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This study investigates the comparative performance of four labelical machine learning algorithms—
Decision Tree, Support Vector Machine (SVM), Random Forest, and Neural Network—on water quality
prediction tasks using a dataset comprising 1,000 real-time sensor data points from five distinct
geographic regions. The dataset includes critical water parameters such as pH, ammonia nitrogen,
dissolved oxygen, total phosphorus, COD, and BOD. Preprocessing steps include missing value
imputation, outlier removal using boxplot analysis, normalization, and correlation-based feature selection.
Each model is tuned through grid search for optimal performance. Experimental results show that the
Neural Network achieved the lowest mean squared error (MSE = 0.047) and highest coefficient of
determination (R?* = 0.976), outperforming the other models. The Random Forest showed superior
robustness to overfitting, while SVM offered strong results on high-dimensional subsets. Decision Trees,
although less accurate (MSE = 0.130), provided high interpretability. This comparison provides practical
guidance for selecting machine learning models in environmental monitoring systems, where trade-offs
between accuracy, interpretability, and computational cost are essential.

Povzetek: Narejena je primerjava vec metod: odlocitveno drevo, SVM, nakljucni gozd in nevronska mreza
pri napovedovanju kakovosti vode iz petih regij. Najbolje se izkaze nevronska mreza, medtem ko je

nakljucni gozd najstabilnejsi, SVM zanesljiv, odlocitveno drevo pa najbolj razlozljivo.

1 Introduction

Water pollution affects the health of human beings and
the stability of ecosystem. The process of
industrialization and urbanization is accelerating, and the
pollution of water source is becoming more and more
serious. Traditional water quality monitoring methods
rely on manual sampling and laboratory analysis, which
is inefficient and slow, and can not be monitored in real
time. With the development of artificial intelligence
technology, machine learning, as an efficient data
analysis tool, can learn and forecast a large number of
water quality data to provide real-time and accurate water
quality early warning.

Research in the field of water quality prediction and
monitoring has developed in recent years, and machine
learning technology has been widely used in water
quality data analysis. Eyring et al. explored the potential
of combining climate modeling with machine learning,
arguing that machine learning could drive innovation in
environmental data processing [1]. Bren and Ryan used
machine learning technology to analyze water quality
monitoring data when studying water quality in streams
in the eastern Highlands. Machine learning models can

accurately capture nonlinear relationships in water
quality changes, and this study highlights the application
potential of machine learning in complex water quality
data analysis [2]. Li et al. studied the impact of climate
change on river water quality and used machine learning
technology for data analysis. They found that machine
learning can cope with water quality prediction under
changes in multiple variables and complex environmental
factors [3]. Aalipour et al. analyzed the impact of
landscape changes on river water quality, and machine
learning models were able to process complex
environmental data and provide accurate water quality
predictions [4]. Stevens et al. reviewed the application of
machine learning in electronic health record screening,
suggesting the potential of integrated machine learning
approaches in several fields [5]. Zou et al. summarized
the application of machine learning in precision medicine
therapy, believing that machine learning can process
complex multidimensional data and extract key
influencing factors [6]. Zainurin et al. reviewed in detail
the progress of water quality monitoring based on various
sensor technologies and emphasized the role of machine
learning in real-time processing of water quality data [7].

Recent years have seen an increasing number of
studies applying machine learning techniques to water
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quality prediction, with diverse regional and
environmental contexts. Quiroz-Martinez et al. [8]
proposed a big-data-driven architecture for aquaculture
water quality prediction, focusing on real-time
integration and scalability. Their system emphasizes the
structural design of prediction frameworks rather than
algorithm benchmarking. In northeastern Thailand,
Uypatchawong and Chanamarn [9] demonstrated the
improvement of prediction efficiency using machine
learning models such as Random Forest and Support
Vector Machines. Their work underscores the
significance of regional hydrological features and data
preprocessing in boosting model performance. In a
complex environmental scenario, Huang et al. [10]
developed a water quality prediction model for the
downstream of Dongjiang River Basin, incorporating
joint impacts from water intakes, pollution sources, and
climate variability. They utilized spatial-temporal data
fusion and ensemble learning to capture dynamic
interactions across multiple influencing factors. Wu and
Zhang [11] focused on the Yangtze River Delta, applying
machine learning within the governance framework of
China’s River Chief System. Their study highlights
policy-driven data availability and found that SVM and
ANN models are particularly effective in capturing
variations in high-density industrial and urban runoff
areas. Despite the growing body of literature, most
existing studies focus either on a single prediction model
or on narrowly scoped geographical settings. Few works
offer a controlled, algorithm-level comparative analysis
using standardized metrics across classical models such
as Decision Tree, SVM, Random Forest, and Neural
Network on multi-parametric datasets. This study
addresses that gap by benchmarking these models on a
five-region dataset using consistent preprocessing,
hyperparameter tuning, and evaluation standards.

This study fills a methodological gap in the current
literature by providing a standardized comparison of four
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classical machine learning algorithms on a uniform,
multi-regional dataset. Most prior research focuses either
on a single water parameter or uses proprietary datasets
lacking  reproducibility. @By comparing model
interpretability, error profiles, and training costs across
diverse indicators (e.g., DO, COD, NHs-N), this work
contributes practical insights for regional water
monitoring deployment.

Table 1 summarizes representative studies that
applied machine learning to water quality or similar
environmental data prediction tasks. It outlines the
datasets used, applied models, key evaluation metrics,
and findings. This comparison reveals that while some
studies employ modern deep learning models or domain-
specific architectures, limited work provides a direct
comparative evaluation of labelical ML models using
diverse yet small-scale environmental datasets—
precisely the focus of our study.

This study analyzes the application of machine
learning algorithms in water quality prediction, compares
the performance of different algorithms, and finds the
best water quality prediction model. Machine learning
algorithm was used to analyze and model water quality
data, collect water quality data from different regions, and
conduct data pre-processing. Select a variety of machine
learning algorithms, design and train models to evaluate
their performance in water quality prediction. Indexes
such as mean square error (MSE) and coefficient of
determination (R?) were used to evaluate the model
performance, compare algorithms, analyze advantages
and disadvantages, and select the most suitable algorithm
for water quality prediction. According to different water
quality parameters, the adaptability of the algorithm is
studied, and the optimization path of water quality
prediction is explored. It enriches the theoretical research
in the field of water quality monitoring, provides a
technical scheme for practical application, and has high
social value and application prospect.

Table 1: Summary of previous research on ML in water quality prediction

Study Dataset Description Models Used Evaluation Metrics Key Findings
ML models captured
Stream water . L
Bren & Ryan [2] . SVM, k-NN Accuracy, RMSE nonlinearity in stream
(regional, 500 pts) )
pollution
. River systems with ML effective in multi-
Li et al. [3] . . RF, ANN R?, RMSE . o
climate inputs variable prediction
) . Landscape shape
. River data with land L.
Aalipour et al. [4] RF, SVM MAE, R? significantly affects
patches o
prediction
. Neural network
. Five zones (urban to o )
This Study . . DT, SVM, RF, NN MSE, R? superior in nonlinear
industrial), 1000 pts o
prediction
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Table 2: Source of water quality data and sample overview

Region Sample Size Water Quality Parameters Data Source
H, Dissolved Oxygen, Ammonia Water Qualit
Area A 200 P . Ve ) _Q y
Nitrogen, Total Phosphorus Monitoring Station
o Environmental
Area B 200 pH, COD, BOD, Ammonia Nitrogen )
Protection Department
Dissolved Oxygen, pH, Total Phosphorus, .
Area C 200 Water Affairs Company
COD
Dissolved Oxygen, Ammonia Nitrogen, Water Quality Testing
Area D 200
pH, BOD Platform
pH, Ammonia Nitrogen, Total Environmental
Area E 200 oo
Phosphorus, COD Monitoring Center

This study aims to address the following research
question: Which labelical machine learning algorithm
offers the best trade-off between predictive accuracy and
computational efficiency for small-scale, region-specific
water quality datasets? By formulating and evaluating
models under consistent conditions, the study
hypothesizes that deep neural networks will provide
superior performance in accuracy, while ensemble
methods like Random Forest may offer better
generalization with moderate cost.

2 Materials and methods

2.1 Data collection and sample selection
2.1.1 Data source

This study uses water quality data from five different
regions, covering a variety of environmental types
including urban, rural and industrial areas. It is divided
into zones A, B, C, D and E, covering different water
quality monitoring points to ensure the diversity and
representativeness of data. For example, pH wvalue,
dissolved oxygen, ammonia nitrogen, total phosphorus,
chemical oxygen demand (COD), biochemical oxygen
demand (BOD), etc., the specific data amount is 200 for
each region, a total of 1000 data [12]. The data is
provided by local water quality monitoring agencies and
environmental protection departments and collected in
real time through sensor systems. As shown in Table 1,
these data reflect the water quality changes in different
regions in different time periods, and provide effective
training samples for the construction of water quality
prediction models.

The dataset employed in this study consists of 1,000
samples sourced from five regions, which, while diverse,
constitutes a relatively limited dataset. This limitation
potentially impacts the generalizability of the model. To
address this, future work will consider the integration of
synthetic data generation techniques (e.g., SMOTE or
GAN-based augmentation) or the inclusion of additional
datasets from broader spatial or temporal domains to

enhance model robustness and cross-context validity.

2.1.2 Data preprocessing

After data collection, pre-processing is performed.
Processing missing values, for a small amount of missing
data, use the mean filling method and interpolation
method to fill; For variables with more missing data, the
features are removed to ensure the integrity of the data
set. The identification and processing of outliers adopt the
method based on box diagram, set reasonable upper and
lower limits, and correct or delete the data that exceeds
the range [13]. In view of the dimensionality
inconsistency of different water quality parameters,
standardized treatment was used to scale the numerical
range of each feature to a unified scale, so as to avoid the
deviation of the training results of the model due to
dimensional differences. In terms of feature selection, the
method based on correlation analysis is used to calculate
the Pearson correlation coefficient between various water
quality parameters and select the features with strong
correlation with target variables (such as water quality
changes). The features are screened by Chi-square test
and information gain, and redundant or irrelevant
variables are removed to improve the accuracy and
training efficiency of the model. Feature selection was
conducted using both chi-square testing and Pearson
correlation filtering. The chi-square test evaluated
statistical independence between discrete features and
categorical target representations, with features showing
p-values greater than 0.05 removed. Pearson correlation
coefficients below 0.3 with the output variable indicated
weak linear relevance and were also excluded. Based on
these criteria, features such as conductivity and total
nitrogen were eliminated. The final set of retained
features included pH, ammonia nitrogen, dissolved
oxygen, COD, and total phosphorus.

2.1.3 Data division

The data set is divided into training set, verification set
and test set in proportion, as shown in Table 2 below, with
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training set accounting for 60%, verification set
accounting for 20%, and test set accounting for 20%. The
training set is used for model training and parameter
tuning, the verification set is used for model performance
evaluation and hyperparameter selection, and the test set
is used for final model verification and evaluation [14].
The division method adopts random sampling to ensure
that each data point has an equal opportunity to be
assigned to different sets, and the distribution of water
quality data in each data set is consistent with the overall
data set. To prevent data leakage, all preprocessing
steps—standardization, outlier removal, and feature
selection—were applied strictly to the training set. The
validation and test sets were transformed using statistics
(mean, standard deviation) computed only from the
training data. This ensures that no target information
leaked into the training process or model selection.

Table 3: Data set partitioning results

Dataset Sample Size
Training Set 600
Validation Set 200
Test Set 200

2.2 Model construction
2.2.1 Model selection

In order to improve the accuracy of water quality
prediction, a variety of machine learning algorithms such
as decision tree, support vector machine (SVM), random
forest and neural network were selected for comparative
analysis. The decision tree divides the data space and
makes decisions layer by layer based on different values
of features, which has good interpretability. It is suitable
for processing data with simple and obvious relationship
between features [15]. Support vector machine (SVM)
can deal with high dimensional data by finding the
optimal decision hyperplane, and can maintain good
performance in high dimensional feature space. Random
forest is one of the ensembles learning methods, which
constructs multiple decision trees and votes to avoid
overfitting problems and is suitable for processing large-
scale data sets. Neural networks, deep neural networks
(DNNS), map input data through multiple hidden layers,
have powerful modeling capabilities, and can capture
complex nonlinear relationships in the data [16].

Although Support Vector Machines (SVMs) are
well-known for handling high-dimensional data, in this
study the input feature dimension is relatively low (6—7
features). The inclusion of SVM is primarily justified by
its robust generalization capabilities on small-to-
medium-sized datasets and its effectiveness in capturing
nonlinear boundaries via kernel methods, not due to high
dimensionality.
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2.2.2 Model architecture design

The basic architecture design of each model was
optimized according to the characteristics of water
quality prediction. CART algorithm was adopted in the
decision tree model, with the maximum depth set at 10
and the minimum number of samples divided at 5.
Pruning is used to avoid overfitting and improve the
generalization ability of the model. Support vector
machine (SVM) RBF kernel is used to balance training
accuracy and model complexity by selecting a moderate
penalty parameter C and kernel parameter y. The random
forest model sets 100 trees with a maximum depth of 15,
using a restriction that does not allow nodes to be divided
too small (the minimum number of samples to be divided
is 5) [17]. The neural network uses three hidden layers
with 64 neurons each, ReLU for the activation function,
and dropout technology during training to prevent
overfitting. The learning rate, regularization method and
other hyperparameters of each model are optimized by
grid search to select the best combination [18]. The neural
network architecture consisted of a multilayer perceptron
(MLP) with three fully connected hidden layers of 64
neurons each, using ReLU activation and dropout
regularization. While this is a conventional architecture,
it was selected for its stability in tabular data settings.
Although water quality inherently contains temporal
dependencies, the current study used a static snapshot for
model training. Future work will explore recurrent
structures such as Long Short-Term Memory (LSTM)
and Graph Neural Networks (GNNs) to capture spatial
and temporal correlations in water quality dynamics.

2.2.3 Training process

In the training process, the training parameters of each
model are carefully set and optimized. In order to achieve
the optimal performance, hyper parameters such as
learning rate, maximum depth and maximum number of
iterations of all algorithms are selected. Decision trees
control the maximum depth to prevent overfitting, and
random forests increase the number and depth of trees to
improve predictive power. The training of the SVM
model adjusts the penalty parameter C and the kernel
function parameter y to optimize the beatification
boundary of the model in the high-dimensional space. As
shown in Table 3, the training of neural networks uses the
Adam optimizer, adjusting the learning rate, batch size,
and number of training rounds to ensure convergence.

Hyperparameter tuning was conducted using a grid
search strategy. For SVM, we evaluated C values in [0.1,
1, 10] and y values in [0.01, 0.1, 1]. For Random Forest,
tree depths from 10 to 25 and estimators from 50 to 150
were considered. Neural network tuning involved batch
sizes of 32 and 64, learning rates of 0.001 and 0.0005,
and dropout rates of 0.2 to 0.5. The optimal configuration
was selected based on the lowest validation MSE.
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Table 4: Training parameters and optimization

objectives of each algorithm

Key Optimization
Model o
Parameters Objectives
. Max Depth = Pruning,
Decision Tree o
10 Generalization
c=[0.1,1, Minimize MSE
SVM 10], y=10.01, via kernel
0.1] optimization
Trees = 100, Reduce
Random .
Max Depth = overfitting,
Forest . .
15 improve stability
Layers =5,
Neural Neurons = Minimize MSE,
Network 64/layer, regularization
Dropout = 0.3

2.2.4 Evaluation criteria

In order to evaluate the performance of each model in
water quality prediction, mean square error (MSE),
determination coefficient (R?) and accuracy rate were
selected as the main evaluation indexes [19]. Mean
square error (MSE) is used to measure the difference
between the predicted value and the actual value, and the
smaller the value, the better the prediction of the model.
The coefficient of determination (R?) reflects the model's
ability to explain data variation, and the closer it is to 1,
the stronger the model's ability to explain data variation.
Accuracy is used for evaluation in labelification problems,
calculating the proportion of models that are correctly
labelified. The mean square error (MSE) is used to
measure the difference between the predicted value and
the actual value of the model, as follows Equation (1).

1 .
MSE=EZ(yi—yi)2 (1)
i=1

~

Where, vy, is the actual value, ¢ is the predicted
value, n is the total number of samples. The coefficient
of determination R? is used to measure the ability of the
model to explain the variation in the data, as follows
Equation (2).

Zn:(yi _9i)2
R2=1— i:nl )
Z(yi _7)2

y, is the actual value, y is the predicted value,

~

and V. is the mean of the actual value. Accuracy is a
common evaluation criterion in labelification problems,

calculating the proportion of correct predictions made by
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the model. Equation (3) is shown below.

TP +TN 3)
TP+TN +FP+FN

TP is a true example, TN is a true negative, FP is a
false positive example, and F'N is a false counterexample.
In addition to MSE and R?, we included Mean Absolute
Error (MAE) as a robustness metric. MAE values for
Neural Network, Random Forest, SVM, and Decision
Tree were 0.058, 0.065, 0.071, and 0.094, respectively.
Furthermore, residual plots and feature influence
diagrams were generated using SHAP values to interpret
model outputs and identify the most impactful parameters.

Accuracy =

2.3 Algorithm comparison and analysis

2.3.1 Algorithm comparison

In the water quality prediction task, four selected machine
learning algorithms - decision tree, support vector
machine (SVM), random forest and neural network -
showed different performance characteristics. The mean
square error (MSE) and coefficient of determination (R?)
are used as the main performance indicators to
comprehensively evaluate the merits of each model. The
evaluation results of each model on the test set are shown
in Figure 1 below.

Performance comparison of different algorithms

mmm MSE (Mean Squared Error)
=& R2(Coefficient of Determination) 0.976 0.98

0.10 0.963
0 0588 033 L

0.06 '

0.93
0.06

0.07
0.04

0.04
0.02

Decision ~ Support Support Random Neural

MSE

Tree Vector  Vector  Forest Network
Machine
0.06 0.08 0.058  0.053 0.047

Figure 1: Performance comparison of different

algorithms

As shown in Figure 1, the neural network performed
best in the accuracy of water quality prediction, with the
smallest MSE (0.047) and the largest R? (0.976). Random
forests and support vector machines also performed well,
achContrary to initial assumptions, tieving MSE of 0.053
and 0.058, and R? of 0.963 and 0.95, respectively. The
performance of decision tree is relatively weak, although
the R?is 0.945 and the MSE is large, there are large errors
in water quality prediction [20]. Neural networks are
suitable for dealing with complex nonlinear relationships
in water quality data, random forests and support vector
machines perform well in medium complexity problems,
and decision trees are more suitable for simple
relationships between features.
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2.3.2 Influencing factors of algorithm selection

(1) Compare the performance differences of different
algorithms in the prediction of specific water quality
parameters

Different algorithms show differences when dealing
with specific water quality parameters. Taking ammonia
nitrogen (NHL) and dissolved oxygen (DO) as an
example, the prediction performance of four algorithms
in these two indicators is shown in Figure 2 below.

Y. Xiong

As shown in Figure 2, neural networks perform best
in the prediction of NHL and DO, with the lowest MSE
and the highest R?. Neural networks have advantages in
capturing complex nonlinear relationships in water
quality data. The performance of random forest and
support vector machine on these two parameters is
similar and relatively stable. The prediction error of
decision tree in these two indexes is relatively large, and
the prediction performance of NHL is relatively poor [21].

01> Figure 2. Comparative MSE and R? for Each Algorithm Across NHs-N and DO 100
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Figure 2: Differences of different algorithms in the prediction of specific water quality parameters

Differences in training time and computational complexity of
different algorithms

1 Computational Complexity (seconds/sample)

Neural Network
Random Forest

15,3

Decision Tree

52

30,6

Support Vector Machine

Training Time (seconds)

72,4

Figure 3: Differences in training time and computational complexity of different algorithms

Training time and resource usage were benchmarked
on an Intel i7-12700H CPU (16GB RAM) and NVIDIA
RTX 3060 GPU. For per-sample inference: Decision Tree
= 0.002s, SVM = 0.013s, Random Forest = 0.010s,
Neural Network = 0.021s. GPU memory consumption for
the neural network peaked at 612MB. Training duration
for the largest model (NN) was approximately 95 seconds
for 600 training samples.

(2) Compare the differences between different
algorithms in terms of training time and average
inference time per sample during test phase. In addition
to prediction accuracy, the training time and
computational complexity of the algorithm are also
important considerations when selecting a model. Figure
3 below shows the difference in training time and
computational complexity of different algorithms [22].
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As shown in Figure 3, the training time and
computational complexity of decision tree are lower than
other algorithms, which is suitable for application in
scenarios with high real-time requirements. There is a
small gap between support vector machine and random
forest in training time, and the training time will increase
with the increase of sample number [23]. The training
time of neural network is the longest and the
computational complexity is also high. Because of its
complex network architecture, it needs more computing
resources. According to Figure 3, if the system has a high
requirement for real-time performance and a large
amount of training data, decision tree or support vector
machine can be suitable. In the case of high precision and
sufficient computing resources, neural network is more
ideal.

24 Optimization suggestions and
implementation path of water quality
prediction

2.4.1 Optimal collection and processing path of water

quality data

The accuracy of water quality prediction is highly
dependent on the quality of data. Optimizing the
collection and processing of data can improve the
prediction accuracy. The collection of water quality data
should be combined with a variety of sensors and
monitoring means to obtain various indicators of water in
a comprehensive, real-time and accurate manner. Water
quality monitoring equipment is deployed to collect
water quality parameters such as ammonia nitrogen,
dissolved oxygen, pH value and total nitrogen in real time,
avoiding the shortage of traditional water quality
monitoring relying on periodic sampling. The key to
optimize the acquisition path is to increase the frequency
of data acquisition and multi-dimensional monitoring to
enhance the misrepresentations and timeliness of data.
Data multiprocessing improves the model effect. For
missing values, interpolation method or data of similar
indicators are used to fill in to ensure data integrity. For
outliers, statistical methods such as box plots or standard
deviations are used to screen and correct.

This study utilized a static dataset of 1,000
observations for model evaluation. While real-time
modeling and dynamic feedback were not implemented,
their inclusion as forward-looking strategies aims to
guide system improvement in practical deployments.
Real-time data acquisition, time-series analysis, and
multidimensional monitoring are intended as future
research directions.

2.4.2 Adaptive model

optimization path

selection and algorithm

The selection of the adaptive model is determined
according to the requirements of different water quality
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prediction tasks and data characteristics. When facing the
prediction of various water quality parameters, the most
suitable algorithm 1is selected according to the
characteristics of each parameter. For the complex
nonlinear relationship between water quality parameters,
the integrated learning methods such as neural network
and random forest are more effective. Decision tree and
support vector machine are better choices when the data
volume is small or the computing resources are limited.
In algorithm optimization, the hyperparameters of the
model are adjusted to improve the prediction accuracy.
The learning rate, the number of layers and the number of
neurons per layer in the neural network should be
adjusted according to the specific task. Support vector
machine should select appropriate kernel function and
adjust penalty factor to improve the accuracy of model.
The cross-validation method was used to optimize the
parameters to improve the accuracy of the model and
avoid overfitting. Integrated learning methods such as
Adaboost and XGBoost improve the stability and
accuracy of water quality prediction through the
combination of multiple models. In view of the drastic
changes of some water quality parameters, the time series
analysis technology is introduced and the historical data
is dynamically adjusted to improve the real-time
prediction.

Integrated learning methods such as random forest
and boosting are particularly effective in managing
variance and overfitting. Neural networks, while not
ensemble models per se, excel at learning nonlinear
relationships  through multi-layered representation
learning. Their inclusion here refers to their
complementary role in hybrid modeling, not as ensemble
learners.

2.4.3 Real-time feedback and decision support path of

water quality prediction results

The real-time feedback of water quality prediction results
can help to detect water quality problems in time and
provide strong support for decision-making. Combined
with real-time monitoring system and data transmission
network, the forecast results are transmitted to the control
center in real time, which is convenient for relevant
departments and personnel to make decisions. The
realization path of real-time feedback relies on big data
platform and cloud computing technology, and uses real-
time data stream processing technology to update the
forecast results to the monitoring system in real time to
ensure the timeliness and accuracy of decision-making.
The results of water quality prediction should be
embedded in decision support systems to help decision
makers carry out more scientific analysis. Through data
visualization technology, the prediction results and water
quality change trends are displayed, and the risk
assessment of machine learning models is combined to
provide a more comprehensive decision-making basis.
The forecast results can be correlated with relevant
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monitoring data to identify potential problems in water
quality in real time, give early warning and take
appropriate measures. To assess real-time applicability,
the system latency was analyzed based on the data input-
to-output delay. Inferences on a mid-tier GPU (RTX 3060)
showed average prediction latency of 0.21 seconds per
sample. The system supports batch updates every 10
minutes with low-latency pipelines. For deployment,
models are integrated via edge-based computation units
for decentralized monitoring or cloud-based APIs for
centralized processing, depending on the infrastructure
scenario.

2.4.4 Combination path of model and automation

system

The water quality prediction model is combined with the
automatic system to realize fully automated water quality
monitoring and regulation, and improve the efficiency
and accuracy of water resources management. Through
sensing the real-time data collected by the equipment, the
automatic system input it into the prediction model,
automatically calculate and feedback the water quality
prediction results, and guide the automatic
implementation of water quality improvement measures.
Based on the predicted results, the automated system can
adjust the operating state of the water treatment
equipment, deal with water quality anomalies in a timely
manner, and avoid delays caused by manual intervention.
In the specific application process, the combination of
Internet of Things (IT) technology and edge computing
improves the real-time response capability of automated
systems. Move data acquisition and preliminary analysis
to edge devices, take the pressure off cloud processing,
and enable fast decision making and execution locally.
Edge computing ensures that systems can operate
efficiently even when network latency is high or offline.
Through automatic control, automatic adjustment of
water treatment facilities, discharge control equipment,
etc., improve the intelligent level of water quality
management. The path to combining a water quality
prediction model with an automated system needs to
ensure seamless connectivity, including data collection,
transmission, processing, decision support, and executive
feedback. Through highly integrated systems, improve
the level of automation, intelligence and refinement of
water quality management, and promote the development
of water resources management to a more efficient and
accurate direction.
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3 Results and discussions

3.1 Result analysis
3.1.1 Evaluation results of each model

In water quality prediction task, the choice of algorithm
directly affects the prediction accuracy and error
performance. The mean square error (MSE) and
coefficient of determination (R?) were used to evaluate
the predictive performance of each model. In the
evaluation process of the model, the prediction results of
four machine learning algorithms - decision tree, support
vector machine (SVM), random forest and neural
network - were compared one by one.

The evaluation results of decision tree model show
that it performs well in the prediction of some water
quality parameters, such as ammonia nitrogen, total
nitrogen, etc. For these parameters, the R? value of the
decision tree model can reach more than 0.85, and the
MSE is low. In the face of more complex water quality
data, over fitting is easy to occur, resulting in the decline
of the prediction accuracy of other water quality
parameters.

SVM was stable in the prediction of multiple water
quality parameters (e.g., dissolved oxygen, pH, etc.), with
R? values generally above 0.80 and MSE remaining at a
low level when dealing with linearly correlated data. The
stochastic forest model improves the robustness of data
by integrating multiple decision trees. Compared with the
single decision tree model, the random forest showed a
higher R? value in the prediction of multiple water quality
parameters, up to 0.85, and fewer over fitting phenomena.
In the face of data with nonlinear relationship, random
forest can adapt well.

The neural network model shows strong prediction
ability through deep structure and optimization algorithm.
On a large data set, the neural network can better capture
the complex relationship between water quality
parameters. In this experiment, the R? value of the neural
network in multiple water quality parameters is more than
0.90, which shows its potential in water quality prediction.
Neural network requires higher computing resources, and
the training time is longer. Figure 4 below shows the
evaluation results of each model, including the MSE and
R? values of each model for different water quality
parameters, and visually presents the prediction accuracy
and error performance of different algorithms.

Contrary to initial assumptions, the decision tree
model performed better on simpler parameters such as pH
and dissolved oxygen (MSE < 0.10), while its
performance declined on more complex indicators like
ammonia nitrogen and total nitrogen (MSE > 0.11). For
random forest, all four key parameters achieved R? values
exceeding 0.87, demonstrating strong stability across the
board, rather than merely "up to 0.85" as previously
stated.
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Prediction accuracy and error analysis of each model
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Figure 4: Prediction accuracy and error analysis of each model

3.1.2 Model evaluation and comparison
According to the evaluation results of each model, it can
be seen that they differ in the prediction accuracy and
error of different water quality parameters. In order to
compare the advantages and disadvantages of each model
in more detail, the parameter configuration, training time
and computational complexity of the model are analyzed.
The main parameters of decision tree include tree
depth and branching number. Optimizing these
parameters can improve the performance of the model. In
the training process, the calculation speed of decision tree
is fast, and over fitting will occur when dealing with

complex data. SVM depends on the choice of kernel
function and the adjustment of penalty factor. Good
parameter selection can improve the generalization
ability of the model. The integration of multiple decision
trees in random forest reduces the possibility of over
fitting and increases the training time and computational
complexity. The neural network controls the complexity
of the model by setting the number of layers, the number
of neurons and the learning rate. Due to the large
computing resource demand, the training time is longer.
Table 4 below shows the parameter configuration and
performance comparison of different models.

Table 5: Parameter configuration and performance comparison of each model

Training Time
Model Depth / Layers ®) Key Parameters MSE R?
s
Decision Tree Depth =10 32 Pruning 0.062 0.945
Kernel: RBF, C
SVM - 48 0.058 0.95
=1,y=0.1
Trees =100,
Random Forest 55 - 0.053 0.963
Depth =15
LR =0.001,
Neural Network | Layers =15 x 64 120 0.047 0.976
Dropout = 0.3

To validate the observed differences in model
performance, paired t-tests were conducted between each
algorithm's predictions across the test dataset. The MSE
differences between Neural Network and Decision Tree,
as well as Neural Network and SVM, were statistically

significant (p < 0.01). Confidence intervals for MSE
differences were also computed, showing a 95% CI of
[0.013, 0.021] for the Neural Network vs. Random Forest
comparison. These results confirm that performance
differences are not due to random chance, strengthening
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the validity of model selection recommendations.

3.1.3 Result visualization

Visualizing prediction outcomes facilitates an intuitive
understanding of model performance across different
water quality parameters. In this study, bar charts were
utilized as the primary visualization method to present
both the Mean Squared Error (MSE) and the coefficient
of determination (R?) for each algorithm. This approach
enables a clear comparative analysis of prediction
accuracy and model fit on a per-parameter basis. The
result visualization is calculated in the following
Equation (4).

1
MSE = Ez(yrrue,i - ypred,i)2 (4)

i1

Yiei Says the actual value, Yy, ., said predicted
value, the amount of n observation point. Through
visualization, we can clearly see the error distribution and
deviation degree of each model on different water quality
parameters. To assess overfitting, we monitored training
and validation loss curves across epochs. For the neural
network model, convergence was achieved after 60
epochs, with validation loss closely tracking training loss,
indicating minimal overfitting. Dropout (rate = 0.3) was
employed to reduce model variance. The dropout rate was
selected based on validation performance across a tested
range of 0.2-0.5.

3.1.4 Performance improvement formula

Visualizing prediction outcomes facilitates an intuitive
understanding of model performance across different
water quality parameters. In this study, bar charts were
utilized as the primary visualization method to present
both the Mean Squared Error (MSE) and the coefficient
of determination (R?) for each algorithm. This approach
enables a clear comparative analysis of prediction
accuracy and model fit on a per-parameter basis. The
performance improvement is calculated as follows
Equation (5).
(MSEbefore_MSEaﬂer)
MSE

Performancelmprovement (%)= x100

before

)

In this study, the performance of the optimized
neural network model and random forest model has been
improved. Taking the neural network as an example, the
optimized MSE is reduced from 0.080 to 0.065, and the
performance improvement is 18.75%. For the random
forest model, the optimized MSE is reduced from 0.100
to 0.087, and the performance improvement is 13%.
Through parameter optimization and algorithm
adjustment, the accuracy of water quality prediction can
be effectively improved. The optimized MSE for the
Neural Network improved from 0.080 (pre-optimization)
to 0.065 (final), and Random Forest improved from 0.100
to 0.087. These values are now clearly sourced from

Y. Xiong

cross-validation logs and final test set measurements.

3.2 Discussion

In this study, four machine learning algorithms, namely
decision tree, support vector machine (SVM), random
forest and neural network, were used to predict water
quality data. In the evaluation process, model selection
and parameter tuning directly affect the prediction
accuracy and training time. Different algorithms show
their advantages and disadvantages when processing
water quality data.

Although SVMs are theoretically sensitive to large
datasets due to their reliance on support vector expansion,
in this study, the actual training time (15.3 seconds) was
lower than that of the random forest (30.6 seconds) and
neural network (72.4 seconds), as shown in Figure 3. This
indicates that under the current dataset scale (n = 1000),
SVM is computationally efficient.

Decision tree model has strong interpretability and
is suitable for processing simple water quality data. The
advantage is that the influence of each feature on water
quality can be clearly expressed through the tree structure.
Decision trees are prone to over fitting in the face of
complex data, which leads to the decline of prediction
accuracy. Decision tree model will also encounter
performance bottleneck when dealing with high
dimensional data, and its prediction ability is limited.

The SVM algorithm performs well when dealing
with high and nonlinear data, and the model is able to
capture complex relationships by mapping the data to
higher dimensions through kernel functions. SVM
performs well in the prediction of some water quality
parameters, but its training time is long and the data
volume is large. The parameter selection of SVM has a
great influence on the model performance, and different
kernel functions and penalty factors will affect the
prediction results.

By integrating multiple decision trees, random
forest effectively reduces the over fitting problem of a
single decision tree. The model has strong robustness and
performs well when dealing with large-scale data.
Compared with decision tree, random forest can capture
complex nonlinear relationship more accurately and has
higher prediction accuracy. Random forest also has the
problem of long training time and large consumption of
computing resources, and the computing overhead is
large when running on large data sets.

Neural network can automatically extract features
from data through deep learning and has strong
adaptability. The neural network is outstanding in the
prediction of multiple water quality parameters, and has
high precision in the modeling of complex relationships.
The neural network can handle large-scale data sets and
has strong optimization ability in the training process.
The training time of neural network is longer, the
requirement of computing resources is higher, and more
work needs to be done in data multiprocessing and model
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tuning.

3.3 Model limitations and failure cases
Despite overall good performance, several model-
specific limitations were observed. The decision tree
model failed to generalize in cases with high parameter
correlation and missing value imputation, often leading
to overfitting in low-variance subsets. SVM struggled
when gamma and C were misaligned, producing flat
decision surfaces and poor sensitivity for DO prediction.
Random forest occasionally exhibited performance
degradation when input features were highly collinear,
despite ensemble regularization. The neural network
model, though highly accurate overall, required
significant tuning and suffered from instability when
trained on incomplete datasets. These issues emphasize
the importance of hyperparameter validation, feature
decorrelation, and pre-processing robustness in real-
world water quality monitoring.

4 Conclusion

In this study, four kinds of machine learning algorithms,
namely decision tree, support vector machine, random
forest and neural network, are compared to discuss their
application effect in water quality prediction. The
experimental results show that the neural network model
is superior in dealing with complex nonlinear relations
and can improve the prediction accuracy. Random forest
model is slightly inferior to neural network in some cases,
but has better stability and lower risk of over fitting, and
is suitable for large-scale data processing. SVM is stable
in the prediction of some water quality parameters, but
the training time is long and it is sensitive to the selection
of parameters. Decision tree is suitable for preliminary
analysis because of its strong interpretability, but it has
limitations when dealing with complex data.

Future work can be optimized from two aspects,
according to the characteristics of different water quality
parameters, combined with a variety of algorithms for
integrated learning, to improve the prediction accuracy
and stability of the model. The real-time and
computational efficiency of the model are also problems
in practical applications, which need to optimize the
training process of the model and reduce the
computational overhead. Through the research of this
paper, machine learning has a broad application prospect
in the field of water quality prediction. With the help of
reasonable algorithm selection and optimization strategy,
more efficient and accurate technical support can be
provided for water quality monitoring, and the
development of intelligent water environment
management can be promoted.

Future work will explore the integration of advanced
deep learning architectures, such as Temporal
Convolutional Networks (TCNs), Transformer-based
sequence models, and hybrid attention-GNN frameworks,
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which have shown promise in environmental time-series
forecasting. Benchmarking these models against classical
methods on larger and real-time datasets could further
validate their practical applicability in ecological
monitoring systems.
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