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The proliferation of Unmanned Aerial Vehicles (UAVs) in both civilian and military spheres has raised
substantial security issues, especially within volatile communication environments such as Flying Ad Hoc
Networks (FANETs). To challenge of the problem of real-time detection and response to UAV
misbehaviour, the research proposed a Mamdani-type Fuzzy Inference System (MFIS) for real-time
classification and detection of threats and subsequent actions. The MFIS is designed to take in information
from UAV behaviours dataset (1000 samples) was obtained from Kaggle, consisting of four main features:
energy consumption, mobility pattern, packet transmission, and link stability. After pre-processing the
dataset through Min-Max normalization for standardization and amid Principal Component Analysis
(PCA) for dimension reduction, the MFIS developed produces less computational load while retaining
vital behavioural characteristics of the datasets. The results demonstrate the ability for the MFIS to
enhance communication reliability while reducing key issues with routing and communication delays
significantly over traditional FMIS methods like the Efficient Honesty-based Detection Scheme (EH-DS).
The results show that the framework is an effective method for utilizing real-time context in making energy-
efficient decisions for real-time UAV threat response. The simulation results show a significant
improvement in performance parameters, including to-end delay, routing overhead (packets), and packet
delivery ratio, by 15-55% compared to previous methodologies. While this framework has many
advantages in terms of performance, these results confirm that the proposed fuzzy logic framework enables
adaptive, accurate, and energy-efficient threat mitigation in real-time UAV operations.

Povzetek: Clanek predstavi Mamdani-jevski fuzzy inferencni sistem za sprotno zaznavanje grozenj in
odzivanje v FANET omrezjih. Ob uporabi normalizacije, PCA in Stirih vedenjskih znacilk UAV model
ucinkovito loci kooperativne in zlonamerne drone ter izboljsa zakasnitev, nadzorni promet in dostavo
paketov.

1 Introduction pressure for effective UAV systems that can analyse threats
dynamically and recommend appropriate responses
UAVs, commonly referred to as drones, have proliferated ~accordingly in a real-time manner [2]. Traditional rule-
rapidly in both civilian and military activities due to their ~based systems have difficulty representing uncertainty and
wide range of functions, cheaper prices, and quick adapting to dynamic environments. As depicted in Figure
missions [1]. In contrast, the wider availability and 1, the fuzzy logic-based system adapts the decision-
advanced functions of UAVs promote an incremental making of UAV countermeasures by interpreting
increase in security fears, especially regarding monitoring, ~ambiguous information to identify threats and recommend
smuggling, or even attack missions. There is thus actions.
increasing
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Figure 1: Decision support system using fuzzy logic
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Figure 1 showed Decision Support System using Fuzzy
Logic. A fuzzy logic-based decision support system (DSS)
represents a responsive, flexible, and understandable
manner of UAV threat evaluation and countermeasure
selection [3]. The fuzzy DSS for UAV countermeasures
takes in many input variables, including the key features
[4]. The development of remote sensing and
photogrammetry systems, especially in the use of UAVs,
has provided efficient and high-resolution services for
acquiring imagery of land. This research emphasizes how
UAV data could be used to automatically detect and
delineate land boundaries, which introduces improvement
in the accuracy and reliability of cadastral updates [5].
Fuzzy logic-based decision-support systems have several
benefits for the UAV countermeasures, but it has some
limitations. The desire for expert guidance while
developing rules and membership functions adds
subjectivity and may limit the potential for the system to
adjust to different threat circumstances [6]. The system is
designed to enhance communication security in FANETSs
by identifying and mitigating potential threats. An MFIS
classifies drones as cooperative or malicious based on their
behavior. The performance of UAV target tracking was
improved in [7]. To improve the accuracy of UAV
trajectory prediction, Artificial Neural Networks (ANNs)
characterize complex flight dynamics more effectively.
The research creates a multi-layer ANN model to optimize
UAV flight trajectories through uncertain and dynamic
environments [8]. Additionally, fuzzy logic systems have
no inherent learning functionality, and therefore cannot
adjust to UAV technologies and tactics without constant
updates [9].

1.1 Objective of the research

Existing UAV threat classification and detection systems
struggle to operate effectively under uncertain and
imprecise data conditions, limiting their real-time
decision-making capabilities. The research aims to
develop a robust fuzzy logic-based decision support
system that classifies UAV behaviours and recommends

adaptive  countermeasures  using  sensor-derived
behavioural indicators and optimized inference
mechanisms.

1.2 Contribution of the research

e To propose a fuzzy logic-based decision support
system using a multi-input fuzzy inference model
that classifies UAV behaviour and supports real-
time countermeasure selection.

e Toutilize a UAV behavioural dataset comprising
key threat-related features to simulate and
evaluate UAV actions under normal and evasive
conditions in security-sensitive zones.
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e To implement Min-Max normalization for
scaling sensor data and apply Principal
Component Analysis (PCA) to extract dominant
features, enhancing model accuracy and
computational performance.

e To wvalidate the proposed system against a
benchmark model by conducting a comparative
analysis using standard classification metrics to
demonstrate improved decision quality under
uncertain inputs.

1.3 System overview

The research's relevant work is outlined in Section 2,
methodologies are covered in Section 3, findings are
summarized in Section 4, and the work is concluded in
Section 5.

2 Related works

To improve multicopper reliability under counter-UAV
threats by proposing a modular autopilot system with
backup control for trajectory tracking was proposed [10].
To introduce a fuzzy inference-based controller using
image recognition from six map sectors. Results indicate
enhanced autonomous navigation. However, the approach
lacks practical deployment details, suggesting limitations
in real-world testing and adaptability to diverse UAV
environments. To predict energy consumption in low-cost
UAVs using Artificial Intelligence (AI) algorithms to
enhance efficiency was described [11]. To propose five
models Random Forest (RF), Regression Tree (RT),
Support Vector Machine (SVM), Artificial Neural
Network (ANN), and Adaptive Neuro-Fuzzy Inference
System (ANFIS) on an open quadcopter flight dataset.
Results show RF performs best. Limitations include
minimal consideration of weather impacts and diverse
UAV configurations. To reduce computational demands in
large-scale UAV swarm confrontations a fuzzy multi-agent
reinforcement learning (FMARL) approach was described
[12]. To model UAV interactions as a fuzzy game,
assigning policies to abstract agents, not individuals.
Results show reduced floating-point operations and
storage needs. A key limitation is the potential loss of
granularity during fuzzification and defuzzification
processes.

A secure and adaptive Al control system for UAVs in
dynamic environments was developed [13]. To propose a
hybrid framework combining an enhanced Soft Actor-
Critic (SAC) method with a Fuzzy Inference System (FIS),
integrating expert knowledge for efficient learning.
Results show effective real-time path planning and
intruder tracking. Limitations include reliance on
simulations and pending real-world validation. UAV
performance in precision agriculture using fuzzy multi-
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criteria  decision-making (MCDM) approach was
evaluated [14]. To suggest an integrated method
combining Fuzzy-Weighted Zero-Inconsistency (FWZIC)
and Fuzzy Decision by Opinion Score Method (FDOSM)
to assess Unmanned Aerial Vehicles (UAVs) based on
payload, endurance, and dimensions. Results show
payload is most critical. Limitations include reliance on
subjective expert input and scenario-specific criteria.
Autonomous power monitoring in UAVs for power system
stability was enhanced [15]. To recommend an onboard
monitoring system using the Low Power Alarm and
Battery (LPAB) status and forecasting method, with a
fuzzy logic-based algorithm to estimate remaining flight
time. Results show improved energy use and safe landings.
Limitations include dependency on sensor accuracy and
environmental variability.

Decision-making in UAV swarm confrontations using
game theory was introduced [16]. To propose a dynamic
non-zero-sum game model with concepts like relative
advantage and advantage coefficient, solved using a multi-
strategy fusion Particle Swarm Optimization (PSO)
approach. Results confirm effectiveness via simulation.
Limitations include reliance on simulation-based
validation and possible challenges in real-time scalability.
Modelling and evaluation methods for Cooperative

Informatica 49 (2025) 289-302 291

Operation System-of-Systems (COSoS) involving manned
aerial vehicles (MAVs) and UAVs were described [17]. To
discuss standard framework-based and complex network-
based modelling approaches, comparing their
characteristics. Results summarize current effectiveness
evaluation methods. Limitations include a lack of unified
evaluation standards and challenges in real-world COSoS
implementation. To improve UAV threat assessment in air
defence using a dynamic fuzzy multi-attribute decision-
making model [18]. To propose a 3D evaluation system—
capability, opportunity, and intention combined with
inverse Poisson-based time weighting and improved
TOPSIS for threat prioritization. Results show enhanced
accuracy and Limitations include complexity in real-time
deployment and reliance on accurate intention estimation.
Intrusion malware detection in UAVs by highlighting
vulnerabilities in communication, software, and hardware
systems are determined [19]. To present a taxonomy of
detection methods using machine and deep learning
algorithms, recent advances, and identify gaps. Results
summarize current progress. Limitations include evolving
threat complexity and limited real-time deployment
evidence. Table 1 demonstrates the overall performance of
previous work.

Table 1: Summary of the related work

References Aim & Proposed Method

Results Limitations

Mishra, and
Palanisamy [10]

Improve multicopper reliability under counter-
UAV threats via a modular autopilot system
using a fuzzy inference-based controller with
image recognition from six map sectors.

Enhanced autonomous
navigation and
trajectory tracking.

No practical deployment; limited
real-world testing and adaptability.

Sarkar et al. [11]

Predict energy consumption in low-cost UAVs
using Al models: Random Forest (RF),
Regression Tree (RT), Support Vector Machine
(SVM), Artificial Neural Network (ANN), and
Adaptive  Neuro-Fuzzy Inference System
(ANFIS) on a quadcopter flight dataset.

RF achieved the best
prediction accuracy.

Weather impacts and UAV
variations are not fully addressed.

Hu et al. [12]

Reduce computational demands in UAV swarms
using fuzzy multi-agent reinforcement learning
(FMARL), modelling interactions via fuzzy
game theory.

Lowered storage and
floating-point
operations
maintaining
control.

while
effective

Potential loss of detail due to
fuzzification/defuzzification.

Xiaetal. [13]

Develop a hybrid control system combining Soft
Actor-Critic (SAC) and Fuzzy Inference System
(FIS) for real-time path planning.

Effective path planning
and intruder tracking.

Simulation-based; lacks real-world
validation.

Jasim et al. [14]

Evaluate UAVs in precision agriculture using
Fuzzy-Weighted Zero-Inconsistency (FWZIC)
and Fuzzy Decision by Opinion Score Method
(FDOSM).

Payload emerged as the
most critical criterion.

Based on expert opinions; context-
specific criteria.

Shcherban  and
Eremenko [15]

Enhance autonomous power monitoring for
UAVs using LPAB and fuzzy logic to estimate
remaining flight time.

Improved energy use
and safer UAV landings.

Relies on sensor accuracy and
environmental factors.

Wu et al. [16]

Use game theory and a non-zero-sum model
with relative advantage coefficients and PSO for
UAV swarm decision-making.

Model validated via
simulation, showing
effective outcomes.

Limited to simulation; scalability
concerns.
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Wang et al. [17] MAV/UAV COSoS modelling using standard | Summarized modelling | No unified standards; real-world
frameworks and complex networks and evaluate | and evaluation | implementation difficulties.
effectiveness. strategies.

Niu et al. [18] Improve UAV threat assessment using fuzzy | Better threat | Complex real-time deployment;
multi-attribute decision-making with dynamic | prioritization in | depends on accurate intention
variable weights and enhanced TOPSIS. dynamic environments. inputs.

Cai et al. [19] Intrusion malware detection in UAVs; present | Comprehensive Rapidly evolving threats; limited
taxonomy using ML and DL algorithms. overview of current | real-world system integration.

approaches and
progress.

2.1 Research gap

The existing methods on UAV threat detection based on
the literature exist with multiple critical limitations that
highlight the potential use of MFIS in regard to adaptivity,
decision rules, and computation load. For example, the
fuzzification methods in FMARL lead to removal of
granularity, and even after significant validation, can still
not be practically deployed; Image-based fuzzy controllers
continue to exist without validation for deployment; Al
energy prediction methods for MCDM assessment models
that did not address environmental influences; and UFMS
models such as SAC-FIS rely heavily on simulation-based
development that do not address real-world applicability.
Furthermore, multi-criteria decision making based fuzzy
frameworks continue to be driven by expert judgment,
which provides a level of subjectivity at multiple levels of
application in the estimation of weights in fuzzy reasoning,
and malware detection general methods for UAVs show
silent integrations with real-time systems. All these
demonstrate poor flexibility, static decision rules and high
computation loads. Therefore, the proposed methods of
designing MFIS as fuzzy MCDM suspect with data
normalization in real-time, principles of PCA derived
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feature reduction, and scalable fuzzy rule base, provide a
pathway for adaptive, scaling, and valid classifications of
a UAV's behaviour in real-time and in different dynamic
FANET environments, coupled with potential threat
mitigation.

3 Methodology

The methodology involves monitoring the UAV
behavioural dataset for threat classification and detection
and countermeasure deployment using fuzzy logic-based
decision systems to enhance communication security in
FANETs by identifying and mitigating potential threats.
UAV behavioural data was utilized in this research and
Min-max normalization and PCA were applied for
preprocessing and feature selection. An MFIS computes a
dynamic honesty score based on key parameters. The
system classifies UAVs and recommends
countermeasures, enhancing threat classification and
detection, network reliability, and energy -efficiency.
Figure 2 shows the general flow of the fuzzy logic
decision-making process, from data capture through threat
assessment and final response selection.
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Figure 2: Overall flow of the proposed UAV countermeasure approach using fuzzy logic

3.1 FANETs

Using fuzzy logic for UAV countermeasures aims to
reinforce communication safety in FANETs with accurate

threat classification and detection and mitigation. The
capacity of fuzzy logic systems to accommodate uncertain
and vague data makes them suitable solutions for mobile
environments such as FANETSs that are characterized by
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signal hops and unpredictable threats. Through monitoring
key indicators, the fuzzy logic methodology can identify
anomalies or threats to network security. For the security
of communication in the network, it engages in such acts
as the encryption of signals, isolation of drone, or
modification of routing. Fuzzy logic increases
communication assurance in FANETs by managing
uncertainty in data and security by assessing signal quality,
drone behaviour, and traffic patterns to determine possible
security threats. It allows for responsiveness such as
encryption, blocking a drone's messages, deploying an
alternative drone, and modifying routing, as identified in
Figure 3.
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Figure 3: Resilient communication architecture in
FANETs using Fuzzy Logic

3.2 Data collection

The data is a synthetic dataset with 1,000 instances to
mimic the different behavioural characteristics of UAVs
for use in research on fuzzy logic-based countermeasure
systems, and intelligent threat classification and detection.
Each instance can be characterized by four behavioural
metrics: energy consumption, mobility pattern, packet
transmission, and link stability. These metrics can be used
to differentiate between cooperative UAV behaviour and
malicious UAV behaviour.

The dataset can be used to develop intelligent decision-
making models using labelled data with behavior_label
indicating if the UAV behavior is cooperative (0), or
malicious (1). The key features description is shown in
Table 2.

Table 2: Feature description table

Feature Name Description Data Type / Range
energy_consumption | Power usage of the UAV in joules Continuous (Joules)
mobility_pattern Normalized movement variability (0 = stable, 1 = erratic) | Float (0-1)
packet_transmission | Successful packet transmission percentage Percentage (0—100%)
link_stability Communication links quality and consistency Float (0-1)
behavior_label UAV classification: 0 = Cooperative, 1 = Malicious Categorical (0 or 1)

Source:https://www.kaggle.com/datasets/ziya07/uav-
behavioral-dataset/data

Data Exploration: The data exploration shows pairwise
relationships between key features, such as energy
consumption, mobility pattern, packet transmission, and
link stability, for two UAV behaviour types (labels 0 and
1), likely representing normal and indirect patterns. Kernel
density plots reveal distribution differences; evasive UAVs
(label 1) exhibit lower link stability and higher energy
consumption.

These patterns support fuzzy logic-based classification by
highlighting feature separability, enabling adaptive
countermeasures through decision rules. Figure 4 shows
the data exploration outcomes and data exploration
highlights behavioural differences between normal and
evasive UAVs. Evasive patterns show higher energy
consumption and lower link stability, supporting fuzzy
logic classification by emphasizing feature separation for
adaptive threat classification and detection and
countermeasure selection.
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Figure 4: Feature distribution analysis for UAV
behavioural classification

3.3 Data preprocessing

Data preprocessing for UAV countermeasures using fuzzy
logic involves Min-Max normalization to scale sensor
input data key parameters, between 0 and 1. Fuzzy logic is
used in the research to enhance decision-making of aerial
threats using UAVs through threat classification and
detection, evasive manoeuvres, and adaptive control
decisions.

Data preprocessing techniques to prepare sensor inputs to
the fuzzy inference system are paramount in this process.
The Min-Max normalization technique is applied to scale
important UAV sensor characteristics, e.g., speed, altitude,
and threat proximity, to a common range of [0,1]. This
transformation improves the consistency of input values,
allows for better computational efficiency, and improves
understandability and responsiveness for the fuzzy logic
system. as obtained in Equation (1).

X—min (W)

Xnew = max(X)—min (X) @

W,,ew- The adjusted value derived from the normalized
outcomes

W- 0Old value

max (x)- The dataset's maximum value

min(x)- The dataset’s minimum value

This preprocessing step guarantees a balanced assessment
across data input variables while mitigating any bias from
differential scales. By creating better consistency of data
ranges, the system is better poised to accurately evaluate
threats, and to adaptively respond to them in real-time in
FANET scenarios.
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3.4 Feature extraction using PCA

Feature extraction using PCA in UAV countermeasures
based on fuzzy logic involves reducing the dimensionality
of sensor data while preserving essential features. The
efficiency and effectiveness of UAV countermeasure
systems by integrating fuzzy logic and dimensionality
reduction techniques that correctly identify and factor in
the most important behavioural dimensions. PCA supports
this through feature extraction as plan to minimize the
dimensionality of UAV sensors and target data while still
retaining critical features needed for quick classification
and detection of threats, fast navigation, and making
evasive decisions. PCA takes a set of variables that may be
correlated and transforms them into a smaller number of
uncorrelated variables called principal components,
ordered by the amount of variance it explains from the
original data. PCA allows the fuzzy inference system to
reduce the input space, which benefits computational
performance and understanding of the system. Assuming
that wy, wy, .....,w; € R™, security issues around energy
data management are taken into consideration during PCA
computation.

Determine the mean vector p in m-dimensions by Equation

Q).
n=1Tiw )

The mean of all input vectors is computed across each
dimension to center the data. This equation calculates the
overall average (mean) across all UAV sensor observations
for each dimension (speed, altitude, threat offset, etc.).
Centring the data by simply subtracting this average
ensures that PCA will ultimately detect not the absolute
location of the UAV in feature space, but the variability of
the UAV behaviour in feature space. This makes the fuzzy
system more responsive to the real behaviour patterns in
the data, as opposed to noise.

T =23 (wy - w)(w; — )’ )

Determine the observed data's estimated matrix of
covariance T by Equation (3). (Wj — u)s is the transpose
of the centered vector. This equation quantifies how much
each pair of sensor features covaries across all UAV
observations. When fully understood, these relationships
are leveraged through PCA to determine what
combinations of features are most salient for
differentiating normal UAV behaviour from threatening
ones. This improves the quality of input into the fuzzy
system to facilitate better decision-making in response to
threats. Determine the associated -eigenvectors and
eigenvalues  of T,  wherebyd; =4, =>4, = 0.
Determine the primary components from the ! original
variables by Equation (4).
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Zy = b11W1 + b12W2 + -+ bllWl
Zy = b21W1 + b22W2 + -+ blel

“)

zZ; = b11W1 + b12W2 + -+ bllWl

These equations convert the initial sensor data into new,
uncorrelated features (principal components) that better
capture the variation present in UAV behaviour. These
features reduce redundancy and improve the clarity of the
fuzzy logic system inputs thus directing its attention
towards truly meaningful patterns in the data that can be
used for the classification and detection and control of
threat responses. It is orthogonal that z; are uncorrelated.
As much of the initial variation in the data set can be
explained by z;, as much of the residual variance can be
explained by z,, etc. In the most useful data sets, a small
number of bigger eigenvalues often outnumber the others,
as follows in Equation (5). b;; describes the coefficients
(elements of eigenvectors) used for projecting original
vectors into the new space. These components z; are
orthogonal and uncorrelated, forming a new feature basis.
Where the proportion maintained in the data format is
denoted by z;. PCA was used for feature extraction with
the requirement to retain the extracted main components
that explain at least 80% of the total variation. Figure 5
presents the feature importance of the dataset.
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y; is defined as the total variance captured by the first n
components. It ensures that the reduced space still reflects
the majority of the original data information content.
Utilizing PCA in this approach allows the UAV
countermeasure system to only process the more relevant
features of behaviour, allowing the computational load to
be dramatically reduced and increasing the overall
decision accuracy) of the system. Moreover, privacy
limitations have been addressed by removing class labels
from the behavioural features presented; the UAV
countermeasure system is therefore solely focusing on the
de-identified numerical data and statistical features of
behaviour, specifically in energy-sensitive applications.
This equation guarantees that the chosen principal
components retain at least 80% of the original data's total
variance. It ensures that most of the useful information
about UAV behaviour is preserved after the dimensionality
reduction; therefore, the fuzzy system can work properly
without sacrificing accuracy. The pair plot visualizes
feature distributions and relationships between UAV
behaviours (label 0 = cooperative, 1 = malicious).
Malicious UAVs tend to show higher energy consumption,
erratic mobility, lower packet transmission, and reduced
link stability, enabling fuzzy logic to distinguish patterns
and support adaptive threat classification and detection
shown in Figure 5. To conduct 20 experimental runs to
capture performance variability.
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o
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b
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packet_transmission
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Figure 5: Feature Importance of the proposed dataset

The Table 3 summarizes the percentages of variance
explained by the principal components. The first

component accounts for 52%, the second accounts for
22%, and third component accounts for 11% and the last
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four components together account for 15%. This indicates
that there is some concentration in the distribution of
variance.

Table 3: The distribution of variance

Component | Variance Explained
(%)

1 52

2 22

3 11

Others 15

To settled on 3 retained components, totaling 85% of the
variance (Component 1 = 52% (12826/31940),
Component 2 = 22% (7081/31940), Component 3 = 11%
(3582/31940)). This is consistent with the generally
accepted 80% threshold for cumulative variance retention,
which is commonly noted in UAV threat classification and
detection studies. A scree plot of the eigenvalues used, is
provided in Figure 6.
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Figure 6: Scatter plot for PCA

3.5 Classification and detection using
mamdani-type fuzzy inference system
(MFIS)

An MFIS is employed in UAV countermeasures to classify
drones as cooperative or malicious based on behavioural
inputs. The system uses a rule-based approach with fuzzy
logic to handle uncertainty and imprecision, evaluating
input variables through membership functions and
inference rules. By translating ambiguous behaviour into
actionable classifications, MFIS enhances threat
classification and detection, supporting real-time decision-
making in autonomous aerial defence systems against
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potential malicious UAVs. The proposed MFIS employs
triangular and trapezoidal membership functions for
fuzzification, followed by minimum (min) T-norm for
handling logical AND operations during rule evaluation,
and maximum (max) S-norm for aggregating outputs from
multiple rules. Finally, the Mean of Maximum (MoM)
method is used in the defuzzification phase to obtain a
crisp control output from the fuzzy set. To elaborate on the
fuzzy logic system components. The MFIS employs
triangular and trapezoidal membership functions for the
four input variables—energy consumption, mobility
pattern, packet transmission, and link stability—each with
three linguistic terms (low, medium, high). These
combinations form a total of 45 fuzzy rules, which are
expert-defined to capture UAV behaviour patterns.

> Fuzzification using a knowledge rule

Using the normalized scale [0, 1], it identifies data and
rules based on the values of the observations w, z, x, . ., for
the value of w determined at the time s, also defines
w(s) € [0,1]. Each of these observables (w,z,x,..)
corresponds to a limited number of atomic sentences, as
shown in Equation (6).

Wy Wy, .0iZy,Z5,.., X1, Xy .. (6)

W; is the linguistic term for input variables w (eg., high
deviation), Z; is the linguistic term for input variables z
(eg., Medium delay), X; is the linguistic term for input
variables x (eg., High threat), These are atomic sentences
that represent the linguistic terms (e.g. "High altitudes",
"Low battery") corresponding to the input and output
variables of fuzzy logic thermal context. The atomic
sentences define the vocabulary in which fuzzy rules can
be expressed such as "IF flight deviation is high THEN
threat level is high, which connects to the purpose of
assessing UAVs' ambiguous behaviours. Defines the
linguistic variables (e.g. "high speed", "low energy") that
characterize input and output behaviours.

The union of the atomic phrases thus forms the language
V that is linked to the system. It considers the FORM,, over
the V set of formulas. It refers to a function e: [0,1] —
[0,1] as a fuzzy set concerning observations. The
selection of an infinite number of sets of fuzzy values over
each observable is known as fuzzification of the
observations w, z, x,..., and results in functions, as follows
in Equation (7).

e1,6ey., 0,0y .., 91,92 - (7)

e; membership function for Wj, applied to input w, hy
membership function for Z;, applied to input z, g,
membership function for x;, defining fuzzy output values.
These functions assign degrees of truth for the atomic
sentences, where inputs (for example, deviation, delay) are
mapped and assigned to values between 0 and 1. These
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fuzzy sets allow the system to classify UAV behaviours
"softly," thereby acknowledging the uncertainty that is
important for detecting potential threats in real time.
Defines fuzzy membership functions to evaluate the
degree of truth of every linguistic term.

The function of e,, for example, in logic, is to give the
associated atomic sentence W, a way to be assigned a level
of truth. Specifically, at the time s, w is w(s) € [0,1].
Then e; (w(s)) is the level of truth of W;. Immediately, it
follows that the fuzzification of the observations w, z, z,...
uniquely determines an atomic assignment at each instant
s, as obtained in Equation (8).

B (W) = ()i (Z) = (), ©®
w(s) and z(s) are the real-time input values at time s,
ﬁs(Wj) is degrees to which w(s) satisfies fuzzy set W;,
and fig (Z ]-) is described as degrees to which z(s) satisfies
fuzzy set Z;. Assign a truth value for each observation (e.g.
how true is "speed is high" at time ss) using the
corresponding fuzzy membership function. This creates
the fuzzy input vector at any given time step, allowing raw
UAV behaviour to be transformed into a fuzzy logic-
capable format. Evaluate the truth value of each atomic
sentence at time s using membership functions.

It is particularly, to choose a model; the system is
irrelevant. It fixes a many-valued logic £ by selecting a t-
norm *: [0, 1]2 — [0, 1]. The atomic assignment then
uniquely extends to an assignment since Lis is truth-
functional, as shown in Equation (9).
Us: FORM, — [0,1] ©)
Given the logic £ and the fuzzification applied to fuzzy
logic, each formula ¢ € FORM,;, of L might be provided
with a distinct truth value at each instant s. Extends the
atomic truth assignments to whole fuzzy logic rules using
many-valued logic (with some t-norm operation such as
MIN). This allows logical reasoning about fuzzy rules,
which is the fundamental mechanism for discerning
whether a UAV is malicious or safe. Extends atomic
assignments (from Eq. 8) to whole fuzzy logic rules using
many-valued logic.

> FIS

The fuzzy inference, specifically fuzzy control systems.
The Mamdani-type inference follows in logical recasting.
Instead, it will strive to be in line with accepted practices.
It may be interpreted as Mamdani-type reasoning. Fuzzy
inference may be summed up as follows.

Phase 1: The observables w, z, x, .., should be divided into
two non-empty, disjoint subsets: the input observables
{w,z ...} and the output observables {x,...}. Should the
language V be divided into the following sets: input
variables {W;,W,, ...,Z;,Z,,...} and output variables
{X1, X5, ..., } Additionally, divide the fuzzy sets into the
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following collections: input fuzzy sets
{e1, ey, ..., hy, hy, ... } and output fuzzy sets {g4, g, .. }-
Phase 2: Establish a limited set of rules of the following
type: X is (NOT) W; if w is (NOT) W; AND z is (NOT) Z;
THEN x is NOT X;... It maintains that IW; is negated when
the NOT is contained in "w is (NOT) W;," and the same is
true for Z;, X;, ..,

Phase 3: For each rule Q as in (M2), given the resulting
input values w(z),z(s),... at time s, set, as follows in
Equation (10).

Q; = min {ej’(w(s))),h{ (z(s)),..,} € [0,1] were,
& (W(5)) =

1-— ej(w(s))if Wjis negated in Q (10)

ej (w(s)) Otherwise

Calculates the firing strength of a fuzzy rule at time ss
using the minimum T-norm for logical ANDs. When
computing firing strength, to determine the impact of UAV
behaviour on rules. As an example, if a UAV has a high
deviation behaviour and has bad communication, the
corresponding rule for "malicious UAV" would fire
strongly. Computes the firing strength of a rule at time ss,
using MIN t-norm for logical AND.
Phase 4: Using the function Qq, create the resulting fuzzy
set of rule Q, at the time s for each Qg calculated in phase
3: Given by g;:[0,1] -, as follows in Equation (11).

, _ min {Q 1 — g/ (w)}if X, is negated in Q;
¢j(@) ={ min { Q, g7 (w)} Otherwsie

(11)

Produces a fuzzy output set given the input firing strength
Qs, and the output fuzzy set g; of the rule. Creates the
output response (e.g., a threat level), still not crisp, but
fuzzy indicating something along the lines of "likely
malicious". Creates the fuzzy output set from a rule, and
modifies it for output negation.

Phase 5: The function E,:[0,1] - [0,1] is defined as the
aggregate output fuzzy set at time sin Equation (12).

E, = max {g{) (12)
E; is described as the agreed fuzzy output at time s for
output value (w), max is the logical OR to combine
multiple rule consequences. It takes all individual rule
outputs and combines them into a single fuzzy output set
using the maximum (S-norm) operation. This considers the
collective decision of the system at time ss based on all
individual rules and provides a joint fuzzy evaluation of
the UAV behaviour.

It takes all rule outputs and combines them into a single
fuzzy output set using the MAX S-norm.
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Consequently, as in phase 4, the maximum of all rules
ranges throughout the output fuzzy sets. Consequently,
Mamdani-type inference yields the fuzzy set E; at each
instant s, as shown in (phase 5).

> Defuzzification

The fuzzy set Es: [0,1] = [0,1] is the result of a Mamdani-
type inference at time s. The range of normalized values
for the physical observation x that has to be controlled is
known as the domain of E;. To have real control, x needs
to be set to a certain value wg € [0,1]. This is
accomplished by defuzzifying Ej.

It assumes decision support that the well-known mean of
the maximum defuzzification method is used to calculate
w; from Eg. It shows how wy is calculated when utilizing
discrete approximations to E;. Assume the set of sample

points T = {% |m =0,1, ...,M} c [0,1] after selecting an
integer M > 1. Set Ny = {t € T|E;(s) = maTxEs(w)} to
WE

extract those that maximize Eg over T, as obtained in
Equation (13). Figure 6 presents the MFIS structure.

— ZeensT

INs| (13)
Converts the fuzzy output E;(s) into a crisp control value
ws € [0,1] omega_s in [0,1] by averaging the values
where E,(s)is highest. This crisp output is essential for
taking decisive control actions like activating
countermeasures or issuing alerts perfectly aligning with
the objective of actionable, real-time UAV threat
classification. The proposed MFIS uses fuzzy logic to
classify UAVs as cooperative or malicious by evaluating
behavioural inputs. It applies fuzzy rules, membership
functions, and defuzzification to support real-time
decision-making for adaptive UAV countermeasures in
uncertain environments as shown in Figure 7.

S

Knowledge Rule
Data Rule
Base Base
INPUT oUTRUT
* Fuzzification Defuzzification
Interface Interface
Decision-support
Unit 1
Fuzy Fuzzy !
|
|

Figure 7: Architecture of the Proposed MFIS for UAV
threat classification
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4 Result

This section deliberates on the results produced by the
implementation of the model, including parameter setup,
evaluation criteria, and comparative phase.

4.1 Experimental setup

Python 3.8 made multitasking and development duties
demanding performance evaluations much easier due to
this modern laptop design as shown in Table 4.

Table 4: Experimental setup

Details

Intel Core i7 CPU, 16 GB RAM,
NVIDIA GTX 1660 GPU

Python 3.8, scikit-fuzzy, NumPy,
Pandas

80% training, 20% validation

Aspect
Hardware

Software Stack

Training-
Validation Split

4.2 Hyperparameters

MFIS parameters as described in Table 5.

Table 5: Parameter’s setup

Membership Functions

Parameter Value/Setting

Number of Input | 4 (Energy, Mobility,
Variables Transmission, Link Stability)
Membership Function | Triangular, Trapezoidal
Type

Number of | 3 (Low, Medium, High)

Rule Base Size

45 rules

Inference Method

Mamdani-type inference

Fuzzy T-norm Operator

Minimum (min)

Fuzzy S-norm Operator

Maximum (max)

Defuzzification Mean of Maximum (MoM)
Method

Normalization Min-Max Normalization
Technique

Number of Principal | 3 components
Components

Variance Retained | > 80%

(PCA)

4.3 Evaluation criteria

The proposed MFIS approach showed good performances
on all evaluation metrics. The ROC and PR curve
evaluations have provided evidence of accurate threat
classification and detection, and the energy & mobility
pattern analysis has demonstrated the energy-efficient
UAV countermeasures.
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4.3.1 ROC Curve

The performance of a fuzzy logic-based UAV
countermeasure system was evaluated. The curve shows a
high true positive rate across almost all false positive rates,
indicating strong classification performance. The AUC is
0.98, suggesting the model is highly effective at
distinguishing threats from non-threats in fuzzification
strategy for mitigating fuzzy logic. The steep rise near the
y-axis reflects excellent sensitivity with minimal false
alarms, making the system suitable for real-time UAV
threat classification and detection and response. Figure 8
demonstrates the impressive classification performance of
the fuzzy logic-based UAV countermeasure system by
having very high sensitivity with low false alarm rates,
making it suitable for real-time threat identification and
response.

Receiver Operating Characteristic (ROC) Curve

08

o
@

True Positive Rate
=
=
\

02

00 = ROC curve (AUC = 0.98)

00 02 04 06 08 10
False Positive Rate

Figure 8: ROC Curve illustrating classification
performance of the proposed MFIS-Based UAV
countermeasure system

4.3.2 Precision-Recall (PR) curve

The PR curve evaluates the performance of a fuzzy logic-
based UAV countermeasure model. The high area under
the curve (AUC = 0.98) indicates outstanding
classification performance which sustained high precision
despite increased recall. It suggests that the model
effectively detects threats (true positives) with minimal
false alarms, making it highly suitable for real-time UAV
threat mitigation. Figure 9 displays the PR curve
outcomes.

Precision-Recall Curve

08

Precision

o

05 | Precision-Recall curve (AUC = 0.98)

00 02 04 06 08 10
Recall

Figure 9: High-performance classification and detection
accuracy is shown by the PR Curve for MFIS
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4.3.3 Energy consumption vs mobility pattern

The relationship between energy consumption and
mobility patterns in UAVs, segmented by behavior labels
(0 and 1), is analyzed. The x-axis represents energy
consumption, while the y-axis indicates normalized
mobility patterns.

Two distinct clusters emerge: behaviour label 0 (in blue)
generally reflects lower to moderate energy consumption
and varied mobility, whereas behaviour label 1 shows
broader energy usage and more consistent high mobility.
In the context of UAV countermeasures based on fuzzy
logic, this visualization helps identify behaviour patterns
that can trigger adaptive responses for efficient energy
management and mobility control under uncertain
operational conditions. Figure 10 presents the outcomes of
mobility pattern vs energy consumption.

Scatter Plot of Energy Consumption vs Mobility Pattern by Behavior Label

1.0 behavior_label
0
1

Mobility Pattern

20 30 40 50 60 70 80 90
Energy Consumption

Figure 10: Energy consumption and mobility pattern
using the proposed MFIS Method

4.4 Comparison phase

Python 3.12 made multitasking and development duties
demanding performance evaluations much easier due to
this modern laptop design. The result comparison
parameters, such as packet delivery ratio, routing
overhead, and end-to-end delay, are used to demonstrate
the comparison of the proposed model, MFIS, with the
traditional model, efficient honesty-based classification
and detection scheme (EH-DS) [20].

4.4.1 Packet delivery ratio

The packet delivery ratio for the proposed MFIS method
was compared with the existing EH-DS approach, showing
significant improvement as the number of drones
increases. The MFIS method consistently shows higher
packet delivery ratio values across all drone counts
compared to EH-DS. While EH-DS increases steadily,
MFIS achieve significantly better performance, indicating
more reliable and efficient data delivery. Figure 11 display
the packet delivery ratio outcomes.
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Figure 11: Comparison of packet delivery ratio

4.4.2 Routing overhead (packets)

The additional communication and processing burden
placed on a network because of the transfer or routing of
control or routing packets. MFIS demonstrates lower
routing overhead throughout the range, with values
remaining minimal even as the number of drone increases.
In contrast, EH-DS shows relatively higher overhead,
suggesting more control traffic and less efficient routing
management. Figure 12 depict energy consumption with
the growing number of drones.
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Figure 12: Representation of routing Overhead (Packets)

4.4.3 End-to-End (E2E) Delay (ms)

The E2E delay for UAV systems with different numbers of
drones is compared, evaluating the proposed MFIS method
with the existing method, EH-DS. The end-to-end delay
for MFIS remains lower across all drone densities
compared to EH-DS. As the number of drones increases,
EH-DS experiences higher delays, whereas MFIS
maintains better responsiveness and faster communication
flow. Figure 13 demonstrate MFIS's superior scalability
and efficiency in reducing communication latency, making
it a more effective solution for real-time UAV operations
under increased network loads.
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Figure 13: Result of the E2E delay

4.5 Discussion

The research is primarily aimed at producing an intelligent
fuzzy logic-based UAV countermeasure system (MFIS)
that improves accuracy, energy efficiency, and
communication reliability in constantly changing and
different environments. EH-DS method [20], while
functional, is limited in significant areas: static thresholds,
low adaptability to noise, difficulty dealing with
cooperative or spoofing attacks, and inattention to dealing
properly with situations of very fast drone movements or
complicated environments. Alternatively, the proposed
MFIS method performs real-time fuzzification to obtain
effectively adaptive decision-making mechanisms,
resulting in improved packet delivery ratio and reduced
time taken in acquisitions. Consequently, these
advancements demonstrate that MFIS has superior
performance across important metrics, and more
importantly, better scalability and operational efficiency
with increasing sizes of UAV networks. The proposed
MFIS has many potentials to adapt fuzzy logic limits by
providing real-time input normalization and dynamic rule
evaluation to generate context-aware decisions.
Conventional fuzzy logic systems tend to use non-adaptive
sets of rules, but MFIS employs PCA-optimized feature
refinement and use of input variability to contextualize
retrospectively to improve the adaptation of UAVs to
perceptions. In part, this will relax their reliance on fixed
thresholds and their adaptability when dealing with UAVs
as unique environmental system factors.

5 Conclusion

This decision-support approach for UAV threat
identification and mitigation, based on fuzzy logic, uses a
well-developed dataset that collects UAV behavioural
information, including key parameters. Preprocessing
strategies, including min-max normalization, ensure
uniform data and reduce the effects of scaling issues,
which strengthens the eventual analysis. Using PCA in
feature extraction, critical attributes relevant to UAV
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behaviour were emphasized. The system is designed to
increase the safety of the messages in FANETs by
detecting threats and countermeasures. The MFIS was
used as the main tool, constantly computing a dynamic
honesty score based on the features it received. This
enabled dynamic labelling of UAVs as cooperative or
malicious to facilitate the effective implementation of
countermeasures. The simulation results show a significant
improvement in performance parameters, including to-end
delay, routing overhead (packets), and packet delivery
ratio, by 15-55% compared to previous methodologies.
The findings confirm the merits of the system to generate
reliable and timely threat analysis and relevant advice
without compromising operational effectiveness. Real-
time processing speed and scalability remain a challenge,
especially in cases of large networks of UAVs. The future
improvements will focus on speed optimization and
hybridization of the most modern hybrid methods, suitable
for larger-scale usage. In future research, integrate realistic
UAV mobility models such as Gauss-Markov or Random
Waypoint (RWP) to simulate dynamic flight behaviours
over time. It will apply statistical significance tests to
compare MFIS and EH-DS, ensuring reliable performance
validation across all metrics. It will address this by
incorporating time-based UAV mobility datasets and real-
time testing environments to comprehensively evaluate
latency and computational overhead. It plans to enhance
the system by integrating hybrid fuzzy systems,
specifically a neuro-fuzzy inference mechanism, to allow
adaptive tuning of membership functions and rule bases
through learning. It also aims to incorporate reinforcement
learning techniques to enable online rule adjustment based
on real-time UAV behavioural feedback, allowing the
system to continuously evolve and improve its threat
classification and detection and response strategies. To
incorporate statistical significance testing such as t-tests or
ANOVA to validate performance gains by computing
confidence intervals and p-values for reported metrics.
Future work will incorporate statistical measures for both
methods to strengthen performance comparison
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