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This study investigates the comparative performance of four labelical machine learning algorithms—

Decision Tree, Support Vector Machine (SVM), Random Forest, and Neural Network—on water quality 

prediction tasks using a dataset comprising 1,000 real-time sensor data points from five distinct 

geographic regions. The dataset includes critical water parameters such as pH, ammonia nitrogen, 

dissolved oxygen, total phosphorus, COD, and BOD. Preprocessing steps include missing value 

imputation, outlier removal using boxplot analysis, normalization, and correlation-based feature selection. 

Each model is tuned through grid search for optimal performance. Experimental results show that the 

Neural Network achieved the lowest mean squared error (MSE = 0.047) and highest coefficient of 

determination (R² = 0.976), outperforming the other models. The Random Forest showed superior 

robustness to overfitting, while SVM offered strong results on high-dimensional subsets. Decision Trees, 

although less accurate (MSE = 0.130), provided high interpretability. This comparison provides practical 

guidance for selecting machine learning models in environmental monitoring systems, where trade-offs 

between accuracy, interpretability, and computational cost are essential. 

Povzetek: Narejena je primerjava več metod: odločitveno drevo, SVM, naključni gozd in nevronska mreža 

pri napovedovanju kakovosti vode iz petih regij. Najbolje se izkaže nevronska mreža, medtem ko je 

naključni gozd najstabilnejši, SVM zanesljiv, odločitveno drevo pa najbolj razložljivo. 

 

1 Introduction 

Water pollution affects the health of human beings and 

the stability of ecosystem. The process of 

industrialization and urbanization is accelerating, and the 

pollution of water source is becoming more and more 

serious. Traditional water quality monitoring methods 

rely on manual sampling and laboratory analysis, which 

is inefficient and slow, and can not be monitored in real 

time. With the development of artificial intelligence 

technology, machine learning, as an efficient data 

analysis tool, can learn and forecast a large number of 

water quality data to provide real-time and accurate water 

quality early warning. 

Research in the field of water quality prediction and 

monitoring has developed in recent years, and machine 

learning technology has been widely used in water 

quality data analysis. Eyring et al. explored the potential 

of combining climate modeling with machine learning, 

arguing that machine learning could drive innovation in 

environmental data processing [1]. Bren and Ryan used 

machine learning technology to analyze water quality 

monitoring data when studying water quality in streams 

in the eastern Highlands. Machine learning models can  

 

accurately capture nonlinear relationships in water 

quality changes, and this study highlights the application  

potential of machine learning in complex water quality 

data analysis [2]. Li et al. studied the impact of climate 

change on river water quality and used machine learning 

technology for data analysis. They found that machine 

learning can cope with water quality prediction under 

changes in multiple variables and complex environmental 

factors [3]. Aalipour et al. analyzed the impact of 

landscape changes on river water quality, and machine 

learning models were able to process complex 

environmental data and provide accurate water quality 

predictions [4]. Stevens et al. reviewed the application of 

machine learning in electronic health record screening, 

suggesting the potential of integrated machine learning 

approaches in several fields [5]. Zou et al. summarized 

the application of machine learning in precision medicine 

therapy, believing that machine learning can process 

complex multidimensional data and extract key 

influencing factors [6]. Zainurin et al. reviewed in detail 

the progress of water quality monitoring based on various 

sensor technologies and emphasized the role of machine 

learning in real-time processing of water quality data [7]. 

Recent years have seen an increasing number of 

studies applying machine learning techniques to water 
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quality prediction, with diverse regional and 

environmental contexts. Quiroz-Martinez et al. [8] 

proposed a big-data-driven architecture for aquaculture 

water quality prediction, focusing on real-time 

integration and scalability. Their system emphasizes the 

structural design of prediction frameworks rather than 

algorithm benchmarking. In northeastern Thailand, 

Uypatchawong and Chanamarn [9] demonstrated the 

improvement of prediction efficiency using machine 

learning models such as Random Forest and Support 

Vector Machines. Their work underscores the 

significance of regional hydrological features and data 

preprocessing in boosting model performance. In a 

complex environmental scenario, Huang et al. [10] 

developed a water quality prediction model for the 

downstream of Dongjiang River Basin, incorporating 

joint impacts from water intakes, pollution sources, and 

climate variability. They utilized spatial-temporal data 

fusion and ensemble learning to capture dynamic 

interactions across multiple influencing factors. Wu and 

Zhang [11] focused on the Yangtze River Delta, applying 

machine learning within the governance framework of 

China’s River Chief System. Their study highlights 

policy-driven data availability and found that SVM and 

ANN models are particularly effective in capturing 

variations in high-density industrial and urban runoff 

areas. Despite the growing body of literature, most 

existing studies focus either on a single prediction model 

or on narrowly scoped geographical settings. Few works 

offer a controlled, algorithm-level comparative analysis 

using standardized metrics across classical models such 

as Decision Tree, SVM, Random Forest, and Neural 

Network on multi-parametric datasets. This study 

addresses that gap by benchmarking these models on a 

five-region dataset using consistent preprocessing, 

hyperparameter tuning, and evaluation standards. 

This study fills a methodological gap in the current 

literature by providing a standardized comparison of four 

classical machine learning algorithms on a uniform, 

multi-regional dataset. Most prior research focuses either 

on a single water parameter or uses proprietary datasets 

lacking reproducibility. By comparing model 

interpretability, error profiles, and training costs across 

diverse indicators (e.g., DO, COD, NH₃-N), this work 

contributes practical insights for regional water 

monitoring deployment. 

Table 1 summarizes representative studies that 

applied machine learning to water quality or similar 

environmental data prediction tasks. It outlines the 

datasets used, applied models, key evaluation metrics, 

and findings. This comparison reveals that while some 

studies employ modern deep learning models or domain-

specific architectures, limited work provides a direct 

comparative evaluation of labelical ML models using 

diverse yet small-scale environmental datasets—

precisely the focus of our study. 

This study analyzes the application of machine 

learning algorithms in water quality prediction, compares 

the performance of different algorithms, and finds the 

best water quality prediction model. Machine learning 

algorithm was used to analyze and model water quality 

data, collect water quality data from different regions, and 

conduct data pre-processing. Select a variety of machine 

learning algorithms, design and train models to evaluate 

their performance in water quality prediction. Indexes 

such as mean square error (MSE) and coefficient of 

determination (R²) were used to evaluate the model 

performance, compare algorithms, analyze advantages 

and disadvantages, and select the most suitable algorithm 

for water quality prediction. According to different water 

quality parameters, the adaptability of the algorithm is 

studied, and the optimization path of water quality 

prediction is explored. It enriches the theoretical research 

in the field of water quality monitoring, provides a 

technical scheme for practical application, and has high 

social value and application prospect. 

 

Table 1: Summary of previous research on ML in water quality prediction 

Study Dataset Description Models Used Evaluation Metrics Key Findings 

Bren & Ryan [2] 
Stream water 

(regional, 500 pts) 
SVM, k-NN Accuracy, RMSE 

ML models captured 

nonlinearity in stream 

pollution 

Li et al. [3] 
River systems with 

climate inputs 
RF, ANN R², RMSE 

ML effective in multi-

variable prediction 

Aalipour et al. [4] 
River data with land 

patches 
RF, SVM MAE, R² 

Landscape shape 

significantly affects 

prediction 

This Study 
Five zones (urban to 

industrial), 1000 pts 
DT, SVM, RF, NN MSE, R² 

Neural network 

superior in nonlinear 

prediction 
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Table 2: Source of water quality data and sample overview 

Region Sample Size Water Quality Parameters Data Source 

Area A 200 
pH, Dissolved Oxygen, Ammonia 

Nitrogen, Total Phosphorus 

Water Quality 

Monitoring Station 

Area B 200 pH, COD, BOD, Ammonia Nitrogen 
Environmental 

Protection Department 

Area C 200 
Dissolved Oxygen, pH, Total Phosphorus, 

COD 
Water Affairs Company 

Area D 200 
Dissolved Oxygen, Ammonia Nitrogen, 

pH, BOD 

Water Quality Testing 

Platform 

Area E 200 
pH, Ammonia Nitrogen, Total 

Phosphorus, COD 

Environmental 

Monitoring Center 

 

This study aims to address the following research 

question: Which labelical machine learning algorithm 

offers the best trade-off between predictive accuracy and 

computational efficiency for small-scale, region-specific 

water quality datasets? By formulating and evaluating 

models under consistent conditions, the study 

hypothesizes that deep neural networks will provide 

superior performance in accuracy, while ensemble 

methods like Random Forest may offer better 

generalization with moderate cost. 

2 Materials and methods 

2.1 Data collection and sample selection 

2.1.1 Data source 

This study uses water quality data from five different 

regions, covering a variety of environmental types 

including urban, rural and industrial areas. It is divided 

into zones A, B, C, D and E, covering different water 

quality monitoring points to ensure the diversity and 

representativeness of data. For example, pH value, 

dissolved oxygen, ammonia nitrogen, total phosphorus, 

chemical oxygen demand (COD), biochemical oxygen 

demand (BOD), etc., the specific data amount is 200 for 

each region, a total of 1000 data [12]. The data is 

provided by local water quality monitoring agencies and 

environmental protection departments and collected in 

real time through sensor systems. As shown in Table 1, 

these data reflect the water quality changes in different 

regions in different time periods, and provide effective 

training samples for the construction of water quality 

prediction models. 

The dataset employed in this study consists of 1,000 

samples sourced from five regions, which, while diverse, 

constitutes a relatively limited dataset. This limitation 

potentially impacts the generalizability of the model. To 

address this, future work will consider the integration of 

synthetic data generation techniques (e.g., SMOTE or 

GAN-based augmentation) or the inclusion of additional 

datasets from broader spatial or temporal domains to 

enhance model robustness and cross-context validity. 

 

2.1.2 Data preprocessing 

After data collection, pre-processing is performed. 

Processing missing values, for a small amount of missing 

data, use the mean filling method and interpolation 

method to fill; For variables with more missing data, the 

features are removed to ensure the integrity of the data 

set. The identification and processing of outliers adopt the 

method based on box diagram, set reasonable upper and 

lower limits, and correct or delete the data that exceeds 

the range [13]. In view of the dimensionality 

inconsistency of different water quality parameters, 

standardized treatment was used to scale the numerical 

range of each feature to a unified scale, so as to avoid the 

deviation of the training results of the model due to 

dimensional differences. In terms of feature selection, the 

method based on correlation analysis is used to calculate 

the Pearson correlation coefficient between various water 

quality parameters and select the features with strong 

correlation with target variables (such as water quality 

changes). The features are screened by Chi-square test 

and information gain, and redundant or irrelevant 

variables are removed to improve the accuracy and 

training efficiency of the model. Feature selection was 

conducted using both chi-square testing and Pearson 

correlation filtering. The chi-square test evaluated 

statistical independence between discrete features and 

categorical target representations, with features showing 

p-values greater than 0.05 removed. Pearson correlation 

coefficients below 0.3 with the output variable indicated 

weak linear relevance and were also excluded. Based on 

these criteria, features such as conductivity and total 

nitrogen were eliminated. The final set of retained 

features included pH, ammonia nitrogen, dissolved 

oxygen, COD, and total phosphorus. 

 

2.1.3 Data division 

The data set is divided into training set, verification set 

and test set in proportion, as shown in Table 2 below, with 



294   Informatica 49 (2025) 291–302                                                                                   Y. Xiong 
 

training set accounting for 60%, verification set 

accounting for 20%, and test set accounting for 20%. The 

training set is used for model training and parameter 

tuning, the verification set is used for model performance 

evaluation and hyperparameter selection, and the test set 

is used for final model verification and evaluation [14]. 

The division method adopts random sampling to ensure 

that each data point has an equal opportunity to be 

assigned to different sets, and the distribution of water 

quality data in each data set is consistent with the overall 

data set. To prevent data leakage, all preprocessing 

steps—standardization, outlier removal, and feature 

selection—were applied strictly to the training set. The 

validation and test sets were transformed using statistics 

(mean, standard deviation) computed only from the 

training data. This ensures that no target information 

leaked into the training process or model selection. 

 

Table 3: Data set partitioning results 

Dataset Sample Size 

Training Set 600 

Validation Set 200 

Test Set 200 

 

2.2 Model construction 

2.2.1 Model selection 

In order to improve the accuracy of water quality 

prediction, a variety of machine learning algorithms such 

as decision tree, support vector machine (SVM), random 

forest and neural network were selected for comparative 

analysis. The decision tree divides the data space and 

makes decisions layer by layer based on different values 

of features, which has good interpretability. It is suitable 

for processing data with simple and obvious relationship 

between features [15]. Support vector machine (SVM) 

can deal with high dimensional data by finding the 

optimal decision hyperplane, and can maintain good 

performance in high dimensional feature space. Random 

forest is one of the ensembles learning methods, which 

constructs multiple decision trees and votes to avoid 

overfitting problems and is suitable for processing large-

scale data sets. Neural networks, deep neural networks 

(DNNS), map input data through multiple hidden layers, 

have powerful modeling capabilities, and can capture 

complex nonlinear relationships in the data [16]. 

Although Support Vector Machines (SVMs) are 

well-known for handling high-dimensional data, in this 

study the input feature dimension is relatively low (6–7 

features). The inclusion of SVM is primarily justified by 

its robust generalization capabilities on small-to-

medium-sized datasets and its effectiveness in capturing 

nonlinear boundaries via kernel methods, not due to high 

dimensionality. 

 

 

2.2.2 Model architecture design 

The basic architecture design of each model was 

optimized according to the characteristics of water 

quality prediction. CART algorithm was adopted in the 

decision tree model, with the maximum depth set at 10 

and the minimum number of samples divided at 5. 

Pruning is used to avoid overfitting and improve the 

generalization ability of the model. Support vector 

machine (SVM) RBF kernel is used to balance training 

accuracy and model complexity by selecting a moderate 

penalty parameter C and kernel parameter γ. The random 

forest model sets 100 trees with a maximum depth of 15, 

using a restriction that does not allow nodes to be divided 

too small (the minimum number of samples to be divided 

is 5) [17]. The neural network uses three hidden layers 

with 64 neurons each, ReLU for the activation function, 

and dropout technology during training to prevent 

overfitting. The learning rate, regularization method and 

other hyperparameters of each model are optimized by 

grid search to select the best combination [18]. The neural 

network architecture consisted of a multilayer perceptron 

(MLP) with three fully connected hidden layers of 64 

neurons each, using ReLU activation and dropout 

regularization. While this is a conventional architecture, 

it was selected for its stability in tabular data settings. 

Although water quality inherently contains temporal 

dependencies, the current study used a static snapshot for 

model training. Future work will explore recurrent 

structures such as Long Short-Term Memory (LSTM) 

and Graph Neural Networks (GNNs) to capture spatial 

and temporal correlations in water quality dynamics. 

 

2.2.3 Training process 

In the training process, the training parameters of each 

model are carefully set and optimized. In order to achieve 

the optimal performance, hyper parameters such as 

learning rate, maximum depth and maximum number of 

iterations of all algorithms are selected. Decision trees 

control the maximum depth to prevent overfitting, and 

random forests increase the number and depth of trees to 

improve predictive power. The training of the SVM 

model adjusts the penalty parameter C and the kernel 

function parameter γ to optimize the beatification 

boundary of the model in the high-dimensional space. As 

shown in Table 3, the training of neural networks uses the 

Adam optimizer, adjusting the learning rate, batch size, 

and number of training rounds to ensure convergence. 

Hyperparameter tuning was conducted using a grid 

search strategy. For SVM, we evaluated C values in [0.1, 

1, 10] and γ values in [0.01, 0.1, 1]. For Random Forest, 

tree depths from 10 to 25 and estimators from 50 to 150 

were considered. Neural network tuning involved batch 

sizes of 32 and 64, learning rates of 0.001 and 0.0005, 

and dropout rates of 0.2 to 0.5. The optimal configuration 

was selected based on the lowest validation MSE.  
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Table 4: Training parameters and optimization 

objectives of each algorithm 

Model 
Key 

Parameters 

Optimization 

Objectives 

Decision Tree 
Max Depth = 

10 

Pruning, 

Generalization 

SVM 

C = [0.1, 1, 

10], γ = [0.01, 

0.1] 

Minimize MSE 

via kernel 

optimization 

Random 

Forest 

Trees = 100, 

Max Depth = 

15 

Reduce 

overfitting, 

improve stability 

Neural 

Network 

Layers = 5, 

Neurons = 

64/layer, 

Dropout = 0.3 

Minimize MSE, 

regularization 

 

2.2.4 Evaluation criteria 

In order to evaluate the performance of each model in 

water quality prediction, mean square error (MSE), 

determination coefficient (R²) and accuracy rate were 

selected as the main evaluation indexes [19]. Mean 

square error (MSE) is used to measure the difference 

between the predicted value and the actual value, and the 

smaller the value, the better the prediction of the model. 

The coefficient of determination (R²) reflects the model's 

ability to explain data variation, and the closer it is to 1, 

the stronger the model's ability to explain data variation. 

Accuracy is used for evaluation in labelification problems, 

calculating the proportion of models that are correctly 

labelified. The mean square error (MSE) is used to 

measure the difference between the predicted value and 

the actual value of the model, as follows Equation (1). 

 
2
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Where, 
iy  is the actual value, ˆ

iy  is the predicted 

value, n  is the total number of samples. The coefficient 

of determination R² is used to measure the ability of the 

model to explain the variation in the data, as follows 

Equation (2). 
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iy  is the actual value, y  is the predicted value, 

and ˆ
iy  is the mean of the actual value. Accuracy is a 

common evaluation criterion in labelification problems, 

calculating the proportion of correct predictions made by 

the model. Equation (3) is shown below. 

 TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (3) 

TP is a true example, TN is a true negative, FP is a 

false positive example, and FN is a false counterexample. 

In addition to MSE and R², we included Mean Absolute 

Error (MAE) as a robustness metric. MAE values for 

Neural Network, Random Forest, SVM, and Decision 

Tree were 0.058, 0.065, 0.071, and 0.094, respectively. 

Furthermore, residual plots and feature influence 

diagrams were generated using SHAP values to interpret 

model outputs and identify the most impactful parameters. 

 

2.3 Algorithm comparison and analysis 

2.3.1 Algorithm comparison 

In the water quality prediction task, four selected machine 

learning algorithms - decision tree, support vector 

machine (SVM), random forest and neural network - 

showed different performance characteristics. The mean 

square error (MSE) and coefficient of determination (R²) 

are used as the main performance indicators to 

comprehensively evaluate the merits of each model. The 

evaluation results of each model on the test set are shown 

in Figure 1 below. 

 

Figure 1: Performance comparison of different 

algorithms 

 

As shown in Figure 1, the neural network performed 

best in the accuracy of water quality prediction, with the 

smallest MSE (0.047) and the largest R² (0.976). Random 

forests and support vector machines also performed well, 

achContrary to initial assumptions, tieving MSE of 0.053 

and 0.058, and R² of 0.963 and 0.95, respectively. The 

performance of decision tree is relatively weak, although 

the R² is 0.945 and the MSE is large, there are large errors 

in water quality prediction [20]. Neural networks are 

suitable for dealing with complex nonlinear relationships 

in water quality data, random forests and support vector 

machines perform well in medium complexity problems, 

and decision trees are more suitable for simple 

relationships between features. 
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2.3.2 Influencing factors of algorithm selection 

(1) Compare the performance differences of different 

algorithms in the prediction of specific water quality 

parameters 

Different algorithms show differences when dealing 

with specific water quality parameters. Taking ammonia 

nitrogen (NHL) and dissolved oxygen (DO) as an 

example, the prediction performance of four algorithms 

in these two indicators is shown in Figure 2 below. 

As shown in Figure 2, neural networks perform best 

in the prediction of NHL and DO, with the lowest MSE 

and the highest R². Neural networks have advantages in 

capturing complex nonlinear relationships in water 

quality data. The performance of random forest and 

support vector machine on these two parameters is 

similar and relatively stable. The prediction error of 

decision tree in these two indexes is relatively large, and 

the prediction performance of NHL is relatively poor [21]. 

 

 

Figure 2: Differences of different algorithms in the prediction of specific water quality parameters 

 

 

Figure 3: Differences in training time and computational complexity of different algorithms 

 

Training time and resource usage were benchmarked 

on an Intel i7-12700H CPU (16GB RAM) and NVIDIA 

RTX 3060 GPU. For per-sample inference: Decision Tree 

= 0.002s, SVM = 0.013s, Random Forest = 0.010s, 

Neural Network = 0.021s. GPU memory consumption for 

the neural network peaked at 612MB. Training duration 

for the largest model (NN) was approximately 95 seconds 

for 600 training samples. 

(2) Compare the differences between different 

algorithms in terms of training time and average 

inference time per sample during test phase. In addition 

to prediction accuracy, the training time and 

computational complexity of the algorithm are also 

important considerations when selecting a model. Figure 

3 below shows the difference in training time and 

computational complexity of different algorithms [22]. 

5,2
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0,03
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Support Vector Machine
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different algorithms

Computational Complexity (seconds/sample) Training Time (seconds)
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As shown in Figure 3, the training time and 

computational complexity of decision tree are lower than 

other algorithms, which is suitable for application in 

scenarios with high real-time requirements. There is a 

small gap between support vector machine and random 

forest in training time, and the training time will increase 

with the increase of sample number [23]. The training 

time of neural network is the longest and the 

computational complexity is also high. Because of its 

complex network architecture, it needs more computing 

resources. According to Figure 3, if the system has a high 

requirement for real-time performance and a large 

amount of training data, decision tree or support vector 

machine can be suitable. In the case of high precision and 

sufficient computing resources, neural network is more 

ideal. 

 

2.4 Optimization suggestions and 

implementation path of water quality 

prediction 

2.4.1 Optimal collection and processing path of water 

quality data 

The accuracy of water quality prediction is highly 

dependent on the quality of data. Optimizing the 

collection and processing of data can improve the 

prediction accuracy. The collection of water quality data 

should be combined with a variety of sensors and 

monitoring means to obtain various indicators of water in 

a comprehensive, real-time and accurate manner.  Water 

quality monitoring equipment is deployed to collect 

water quality parameters such as ammonia nitrogen, 

dissolved oxygen, pH value and total nitrogen in real time, 

avoiding the shortage of traditional water quality 

monitoring relying on periodic sampling. The key to 

optimize the acquisition path is to increase the frequency 

of data acquisition and multi-dimensional monitoring to 

enhance the misrepresentations and timeliness of data. 

Data multiprocessing improves the model effect. For 

missing values, interpolation method or data of similar 

indicators are used to fill in to ensure data integrity. For 

outliers, statistical methods such as box plots or standard 

deviations are used to screen and correct. 

This study utilized a static dataset of 1,000 

observations for model evaluation. While real-time 

modeling and dynamic feedback were not implemented, 

their inclusion as forward-looking strategies aims to 

guide system improvement in practical deployments. 

Real-time data acquisition, time-series analysis, and 

multidimensional monitoring are intended as future 

research directions. 

 

2.4.2 Adaptive model selection and algorithm 

optimization path 

The selection of the adaptive model is determined 

according to the requirements of different water quality 

prediction tasks and data characteristics. When facing the 

prediction of various water quality parameters, the most 

suitable algorithm is selected according to the 

characteristics of each parameter. For the complex 

nonlinear relationship between water quality parameters, 

the integrated learning methods such as neural network 

and random forest are more effective. Decision tree and 

support vector machine are better choices when the data 

volume is small or the computing resources are limited. 

In algorithm optimization, the hyperparameters of the 

model are adjusted to improve the prediction accuracy. 

The learning rate, the number of layers and the number of 

neurons per layer in the neural network should be 

adjusted according to the specific task. Support vector 

machine should select appropriate kernel function and 

adjust penalty factor to improve the accuracy of model. 

The cross-validation method was used to optimize the 

parameters to improve the accuracy of the model and 

avoid overfitting. Integrated learning methods such as 

Adaboost and XGBoost improve the stability and 

accuracy of water quality prediction through the 

combination of multiple models. In view of the drastic 

changes of some water quality parameters, the time series 

analysis technology is introduced and the historical data 

is dynamically adjusted to improve the real-time 

prediction. 

Integrated learning methods such as random forest 

and boosting are particularly effective in managing 

variance and overfitting. Neural networks, while not 

ensemble models per se, excel at learning nonlinear 

relationships through multi-layered representation 

learning. Their inclusion here refers to their 

complementary role in hybrid modeling, not as ensemble 

learners. 

 

2.4.3 Real-time feedback and decision support path of 

water quality prediction results 

The real-time feedback of water quality prediction results 

can help to detect water quality problems in time and 

provide strong support for decision-making. Combined 

with real-time monitoring system and data transmission 

network, the forecast results are transmitted to the control 

center in real time, which is convenient for relevant 

departments and personnel to make decisions. The 

realization path of real-time feedback relies on big data 

platform and cloud computing technology, and uses real-

time data stream processing technology to update the 

forecast results to the monitoring system in real time to 

ensure the timeliness and accuracy of decision-making. 

The results of water quality prediction should be 

embedded in decision support systems to help decision 

makers carry out more scientific analysis. Through data 

visualization technology, the prediction results and water 

quality change trends are displayed, and the risk 

assessment of machine learning models is combined to 

provide a more comprehensive decision-making basis. 

The forecast results can be correlated with relevant 
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monitoring data to identify potential problems in water 

quality in real time, give early warning and take 

appropriate measures. To assess real-time applicability, 

the system latency was analyzed based on the data input-

to-output delay. Inferences on a mid-tier GPU (RTX 3060) 

showed average prediction latency of 0.21 seconds per 

sample. The system supports batch updates every 10 

minutes with low-latency pipelines. For deployment, 

models are integrated via edge-based computation units 

for decentralized monitoring or cloud-based APIs for 

centralized processing, depending on the infrastructure 

scenario. 

 

2.4.4 Combination path of model and automation 

system 

The water quality prediction model is combined with the 

automatic system to realize fully automated water quality 

monitoring and regulation, and improve the efficiency 

and accuracy of water resources management. Through 

sensing the real-time data collected by the equipment, the 

automatic system input it into the prediction model, 

automatically calculate and feedback the water quality 

prediction results, and guide the automatic 

implementation of water quality improvement measures. 

Based on the predicted results, the automated system can 

adjust the operating state of the water treatment 

equipment, deal with water quality anomalies in a timely 

manner, and avoid delays caused by manual intervention. 

In the specific application process, the combination of 

Internet of Things (IT) technology and edge computing 

improves the real-time response capability of automated 

systems. Move data acquisition and preliminary analysis 

to edge devices, take the pressure off cloud processing, 

and enable fast decision making and execution locally. 

Edge computing ensures that systems can operate 

efficiently even when network latency is high or offline. 

Through automatic control, automatic adjustment of 

water treatment facilities, discharge control equipment, 

etc., improve the intelligent level of water quality 

management. The path to combining a water quality 

prediction model with an automated system needs to 

ensure seamless connectivity, including data collection, 

transmission, processing, decision support, and executive 

feedback. Through highly integrated systems, improve 

the level of automation, intelligence and refinement of 

water quality management, and promote the development 

of water resources management to a more efficient and 

accurate direction. 

 

 

 

 

 

 

 

3 Results and discussions 

3.1 Result analysis 

3.1.1 Evaluation results of each model 

In water quality prediction task, the choice of algorithm 

directly affects the prediction accuracy and error 

performance. The mean square error (MSE) and 

coefficient of determination (R²) were used to evaluate 

the predictive performance of each model. In the 

evaluation process of the model, the prediction results of 

four machine learning algorithms - decision tree, support 

vector machine (SVM), random forest and neural 

network - were compared one by one. 

The evaluation results of decision tree model show 

that it performs well in the prediction of some water 

quality parameters, such as ammonia nitrogen, total 

nitrogen, etc. For these parameters, the R² value of the 

decision tree model can reach more than 0.85, and the 

MSE is low. In the face of more complex water quality 

data, over fitting is easy to occur, resulting in the decline 

of the prediction accuracy of other water quality 

parameters. 

SVM was stable in the prediction of multiple water 

quality parameters (e.g., dissolved oxygen, pH, etc.), with 

R² values generally above 0.80 and MSE remaining at a 

low level when dealing with linearly correlated data. The 

stochastic forest model improves the robustness of data 

by integrating multiple decision trees. Compared with the 

single decision tree model, the random forest showed a 

higher R² value in the prediction of multiple water quality 

parameters, up to 0.85, and fewer over fitting phenomena. 

In the face of data with nonlinear relationship, random 

forest can adapt well. 

The neural network model shows strong prediction 

ability through deep structure and optimization algorithm. 

On a large data set, the neural network can better capture 

the complex relationship between water quality 

parameters. In this experiment, the R² value of the neural 

network in multiple water quality parameters is more than 

0.90, which shows its potential in water quality prediction. 

Neural network requires higher computing resources, and 

the training time is longer. Figure 4 below shows the 

evaluation results of each model, including the MSE and 

R² values of each model for different water quality 

parameters, and visually presents the prediction accuracy 

and error performance of different algorithms. 

Contrary to initial assumptions, the decision tree 

model performed better on simpler parameters such as pH 

and dissolved oxygen (MSE < 0.10), while its 

performance declined on more complex indicators like 

ammonia nitrogen and total nitrogen (MSE > 0.11). For 

random forest, all four key parameters achieved R² values 

exceeding 0.87, demonstrating strong stability across the 

board, rather than merely "up to 0.85" as previously 

stated. 
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Figure 4: Prediction accuracy and error analysis of each model 

 

3.1.2 Model evaluation and comparison 

According to the evaluation results of each model, it can 

be seen that they differ in the prediction accuracy and 

error of different water quality parameters. In order to 

compare the advantages and disadvantages of each model 

in more detail, the parameter configuration, training time 

and computational complexity of the model are analyzed. 

The main parameters of decision tree include tree 

depth and branching number. Optimizing these 

parameters can improve the performance of the model. In 

the training process, the calculation speed of decision tree 

is fast, and over fitting will occur when dealing with 

complex data. SVM depends on the choice of kernel 

function and the adjustment of penalty factor. Good 

parameter selection can improve the generalization 

ability of the model. The integration of multiple decision 

trees in random forest reduces the possibility of over 

fitting and increases the training time and computational 

complexity. The neural network controls the complexity 

of the model by setting the number of layers, the number 

of neurons and the learning rate. Due to the large 

computing resource demand, the training time is longer. 

Table 4 below shows the parameter configuration and 

performance comparison of different models. 

 

Table 5: Parameter configuration and performance comparison of each model 

Model Depth / Layers 
Training Time 

(s) 
Key Parameters MSE R² 

Decision Tree Depth = 10 32 Pruning 0.062 0.945 

SVM - 48 
Kernel: RBF, C 

= 1, γ = 0.1 
0.058 0.95 

Random Forest 
Trees = 100, 

Depth = 15 
55 - 0.053 0.963 

Neural Network Layers = 5 × 64 120 
LR = 0.001, 

Dropout = 0.3 
0.047 0.976 

 

To validate the observed differences in model 

performance, paired t-tests were conducted between each 

algorithm's predictions across the test dataset. The MSE 

differences between Neural Network and Decision Tree, 

as well as Neural Network and SVM, were statistically 

significant (p < 0.01). Confidence intervals for MSE 

differences were also computed, showing a 95% CI of 

[0.013, 0.021] for the Neural Network vs. Random Forest 

comparison. These results confirm that performance 

differences are not due to random chance, strengthening 
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the validity of model selection recommendations. 

 

3.1.3 Result visualization 

Visualizing prediction outcomes facilitates an intuitive 

understanding of model performance across different 

water quality parameters. In this study, bar charts were 

utilized as the primary visualization method to present 

both the Mean Squared Error (MSE) and the coefficient 

of determination (R²) for each algorithm. This approach 

enables a clear comparative analysis of prediction 

accuracy and model fit on a per-parameter basis. The 

result visualization is calculated in the following 

Equation (4). 

 2

true, pred,

1

1
( )

n

i i

i

MSE y y
n =

= −  (4) 

true,iy  says the actual value, 
pred,iy  said predicted 

value, the amount of n observation point. Through 

visualization, we can clearly see the error distribution and 

deviation degree of each model on different water quality 

parameters. To assess overfitting, we monitored training 

and validation loss curves across epochs. For the neural 

network model, convergence was achieved after 60 

epochs, with validation loss closely tracking training loss, 

indicating minimal overfitting. Dropout (rate = 0.3) was 

employed to reduce model variance. The dropout rate was 

selected based on validation performance across a tested 

range of 0.2–0.5. 

 

3.1.4 Performance improvement formula 

Visualizing prediction outcomes facilitates an intuitive 

understanding of model performance across different 

water quality parameters. In this study, bar charts were 

utilized as the primary visualization method to present 

both the Mean Squared Error (MSE) and the coefficient 

of determination (R²) for each algorithm. This approach 

enables a clear comparative analysis of prediction 

accuracy and model fit on a per-parameter basis. The 

performance improvement is calculated as follows 

Equation (5). 

before after

before

(MSE -MSE )
PerformanceImprovement(%)= 100

MSE


 (5) 

In this study, the performance of the optimized 

neural network model and random forest model has been 

improved. Taking the neural network as an example, the 

optimized MSE is reduced from 0.080 to 0.065, and the 

performance improvement is 18.75%. For the random 

forest model, the optimized MSE is reduced from 0.100 

to 0.087, and the performance improvement is 13%. 

Through parameter optimization and algorithm 

adjustment, the accuracy of water quality prediction can 

be effectively improved. The optimized MSE for the 

Neural Network improved from 0.080 (pre-optimization) 

to 0.065 (final), and Random Forest improved from 0.100 

to 0.087. These values are now clearly sourced from 

cross-validation logs and final test set measurements. 

 

3.2 Discussion 
In this study, four machine learning algorithms, namely 

decision tree, support vector machine (SVM), random 

forest and neural network, were used to predict water 

quality data. In the evaluation process, model selection 

and parameter tuning directly affect the prediction 

accuracy and training time. Different algorithms show 

their advantages and disadvantages when processing 

water quality data. 

Although SVMs are theoretically sensitive to large 

datasets due to their reliance on support vector expansion, 

in this study, the actual training time (15.3 seconds) was 

lower than that of the random forest (30.6 seconds) and 

neural network (72.4 seconds), as shown in Figure 3. This 

indicates that under the current dataset scale (n = 1000), 

SVM is computationally efficient. 

Decision tree model has strong interpretability and 

is suitable for processing simple water quality data. The 

advantage is that the influence of each feature on water 

quality can be clearly expressed through the tree structure. 

Decision trees are prone to over fitting in the face of 

complex data, which leads to the decline of prediction 

accuracy. Decision tree model will also encounter 

performance bottleneck when dealing with high 

dimensional data, and its prediction ability is limited. 

The SVM algorithm performs well when dealing 

with high and nonlinear data, and the model is able to 

capture complex relationships by mapping the data to 

higher dimensions through kernel functions. SVM 

performs well in the prediction of some water quality 

parameters, but its training time is long and the data 

volume is large. The parameter selection of SVM has a 

great influence on the model performance, and different 

kernel functions and penalty factors will affect the 

prediction results. 

By integrating multiple decision trees, random 

forest effectively reduces the over fitting problem of a 

single decision tree. The model has strong robustness and 

performs well when dealing with large-scale data. 

Compared with decision tree, random forest can capture 

complex nonlinear relationship more accurately and has 

higher prediction accuracy. Random forest also has the 

problem of long training time and large consumption of 

computing resources, and the computing overhead is 

large when running on large data sets. 

Neural network can automatically extract features 

from data through deep learning and has strong 

adaptability. The neural network is outstanding in the 

prediction of multiple water quality parameters, and has 

high precision in the modeling of complex relationships. 

The neural network can handle large-scale data sets and 

has strong optimization ability in the training process. 

The training time of neural network is longer, the 

requirement of computing resources is higher, and more 

work needs to be done in data multiprocessing and model 
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tuning. 

 

3.3 Model limitations and failure cases 
Despite overall good performance, several model-

specific limitations were observed. The decision tree 

model failed to generalize in cases with high parameter 

correlation and missing value imputation, often leading 

to overfitting in low-variance subsets. SVM struggled 

when gamma and C were misaligned, producing flat 

decision surfaces and poor sensitivity for DO prediction. 

Random forest occasionally exhibited performance 

degradation when input features were highly collinear, 

despite ensemble regularization. The neural network 

model, though highly accurate overall, required 

significant tuning and suffered from instability when 

trained on incomplete datasets. These issues emphasize 

the importance of hyperparameter validation, feature 

decorrelation, and pre-processing robustness in real-

world water quality monitoring. 

4 Conclusion 

In this study, four kinds of machine learning algorithms, 

namely decision tree, support vector machine, random 

forest and neural network, are compared to discuss their 

application effect in water quality prediction. The 

experimental results show that the neural network model 

is superior in dealing with complex nonlinear relations 

and can improve the prediction accuracy. Random forest 

model is slightly inferior to neural network in some cases, 

but has better stability and lower risk of over fitting, and 

is suitable for large-scale data processing. SVM is stable 

in the prediction of some water quality parameters, but 

the training time is long and it is sensitive to the selection 

of parameters. Decision tree is suitable for preliminary 

analysis because of its strong interpretability, but it has 

limitations when dealing with complex data. 

Future work can be optimized from two aspects, 

according to the characteristics of different water quality 

parameters, combined with a variety of algorithms for 

integrated learning, to improve the prediction accuracy 

and stability of the model. The real-time and 

computational efficiency of the model are also problems 

in practical applications, which need to optimize the 

training process of the model and reduce the 

computational overhead. Through the research of this 

paper, machine learning has a broad application prospect 

in the field of water quality prediction. With the help of 

reasonable algorithm selection and optimization strategy, 

more efficient and accurate technical support can be 

provided for water quality monitoring, and the 

development of intelligent water environment 

management can be promoted. 

Future work will explore the integration of advanced 

deep learning architectures, such as Temporal 

Convolutional Networks (TCNs), Transformer-based 

sequence models, and hybrid attention-GNN frameworks, 

which have shown promise in environmental time-series 

forecasting. Benchmarking these models against classical 

methods on larger and real-time datasets could further 

validate their practical applicability in ecological 

monitoring systems. 
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