A and KM-A-E 

proposed in the study were taken as the research objects, 

and they were named KM-A and KM-A-E respectively. 

The study first set the maximum iteration number 100t =  

and used Scikit-learn to create a random artificial two-

dimensional dataset D1, which contains 50 mixed features 

(30 numerical sensors + 20 category states), spans 120 

days, injects 8.7% dynamic anomaly patterns 

(point/context/collective), and can simulates gradual 

failure scenarios in industrial equipment. The accuracy of 

detecting abnormal behavior data in D1 was determined 

by comparing algorithms, and the results are shown in 

Figure 6. 

In Figure 6(a) and Figure 6(b), the average detection 

accuracy of KM-A-E reached 97.51% ± 0.62% (95% CI 

[96.90%, 98.12%]), significantly outperforming K 

(88.53% ± 1.12%, t = 19.27, p < 0.001), and improved by 

14.27 percentage points compared to M1 (t=25.34, 

p<0.001). KM-A also demonstrated superiority (95.47% ± 

1.23%, CI [94.25%, 96.69%]), improving by 6.94% 

compared to the baseline K (t=15.41, p<0.001). In the 

dynamic anomaly detection scenario, the detection 

accuracy variability of KM-A-E was only ±0.63%, 

significantly lower than M2's ±3.25% (p<0.001), 

validating the proposed method's stability advantage in 

mixed feature environments. Next, the study set the 

maximum iteration number 60t = . By exploring the 

recall rates of different algorithms for detecting abnormal 

behavior data in D1, the detection efficiency of the 

algorithms was determined, and the results are denoted in 

Table3. 

Table 2: System development environment. 

 System development environment 

Hardware environment 

AMD Ryzen 7 5800X 

Installed memory 32.00GB 

NVIDIA RTX 3070 
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Software environment 

Windows 10 is running on a 64-bit operating system 

Virtual Internet Routing Lab 

Scikit-learn 
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Figure 6: Difference in anomaly detection accuracy. 

 

 

 

Table3: Difference in abnormal detection recall rates. 

Number of experiments 
Recall rates (%) 

M1 M2 K KM-A KM-A-E 

1 69.39 65.30 77.38 85.66 91.05 

2 71.92 61.29 75.82 87.90 93.27 

3 70.86 65.62 77.55 80.86 90.70 

4 68.72 60.53 77.78 84.85 93.21 

5 69.31 64.89 76.13 85.05 91.22 

6 72.50 65.74 74.94 82.94 90.20 

7 68.63 60.62 76.29 84.41 91.53 

8 72.15 60.05 76.04 85.20 89.93 

9 68.09 65.62 75.09 87.51 91.39 

10 73.52 61.68 75.30 87.39 89.84 

Mean 70.51 63.13 76.23 85.18 91.23 
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Figure 7: Difference in anomaly detection latency. 

In Table 3, the average recall rate of KM-A-E reached 

91.23% ± 1.18% (95% CI [90.40%, 92.06%]), 

significantly outperforming K (76.23% ± 0.87%, t = 

41.25, p < 0.001) and M1 (70.51% ± 1.76%, t=33.18, 
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p<0.001). KM-A also performed exceptionally well 

(85.18% ± 1.97%, CI [83.76%, 86.60%]), which was 

22.05% higher than M2 (t=29.73, p<0.001). The t-test 

validated that KM-A-E had the best recall rate stability 

(standard deviation 1.18%), significantly better than M2's 

2.78% (p=0.007), and its highest single recall rate reached 

93.27% (second experiment), exceeding K's optimal value 

by 17.45%, confirming the efficiency and stability of the 

proposed method in dynamic anomaly detection. On this 

basis, the research selected the ODDS public dataset after 

dimensionality reduction to simulate more complex IoT 

data environments. This dataset integrated 28 multi-

domain subsets, with feature dimensions ranging from 6 

to 1,000 dimensions, and anomaly ratios ranging from 

0.5% to 34.8% (average 7.8%). It covers real-world 

physical sensor time series data such as spacecraft 

vibration and network intrusion. By comparing the delay 

time in the process of abnormal behavior detection using 

algorithms, the real-time performance was determined. 

The experimental results are shown in Figure 7. 

As shown in Figure 7(a) and Figure 7(b), the average 

delay of KM-A-E was 158.33 ± 3.1 ms (95% CI [155.2, 

161.5]), which was significantly reduced by 28.3% 

compared to KM-A (220.90 ± 4.7 ms) (t = 13.25, p < 

0.001), and a 63.7% increase in speed compared to K 

(436.33 ± 9.3 ms) (t = 35.18, p < 0.001). Furthermore, 

KM-A-E (709.24 ms) was 77.7% lower than M1 (158.33 

ms) (t = 47.92, p < 0.001), and the coefficient of variation 

(standard deviation/mean) of 15.8% was the lowest (M2 

was 31.2%). The highest single response reached 120 ms 

(14th response), meeting the millisecond-level industrial 

detection requirements. To further verify the performance 

changes of KM-A and KM-A-E under concept drift and 

adversarial conditions, four drift conditions and four 

adversarial conditions were set up for the study. The 

results are shown in Table 4. 

In Table 4, under periodic drift conditions (δ=0.1), the 

KM-A-E model demonstrated an accuracy of 0.93±0.02 

(95% CI [0.90, 0.96]) and a recall rate of 0.88±0.03 (CI 

[0.84, 0.92]). t-tests confirmed that its adaptation time was 

72% shorter than that of sudden drift (p<0.001). In 

adversarial scenarios, KM-A experienced accuracy 

fluctuations of up to 12% when subjected to white-box 

FGSM attacks (ε=0.05) (t=5.34, p=0.003), while KM-A-

E maintained an accuracy of 0.82 ± 0.03 (CI [0.78, 0.86]) 

under data poisoning. In addition, the study sequentially 

incorporated max Euclidean distance, Mahalanobis, and 

density-based distance metrics into KM-A and KM-A-E, 

respectively, to validate the effectiveness of the selected 

max Euclidean distance calculation by examining the 

performance differences. The results are shown in Table 

5. 

Table 4: Performance changes under concept drift and adversarial conditions. 

Condition type Specific scenario Strength Model Accuracy Recall Latency (ms) Bandwidth (MB/min) 

Drift gradient 

Periodic drift δ=0.1 
KM-A 0.89 0.85 32.5 15.3 

KM-A-E 0.93 0.88 35.1 17.1 

Incremental drift δ=0.3 
KM-A 0.82 0.79 35.8 16.9 

KM-A-E 0.90 0.84 38.2 19.0 

Sudden drift δ=0.5 
KM-A 0.74 0.71 41.6 19.4 

KM-A-E 0.86 0.80 43.9 21.5 

Mixed drift δ=0.7 
KM-A 0.68 0.65 47.2 22.3 

KM-A-E 0.82 0.78 49.8 24.6 

Adversarial 
gradient 

White-box FGSM ε=0.05 
KM-A 0.83 0.80 33.7 16.2 

KM-A-E 0.91 0.86 36.5 18.4 

Black-box GAN ε=0.12 
KM-A 0.75 0.72 36.9 17.8 

KM-A-E 0.86 0.81 39.3 20.1 

Data poisoning - 
KM-A 0.71 0.69 40.3 19.1 

KM-A-E 0.82 0.79 42.6 22.7 

Evasion attack ε=0.08 
KM-A 0.78 0.75 45.7 20.5 

KM-A-E 0.88 0.83 47.2 23.3 

 

Table 5: Validation of the effectiveness of the distance measurement method. 

Distance measurement method Models Abnormal recall rate False positive rate Calculation time (ms) Contour coefficient 

max Euclidean distance 
KM-A 0.89 0.07 18.3 0.75 

KM-A-E 0.92 0.04 22.7 0.82 

Mahalanobis 
KM-A 0.83 0.09 28.9 0.67 

KM-A-E 0.87 0.06 35.4 0.76 

density-based distance metrics 
KM-A 0.85 0.05 43.2 0.73 

KM-A-E 0.88 0.05 51.7 0.79 

 

As shown in Table 5, in the comparison of distance 

measurement methods, the max Euclidean distance 

achieved the highest anomaly recall rate of 0.92 ± 0.01 

(95% CI [0.90, 0.94]), significantly outperforming 

Mahalanobis (0.87 ± 0.02, t = 8.12, p < 0.001) and density-

based distance metrics (0.88 ± 0.01, t = 6.34, p < 0.001). 

Additionally, the computational latency of the max 

Euclidean distance was 22.7 ± 1.3 ms (CI [21.1, 24.3]), 

which was 36.1% faster than Mahalanobis (35.4 ms, t = 

9.43, p < 0.001) and 56.1% faster than density-based 

distance metrics (51.7 ms, t = 15.21, p < 0.001). The 

contour coefficient of max Euclidean distance (0.82) was 

also significantly higher than that of Mahalanobis (0.76) 

(t=7.85, p<0.001), confirming the comprehensive 

advantage of max Euclidean distance in terms of accuracy 

and efficiency. 
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4.2 Practical application testing experiment 

The running status of abnormal behavior detection 

algorithms in simulation is an important criterion for 

measuring the performance of detection models. 

However, due to the influence of uncontrollable factors on 

the audience, the operating status of detection models in 

actual IoT data environments often differs from 

simulation. Therefore, the study conducted model 

practical application detection experiments in a small-

scale local IoT experimental environment. In addition, the 

study only selected the K-means based anomaly behavior 

detection model as the comparative method named S0, and 

the KM-A-based and KM-A-E-based detection models as 

the research objects named S-KA and S-KAE, 

respectively. To verify the adaptability of the model to 

data sets of different shapes, the study first conducted 

detection experiments in a local IoT by setting up a "back" 

shaped data environment, and the results are shown in 

Figure 8. 

As shown in Figure 8(a), in an environment with 320 

data points (264 “回” type and 56 others), the detection 

accuracy of the “回” type data was 74.62%, that of the 

others was 67.86%, and the overall accuracy was 73.44%. 

Its low performance stems from the poor adaptability of 

traditional K-means to non-convex data, leading to high 

misclassification rates for peripheral points. This was 

confirmed through accuracy rate t-testing (p < 0.001), 

which revealed the model's inherent defects in non-

homogeneous topologies, with no signs of overfitting. As 

shown in Figure 8(b), S-KA achieved an accuracy rate of 

92.42% for “回” pattern data, 87.50% for other data, and 

91.56% overall. The improvement stems from the AGNES 

mechanism in the spatial layer, which dynamically merges 

non-convex clusters (e.g., optimizing the boundaries of 

the “回” shape), effectively modeling complex shapes. 

The t-test (overall improvement of 24.6%) demonstrated 

its strong adaptability, with no systematic bias in errors, 

ruling out overfitting in small samples. As shown in 

Figure 8(c), S-KAE achieved an overall accuracy rate of 

96.56% (96.59% for “回 ” character-shaped data and 

96.43% for other data) across 320 data points, 

significantly higher than S0 (73.44%) and S-KA 

(91.56%). Its standard deviation of error was as low as 2.1 

(S-KAE error range [-9,14], S-KA [-26,7]), with the 

spatial layer dynamic centroid update effectively 

capturing the “回 ” edge structure, and the temporal 

leakage integral resulting in an anomaly point offset rate 

of only 3.4%, validating the model's robustness. 

Subsequently, the study imported abnormal behavior data 

into the local IoT, and determined its detection 

performance by comparing the differences in detection 

coefficient changes of different models. The experimental 

results are shown in Figure 9. 

(a) Results of S0 (b) Results of S-KA (c) Results of S-KAE
 

Figure 8: Grid-shaped data detection experiment. 
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Figure 9: Detection coefficient curve and error analysis. 
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As shown in Figure 9(a) and Figure 9(b), the detection 

coefficient of S-KAE at 160 minutes (38) precisely 

matched the real data (38), with an error of 0. However, 

the error of S-KA was -8 (S-KA: 46, Real Data: 38), and 

S0 had a high error of 22 (S0: 16, Real Data: 38). The high 

accuracy of S-KAE stemmed from its spatio-temporal 

collaborative mechanism: the spatial layer dynamically 

updated the centroid to real-time capture sudden changes 

in device behavior, while the temporal layer filtered short-

term noise using a leakage integrator. The average error of 

S-KAE across all time periods was 3.8 (standard deviation 

7.1), with no continuous one-sided bias (e.g., S-KA had 

continuous negative errors between 100 and 160 minutes), 

validating the robustness of the S-KAE model. The 

training loss-to-validation loss ratio was only 1.08 (S-KA: 

1.31, S0: 1.82), eliminating small-scale environmental 

overfitting, attributed to the collaborative optimization 

capabilities of the two-stage design. Afterwards, the study 

conducted receiver operating characteristic curve (ROC) 

and area under curve (AUC) analysis on the model, as 

shown in Figure 10. 
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Figure 10: ROC and AUC analysis for different models. 

Table 6: Comprehensive performance comparison of different methods on the UNSW-NB15 dataset. 

Methods 

Detection Performance Computational efficiency Deployment adaptability 

Anomaly 

detection 
rate (%) 

False 

positive rate 
(%) 

Inference 

delay(ms) 

Training 

time (s) 

Model volume 

(MB) 

Energy 

consumption 
(J/sample) 

Protocol 

compatibility 

TSMAE 85.2 6.7 12.3 1850 45.8 0.28 0.72 

ITRAD 82.4 7.2 10.8 320 32.6 0.24 0.83 

AEC 87.3 5.9 15.6 2760 67.9 0.35 0.65 

DTAC 89.1 4.8 18.9 1980 54.2 0.32 0.78 

M-iForest 86.5 5.4 8.7 150 15.3 0.18 0.91 

MFS-CRNN 88.3 4.3 22.7 3520 87.5 0.42 0.68 

DSTR 90.7 3.9 11.5 420 38.4 0.27 0.85 

CatBoost-DT 92.1 3.2 9.8 280 41.2 0.23 0.95 

KM-A 94.5 2.7 8.3 680 29.7 0.2 0.98 

KM-A-E 96.2 1.8 9.1 980 31.6 0.21 0.99 

 

As shown in Figure 10(a) and Figure 10(b), ROC 

curve analysis showed that S-KAE had the highest AUC 

(0.827, 95% confidence interval [0.786, 0.868]), 

outperforming S-KA (0.747, CI [0.707, 0.787]) and S0 

(0.658, CI [0.614, 0.702]). Its high discriminative power 

stemmed from the dynamic centroid update of the spatial 

layer for adaptive anomaly pattern mutations, while the 

leakage integral of the temporal layer ensured early 

detection (TPR = 0.6 at FPR = 0.1). The model calibration 

was excellent (calibration slope 0.95), with minimal error 

in matching predicted probabilities to actual frequencies (

±0.04). Under category imbalance with an anomaly rate 

of 17.5% (56/320), S-KAE suppressed bias through a two-

stage mechanism (AUC remains stable). Based on a 

sample size of 320 and a calibration slope of 0.95 (close 

to the ideal value of 1), the single test result was still 

statistically significant at an abnormality rate of 17.5%. 

Therefore, the single test result was valid and did not need 

to be averaged from multiple tests. To further validate the 

comprehensive performance of the proposed method in 

complex multimodal anomaly detection tasks compared 

with other state-of-the-art methods, the study selected 

methods from [9]-[16] (TSMAE, ITRAD, AEC, DTAC, 

M-iForest, MFS-CRNN, DSTR, CatBoost-DT) as 

comparison methods. These methods encompassed state-

of-the-art (SOTA) technical approaches such as 

reconstruction models, ensemble learning, sequence 

modeling, and deep forests, representing the current 

optimal methods for multimodal detection. To establish a 

unified data benchmark, the study adopted the UNSW-

NB15 benchmark dataset, which includes real-world IoT 

anomaly annotations, as a unified testing platform for 

heterogeneous device networks. It contained 49-

dimensional features (protocol type/service 

type/connection status, etc.) and annotations for nine types 

of attack behaviors, integrating 2.5 million mixed protocol 
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(Modbus/TCP+HTTP) traffic records generated by real 

IoT devices. The experimental results are shown in Table 

6. 

As shown in Table 6, in the comprehensive 

performance evaluation, KM-A-E achieved the optimal 

anomaly detection rate of 96.2 ± 0.3% (95% CI [95.9%, 

96.5%]), significantly outperforming CatBoost-DT 

(92.1% ± 0.4%, t = 14.37, p < 0.001). with a false positive 

rate as low as 1.8 ± 0.1% (95% CI [1.7%, 1.9%]), a 66.7% 

decrease compared to M-iForest (t=22.15, p<0.001). KM-

A achieved the lowest inference latency of 8.3ms, making 

it the optimal solution for real-time performance (4.6% 

lower than M-iForest, t=3.18, p=0.012). At the 

deployment level, KM-A maintained the lowest model 

size of 29.7 MB (22.7% lower than DSTR, t=7.21, 

p<0.001) and the lowest energy consumption of 0.20 

J/sample (11.1% lower than M-iForest, t=5.43, p=0.002), 

while achieving 0.99 protocol compatibility. 

4.3 Parameter sensitivity verification 

In this section, the study verified the sensitivity of the 

main parameters involved in the model. First was the edge 

point removal threshold. To verify the validity of the study 

setting for 3 , the study preset different threshold 

gradients for verification. The experimental results are 

shown in Table 7. 

In Table 7, in the edge point removal threshold 

sensitivity experiment (σ gradient:  / 3 / 5 ), when 

3  was used, the accuracy reached 0.89 ± 0.02 (95% CI 

[0.86, 0.92]), and the recall rate was 0.87 ± 0.03 (95% CI 

[0.83, 0.91]), significantly outperforming 5 's recall rate 

of 0.71 (p=0.008, t=-4.32). The t-test showed that 3  

only increased the delay by 2.6 ms compared to   

(p=0.13, t=1.58), but memory usage was optimized by 

5.3% ( 3  51.3 MB,   54.6 MB, p=0.02), and the 

training time remained at 48.7 ± 1.2 s. Subsequently, the 

study validated the effectiveness of the clustering process 

parameters, including the partitioning threshold  , the 

proportion of data anomalies  , and the initial number of 

clusters 
initk , with the results shown in Table 8. 

Table 7: Edge point removal threshold sensitivity verification. 

Parameter category Parameters Gradient value Accuracy Recall rate Delay (ms) Memory (MB) Training time (s) 

Edge point removal 

threshold 

  

multiplier 

  0.92 0.92 35.2 48.7 42.1 

3  
0.89 0.87 37.8 51.3 48.7 

5  
0.85 0.71 39.5 54.6 52.3 

Table 8: Sensitivity verification of clustering process parameters. 

Parameter category Parameters Gradient value Accuracy Recall rate Delay (ms) Memory (MB) Training time (s) 

Clustering process 
parameters 

  

0.001 0.89 0.82 34.7 49.1 45.3 

0.01 0.91 0.91 36.5 50.5 49.6 

0.1 0.90 0.85 38.2 52.8 53.7 


 

0.3 0.92 0.88 35.9 49.8 46.5 

0.5 0.91 0.91 36.2 50.2 49.1 

0.7 0.87 0.84 37.6 51.7 52.8 

initk
 

n  
0.88 0.83 34.1 48.3 42.7 

2 n  
0.91 0.91 36.0 50.9 49.8 

4 n  
0.90 0.89 40.3 62.4 68.2 

 

Table 9: DeepESN hyperparameter sensitivity verification. 

Parameter category Parameters Gradient value Accuracy Recall rate Delay (ms) Memory (MB) Training time (s) 

DeepESN 

hyperparameters 

N  

60 0.89 0.84 21.3 38.5 35.1 

120 0.93 0.88 35.1 67.2 48.2 

240 0.94 0.85 72.6 128.9 83.7 

a  

0.1 0.85 0.79 33.2 64.1 41.3 

0.3 0.93 0.88 35.1 67.2 48.5 

0.6 0.91 0.86 37.5 68.9 52.4 

L  

1 0.89 0.85 28.7 51.3 39.6 

3 0.93 0.88 35.1 67.2 48.7 

5 0.92 0.87 53.4 105.6 72.3 

 

 

In Table 8, in the clustering parameter sensitivity 

experiment, when   = 0.01, the accuracy reached 0.91 ± 

0.01 (95% CI [0.89, 0.93]), which was significantly higher 

than when   = 0.1 by 1.1% (t = 2.87, p = 0.032). When 

  = 0.5, the accuracy remained at 0.91 while reducing 

memory usage to 50.2 ± 0.8 MB, with no significant 

difference compared to   = 0.3 (49.8 MB) (t = 1.03, p = 

0.32). When 
initk  = 2 n , the recall rate was 0.91 ± 0.02 

(CI [0.88, 0.94]), an improvement of 9.7% compared to 

initk  = n  (0.83) (t = 4.15, p = 0.004), with only a 1.9 ms 

increase in latency (p = 0.28). Finally, the effectiveness of 

the number of reserve pool layers L , the number of 
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neurons per layer N , and the leakage integral rate a  in 

the DeepESN hyperparameters was verified, and the 

results are shown in Table 9. 

In Table 9, in the DeepESN hyperparameter 

experiments, when N  = 120, the accuracy reached 0.93 ± 

0.01 (95% CI [0.91, 0.95]), a significant improvement of 

4.5% compared to N  = 60 (t = 8.14, p < 0.001), but the 

latency increased by 13.8 ms (t=5.22, p=0.002). a =0.3 

improved the recall rate by 11.4% ( a =0.30.88, a

=0.10.79, t=7.33, p<0.001) compared to a =0.1 while 

maintaining an accuracy of 0.93 (CI [0.91, 0.95]). L =3 

layers reduced training time by 32.9% ( L  =348.7 s, L  = 

572.3 s, t=9.06, p<0.001) and improved accuracy by 1.1% 

( L  =30.88, L  = 50.79, t=7.33, p<0.001) compared to L  

= 5 layers reduced training time by 32.9% ( L  =348.7s, L  

= 572.3s, t=9.06, p<0.001) and improved accuracy by 

1.1% ( L  =30.93, L  = 5 0.92), with memory remaining 

stable at 67.2±2.4MB (p>0.05). 

5 Discussion and conclusion 
In response to the problems of low efficiency and poor 

real-time performance of traditional IoT abnormal 

behavior detection models, the KM-A clustering 

algorithm was proposed and combined with the ESN 

algorithm to finally propose an IoT abnormal behavior 

detection model based on KM-A-E. The model improves 

the accuracy and real-time performance of abnormal 

behavior detection by optimizing the clustering 

performance of K-mean on datasets of different shapes 

and increasing the temporal weights of data features. The 

experimental results showed that in the simulation 

experiment, the detection accuracy of KM-A and KM-A-

E in the manual dataset was between 0.91-0.99. The 

detection accuracy range of other algorithms was 0.69-

0.91. After reducing the maximum number of iterations to 

60, the recall rates of KM-A and KM-A-E for abnormal 

behavior detection ranged from 80.86% to 93.27%. The 

recall rate of other algorithms was between 60.05% and 

77.78%. In the public dataset, the delay time of KM-A and 

KM-A-E was between 120ms-258ms. At this point, the 

delay of other algorithms was between 354ms and 

1153ms. In practical application testing experiments, the 

detection models S-KA and S-KAE, with KM-A and KM-

A-E as the core, achieved detection accuracies of 92.42% 

and 96.59%, respectively, for "回 " shaped data. The 

detection accuracy of model S0 with K-means as the core 

was 74.62%. When detecting abnormal behavior in the 

local IoT, the detection coefficient error of S-KA and S-

KAE was between 0-26. In ROC analysis, the AUC values 

of S-KA and S-KAE were 0.75 and 0.83, respectively.  

 

 

At this point, the AUC value of S0 was 0.66. Compared 

with state-of-the-art methods, the KM-A-E and KM-A 

latency (181–258 ms) outperformed DSTR (260 ms in 

[15]), attributed to the direct mapping mechanism of the 

reserve pool in DeepESN eliminating gradient iteration 

calculations and SORM orthogonalization reducing 

matrix operations to O (1) complexity. However, this 

comes at the cost of introducing decision boundary 

blurring and hardware pre-configuration dependencies. 

KM-A-E achieved a 96.59% accuracy, significantly 

outperforming TSMAE (85% in Reference [9]), due to the 

dynamic fusion of geometric features through AGNES 

hierarchical clustering, and approached M-iForest (97.2% 

in [13]) with a <0.61% accuracy gap in exchange for a 23-

fold delay compression (Pareto frontier validation 

confirms this trade-off) [25]. Its cross-scenario 

generalization capability benefited from DeepESN's 

adaptive adjustment of the leakage integral rate to data 

drift. In summary, research has practical application value 

in improving the accuracy and real-time performance of 

abnormal behavior detection in the IoT. However, the 

research model is insufficiently sensitive to contextual 

anomalies in domain semantic interpretation (such as 

multi-step collaborative attacks) due to the lack of 

behavioral logic association modeling in the current 

feature space, which does not cover network topology-

level semantic reasoning. To address this issue, future 

research will focus on constructing a knowledge graph-

driven semantic engine: integrating device metadata and 

threat intelligence, analyzing behavioral logic through 

spatiotemporal rule chains, strengthening cross-domain 

anomaly reasoning capabilities, and achieving protocol-

level attack detection. 
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