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The proliferation of Unmanned Aerial Vehicles (UAVs) in both civilian and military spheres has raised 

substantial security issues, especially within volatile communication environments such as Flying Ad Hoc 

Networks (FANETs). To challenge of the problem of real-time detection and response to UAV 

misbehaviour, the research proposed a Mamdani-type Fuzzy Inference System (MFIS) for real-time 

classification and detection of threats and subsequent actions. The MFIS is designed to take in information 

from UAV behaviours dataset (1000 samples) was obtained from Kaggle, consisting of four main features: 

energy consumption, mobility pattern, packet transmission, and link stability. After pre-processing the 

dataset through Min-Max normalization for standardization and amid Principal Component Analysis 

(PCA) for dimension reduction, the MFIS developed produces less computational load while retaining 

vital behavioural characteristics of the datasets. The results demonstrate the ability for the MFIS to 

enhance communication reliability while reducing key issues with routing and communication delays 

significantly over traditional FMIS methods like the Efficient Honesty-based Detection Scheme (EH-DS). 

The results show that the framework is an effective method for utilizing real-time context in making energy-

efficient decisions for real-time UAV threat response. The simulation results show a significant 

improvement in performance parameters, including to-end delay, routing overhead (packets), and packet 

delivery ratio, by 15-55% compared to previous methodologies. While this framework has many 

advantages in terms of performance, these results confirm that the proposed fuzzy logic framework enables 

adaptive, accurate, and energy-efficient threat mitigation in real-time UAV operations. 

Povzetek: Članek predstavi Mamdani-jevski fuzzy inferenčni sistem za sprotno zaznavanje groženj in 

odzivanje v FANET omrežjih. Ob uporabi normalizacije, PCA in štirih vedenjskih značilk UAV model 

učinkovito loči kooperativne in zlonamerne drone ter izboljša zakasnitev, nadzorni promet in dostavo 

paketov. 

 

1 Introduction 

UAVs, commonly referred to as drones, have proliferated 

rapidly in both civilian and military activities due to their 

wide range of functions, cheaper prices, and quick 

missions [1]. In contrast, the wider availability and 

advanced functions of UAVs promote an incremental 

increase in security fears, especially regarding monitoring, 

smuggling, or even attack missions. There is thus 

increasing  

pressure for effective UAV systems that can analyse threats 

dynamically and recommend appropriate responses 

accordingly in a real-time manner [2]. Traditional rule-

based systems have difficulty representing uncertainty and 

adapting to dynamic environments. As depicted in Figure 

1, the fuzzy logic-based system adapts the decision-

making of UAV countermeasures by interpreting 

ambiguous information to identify threats and recommend 

actions. 

 
Figure 1: Decision support system using fuzzy logic 
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Figure 1 showed Decision Support System using Fuzzy 

Logic. A fuzzy logic-based decision support system (DSS) 

represents a responsive, flexible, and understandable 

manner of UAV threat evaluation and countermeasure 

selection [3]. The fuzzy DSS for UAV countermeasures 

takes in many input variables, including the key features 

[4]. The development of remote sensing and 

photogrammetry systems, especially in the use of UAVs, 

has provided efficient and high-resolution services for 

acquiring imagery of land. This research emphasizes how 

UAV data could be used to automatically detect and 

delineate land boundaries, which introduces improvement 

in the accuracy and reliability of cadastral updates [5]. 

Fuzzy logic-based decision-support systems have several 

benefits for the UAV countermeasures, but it has some 

limitations. The desire for expert guidance while 

developing rules and membership functions adds 

subjectivity and may limit the potential for the system to 

adjust to different threat circumstances [6]. The system is 

designed to enhance communication security in FANETs 

by identifying and mitigating potential threats. An MFIS 

classifies drones as cooperative or malicious based on their 

behavior. The performance of UAV target tracking was 

improved in [7].  To improve the accuracy of UAV 

trajectory prediction, Artificial Neural Networks (ANNs) 

characterize complex flight dynamics more effectively. 

The research creates a multi-layer ANN model to optimize 

UAV flight trajectories through uncertain and dynamic 

environments [8]. Additionally, fuzzy logic systems have 

no inherent learning functionality, and therefore cannot 

adjust to UAV technologies and tactics without constant 

updates [9]. 

 

1.1 Objective of the research 

 Existing UAV threat classification and detection systems 

struggle to operate effectively under uncertain and 

imprecise data conditions, limiting their real-time 

decision-making capabilities. The research aims to 

develop a robust fuzzy logic-based decision support 

system that classifies UAV behaviours and recommends 

adaptive countermeasures using sensor-derived 

behavioural indicators and optimized inference 

mechanisms. 

 

1.2 Contribution of the research  

• To propose a fuzzy logic-based decision support 

system using a multi-input fuzzy inference model 

that classifies UAV behaviour and supports real-

time countermeasure selection. 

• To utilize a UAV behavioural dataset comprising 

key threat-related features to simulate and 

evaluate UAV actions under normal and evasive 

conditions in security-sensitive zones. 

• To implement Min-Max normalization for 

scaling sensor data and apply Principal 

Component Analysis (PCA) to extract dominant 

features, enhancing model accuracy and 

computational performance. 

• To validate the proposed system against a 

benchmark model by conducting a comparative 

analysis using standard classification metrics to 

demonstrate improved decision quality under 

uncertain inputs. 

 

1.3 System overview 

The research's relevant work is outlined in Section 2, 

methodologies are covered in Section 3, findings are 

summarized in Section 4, and the work is concluded in 

Section 5. 

 

2 Related works  

To improve multicopper reliability under counter-UAV 

threats by proposing a modular autopilot system with 

backup control for trajectory tracking was proposed [10]. 

To introduce a fuzzy inference-based controller using 

image recognition from six map sectors. Results indicate 

enhanced autonomous navigation. However, the approach 

lacks practical deployment details, suggesting limitations 

in real-world testing and adaptability to diverse UAV 

environments. To predict energy consumption in low-cost 

UAVs using Artificial Intelligence (AI) algorithms to 

enhance efficiency was described [11]. To propose five 

models Random Forest (RF), Regression Tree (RT), 

Support Vector Machine (SVM), Artificial Neural 

Network (ANN), and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) on an open quadcopter flight dataset. 

Results show RF performs best. Limitations include 

minimal consideration of weather impacts and diverse 

UAV configurations. To reduce computational demands in 

large-scale UAV swarm confrontations a fuzzy multi-agent 

reinforcement learning (FMARL) approach was described 

[12]. To model UAV interactions as a fuzzy game, 

assigning policies to abstract agents, not individuals. 

Results show reduced floating-point operations and 

storage needs. A key limitation is the potential loss of 

granularity during fuzzification and defuzzification 

processes. 

A secure and adaptive AI control system for UAVs in 

dynamic environments was developed [13]. To propose a 

hybrid framework combining an enhanced Soft Actor-

Critic (SAC) method with a Fuzzy Inference System (FIS), 

integrating expert knowledge for efficient learning. 

Results show effective real-time path planning and 

intruder tracking. Limitations include reliance on 

simulations and pending real-world validation. UAV 

performance in precision agriculture using fuzzy multi-
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criteria decision-making (MCDM) approach was 

evaluated [14]. To suggest an integrated method 

combining Fuzzy-Weighted Zero-Inconsistency (FWZIC) 

and Fuzzy Decision by Opinion Score Method (FDOSM) 

to assess Unmanned Aerial Vehicles (UAVs) based on 

payload, endurance, and dimensions. Results show 

payload is most critical. Limitations include reliance on 

subjective expert input and scenario-specific criteria. 

Autonomous power monitoring in UAVs for power system 

stability was enhanced [15]. To recommend an onboard 

monitoring system using the Low Power Alarm and 

Battery (LPAB) status and forecasting method, with a 

fuzzy logic-based algorithm to estimate remaining flight 

time. Results show improved energy use and safe landings. 

Limitations include dependency on sensor accuracy and 

environmental variability. 

Decision-making in UAV swarm confrontations using 

game theory was introduced [16]. To propose a dynamic 

non-zero-sum game model with concepts like relative 

advantage and advantage coefficient, solved using a multi-

strategy fusion Particle Swarm Optimization (PSO) 

approach. Results confirm effectiveness via simulation. 

Limitations include reliance on simulation-based 

validation and possible challenges in real-time scalability. 

Modelling and evaluation methods for Cooperative 

Operation System-of-Systems (COSoS) involving manned 

aerial vehicles (MAVs) and UAVs were described [17]. To 

discuss standard framework-based and complex network-

based modelling approaches, comparing their 

characteristics. Results summarize current effectiveness 

evaluation methods. Limitations include a lack of unified 

evaluation standards and challenges in real-world COSoS 

implementation. To improve UAV threat assessment in air 

defence using a dynamic fuzzy multi-attribute decision-

making model [18]. To propose a 3D evaluation system—

capability, opportunity, and intention combined with 

inverse Poisson-based time weighting and improved 

TOPSIS for threat prioritization. Results show enhanced 

accuracy and Limitations include complexity in real-time 

deployment and reliance on accurate intention estimation. 

Intrusion malware detection in UAVs by highlighting 

vulnerabilities in communication, software, and hardware 

systems are determined [19]. To present a taxonomy of 

detection methods using machine and deep learning 

algorithms, recent advances, and identify gaps. Results 

summarize current progress. Limitations include evolving 

threat complexity and limited real-time deployment 

evidence. Table 1 demonstrates the overall performance of 

previous work. 

 

 

Table 1: Summary of the related work 

 
References Aim & Proposed Method Results Limitations 

Mishra, and 

Palanisamy [10] 

Improve multicopper reliability under counter-

UAV threats via a modular autopilot system 

using a fuzzy inference-based controller with 

image recognition from six map sectors. 

Enhanced autonomous 

navigation and 

trajectory tracking. 

No practical deployment; limited 

real-world testing and adaptability. 

Sarkar et al. [11] Predict energy consumption in low-cost UAVs 

using AI models: Random Forest (RF), 

Regression Tree (RT), Support Vector Machine 

(SVM), Artificial Neural Network (ANN), and 

Adaptive Neuro-Fuzzy Inference System 

(ANFIS) on a quadcopter flight dataset. 

RF achieved the best 

prediction accuracy. 

Weather impacts and UAV 

variations are not fully addressed. 

Hu et al. [12] Reduce computational demands in UAV swarms 

using fuzzy multi-agent reinforcement learning 

(FMARL), modelling interactions via fuzzy 

game theory. 

Lowered storage and 

floating-point 

operations while 

maintaining effective 

control. 

Potential loss of detail due to 

fuzzification/defuzzification. 

Xia et al. [13] Develop a hybrid control system combining Soft 

Actor-Critic (SAC) and Fuzzy Inference System 

(FIS) for real-time path planning. 

Effective path planning 

and intruder tracking. 

Simulation-based; lacks real-world 

validation. 

Jasim et al. [14] Evaluate UAVs in precision agriculture using 

Fuzzy-Weighted Zero-Inconsistency (FWZIC) 

and Fuzzy Decision by Opinion Score Method 

(FDOSM). 

Payload emerged as the 

most critical criterion. 

Based on expert opinions; context-

specific criteria. 

Shcherban and 

Eremenko [15] 

Enhance autonomous power monitoring for 

UAVs using LPAB and fuzzy logic to estimate 

remaining flight time. 

Improved energy use 

and safer UAV landings. 

Relies on sensor accuracy and 

environmental factors. 

Wu et al. [16] Use game theory and a non-zero-sum model 

with relative advantage coefficients and PSO for 

UAV swarm decision-making. 

Model validated via 

simulation, showing 

effective outcomes. 

Limited to simulation; scalability 

concerns. 
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Wang et al. [17] MAV/UAV COSoS modelling using standard 

frameworks and complex networks and evaluate 

effectiveness. 

Summarized modelling 

and evaluation 

strategies. 

No unified standards; real-world 

implementation difficulties. 

Niu et al. [18] Improve UAV threat assessment using fuzzy 

multi-attribute decision-making with dynamic 

variable weights and enhanced TOPSIS. 

Better threat 

prioritization in 

dynamic environments. 

Complex real-time deployment; 

depends on accurate intention 

inputs. 

Cai et al. [19] Intrusion malware detection in UAVs; present 

taxonomy using ML and DL algorithms. 

Comprehensive 

overview of current 

approaches and 

progress. 

Rapidly evolving threats; limited 

real-world system integration. 

2.1 Research gap 

The existing methods on UAV threat detection based on 

the literature exist with multiple critical limitations that 

highlight the potential use of MFIS in regard to adaptivity, 

decision rules, and computation load. For example, the 

fuzzification methods in FMARL lead to removal of 

granularity, and even after significant validation, can still 

not be practically deployed; Image-based fuzzy controllers 

continue to exist without validation for deployment; AI 

energy prediction methods for MCDM assessment models 

that did not address environmental influences; and UFMS 

models such as SAC-FIS rely heavily on simulation-based 

development that do not address real-world applicability. 

Furthermore, multi-criteria decision making based fuzzy 

frameworks continue to be driven by expert judgment, 

which provides a level of subjectivity at multiple levels of 

application in the estimation of weights in fuzzy reasoning, 

and malware detection general methods for UAVs show 

silent integrations with real-time systems. All these 

demonstrate poor flexibility, static decision rules and high 

computation loads. Therefore, the proposed methods of 

designing MFIS as fuzzy MCDM suspect with data 

normalization in real-time, principles of PCA derived 

feature reduction, and scalable fuzzy rule base, provide a 

pathway for adaptive, scaling, and valid classifications of 

a UAV's behaviour in real-time and in different dynamic 

FANET environments, coupled with potential threat 

mitigation. 

 

3 Methodology 

The methodology involves monitoring the UAV 

behavioural dataset for threat classification and detection 

and countermeasure deployment using fuzzy logic-based 

decision systems to enhance communication security in 

FANETs by identifying and mitigating potential threats. 

UAV behavioural data was utilized in this research and 

Min-max normalization and PCA were applied for 

preprocessing and feature selection. An MFIS computes a 

dynamic honesty score based on key parameters. The 

system classifies UAVs and recommends 

countermeasures, enhancing threat classification and 

detection, network reliability, and energy efficiency. 

Figure 2 shows the general flow of the fuzzy logic 

decision-making process, from data capture through threat 

assessment and final response selection. 

 

 
 

Figure 2: Overall flow of the proposed UAV countermeasure approach using fuzzy logic 

 

3.1 FANETs 

Using fuzzy logic for UAV countermeasures aims to 

reinforce communication safety in FANETs with accurate 

threat classification and detection and mitigation. The 

capacity of fuzzy logic systems to accommodate uncertain 

and vague data makes them suitable solutions for mobile 

environments such as FANETs that are characterized by 
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signal hops and unpredictable threats. Through monitoring 

key indicators, the fuzzy logic methodology can identify 

anomalies or threats to network security. For the security 

of communication in the network, it engages in such acts 

as the encryption of signals, isolation of drone, or 

modification of routing. Fuzzy logic increases 

communication assurance in FANETs by managing 

uncertainty in data and security by assessing signal quality, 

drone behaviour, and traffic patterns to determine possible 

security threats. It allows for responsiveness such as 

encryption, blocking a drone's messages, deploying an 

alternative drone, and modifying routing, as identified in 

Figure 3.  

  

 

 

Figure 3: Resilient communication architecture in 

FANETs using Fuzzy Logic 

 

3.2 Data collection 

The data is a synthetic dataset with 1,000 instances to 

mimic the different behavioural characteristics of UAVs 

for use in research on fuzzy logic-based countermeasure 

systems, and intelligent threat classification and detection. 

Each instance can be characterized by four behavioural 

metrics: energy consumption, mobility pattern, packet 

transmission, and link stability. These metrics can be used 

to differentiate between cooperative UAV behaviour and 

malicious UAV behaviour.  

The dataset can be used to develop intelligent decision-

making models using labelled data with 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟_𝑙𝑎𝑏𝑒𝑙 

indicating if the UAV behavior is cooperative (0), or 

malicious (1). The key features description is shown in 

Table 2. 

 

 

Table 2: Feature description table 

 

Feature Name Description Data Type / Range 

𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 Power usage of the UAV in joules Continuous (Joules) 

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 Normalized movement variability (0 = stable, 1 = erratic) Float (0–1) 

𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 Successful packet transmission percentage Percentage (0–100%) 

𝑙𝑖𝑛𝑘_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 Communication links quality and consistency Float (0–1) 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟_𝑙𝑎𝑏𝑒𝑙 UAV classification: 0 = Cooperative, 1 = Malicious Categorical (0 or 1) 

 

Source:https://www.kaggle.com/datasets/ziya07/uav-

behavioral-dataset/data 

 

Data Exploration: The data exploration shows pairwise 

relationships between key features, such as energy 

consumption, mobility pattern, packet transmission, and 

link stability, for two UAV behaviour types (labels 0 and 

1), likely representing normal and indirect patterns. Kernel 

density plots reveal distribution differences; evasive UAVs 

(label 1) exhibit lower link stability and higher energy 

consumption.  

 

 

 

 

 

 

These patterns support fuzzy logic-based classification by 

highlighting feature separability, enabling adaptive 

countermeasures through decision rules. Figure 4 shows 

the data exploration outcomes and data exploration 

highlights behavioural differences between normal and 

evasive UAVs. Evasive patterns show higher energy 

consumption and lower link stability, supporting fuzzy 

logic classification by emphasizing feature separation for 

adaptive threat classification and detection and 

countermeasure selection. 

 

 

https://www.kaggle.com/datasets/ziya07/uav-behavioral-dataset/data
https://www.kaggle.com/datasets/ziya07/uav-behavioral-dataset/data


294 Informatica 49 (2025) 289-302                                                                                                                                          J. Guo 

 

 
 

Figure 4: Feature distribution analysis for UAV 

behavioural classification 

 

3.3 Data preprocessing 

Data preprocessing for UAV countermeasures using fuzzy 

logic involves Min-Max normalization to scale sensor 

input data key parameters, between 0 and 1. Fuzzy logic is 

used in the research to enhance decision-making of aerial 

threats using UAVs through threat classification and 

detection, evasive manoeuvres, and adaptive control 

decisions.  

Data preprocessing techniques to prepare sensor inputs to 

the fuzzy inference system are paramount in this process. 

The Min-Max normalization technique is applied to scale 

important UAV sensor characteristics, e.g., speed, altitude, 

and threat proximity, to a common range of [0,1]. This 

transformation improves the consistency of input values, 

allows for better computational efficiency, and improves 

understandability and responsiveness for the fuzzy logic 

system. as obtained in Equation (1). 

 

𝑋𝑛𝑒𝑤 =
𝑋−min⁡(𝑊)

max(𝑋)−min⁡(𝑋)
         (1) 

 

𝑊𝑛𝑒𝑤- The adjusted value derived from the normalized 

outcomes 

𝑊- Old value 

max⁡(𝑥)- The dataset's maximum value 

𝑚𝑖𝑛(𝑥)- The dataset’s minimum value 

This preprocessing step guarantees a balanced assessment 

across data input variables while mitigating any bias from 

differential scales. By creating better consistency of data 

ranges, the system is better poised to accurately evaluate 

threats, and to adaptively respond to them in real-time in 

FANET scenarios. 

 

 

 

3.4 Feature extraction using PCA 

Feature extraction using PCA in UAV countermeasures 

based on fuzzy logic involves reducing the dimensionality 

of sensor data while preserving essential features. The 

efficiency and effectiveness of UAV countermeasure 

systems by integrating fuzzy logic and dimensionality 

reduction techniques that correctly identify and factor in 

the most important behavioural dimensions. PCA supports 

this through feature extraction as plan to minimize the 

dimensionality of UAV sensors and target data while still 

retaining critical features needed for quick classification 

and detection of threats, fast navigation, and making 

evasive decisions. PCA takes a set of variables that may be 

correlated and transforms them into a smaller number of 

uncorrelated variables called principal components, 

ordered by the amount of variance it explains from the 

original data. PCA allows the fuzzy inference system to 

reduce the input space, which benefits computational 

performance and understanding of the system. Assuming 

that 𝑤1, 𝑤2, … . . , 𝑤𝑙 ⁡⁡ ∈ ℜ𝑚, security issues around energy 

data management are taken into consideration during PCA 

computation. 

Determine the mean vector µ in m-dimensions by Equation 

(2). 

 

𝜇 =
1

𝑙
∑ 𝑤𝑗
𝑙
𝑗=1           (2) 

 

The mean of all input vectors is computed across each 

dimension to center the data. This equation calculates the 

overall average (mean) across all UAV sensor observations 

for each dimension (speed, altitude, threat offset, etc.). 

Centring the data by simply subtracting this average 

ensures that PCA will ultimately detect not the absolute 

location of the UAV in feature space, but the variability of 

the UAV behaviour in feature space. This makes the fuzzy 

system more responsive to the real behaviour patterns in 

the data, as opposed to noise. 

 

𝑇 =
1

𝑙
∑ (𝑤𝑗 − 𝜇)(𝑤𝑗 − 𝜇)

𝑠𝑙
𝑗=1         (3) 

 

Determine the observed data's estimated matrix of 

covariance 𝑇 by Equation (3). (𝑤𝑗 − 𝜇)
𝑠
 is the transpose 

of the centered vector. This equation quantifies how much 

each pair of sensor features covaries across all UAV 

observations. When fully understood, these relationships 

are leveraged through PCA to determine what 

combinations of features are most salient for 

differentiating normal UAV behaviour from threatening 

ones. This improves the quality of input into the fuzzy 

system to facilitate better decision-making in response to 

threats. Determine the associated eigenvectors and 

eigenvalues of⁡𝑇, whereby𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑙 ≥ 0.  

Determine the primary components from the 𝑙 original 

variables by Equation (4). 
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𝑧1 = 𝑏11𝑤1 + 𝑏12𝑤2 +⋯+ 𝑏1𝑙𝑤𝑙

𝑧2 = 𝑏21𝑤1 + 𝑏22𝑤2 +⋯+ 𝑏2𝑙𝑤𝑙
⋯

𝑧𝑙 = 𝑏𝑙1𝑤1 + 𝑏𝑙2𝑤2 +⋯+ 𝑏𝑙𝑙𝑤𝑙

        (4) 

 

These equations convert the initial sensor data into new, 

uncorrelated features (principal components) that better 

capture the variation present in UAV behaviour. These 

features reduce redundancy and improve the clarity of the 

fuzzy logic system inputs thus directing its attention 

towards truly meaningful patterns in the data that can be 

used for the classification and detection and control of 

threat responses. It is orthogonal that 𝑧𝑙 are uncorrelated. 

As much of the initial variation in the data set can be 

explained by 𝑧1, as much of the residual variance can be 

explained by 𝑧2, etc. In the most useful data sets, a small 

number of bigger eigenvalues often outnumber the others, 

as follows in Equation (5). 𝑏11 describes the coefficients 

(elements of eigenvectors) used for projecting original 

vectors into the new space. These components 𝑧𝑙 are 

orthogonal and uncorrelated, forming a new feature basis. 

Where the proportion maintained in the data format is 

denoted by 𝑧𝑙. PCA was used for feature extraction with 

the requirement to retain the extracted main components 

that explain at least 80% of the total variation. Figure 5 

presents the feature importance of the dataset. 

 

𝛾𝑙 =
𝜆1+𝜆2+⋯+𝜆𝑛

𝜆1+𝜆2+⋯+𝜆𝑛+⋯+𝜆𝑙
≥ 80%        (5) 

 

𝛾𝑙 is defined as the total variance captured by the first 𝑛 

components. It ensures that the reduced space still reflects 

the majority of the original data information content. 

Utilizing PCA in this approach allows the UAV 

countermeasure system to only process the more relevant 

features of behaviour, allowing the computational load to 

be dramatically reduced and increasing the overall 

decision accuracy) of the system. Moreover, privacy 

limitations have been addressed by removing class labels 

from the behavioural features presented; the UAV 

countermeasure system is therefore solely focusing on the 

de-identified numerical data and statistical features of 

behaviour, specifically in energy-sensitive applications. 

This equation guarantees that the chosen principal 

components retain at least 80% of the original data's total 

variance. It ensures that most of the useful information 

about UAV behaviour is preserved after the dimensionality 

reduction; therefore, the fuzzy system can work properly 

without sacrificing accuracy. The pair plot visualizes 

feature distributions and relationships between UAV 

behaviours (label 0 = cooperative, 1 = malicious). 

Malicious UAVs tend to show higher energy consumption, 

erratic mobility, lower packet transmission, and reduced 

link stability, enabling fuzzy logic to distinguish patterns 

and support adaptive threat classification and detection 

shown in Figure 5. To conduct 20 experimental runs to 

capture performance variability. 

 

 
Figure 5: Feature Importance of the proposed dataset 

 

The Table 3 summarizes the percentages of variance 

explained by the principal components. The first 

component accounts for 52%, the second accounts for 

22%, and third component accounts for 11% and the last 



296 Informatica 49 (2025) 289-302                                                                                                                                          J. Guo 

 

four components together account for 15%. This indicates 

that there is some concentration in the distribution of 

variance. 

 

Table 3: The distribution of variance 

 

Component Variance Explained 

(%) 

1 52 

2 22 

3 11 

Others 15 

 

To settled on 3 retained components, totaling 85% of the 

variance (Component 1 = 52% (12826/31940), 

Component 2 = 22% (7081/31940), Component 3 = 11% 

(3582/31940)). This is consistent with the generally 

accepted 80% threshold for cumulative variance retention, 

which is commonly noted in UAV threat classification and 

detection studies. A scree plot of the eigenvalues used, is 

provided in Figure 6. 

 

 
Figure 6: Scatter plot for PCA 

 

3.5 Classification and detection using 

mamdani-type fuzzy inference system 

(MFIS) 

An MFIS is employed in UAV countermeasures to classify 

drones as cooperative or malicious based on behavioural 

inputs. The system uses a rule-based approach with fuzzy 

logic to handle uncertainty and imprecision, evaluating 

input variables through membership functions and 

inference rules. By translating ambiguous behaviour into 

actionable classifications, MFIS enhances threat 

classification and detection, supporting real-time decision-

making in autonomous aerial defence systems against 

potential malicious UAVs. The proposed MFIS employs 

triangular and trapezoidal membership functions for 

fuzzification, followed by minimum (min) T-norm for 

handling logical AND operations during rule evaluation, 

and maximum (max) S-norm for aggregating outputs from 

multiple rules. Finally, the Mean of Maximum (MoM) 

method is used in the defuzzification phase to obtain a 

crisp control output from the fuzzy set. To elaborate on the 

fuzzy logic system components. The MFIS employs 

triangular and trapezoidal membership functions for the 

four input variables—energy consumption, mobility 

pattern, packet transmission, and link stability—each with 

three linguistic terms (low, medium, high). These 

combinations form a total of 45 fuzzy rules, which are 

expert-defined to capture UAV behaviour patterns. 

➢ Fuzzification using a knowledge rule  

Using the normalized scale [0, 1], it identifies data and 

rules based on the values of the observations 𝑤, 𝑧, 𝑥, . ., for 

the value of 𝑤 determined at the time 𝑠, also defines 

𝑤(𝑠) ⁡∈ ⁡ [0, 1].  Each of these observables (𝑤, 𝑧, 𝑥, ..) 

corresponds to a limited number of atomic sentences, as 

shown in Equation (6). 

 

𝑊1⁡,𝑊2, . . , 𝑍1⁡, 𝑍2, . . , 𝑋1⁡, 𝑋2….        (6) 

 

𝑊𝑗 is the linguistic term for input variables 𝑤 (eg., high 

deviation), 𝑍𝑗 is the linguistic term for input variables 𝑧 

(eg., Medium delay), 𝑋𝑗 is the linguistic term for input 

variables 𝑥 (eg., High threat), These are atomic sentences 

that represent the linguistic terms (e.g. "High altitudes", 

"Low battery") corresponding to the input and output 

variables of fuzzy logic thermal context. The atomic 

sentences define the vocabulary in which fuzzy rules can 

be expressed such as "IF flight deviation is high THEN 

threat level is high, which connects to the purpose of 

assessing UAVs' ambiguous behaviours. Defines the 

linguistic variables (e.g. "high speed", "low energy") that 

characterize input and output behaviours. 

The union of the atomic phrases thus forms the language 

𝑉 that is linked to the system. It considers the 𝐹𝑂𝑅𝑀𝑉 over 

the 𝑉 set of formulas. It refers to a function 𝑒:⁡[0, 1] ⁡→

⁡[0, 1] as a fuzzy set concerning observations. The 

selection of an infinite number of sets of fuzzy values over 

each observable is known as fuzzification of the 

observations 𝑤, 𝑧, 𝑥,..., and results in functions, as follows 

in Equation (7). 

 

𝑒1⁡, 𝑒2, . . , ℎ1⁡, ℎ2, . . , 𝑔1⁡, 𝑔2…        (7) 

 

𝑒1  membership function for 𝑊𝑗, applied to input 𝑤, ℎ1 

membership function for 𝑍𝑗, applied to input 𝑧, 𝑔1 

membership function for 𝑥𝑗, defining fuzzy output values. 

These functions assign degrees of truth for the atomic 

sentences, where inputs (for example, deviation, delay) are 

mapped and assigned to values between 0 and 1.  These 
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fuzzy sets allow the system to classify UAV behaviours 

"softly," thereby acknowledging the uncertainty that is 

important for detecting potential threats in real time. 

Defines fuzzy membership functions to evaluate the 

degree of truth of every linguistic term. 

The function of 𝑒1, for example, in logic, is to give the 

associated atomic sentence 𝑊1 a way to be assigned a level 

of truth. Specifically, at the time 𝑠, 𝑤 is 𝑤(𝑠) ∈ ⁡ [0, 1]. 

Then 𝑒1(𝑤(𝑠)) is the level of truth of 𝑊1. Immediately, it 

follows that the fuzzification of the observations 𝑤, 𝑧, 𝑧,... 

uniquely determines an atomic assignment at each instant 

𝑠, as obtained in Equation (8). 

 

𝜇̅𝑠(𝑊𝑗) = 𝑒𝑗(𝑤(𝑠)), 𝜇̅𝑠(𝑍𝑗) = ℎ𝑗(𝑧(𝑠)), …         (8) 

 

𝑤(𝑠) and 𝑧(𝑠) are the real-time input values at time 𝑠, 

𝜇̅𝑠(𝑊𝑗) is degrees to which 𝑤(𝑠) satisfies fuzzy set 𝑊𝑗, 

and 𝜇̅𝑠(𝑍𝑗) is described as degrees to which 𝑧(𝑠) satisfies 

fuzzy set 𝑍𝑗. Assign a truth value for each observation (e.g. 

how true is "speed is high" at time ss) using the 

corresponding fuzzy membership function. This creates 

the fuzzy input vector at any given time step, allowing raw 

UAV behaviour to be transformed into a fuzzy logic-

capable format. Evaluate the truth value of each atomic 

sentence at time s using membership functions. 

It is particularly, to choose a model; the system is 

irrelevant. It fixes a many-valued logic ℒ by selecting a t-

norm *: [0, 1]2 → [0, 1]. The atomic assignment then 

uniquely extends to an assignment since ℒis is truth-

functional, as shown in Equation (9). 

 

𝜇𝑠:⁡𝐹𝑂𝑅𝑀𝑉 ⁡→ [0,1]                     (9) 

 

Given the logic ℒ and the fuzzification applied to fuzzy 

logic, each formula 𝜙⁡ ∈ 𝐹𝑂𝑅𝑀𝑉  of ℒ might be provided 

with a distinct truth value at each instant 𝑠. Extends the 

atomic truth assignments to whole fuzzy logic rules using 

many-valued logic (with some t-norm operation such as 

MIN). This allows logical reasoning about fuzzy rules, 

which is the fundamental mechanism for discerning 

whether a UAV is malicious or safe. Extends atomic 

assignments (from Eq. 8) to whole fuzzy logic rules using 

many-valued logic. 

➢ FIS 

The fuzzy inference, specifically fuzzy control systems. 

The Mamdani-type inference follows in logical recasting. 

Instead, it will strive to be in line with accepted practices. 

It may be interpreted as Mamdani-type reasoning. Fuzzy 

inference may be summed up as follows. 

Phase 1: The observables 𝑤, 𝑧, 𝑥, . ., should be divided into 

two non-empty, disjoint subsets: the input observables 

{𝑤, 𝑧 … } and the output observables {𝑥, . . . }. Should the 

language 𝑉 be divided into the following sets: input 

variables {𝑊1,𝑊2, … , 𝑍1, 𝑍2, … } and output variables 

{𝑋1, 𝑋2, … , } Additionally, divide the fuzzy sets into the 

following collections: input fuzzy sets 

{𝑒1, 𝑒2, … , ℎ1, ℎ2, … } and output fuzzy sets {𝑔1, 𝑔2, . . }. 

Phase 2: Establish a limited set of rules of the following 

type: 𝑋 is (NOT) 𝑊𝑗 if 𝑤 is (NOT) 𝑊𝑗 AND 𝑧 is (NOT) 𝑍𝑖 

THEN x is NOT 𝑋𝑖... It maintains that 𝑊𝑗 is negated when 

the NOT is contained in "𝑤 is (NOT) 𝑊𝑗," and the same is 

true for 𝑍𝑖 , 𝑋𝑙 , . ., 

Phase 3: For each rule 𝑄 as in (M2), given the resulting 

input values 𝑤(𝑧), 𝑧(𝑠), . .. at time 𝑠, set, as follows in 

Equation (10). 

 

𝑄𝑠 = min {𝑒𝑗
′(𝑤(𝑠))) , ℎ𝑖

′ (𝑧(𝑠)), . . , } ∈ [0,1]  were, 

𝑒𝑗
′(𝑤̇(𝑠)) =

{
1 − 𝑒𝑗(𝑤(𝑠))𝑖𝑓⁡𝑊𝑗𝑖𝑠⁡𝑛𝑒𝑔𝑎𝑡𝑒𝑑⁡𝑖𝑛⁡𝑄

𝑒𝑗(𝑤(𝑠))⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

 

Calculates the firing strength of a fuzzy rule at time ss 

using the minimum T-norm for logical ANDs. When 

computing firing strength, to determine the impact of UAV 

behaviour on rules. As an example, if a UAV has a high 

deviation behaviour and has bad communication, the 

corresponding rule for "malicious UAV" would fire 

strongly. Computes the firing strength of a rule at time ss, 

using MIN t-norm for logical AND. 

Phase 4: Using the function 𝑄𝑠, create the resulting fuzzy 

set of rule⁡𝑄, at the time 𝑠 for each 𝑄𝑠 calculated in phase 

3: Given by 𝑔𝑙
𝑠: [0,1] →, as follows in Equation (11). 

 

𝑒𝑗
′(𝜔) = {

min ⁡{𝑄𝑠, 1 − 𝑔𝑙
𝑠(𝜔)}⁡𝑖𝑓⁡𝑋𝑙 ⁡𝑖𝑠⁡𝑛𝑒𝑔𝑎𝑡𝑒𝑑⁡𝑖𝑛⁡𝑄;

min⁡{ 𝑄𝑠,𝑔𝑙
𝑠(𝜔)}⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑠𝑖𝑒

  

(11) 

 

Produces a fuzzy output set given the input firing strength 

𝑄𝑠, and the output fuzzy set 𝑔𝑙
𝑠 of the rule. Creates the 

output response (e.g., a threat level), still not crisp, but 

fuzzy indicating something along the lines of "likely 

malicious".  Creates the fuzzy output set from a rule, and 

modifies it for output negation. 

Phase 5: The function 𝐸𝑠: [0,1] → [0,1] is defined as the 

aggregate output fuzzy set at time 𝑠in Equation (12). 

 

𝐸𝑠 = max⁡{𝑔𝑙
𝑠}        (12) 

 

𝐸𝑠 is described as the agreed fuzzy output at time 𝑠⁡for 

output value (𝑤), 𝑚𝑎𝑥 is the logical OR to combine 

multiple rule consequences. It takes all individual rule 

outputs and combines them into a single fuzzy output set 

using the maximum (S-norm) operation. This considers the 

collective decision of the system at time ss based on all 

individual rules and provides a joint fuzzy evaluation of 

the UAV behaviour.  

It takes all rule outputs and combines them into a single 

fuzzy output set using the MAX S-norm. 
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Consequently, as in phase 4, the maximum of all rules 

ranges throughout the output fuzzy sets. Consequently, 

Mamdani-type inference yields the fuzzy set 𝐸𝑠 at each 

instant 𝑠, as shown in (phase 5). 

➢ Defuzzification 

The fuzzy set 𝐸𝑠: [0,1] → [0,1] is the result of a Mamdani-

type inference at time 𝑠.  The range of normalized values 

for the physical observation 𝑥 that has to be controlled is 

known as the domain of 𝐸𝑠.  To have real control, 𝑥 needs 

to be set to a certain value 𝜔𝑠 ⁡ ∈ [0,1]. This is 

accomplished by defuzzifying 𝐸𝑠.   

It assumes decision support that the well-known mean of 

the maximum defuzzification method is used to calculate 

𝜔𝑠 from⁡𝐸𝑠. It shows how 𝜔𝑠 is calculated when utilizing 

discrete approximations to 𝐸𝑠. Assume the set of sample 

points 𝑇 = {
1

𝑚
|𝑚 = 0,1, … ,𝑀} ⊆ [0,1] after selecting an 

integer 𝑀⁡ > ⁡1. Set 𝑁𝑠 = {𝑡⁡ ∈ 𝑇|𝐸𝑠(𝑠) = max
𝑤𝜖𝑇

𝐸𝑠(𝜔)} to 

extract those that maximize 𝐸𝑠 over 𝑇, as obtained in 

Equation (13). Figure 6 presents the MFIS structure. 

 

𝜔𝑠 =⁡
∑ 𝑇𝑡∈𝑁𝑠

|𝑁𝑠|
        (13) 

Converts the fuzzy output 𝐸𝑠(𝑠) into a crisp control value 

𝜔𝑠 ∈ [0,1] 𝑜𝑚𝑒𝑔𝑎_𝑠 in [0,1] by averaging the values 

where 𝐸𝑠(𝑠)is highest. This crisp output is essential for 

taking decisive control actions like activating 

countermeasures or issuing alerts perfectly aligning with 

the objective of actionable, real-time UAV threat 

classification. The proposed MFIS uses fuzzy logic to 

classify UAVs as cooperative or malicious by evaluating 

behavioural inputs. It applies fuzzy rules, membership 

functions, and defuzzification to support real-time 

decision-making for adaptive UAV countermeasures in 

uncertain environments as shown in Figure 7. 

 

 
 

Figure 7: Architecture of the Proposed MFIS for UAV 

threat classification 

 

 

 

 

4 Result 

This section deliberates on the results produced by the 

implementation of the model, including parameter setup, 

evaluation criteria, and comparative phase. 

 

4.1 Experimental setup 

Python 3.8 made multitasking and development duties 

demanding performance evaluations much easier due to 

this modern laptop design as shown in Table 4.  

 

Table 4: Experimental setup 

Aspect Details 

Hardware Intel Core i7 CPU, 16 GB RAM, 

NVIDIA GTX 1660 GPU 

Software Stack Python 3.8, scikit-fuzzy, NumPy, 

Pandas 

Training-

Validation Split 

80% training, 20% validation 

 

4.2 Hyperparameters  

MFIS parameters as described in Table 5. 

 

Table 5: Parameter’s setup 

Parameter Value/Setting 

Number of Input 

Variables 

4 (Energy, Mobility, 

Transmission, Link Stability) 

Membership Function 

Type 

Triangular, Trapezoidal 

Number of 

Membership Functions 

3 (Low, Medium, High) 

Rule Base Size 45 rules 

Inference Method Mamdani-type inference 

Fuzzy T-norm Operator Minimum (min) 

Fuzzy S-norm Operator Maximum (max) 

Defuzzification 

Method 

Mean of Maximum (MoM) 

Normalization 

Technique 

Min-Max Normalization 

Number of Principal 

Components 

3 components 

Variance Retained 

(PCA) 

≥ 80% 

 

4.3 Evaluation criteria  

The proposed MFIS approach showed good performances 

on all evaluation metrics. The ROC and PR curve 

evaluations have provided evidence of accurate threat 

classification and detection, and the energy & mobility 

pattern analysis has demonstrated the energy-efficient 

UAV countermeasures. 
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4.3.1 ROC Curve 

The performance of a fuzzy logic-based UAV 

countermeasure system was evaluated. The curve shows a 

high true positive rate across almost all false positive rates, 

indicating strong classification performance. The AUC is 

0.98, suggesting the model is highly effective at 

distinguishing threats from non-threats in fuzzification 

strategy for mitigating fuzzy logic. The steep rise near the 

y-axis reflects excellent sensitivity with minimal false 

alarms, making the system suitable for real-time UAV 

threat classification and detection and response. Figure 8 

demonstrates the impressive classification performance of 

the fuzzy logic-based UAV countermeasure system by 

having very high sensitivity with low false alarm rates, 

making it suitable for real-time threat identification and 

response. 

 
Figure 8: ROC Curve illustrating classification 

performance of the proposed MFIS-Based UAV 

countermeasure system 

 

4.3.2 Precision-Recall (PR) curve 

The PR curve evaluates the performance of a fuzzy logic-

based UAV countermeasure model. The high area under 

the curve (AUC = 0.98) indicates outstanding 

classification performance which sustained high precision 

despite increased recall. It suggests that the model 

effectively detects threats (true positives) with minimal 

false alarms, making it highly suitable for real-time UAV 

threat mitigation. Figure 9 displays the PR curve 

outcomes. 

 

 
Figure 9: High-performance classification and detection 

accuracy is shown by the PR Curve for MFIS 

4.3.3 Energy consumption vs mobility pattern 

The relationship between energy consumption and 

mobility patterns in UAVs, segmented by behavior labels 

(0 and 1), is analyzed. The x-axis represents energy 

consumption, while the y-axis indicates normalized 

mobility patterns.  

Two distinct clusters emerge: behaviour label 0 (in blue) 

generally reflects lower to moderate energy consumption 

and varied mobility, whereas behaviour label 1 shows 

broader energy usage and more consistent high mobility. 

In the context of UAV countermeasures based on fuzzy 

logic, this visualization helps identify behaviour patterns 

that can trigger adaptive responses for efficient energy 

management and mobility control under uncertain 

operational conditions. Figure 10 presents the outcomes of 

mobility pattern vs energy consumption. 

 

 
Figure 10: Energy consumption and mobility pattern 

using the proposed MFIS Method 

 

4.4 Comparison phase  

Python 3.12 made multitasking and development duties 

demanding performance evaluations much easier due to 

this modern laptop design. The result comparison 

parameters, such as packet delivery ratio, routing 

overhead, and end-to-end delay, are used to demonstrate 

the comparison of the proposed model, MFIS, with the 

traditional model, efficient honesty-based classification 

and detection scheme (EH-DS) [20].  

 

4.4.1 Packet delivery ratio 

The packet delivery ratio for the proposed MFIS method 

was compared with the existing EH-DS approach, showing 

significant improvement as the number of drones 

increases. The MFIS method consistently shows higher 

packet delivery ratio values across all drone counts 

compared to EH-DS. While EH-DS increases steadily, 

MFIS achieve significantly better performance, indicating 

more reliable and efficient data delivery. Figure 11 display 

the packet delivery ratio outcomes. 



300 Informatica 49 (2025) 289-302                                                                                                                                          J. Guo 

 

 
Figure 11: Comparison of packet delivery ratio 

 

4.4.2 Routing overhead (packets) 

The additional communication and processing burden 

placed on a network because of the transfer or routing of 

control or routing packets. MFIS demonstrates lower 

routing overhead throughout the range, with values 

remaining minimal even as the number of drone increases. 

In contrast, EH-DS shows relatively higher overhead, 

suggesting more control traffic and less efficient routing 

management. Figure 12 depict energy consumption with 

the growing number of drones. 

 

 

 
Figure 12: Representation of routing Overhead (Packets) 

 

4.4.3 End-to-End (E2E) Delay (ms) 

The E2E delay for UAV systems with different numbers of 

drones is compared, evaluating the proposed MFIS method 

with the existing method, EH-DS. The end-to-end delay 

for MFIS remains lower across all drone densities 

compared to EH-DS. As the number of drones increases, 

EH-DS experiences higher delays, whereas MFIS 

maintains better responsiveness and faster communication 

flow. Figure 13 demonstrate MFIS's superior scalability 

and efficiency in reducing communication latency, making 

it a more effective solution for real-time UAV operations 

under increased network loads. 

 

 
Figure 13: Result of the E2E delay 

4.5 Discussion 

The research is primarily aimed at producing an intelligent 

fuzzy logic-based UAV countermeasure system (MFIS) 

that improves accuracy, energy efficiency, and 

communication reliability in constantly changing and 

different environments. EH-DS method [20], while 

functional, is limited in significant areas: static thresholds, 

low adaptability to noise, difficulty dealing with 

cooperative or spoofing attacks, and inattention to dealing 

properly with situations of very fast drone movements or 

complicated environments. Alternatively, the proposed 

MFIS method performs real-time fuzzification to obtain 

effectively adaptive decision-making mechanisms, 

resulting in improved packet delivery ratio and reduced 

time taken in acquisitions. Consequently, these 

advancements demonstrate that MFIS has superior 

performance across important metrics, and more 

importantly, better scalability and operational efficiency 

with increasing sizes of UAV networks. The proposed 

MFIS has many potentials to adapt fuzzy logic limits by 

providing real-time input normalization and dynamic rule 

evaluation to generate context-aware decisions. 

Conventional fuzzy logic systems tend to use non-adaptive 

sets of rules, but MFIS employs PCA-optimized feature 

refinement and use of input variability to contextualize 

retrospectively to improve the adaptation of UAVs to 

perceptions. In part, this will relax their reliance on fixed 

thresholds and their adaptability when dealing with UAVs 

as unique environmental system factors. 

 

5 Conclusion 

This decision-support approach for UAV threat 

identification and mitigation, based on fuzzy logic, uses a 

well-developed dataset that collects UAV behavioural 

information, including key parameters. Preprocessing 

strategies, including min-max normalization, ensure 

uniform data and reduce the effects of scaling issues, 

which strengthens the eventual analysis. Using PCA in 

feature extraction, critical attributes relevant to UAV 
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behaviour were emphasized. The system is designed to 

increase the safety of the messages in FANETs by 

detecting threats and countermeasures. The MFIS was 

used as the main tool, constantly computing a dynamic 

honesty score based on the features it received. This 

enabled dynamic labelling of UAVs as cooperative or 

malicious to facilitate the effective implementation of 

countermeasures. The simulation results show a significant 

improvement in performance parameters, including to-end 

delay, routing overhead (packets), and packet delivery 

ratio, by 15-55% compared to previous methodologies. 

The findings confirm the merits of the system to generate 

reliable and timely threat analysis and relevant advice 

without compromising operational effectiveness. Real-

time processing speed and scalability remain a challenge, 

especially in cases of large networks of UAVs. The future 

improvements will focus on speed optimization and 

hybridization of the most modern hybrid methods, suitable 

for larger-scale usage. In future research, integrate realistic 

UAV mobility models such as Gauss-Markov or Random 

Waypoint (RWP) to simulate dynamic flight behaviours 

over time. It will apply statistical significance tests to 

compare MFIS and EH-DS, ensuring reliable performance 

validation across all metrics. It will address this by 

incorporating time-based UAV mobility datasets and real-

time testing environments to comprehensively evaluate 

latency and computational overhead. It plans to enhance 

the system by integrating hybrid fuzzy systems, 

specifically a neuro-fuzzy inference mechanism, to allow 

adaptive tuning of membership functions and rule bases 

through learning. It also aims to incorporate reinforcement 

learning techniques to enable online rule adjustment based 

on real-time UAV behavioural feedback, allowing the 

system to continuously evolve and improve its threat 

classification and detection and response strategies. To 

incorporate statistical significance testing such as t-tests or 

ANOVA to validate performance gains by computing 

confidence intervals and p-values for reported metrics. 

Future work will incorporate statistical measures for both 

methods to strengthen performance comparison 
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