
https://doi.org/10.31449/inf.v49i8.9228 Informatica 49 (2025) 257–274 257

Comparative Performance Analysis of Machine and Deep Learning Models for
EEG-Based Biometric Authentication

Ahmad Ayman Tarawneh, Aloui Kamel, and Mohamed Saber Naceur
The University of Sousse by University of Carthage, LTSIRS, INSAT, Tunisa
E-mail: ahmad.tar.tie@gmail.com, kamel.aloui@uvt.tn, medsabeur.naceur@insat.ucar.tn

Keywords: User authentication, physiological signals, electroencephalography (EEG), brain-computer interface (BCI),
biometric security

Received:May 14, 2025

EEG-based biometric authentication has emerged as a secure alternative to conventional authentication
methods, owing to its resistance to spoofing and inherent movement/image individual variability. This study
evaluated the performance of various classification models in the EEG motor movement/image dataset,
which comprises 1,526 sessions recorded from 109 subjects using 64 EEG channels at a sampling rate of
160 Hz. A comprehensive set of 1,600 features per session was extracted in the time, frequency, and time-
frequency domains. Following standard pre-processing and normalization, the models were trained in a
stratified 70/30 training test split using features standardized to zero mean and unit variance.
We systematically compared traditional machine learning classifiers, ensemble methods, and deep learning
architectures. Hyperparameter tuning was performed uniformly across all the models. The Ridge Classifier
achieved the highest accuracy (93.8%), followed by Logistic Regression (91.27%) and MLP (89.96%),
demonstrating the strength of linear and shallow neural models on engineered EEG features. In contrast,
deep learning models, including CNN, LSTM, GRU, and BiLSTM, recorded significantly lower accuracy
( 0.87%) because of limited training data and the use of pre-extracted statistical features instead of raw
time-series input, which restricted their ability to learn temporal patterns.
These findings indicate that traditional machine-learning models, when applied to well-crafted features,
remain highly competitive for EEG-based authentication. They offer a favorable balance between perfor-
mance, computational efficiency, and interpretability, whereas deep learning approaches require further
adaptation to the structure and scale of EEG data.

Povzetek: Primerjalna študija EEG-biometrije na EEGMMI (109 oseb, 64 kanalov) s 1.600 značilkami
pokaže, da linearni modeli prekašajo globoke: Ridge doseže 93,8 % natančnost. Predpripravljene značilke
in malo surovih signalov omejita CNN/LSTM; klasični pristopi ostanejo učinkoviti, razlagalni in varčni.

1 Introduction
The increasing number of cybersecurity threats necessitates
the implementation of strong user authentication systems
to protect sensitive data. Current security frameworks are
based on traditional biometric modalities, including fin-
gerprint and iris scans and facial recognition; however,
these systems remain exposed to advanced spoofing at-
tacks. High-resolution photographs have been shown to
defeat facial recognition systems, whereas synthetic finger-
prints made from latent prints have successfully compro-
mised smartphone security [1]. The current limitations of
biometric systems demonstrate the requirement for authen-
tication methods that use intrinsic physiological traits that
cannot be replicated.
EEG is a promising noninvasive brain activity record-

ing method that shows potential as a biometric solution.
EEG signals produce dynamic neural patterns that function
as individual-specific brain fingerprints because they differ
from the static physical characteristics [2]. The nature of
EEG signals binds them to life sciences; users must actively

participate in recording and playback. Research shows that
EEG responses to visual flashes, auditory tones, and motor
imagery tasks produce different patterns between subjects,
which allows for effective user identification [3].
Despite their potential, EEG-based verification faces sig-

nificant challenges. Signal variability caused by environ-
mental noise, electrode displacement, or shifts in user men-
tal states (e.g., fatigue and stress) can degrade the perfor-
mance over time [4]. In addition, most existing systems
rely on high-density electrode arrays (e.g., 64–128 chan-
nels), which are impractical for everyday use in consumer
devices.
The integration of physiological signals into authentica-

tion systems has transformative implications across vari-
ous industries. In personal devices, continuous authenti-
cation using EEG or photoplethysmography (PPG) can en-
able seamless yet secure access to smartphones and wear-
ables, thereby reducing reliance on vulnerable password-
based systems [5]. In addition, studies suggest that EEG-
driven authentication can enhance financial transactions
by adding a robust layer of identity verification, mitigat-
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ing fraud risks, and improving digital security [6] [7].In
healthcare, physiological biometrics can safeguard elec-
tronic health records (EHRs) and restrict access to sensitive
medical devices, aligning with regulatory mandates such as
HIPAA and GDPR [8]. In the changing landscape of secu-
rity challenges, there are opportunities to improve authen-
tication systems by combining neuroscientific insights and
biometric technology with physiological signals [9].
Standard text-based passwords are commonly used.

Most users tend to opt for passwords or use them repeat-
edly across platforms, which increases their risk of entry.
Furthermore, cryptic passwords can be challenging to re-
call, resulting in users resorting to less-secure alternatives
[8]. Research indicates that although graphical passwords
and session-based authentication enhance security to some
degree, they remain susceptible to attacks and usability is-
sues [9] [10]. Proposals have been made to use biometrics,
such as keystroke dynamics, to tackle these vulnerabilities
without the need for hardware. However, these methods
also encounter difficulties in terms of accuracy and envi-
ronmental reliance [11].

1.1 Research objectives and questions

This study aims to advance EEG-based biometric verifica-
tion by evaluating the effectiveness of spectral and tempo-
ral features extracted from EEG signals. We utilized a pub-
licly available dataset containing recordings from 64 EEG
channels and assessed model performance across multiple
sessions. A variety of machine learning and deep learning
classifiers were applied to determine their accuracy and re-
liability in user authentication. Our work contributes to the
broader goal of developing secure and practical EEG-based
biometric systems by providing a comparative performance
analysis of commonly used classification models.
The primary objective of this study is to evaluate the ef-

fectiveness of various machine learning and deep learning
models in biometric authentication based on EEG. Specifi-
cally, we investigate the following:

– RQ1: Can low-complexity machine learning mod-
els, such as Ridge Classifier and Logistic Regression,
achieve high accuracy in EEG-based biometric au-
thentication?

– RQ2: How do deep learning models perform com-
pared to traditional machine learning models when ap-
plied to extracted statistical features from EEG data?

– RQ3: Under what conditions (e.g., data volume, fea-
ture types) could deep learning models outperform tra-
ditional machine learning models in EEG-based au-
thentication tasks?

By addressing these questions, we aimed to provide
insights into the suitability of different classification ap-
proaches for EEG-based biometric systems.

1.2 Organization of the paper
The remainder of this paper is organized as follows.
Section 2 provides background information on the EEG

fundamentals, electrode placement, frequency bands, and
the general framework for EEG-based authentication. Sec-
tion 3 reviews related work in the field of EEG-based bio-
metric authentication. Section 4 describes the datasets used
in this study. Section 5: Details of the experimental setup
including data filtering, outlier analysis, feature extraction,
normalization, dataset splitting, performance metrics, and
classification models. Section 6 presents the results of the
classification models. Section 7 discusses the findings,
compares the performance of different models, and ana-
lyzes the conditions that influence their effectiveness. Sec-
tion 8: Concludes this study and suggests directions for fu-
ture research.

2 Background
The EEG-based authentication leverages the unique neu-
ral activity of the brain to create a robust and secure bio-
metric system. Unlike traditional authentication methods,
EEG signals are inherently tied to an individual’s cognitive
and physiological state, making them difficult to replicate
or forge. This section explores the fundamentals of EEG,
its signal frequency bands, and the optimal electrode place-
ment for enhancing biometric accuracy.

2.1 Fundamentals of EEG and its role in
authentication

This study focuses on EEG-based biometric authentica-
tion using machine and deep learning models. Electroen-
cephalography (EEG) is a widely used physiological sig-
nal in Brain–Computer Interface (BCI) research due to its
ability to capture unique brainwave patterns that are diffi-
cult to replicate [12, 13]. Although BCI systems often aim
to integrate multiple modalities and interactive capabilities,
the scope of this work is limited to the use of EEG signals
alone for identity verification. The motivation stems from
BCI principles, but the objective here is not to develop a full
BCI framework, rather to assess the effectiveness of EEG-
based classification models for secure user authentication.
EEG functions as a method to detect brain electrical sig-

nals that combine the synaptic potential activity of multi-
ple cerebral cortex neurons [14]. This technique enables
the simultaneous multichannel measurement of central and
autonomic nervous system responses. The central nervous
system, which consists of the brain and spinal cord, reacts
to external stimuli, and the autonomic nervous system con-
trols involuntary body processes, including heart rate and
breathing [15]. EEG signals serve as reliable measures of
neural activity triggered by both internal and external stim-
uli and reflect unique physiological and behavioral traits.
One of the key advantages of EEG for authentication

is its uniqueness and difficulty in replication. EEG sig-
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nals contain individualized characteristics, such as cogni-
tive ability, emotional state, age, gender, and neural con-
nectivity [16, 17, 18]. Because brain structures and cogni-
tive functions vary among individuals, EEG signals exhibit
substantial inter-subject differences but remain stable when
the same individual performs identical tasks [19, 20]. Fur-
thermore, EEG authentication is highly resistant to spoof-
ing because it requires specialized recording equipment,
unlike facial or fingerprint recognition, which can be easily
compromised [21].
Standard text-based passwords remain the most widely

used authentication mechanism; however, their vulnerabil-
ities are well documented. Users frequently reuse simple
passwords across multiple platforms, increasing the risk of
credential theft [8], whereas complex passwords are often
abandoned because of memorability challenges [22]. Al-
though graphical and session-based alternatives mitigate
some risks, they remain susceptible to shoulder surfing,
brute-force, and replay attacks [9, 10]. Behavioral biomet-
rics, such as keystroke dynamics, offer hardware-free solu-
tions but struggle with accuracy under variable user states
(e.g., fatigue) or environments [11]. These shortcomings
underscore the need for systems that balance the security,
usability, and robustness. Physiological signals, such as
EEG, bypass these issues by exploiting intrinsic biological
traits that are resistant to spoofing and memorization [4].
These shortcomings underscore the need for authentica-

tion systems that balance the security, usability, and robust-
ness. Physiological signals, such as EEG, offer a promis-
ing alternative by exploiting intrinsic biological traits that
are resistant to spoofing and are independent of user mem-
orization [4].

2.2 EEG electrode placement
EEG authentication accuracy is significantly influenced by
electrode placement because different brain regions gener-
ate distinct responses to cognitive and sensory stimuli [23].
The selection of appropriate electrode positions plays a crit-
ical role in improving the recognition rate and reducing the
complexity of the data collection. Figure 1 shows the place-
ment of the 64-channel EEG sensors used in the BCI2000
system to capture motor and imagery task-related brain ac-
tivity.
Several studies have identified optimal electrode loca-

tions for EEG-based biometric authentication. [25] found
that the O2 channel provides stable biometric features in
semantic-induced ERP paradigms . [26] highlighted key
authentication features in the Fz, FC1, FC2, Cz, CP1, CP2,
and Pz channels, while [27] emphasized PO3, PO4, O1, Oz,
and O2 as effective biometric authentication regions. These
findings suggest that authentication accuracy can be maxi-
mized by strategically selecting electrode placements based
on the task-specific requirements.
Because EEG patterns vary among individuals, select-

ing a personalized set of EEG channels can further enhance
the authentication performance [28]. [29] proposed an opti-

Figure 1: 64-channel EEG electrode distribution [24]

mized channel-based model that dynamically adjusts elec-
trode locations per user, thereby improving robustness and
reducing the overall data collection burden. In addition, re-
searchers have explored the use of genetic algorithms to re-
fine authentication channel selection, demonstrating further
improvements in EEG-based biometric accuracy [28].
This study demonstrates how EEG signal optimization,

frequency band selection, and electrode placement affect
authentication systems. Researchers continue to improve
EEG biometric systems by fine-tuning these factors, result-
ing in more secure and reliable systems that can be used in
real-world applications.

2.3 EEG signal frequency bands

EEG signals consist of separate frequency bands that cor-
respond to the different neural states of activity. The se-
lection of appropriate frequency bands for authentication
systems improves accuracy while reducing computational
requirements [30]. Researchers have grouped EEG signals
into multiple frequency bands with unique characteristics
for biometric security applications.
The delta band shows the most distinguishable character-

istics, making it suitable for identity recognition because it
remains consistent between different states [30]. Beta and
gamma bands achieve better authentication accuracy be-
cause they correlate with cognitive and visual-related men-
tal tasks [28, 20, 31]. The gamma band exhibits strong au-
thentication potential because its chaotic and complex na-
ture leads to strong nonlinearity [32].
Identification of identity-related EEG features requires

more than one frequency band because no single band con-
tains all necessary information. The spread of biomet-
ric information across various frequency bands requires an
integrated method using multiple frequency components
[33, 34, 7]. Authentication accuracy varies because stim-
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ulation tasks produce EEG responses that differ across spe-
cific frequency bands [28]. Authentication frameworks
must adapt their performance to specific EEG responses
from different tasks to achieve optimal results.

Table 1: EEG frequency bands and their characteristics

Freq.
Band

Range
(Hz)

Typical
Ampl-
itude

Dominant
Brain
Region

Delta from 1
to 4 Hz

from 20
to 200 µV

Frontal and
occipital lobes

Theta from 4
to 8 Hz

from 100
to 150 µV

Frontal and
parietal lobes

Alpha from 8
to 13 Hz

from 20
to 100 µV

Parietal lobes
and posterior
occipital

Beta from 13
to 30 Hz

from 5
to 20 µV

Central areas,
temporal and
frontal lobes

Gamma greater
than 30Hz

less than
2 µV

Somatosensory
center

Table 1 shows the essential characteristics of the EEG
frequency bands, including their frequency range and am-
plitude, together with their main brain regions. The dif-
ferent cognitive and physiological states of EEG-based au-
thentication systems depend on the frequency bands. The
unique features of each band allow researchers to enhance
biometric accuracy through optimized feature extraction
and classification methods.

2.4 General framework
The general framework for EEG-based person identifica-
tion systems appears in Figure 2. Identification systems
based on EEG data follow a specific operational sequence
that includes multiple essential phases. EEG signals are ac-
quired through scalp electrodes.
The raw signals receive preprocessing treatment, which

includes noise reduction, artifact removal, and normaliza-
tion steps to improve the signal quality. This system uses
spectral, temporal, or spatial analysis techniques for feature
extraction to detect specific neural patterns. The extracted
features are classified into classification models, which in-
clude machine learning and deep learning algorithms, to
distinguish people using their brainwave signatures. The
system uses the classifier output to perform identity veri-
fication or authentication while maintaining a secure and
reliable identification process.

3 Related works
Physiological signals such as electroencephalography
(EEG), electrocardiography (ECG), and heart rate variabil-
ity (HRV) offer promising alternatives to traditional au-
thentication methods. Unlike static biometrics (e.g., fin-

Figure 2: General framework of EEG-based person identi-
fication systems

gerprints), which are vulnerable to spoofing through syn-
thetic replication, physiological signals are intrinsically tied
to dynamic biological processes. Among these, EEG has
emerged as the gold standard because of its neurophysio-
logical uniqueness and inherent live-ness detection capa-
bilities.
Recent advancements have refined EEG-based authenti-

cation through innovations in sensor technologies and sig-
nal processing. For example, research on brain-machine
interfaces (BMIs) has provided deeper insights into mental
state classification using EEG signals, reinforcing the vi-
ability of this biometric approach [45]. Furthermore, [46]
provided a comprehensive review of sensor modalities for
brain-computer interfaces, emphasizing the strengths and
limitations of EEG technology in authentication applica-
tions, and hybrid EEG-MEG systems, proposed by [47], ad-
dress signal quality limitations by combining EEG temporal
resolution with MEG spatial precision, although practical
deployment remains constrained by hardware complexity
[35]. Recent advances in EEG/MEG source imaging have
improved signal quality and enhanced authentication relia-
bility [48].
Electrode optimization is a critical focus for practical

EEG systems portability of EEG authentication as demon-
strated by [36], who proposed a blink-induced EEG sys-
tem for mobile devices. Using a 14-channel Emotive
EPOC headset, EEG signals were recorded during natu-
ral eyeblinks from 30 participants. A support vector ma-
chine (SVM) classifier achieved 92% accuracy by ana-
lyzing delta-band (0.5–4 Hz) power changes associated
with blink-related neural activity. This study highlighted
EEG’s potential of EEG for zero-effort authentication in
mobile contexts, although electrode density and user com-
fort remain barriers. Similarly, [35] proposed genetic al-
gorithms to dynamically optimize electrode placement per
user, thereby reducing intersession variability. These ef-
forts highlight the tradeoff between usability (fewer elec-
trodes) and robustness, which is a central challenge in EEG
biometrics.
Recent advancements in EEG-based biometric authenti-

cation have yielded promising results. [41] employed an
eight-channel OpenBCI headset to collect EEG data from
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Table 2: Summary of EEG-based biometric authentication studies
Study EEG Task No. of Electrodes Classifier Accuracy
[3] User Identification (9 Subjects) 64 GMM with MAP

Adaptation
Best Half Total Error
Rate 7.7

[35] Four Mental Imagery Task 64 Genetic Algorithm +
SVM

97.69% - 100%

[36] Authentication for Mobile De-
vices

14 SVM 92%

[37] Continuous Authentication 4 Hybrid LSTM-CNN EER: 1.8%
[38] Image Classification via EEG Not Specified CNN 70% (EEG Only),

82% (EEG + Image
Features)

[39] Modeling Biosignals Not Specified Contrastive Learning 81.6% and 93.2%
[40] Person identification Not Specified Autoencoder-CNN 87.6%
[41] Person Classification 8 SVM 92.9%
[42] Event-Related Potential (ERP) Not Specified CNN + GCNN

(EEG-BBNet)
99.26%

[43] Epileptic seizure detection
(healthy vs epileptic and ictal vs
seizure-free)

21 k-NN, SVM, ANN Up to 99% with
DWT features

[44] Confusion States 1 (commercial EEG
headset)

1D CNN 99%

12 subjects during fatigue analysis tasks. They extracted
ten features per channel and utilized a multiclass Support
Vector Machine (SVM) classifier, achieving a maximum
identification accuracy of 92.9% using a radial basis func-
tion kernel. This study highlights the potential of EEG sig-
nals for reliable user authentication.
In another study, [42] introduced EEG-BBNet, a hy-

brid framework combining Convolutional Neural Net-
works (CNN) with Graph Convolutional Neural Networks
(GCNN) to capture both spatial and connectivity features
of EEG signals. Evaluated on a benchmark dataset en-
compassing various brain-computer interface tasks, EEG-
BBNet achieved an average correct recognition rate of up
to 99.26% in event-related potential tasks using intrasession
data. The model demonstrated robustness across different
connectivity measures and maintained a high performance
even with a reduced number of electrodes, highlighting its
practicality for real-world applications.
In the summary table (Table 2), these studies illustrate the

efficacy of advanced machine-learning techniques and hy-
brid neural network architectures in enhancing EEG-based
biometric authentication systems.
Recent advances in EEG-based classification tasks have

demonstrated the effectiveness of both traditional feature
extraction and deep-learning approaches in various cog-
nitive and clinical contexts. [54] investigated epilepsy
detection using EEG signals by comparing three feature
extraction techniques: time-domain statistical features,
frequency-domain features via Discrete Cosine Trans-
form (DCT), and time-frequency features using Discrete
Wavelet Transform (DWT). Their experiments, conducted
on the Bonn EEG dataset, showed that DWT-based features

yielded the highest classification performance, particularly
when distinguishing between ictal and seizure-free states,
achieving accuracy levels comparable to or exceeding those
of the existing state-of-the-art methods. In a different ap-
plication domain, [44] explored the detection of confusion
in students during video lectures by using EEG recordings.
They extracted features across multiple EEG frequency
bands and trained a one-dimensional Convolutional Neural
Network (1D-CNN) to classify confusion states. Although
the specific accuracy figures were not disclosed, the pro-
posed deep learning model significantly outperformed tra-
ditional machine learning approaches, highlighting the po-
tential of EEG-driven models for real-time cognitive state
monitoring in educational environments. Complementing
these EEG studies, [43] focused on motor imagery detec-
tion using ECG signals derived from the PhysioNet EEG
Motor Movement/Imagery dataset. Their model employed
Wavelet Packet Decomposition for multiresolution feature
extraction and a multiscale convolutional neural network
(MSCNN) for classification. The system achieved strong
performance metrics (92% accuracy, 91% F1-score, and
95% ROC-AUC), underscoring the potential of combining
advanced signal decomposition with deep learning archi-
tectures for decodingmotor intentions, a technique that may
also be adapted to EEG-based BCI applications.

The foundational work of [3] established EEG’s viability
of EEG as a biometric identifier. Using maximum a poste-
riori (MAP) model adaptation, Marcel and Millán demon-
strated that EEG responses to visual and motor imagery
tasks could achieve 95% user identification accuracy across
a cohort of nine subjects. Their methodology involved ex-
tracting spectral features (alpha and beta bands) from 64-



262 Informatica 49 (2025) 257–274 A. Tarawneh et al.

Table 3: Comparison of recent studies on physiological signal-based authentication: key tasks, and electrode positions

REF Tasks No Of Electrodes Positions

[7] MI (Motor Imagery) 19 O2, O1, P8, P7, P4, Pz, P3, C4, Cz, C3,
T8, T7, F8, F7, Fz, F4, F3, Fp2, Fp1

[49] MI 17 O2, O1, T6, T5, P4, P3, PZ, T4, T3, C4,
C3, CZ, F8, F7, F4, F3, FZ

[29] ERP (Event-Related Potential) 16 Cp6, Cp5, Af8, Af7, F4, F3, C4, C3, Po8,
Oz, Po7, P4, Pz, P3, Cz, Fz

[50] ERP 14 O2, O1, T8, T7, P8, P7, FC6, FC5, F8, F7,
F4, F3, AF4, AF3

[33] VEP (Visual Evoked Potential) 14 O2, O1, T8, T7, P8, P7, FC6, FC5, F8, F7,
F4, F3, AF4, AF3

[51] VEP + sound 14 O2, O1, P8, P7, T8, T7, FC6, FC5, F8, F7,
F4, F3, AF4, AF3

[52] Resting state 6 O2, O1, P8, P7, C4, C3
[53] VEP 6 Oz, O2, O1, Pz, Cz, Fpz

channel EEG data and employing Gaussian mixture mod-
els (GMMs) for classification. A key innovation was the
use of MAP adaptation to personalize generic models to
individual users, thereby reducing intersession variability.
However, the reliance on high-density electrode arrays lim-
its their practical deployment.
To address real-world usability, [37] introduced a contin-

uous authentication system using a 4-channel EEG headset.
Their hybrid LSTM-CNN architecture processed theta (4–
8 Hz) and gamma (30–50 Hz) band features, achieving a
1.8% equal error rate (EER) over 12 sessions with 50 sub-
jects. The strength of the system lies in its resilience to
short-term signal variability (e.g., mood changes), although
performance degraded by 4% in noisy environments. This
study emphasized the trade-off between usability (fewer
electrodes) and robustness, which is a challenge central to
EEG biometrics.
Deep learning models efficiently process vast amounts

of visual data; however, their decision-making process re-
mains opaque. Recent research [38] introduced methods
to extract image features from EEG signals, thereby en-
hancing model interpretability and convergence efficiency.
Inspired by this, EEG signals were encoded as images to
improve the brain signal analysis using deep learning. By
classifying EEG representations corresponding to 39 im-
age classes, researchers achieved a benchmark accuracy of
70%, surpassing previous methods. Furthermore, integrat-
ing EEG-based features with conventional image classifiers
resulted in 82% accuracy, thereby demonstrating the poten-
tial of EEG-enhanced deep learning for improved classifi-
cation and biometric applications.
Researchers [39] who employed a self-supervised con-

trastive learning approach demonstrated promising results
in EEG-based classification, particularly in handling inter-
subject variability and noisy labels. Using the same EEG
Motor Movement/Imagery Dataset (EEGMMI), the study
achieved a recognition accuracy of 88.6%, highlighting

the effectiveness of contrastive learning in modeling EEG
signals with a reduced reliance on labeled data. The re-
search enhanced representation quality through subject-
aware learning techniques, which included subject-specific
contrastive loss and adversarial training, to achieve com-
petitive classification results compared to fully supervised
methods.
A recent study [40] applied the same EEG Motor Move-

ment/Imagery Dataset (EEGMMI) to demonstrate that deep
learning models work well for EEG-based person identi-
fication. The research used an autoencoder-CNN frame-
work to achieve 87.60% recognition accuracy for task-
based identification, which demonstrates the ability of deep
learning to identify people through their EEG signals.
Table 3 summarizes various EEG-based authentication

studies, including the type of tasks performed, number of
participants, and electrode positions used in each study.
The referenced studies covered a range of tasks such asMo-
tor Imagery (MI), Event-Related Potentials (ERP), and Vi-
sual Evoked Potentials (VEP), among others, with specific
electrode placements listed for each study.

4 Methodology
This study aims to develop and evaluate EEG-based
biometric authentication models by leveraging a well-
structured experimental pipeline comprising data acquisi-
tion, preprocessing, feature engineering, model training,
and statistical evaluation. The overall methodology was
structured to ensure reproducibility, generalizability, and
rigorous assessment of the classifier performance. Figure 3
illustrates the key stages of this methodology.

4.1 Data acquisition and preprocessing
The EEG Motor Movement/Imagery (EEGMMI) dataset
was selected for its comprehensiveness and suitability for
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Figure 3: Overview of the methodology pipeline for EEG-based authentication

biometric research. It offers high intersubject variability
and session-based recordings, which are crucial for evalu-
ating the consistency of neural signatures over time. Pre-
processing focuses on data cleaning to remove incomplete
signal segments while preserving valid physiological pat-
terns. Outliers were visually analyzed but retained to pre-
serve the integrity of individual biometric traits, consistent
with prior biometric research practices [3].

4.2 Feature extraction strategy

To capture the complexity of the brain signals, features
were derived from the time, frequency, and time-frequency
domains. This multidomain approach increases the dis-
criminative power of EEG data by capturing both static
and dynamic signal properties. The time-domain features
highlight statistical properties, the frequency domain cap-
tures oscillatory behavior via spectral power analysis, and
the time-frequency domain enables the detection of tran-
sient and nonstationary events using wavelet decomposi-
tion [55]. The feature set was deliberately designed to
maintain interpretability and robustness, while ensuring

sufficient dimensionality for machine learning models.
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4.3 Normalization and data partitioning
All features were standardized using z-score normalization
to ensure fair comparisons between features measured on
different scales, which is a critical step for algorithms sensi-
tive to distance metrics, such as SVM and KNN [56]. Strat-
ified train-test splitting was performed to preserve the class
distributions in both subsets, allocating 70% of the data for
training and 30% for testing. This division allows themodel
generalization to be evaluated using unseen data.

4.4 Model selection and evaluation protocol
To benchmark the effectiveness of the EEG-based biomet-
ric authentication, we selected a broad set of classifiers
from different algorithmic families: linear models, tree-
based ensembles, probabilistic classifiers, distance-based
methods, and deep learning architectures. Each classifier
was subjected to stratified 5-fold cross-validation on the
training set to ensure robust performance estimation and
minimize overfitting. The hyperparameters were optimized
uniformly across the classifiers using a grid search.
The evaluation was based on four widely accepted classi-

fication metrics: accuracy, precision, recall, and F1-score.
These metrics collectively provide insight into model cor-
rectness, sensitivity to false positives and false negatives,
and a balance in handling class distributions. The final
model evaluation was conducted on the held-out test set,
and the performance was further analyzed using 95% con-
fidence intervals and one-way ANOVA tests to determine
the statistical significance of differences across classifiers.

4.5 Statistical rigor and reliability
To ensure the statistical reliability of the results, we con-
ducted a confidence interval estimation using the Student’s
t-distribution because of the limited number of folds (n =
5). One-way ANOVA tests were applied to compare the
classifier means across each performance metric, providing
statistical evidence of significant differences. This analyt-
ical rigor ensures that the observed performance gaps are
not due to random variance, thus supporting reliable con-
clusions regarding model performance.

5 Dataset
This study uses the EEGMotorMovement/ImageryDataset
(EEGMMI) from PhysioNet [57], which serves as a widely
recognized public database for EEG research. The dataset
was chosen because it contained numerous subjects along-
side multiple recording sessions for each participant, thus
making it ideal for EEG authentication system development
and testing.
The dataset contains 109 subjects, which provides re-

searchers with a diverse population to study. A large dataset
size provides strong authentication model reliability be-
cause it covers various neural patterns across different in-

dividuals. The dataset contained 14 recording sessions for
each subject, which enabled researchers to measure the
session-to-session variability. Multiple recording sessions
enable researchers to test the time-dependent stability of
EEG-based biometric features, which is essential for devel-
oping dependable authentication systems.
The EEGMMI dataset benefits from its well-defined ex-

perimental design that combines motor execution with mo-
tor imagery tasks. These tasks produce separate neural re-
sponses that serve as an effective base for extracting fea-
tures and conducting classifications. The EEG system uses
64 channels to record data while following the 10-10 elec-
trode placement system, which is recognized worldwide.
The high-density setup provides precise spatial resolution
of brain activity, which allows for a better analysis of neu-
ral patterns that are important for biometric authentication.
The dataset benefits from its 160Hz sampling rate, which

provides sufficient resolution to detect neural oscillations.
The two-minute recording sessions delivered sufficient data
for analysis through a practical balance between data vol-
ume and usability. The dataset also available on Kaggle:
https://www.kaggle.com/datasets/brianleung2020/eeg-
motor-movementimagery-dataset

6 Experimental setup

The experimental setup of this study involved a structured
pipeline for processing and analyzing EEG signals for bio-
metric authentication. The process starts with data prepro-
cessing, in which missing values and outliers are checked
to ensure data quality. Feature extraction is then performed
to extract relevant statistical, spectral, and time-frequency
features from EEG signals. This section explains the steps
taken to improve the dataset, remove outliers, and extract
features that are useful for the classification and authenti-
cation of individuals.

6.1 Data filtering

To ensure data quality, preprocessing was performed to ad-
dress missing values. EEG signals recorded across 64 chan-
nels sometimes have null or zero values because of record-
ing artifacts or hardware limitations. Instead of discarding
all incomplete rows, only rows in which all 64 channels
contained zero or null values were removed.
This decision was made to retain meaningful EEG data

because zero values in specific channels can represent valid
physiological states rather than missing data.
Figure 4 illustrates the distribution of the null values

across the dataset. In total, 56,548 rows were entirely null
across all channels and discarded. Each of the 109 sub-
jects participated in 14 sessions, with an average of 18,226
rows per session, resulting in a final dataset comprising
27,756,828 rows of EEG signals spanning all sessions and
subjects.
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Figure 4: Bar chart displaying the count of zero values in
each column of the dataset

6.2 Outlier analysis

Outlier detection was conducted to examine the presence of
extreme values in the EEG signals, which could result from
physiological variations, noise, or sensor artifacts. How-
ever, because the primary objective of this study is user ver-
ification, modifying or removing these outliers could dis-
tort the individual neural signatures and negatively affect
authentication accuracy.

To visualize outliers more clearly, a data reduction ap-
proach was applied: the EEG signals were grouped into
non-overlapping windows of 1,000 samples, and the mean
value for each window was computed. This process re-
duced visual noise while preserving the general distribution
characteristics per channel. Figure 5 presents boxplots of
the aggregated values for each EEG channel, providing an
overview of data dispersion and outlier presence. Although
extreme values are visible, they were retained to maintain
the integrity of subject-specific EEG patterns for biometric
analysis.

Figure 5: Boxplot visualization of reduced EEG signal dis-
tributions across individual channels.

6.3 Feature extraction

The original dataset consisted of 14 files per subject, corre-
sponding to 109 subjects, resulting in 1,526 files. Each file
contained EEG recordings from 64 channels over durations
ranging from one to two minutes. Following preprocess-
ing, feature extraction was conducted across three domains:
frequency, time, and time-frequency. The time-domain
features were used to describe the statistical properties of
the EEG signals, including the minimum, maximum, mean,
standard deviation, variance, kurtosis, and skewness. These
features are important for amplitude fluctuations of the sig-
nal and help in understanding individual neural activity.
In the frequency domain , spectral power features were

extracted using the Short-Time Fourier Transform (STFT)
to analyze EEG activity across different frequency bands.
These bands include gamma (30–50 Hz), beta (13–30 Hz),
alpha (8–13 Hz), theta (4–8 Hz), and delta (0.5–4 Hz)
bands, each associated with distinct neural processes and
cognitive states. The power distribution across these fre-
quency bands serves as a critical factor in biometric iden-
tification because variations in spectral content provide a
unique signature for each individual.
For the time-frequency-domain analysis, a wavelet

transform was employed to capture transient and non-
stationary EEG characteristics. Wavelet-based features in-
clude band energies and entropies derived frommultiple de-
composition levels, allowing for multi-resolution analysis
of EEG signals. The extracted wavelet features provided
additional information on the time- and frequency-domain
features, thus improving the overall discriminative power
of the dataset.
Because EEG data are multidimensional, a total of 25

features were extracted from each of the 64 channels, re-
sulting in 1,600 features per session 25 × 64. With 1,526
EEG session files, the final dataset was structured as a fea-
ture matrix of size 1, 526 × 1, 600 = 2, 441, 600, where
each row represents a session and each column represents
a specific extracted feature. This structure ensures a com-
prehensive representation of EEG signals for biometric au-
thentication.

6.4 Feature normalization and dataset
splitting

Normalization was performed on the selected EEG features
after removing the missing values and outliers to ensure
uniformity in the data distribution. The feature values were
standardized to have zero mean and unit variance for all the
features. It is essential to improve the performance of the
classification model, especially for the k-nearest neighbors
(KNN) and support vector machine (SVM) algorithms that
use distance measures. Normalization also helps reduce the
effect of different scales in the dataset, thus enabling clas-
sifiers to learn better.
Next, the dataset was split into training and testing sets

for use in model evaluation. Stratified sampling was used
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to preserve the proportion of each class, thus providing a
balanced representation of both the training and test sets.
The dataset was split into 70% for training the classifica-
tion models, and 30% for testing. This split helps avoid
overfitting and enables trained models to generalize well to
unseen data.

6.5 Performance metrics
The classification model evaluation was performed using
four main performance metrics: accuracy, precision, re-
call, and F1-score. Accuracy is a measure of the total num-
ber of correct predictions in comparison to the total number
of predictions made by the model. Precision measures the
proportion of true positives to all positive predictions, as
it is crucial in scenarios that need to minimize false posi-
tives. Recall measures a model’s ability to correctly iden-
tify positive instances by comparing it to the total number
of actual positive cases. The F1-score is a balanced perfor-
mance metric, which is the harmonic mean of the precision
and recall to address class imbalance. These metrics en-
able a holistic assessment of the classification performance,
which provides information about each model’s advantages
and disadvantages.

7 Statistical analysis and results
To ensure the effectiveness of EEG-based biometric au-
thentication, different classification models from various
algorithm families, including traditional machine learning,
ensemble learning, and deep learning approaches, were
utilized. The chosen models included Random Forest,
Ridge Classifier, Logistic Regression, Calibrated Classi-
fier CV, XGBoost, Decision Tree, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), histogram boosting,
Gaussian naïve Bayes (GaussianNB),multilayer perceptron
(MLP), Long Short-Term Memory (LSTM), Gated Recur-
rent Unit (GRU), Bidirectional LSTM, and Convolutional
Neural Networks (CNN).Hyperparameter tuning was per-
formed uniformly for all the classifiers to enhance their per-
formance.
In this section, we present a comprehensive statistical

validation of the 12 classifiers evaluated using our EEG-
based dataset. We begin by detailing the cross-validation
procedure and reporting fold-wise results for accuracy, pre-
cision, recall, and F1-Score. Next, we computed 95%
confidence intervals (CIs) for each metric. We then per-
formed one-way analysis of variance (ANOVA) tests to as-
sess whether the observed differences among the classifiers
were statistically significant. Finally, we provide the per-
formance metrics for a holding test set. We refer to the cor-
responding figures and tables in the text.

7.1 Cross-validation metrics
We performed a five-fold stratified cross-validation for
each of the 12 classifiers. In stratified cross-validation, the

Figure 6: Accuracy across five folds for each classi-
fier.

Figure 7: Precision across five folds for each classi-
fier.

Figure 8: Recall across five folds for each classifier.

Figure 9: F1-Score across five folds for each classi-
fier.

original dataset is divided into five mutually exclusive sub-
sets (folds), such that the proportion of classes in each fold
matches that of the entire dataset.
For each classifier, we trained four folds and evaluated

the remaining fold, iterating this process five times so that
each fold serves once as the validation set. This ensures that
every sample contributes exactly once to an out-of-sample



Comparative Performance Analysis of Machine and Deep Learning… Informatica 49 (2025) 257–274 267

evaluation and reduces the variance in the performance es-
timates compared with a single train–test split.
The fold-wise results for each classifier and metric are

listed below. For clarity, five-fold values (Fold 1 to 5) are
provided for accuracy, precision, recall, and F1Score:
Figure 6 through 9 present the foldwise distributions for

each metric across all classifiers. These plots display five-
fold values as points (one point per classifier per fold), al-
lowing the visualization of variability across folds.
Table 5 summarizes the cross-validation means and their

95%CIs for accuracy, precision, recall, and F1-Score for all
12 classifiers. Figures 10 through 13 show the same results
graphically, with error bars indicating the 95% CI for each
classifier’s mean metric value.

7.2 One-way analysis of variance (ANOVA)
To determine whether the differences among the classi-
fiers’ mean metrics are statistically significant, we con-
ducted one-way ANOVA tests for each performance metric
(accuracy, precision, Recall, F1-Score). The null hypothe-
sis for each test is that all 12 classifiers have the same true
mean for the given metric, while the alternative hypothesis
is that at least one classifier’s mean differs.

Table 4: One-way ANOVA across twelve classifiers for
each performance metric

Metric F-Statistic Degrees
of Free-
dom

p-Value

Accuracy 665.8480 (11, 48) 1.6479 ×
10−48

Precision 533.5686 (11, 48) 3.2028 ×
10−46

Recall 639.1222 (11, 48) 4.3709 ×
10−48

F1-Score 541.7493 (11, 48) 2.2307 ×
10−46

ANOVA partitions the total variance of the fold-wise
scores into between-group variance (variance of classifier
means around the grand mean) and within-group variance
(variance of fold-wise scores around the mean of each
classifier). The resulting F-statistic and p-value indicate
whether the observed differences in means exceeded what
would be expected by random chance.
Table 4 summarizes the ANOVA results. For each met-

ric, the F-statistic, degrees of freedom, and p-value are re-
ported. In all cases, the F-statistic is very large, and the
p-value is effectively zero, showing that at least one classi-
fier’s mean differs significantly from the others.
These results indicate that for every metric (accuracy,

precision, Recall, F1-Score), the null hypothesis of equal
means across all classifiers can be rejected at p < 0.001.
In other words, the differences in the mean performance
among the classifiers were highly significant.

7.3 95% confidence intervals
For each classifier and evaluation metric (Accuracy, Preci-
sion, Recall, and F1-score), we computed the sample mean
x̄ and sample standard deviation s across the five cross-
validation folds. Given the small sample size (n = 5),
the variability across folds must be interpreted with care.
Instead of assuming a normal distribution, we used the Stu-
dent’s t distribution, which is more appropriate for small
samples, to calculate the confidence intervals (CIs). Specif-
ically, the 95% CI for each metric is given by:

x̄ ± t0.975, df=4 ×
s√
5
,

where t0.975, df=4 ≈ 2.776 is the critical value from the
t-distribution with 4 degrees of freedom.
The resulting confidence interval provides a statistical

range within which the true mean performance metric is
expected to lie with 95% confidence. This is particularly
important in classification tasks involving EEG data, where
performance can vary significantly across folds due to inter-
session and inter-subject variability.
In practical terms, a narrower confidence interval indi-

cates higher consistency and reliability of a model’s per-
formance, while a wider interval reflects greater variability
and uncertainty. Traditional machine learning models, such
as Ridge Regression and Logistic Regression, exhibited rel-
atively narrow confidence intervals across all metrics, sug-
gesting stable and robust performance across folds. In con-
trast, deep learning models like LSTM and GRU showed
wider intervals, indicating higher variability—likely due to
the mismatch between their design (which favors raw tem-
poral data) and the input feature format (aggregated statis-
tical features).
Table 5 reports the mean values alongside their corre-

sponding margin of error, computed as t0.975,4
(
s/
√
5
)
.

These results offer a more statistically grounded com-
parison of model performance, supplementing the cross-
validation metrics presented earlier.
Confidence intervals also serve as a basis for subse-

quent statistical testing. In this study, they complement the
ANOVA analysis described in Section 5.7 by providing in-
sight into both the central tendency and the variability of
each classifier’s performance.

7.4 Evaluation results and statistical
analysis

All the classifiers were retrained on the full training set be-
fore the final evaluation of the held-out test data. Table 6
summarizes the test-set performance in terms of accuracy,
precision, recall, and F1-score (all in percentage). The bar
plots in Figures 14–17 compare these metrics across classi-
fiers. Based on these results, the classifiers fell into distinct
performance tiers.

– In the top-tier group, RidgeClassifier achieved the
highest overall performance, with the highest accuracy
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Table 5: Cross-validation means and 95% confidence intervals for all classifiers
Classifier Accuracy (95%

CI)
Precision (95%
CI)

Recall (95% CI) F1-Score (95%
CI)

LogisticRegression 0.8867± 0.0191 0.8946± 0.0223 0.8863± 0.0177 0.8746± 0.0190
DecisionTree 0.5552± 0.0359 0.5741± 0.0492 0.5514± 0.0343 0.5323± 0.0389
GaussianNB 0.7556± 0.0095 0.7803± 0.0286 0.7541± 0.0111 0.7314± 0.0141
Random Forest 0.8773± 0.0365 0.9001± 0.0295 0.8771± 0.0366 0.8678± 0.0391
HistGradientBoosting 0.8427± 0.0195 0.8716± 0.0270 0.8431± 0.0211 0.8294± 0.0244
MLP 0.8717± 0.0379 0.8908± 0.0291 0.8706± 0.0377 0.8606± 0.0376
Ridge 0.9148± 0.0196 0.9203± 0.0277 0.9129± 0.0201 0.9037± 0.0250
Calibrated 0.8764± 0.0361 0.8981± 0.0340 0.8761± 0.0376 0.8658± 0.0405
XGBoost 0.8427± 0.0275 0.8599± 0.0287 0.8431± 0.0305 0.8303± 0.0324
SVM 0.8324± 0.0080 0.8550± 0.0299 0.8321± 0.0103 0.8192± 0.0175
KNN 0.7828± 0.0387 0.8141± 0.0437 0.7798± 0.0401 0.7670± 0.0414
CNN/GRU/LSTM 0.0092± 0.0018 0.0001± 0.0000 0.0092± 0.0000 0.0002± 0.0000

and F1-score on the test set. Logistic Regression and
Random Forest also performed well, with similarly
high precision and recall. These three models consis-
tently outperformed the others across most metrics, in-
dicating that they captured relevant patterns in the data
more effectively. Their superiority is evident in Ta-
ble 6 and the tall bars for these models in Figures 14–
17. The confidence intervals of the top-tier classifiers
(Figures 10–13) are relatively narrow, reflecting a sta-
ble performance across the cross-validation folds.

– Mid-tier classifiers, multilayer perceptron (MLP),
CalibratedClassifierCV, XGBoost, and support vec-
tor machine (SVM) – achievedmoderate performance.
Their test accuracies and F1-scores were lower than
those of the top-tier models but higher than those of
the remaining classifiers. Precision and recall for this
group tended to be acceptable but showed more vari-
ability (visible in the fold-wise plots in Figures 6–9)
than the top group. In Figures 14–17, the mid-tier
models produced mid-height bars. Overall, this group
indicated a strong performance capability, but with
less consistency and slightly lower averages than the
leaders.

– The lower-tier classifiers include the HistGradient-
BoostingClassifier, K-Nearest Neighbors (KNN), and
Gaussian Naive Bayes. These models achieved the
next level of performance, with notably lower accu-
racy and F1 scores than those of the mid-tier group.
Their test set results (Table 6) show substantial drops
in one or more metrics. For example, KNN and Gaus-
sianNB have lower precision and recall than the top
groups, and the bars for these models in Figures 14–17
are noticeably shorter. The confidence intervals (Fig-
ures 10–13) for the lower-tier models were wider, in-
dicating greater variability across folds. This suggests
that these classifiers are less stable, perhaps because
of their sensitivity to data variations or model assump-
tions.

– The underperformers consisted of the Decision Tree
Classifier and three deep learning models (CNN,
GRU, and LSTM). These models yielded the lowest
test performance. The Decision Tree had particularly
low scores, and the CNN/GRU/LSTM models failed
to match the performance of even the lower-tier tra-
ditional classifiers. In the bar plots (Figures 14–17),
these models produced the shortest bars, and Table 6
shows their metrics near the bottom. The fold-wise
variability plots (Figures 6–9) show large fluctuations
for these models and their confidence intervals (Fig-
ures 10–13) are the widest, indicating inconsistent per-
formance. In summary, these classifiers were not as
generalized to the test set as the others.

Performance stability and statistical significance were
assessed across all classifiers. Figures 6–9 show the vari-
ability of each metric across cross-validation folds: top-tier
models have relatively tight distributions, whereas lower-
tier and underperforming models show a wider spread. Fig-
ures 10–13 show the 95% confidence intervals for each
metric, again highlighting that the best models have smaller
error bars. A one-way ANOVA was conducted for each
metric to test for significant differences among classifiers.
Table 4 reports the F-statistics and p-values. All ANOVA
tests were significant (p < 0.05), confirming that at least
some classifiers differed in terms of accuracy, precision,
recall, and F1-score.

Notably, the classifiers that performed best during cross-
validation ( RidgeClassifier, Logistic Regression, and Ran-
dom Forest in the top tier) also achieved the highest scores
on the held-out test set. This indicates that our cross-
validation assessment reliably identified the strongest mod-
els, and that these models generalize well to new data. In
contrast, the underperforming models remained the lowest
in both validation and test metrics, demonstrating that dif-
ferences in performance observed during training were pre-
dictive of the final test performance.
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Figure 10: Accuracy per classifier with 95% confi-
dence intervals

Figure 11: Recall per classifier with 95% confidence
intervals

Figure 12: Precision per classifier with 95% confi-
dence intervals

Figure 13: F1 per classifier with 95% confidence in-
tervals

8 Discussion
A comparative analysis of various classification models for
EEG-based biometric authentication reveals significant in-
sights into the interplay between the model architecture,
data characteristics, and feature representation. Notably,
traditional machine learning models, particularly the Ridge
Classifier and Logistic Regression, demonstrated superior
performance, achieving accuracies of 93.8% and 91.27%,
respectively. This performance surpasses that of more com-
plex deep learning models, which is counterintuitive given
the latter’s capacity to model intricate patterns.

Figure 14: Bar-plot comparison of testing-set accu-
racy for all classifiers

Figure 15: Bar-plot comparison of testing-set recall
for all classifiers

Figure 16: Bar-plot comparison of testing-set preci-
sion for all classifiers

Figure 17: Bar-plot comparison of testing-set F1-
score for all classifiers

The efficacy of the ridge classifier and Logistic Regres-
sion can be attributed to several factors. First, these linear
models are inherently robust to high-dimensional data and
are less prone to overfitting, making them well suited for
EEG data characterized by high dimensionality and noise.
Second, the preprocessing steps involving statistical, spec-
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tral, and time-frequency domain transformations likely en-
hanced the linear separability of the data, aligning well with
the assumptions of these models. This suggests that, with
appropriate feature engineering, EEG signals can be effec-
tively modeled using linear classifiers.
The multilayer perceptron (MLP), which achieved an ac-

curacy of 89.96%, also performed commendably. As a rela-
tively simple neural network, MLP benefits from its capac-
ity to model nonlinear relationships without the complexity
and data requirements of deeper architectures. Its perfor-
mance indicates that moderately complex models can ef-
fectively capture essential patterns in pre-processed EEG
data.
Ensemble methods, such as random forest and Calibrat-

edClassifierCV, also exhibited strong performance, under-
scoring their ability to handle nonlinearities and interac-
tions between features. These models are known for their
robustness to noise and overfitting, which are particularly
beneficial when dealing with physiological data, such as
EEG.
Moderate performance was observed with models, such

as XGBoost (85.37%), SVM (82.53%), and HistGradient-
Boosting (82.1%). Although these models are adept at cap-
turing complex patterns, their performance may be hin-
dered by the nature of EEG data, which can be noisy and
exhibit complex interdependencies that are challenging to
model without extensive data and careful tuning.
Instance-based and probabilistic models, such as KNN

(79.69%) and GaussianNB (77.51%), underperformed,
likely because of their underlying assumptions. KNN’s re-
liance of KNN on distance metrics can be problematic in
high-dimensional spaces, and GaussianNB’s assumption of
feature independence and normality rarely holds in EEG
data, which often exhibit inter-feature dependencies and
non-Gaussian distributions.
Surprisingly, deep learning models—CNN, LSTM,

GRU, and Bidirectional LSTM—achieved the lowest ac-
curacies, hovering around 87%. Although these models
are renowned for their representation-learning capabilities,
their poor performance in this study stems from fundamen-
tal design constraints:

– The deep learning models were trained on extracted
statistical features rather than raw EEG time-series
data. This limits their ability to learn temporal or spa-
tial dependencies, which are core strengths of archi-
tectures such as LSTM and CNN.

– The dataset size was relatively small for training deep
learning models effectively, particularly when using
high-capacity architectures without temporal input se-
quences.

It is important to emphasize that applying deep models
to pre-aggregated statistical features restricts their potential
to exploit temporal and sequential information inherent in
raw EEG signals. This design decision creates a fundamen-
tal mismatch between the model architecture and the nature

of the input data, making the lower performance of deep
models unsurprising. Therefore, the results should not be
interpreted as a definitive comparison between traditional
machine learning and deep learningmodels, but rather as an
evaluation of these methods under a constrained and non-
ideal setup for deep architectures.
These findings align with the literature, which shows

that deep learning models can achieve high accuracy when
trained on raw EEG data and with sufficient volume. For
instance, studies have demonstrated that with as little as
1–3 seconds of raw EEG data per participant, models can
achieve over 95% accuracy, provided that appropriate sig-
nal structures are preserved and learned [58]. This high-
lights the importance of both data format and quantity in
evaluating deep learning effectiveness.
Moreover, while statistical features may suffice for tra-

ditional classifiers, they do not retain the rich temporal dy-
namics that deep models are specifically designed to cap-
ture. Feeding deep networks with flattened, aggregated in-
put features inherently undermines their advantage in learn-
ing complex time-dependent patterns.
Another contributing factor is the sensitivity of deep

models to architectural choices and hyperparameters. Sub-
optimal tuning can further degrade performance, especially
when combined with non-temporal input and limited data.
Additionally, the computational demands of training deep
networks can make them less practical in small-scale stud-
ies or low-resource settings.
In contrast, traditional machine-learning models offer

strengths in interpretability, efficiency, and robustness un-
der limited data conditions. Their superior performance in
this study reflects a better match between their design and
the structure of the extracted features.
Looking forward, future research should aim to apply

deep learning models to raw EEG time-series data, where
their full potential in capturing temporal dependencies can
be evaluated. Approaches such as data augmentation, trans-
fer learning, and task-specific architectures may also help
address limitations related to data size and diversity.
In summary, the success of a classifier in EEG-based au-

thentication is closely linked to the alignment between data
characteristics and model architecture. Traditional mod-
els perform effectively on statistical features, whereas deep
models require raw, sequential data and larger datasets to
demonstrate their advantages. These insights will guide fu-
ture work in designing better-suited pipelines for neurobio-
metric systems.

9 Conclusion
The study assessed EEG-based biometric authentication
through a complete classification system evaluation. Mul-
tiple machine learning and deep learning models were eval-
uated using a structured pipeline that included data prepro-
cessing, feature extraction, and classifier evaluation. The
results showed that traditional machine learning models,
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Table 6: Performance on held-out testing set for all twelve classifiers
Classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)
RidgeClassifier 93.80 95 94 94
Logistic Regression 91.27 93 91 91
MLPClassifier 89.96 92 90 90
Random Forest 89.30 92 89 90
CalibratedClassifierCV 88.60 91 89 89
XGBoost 85.37 89 86 85
SVM 82.53 87 83 83
HistGradientBoosting 82.10 84 82 82
KNN 79.69 86 80 80
GaussianNB 77.51 85 78 78
DecisionTreeClassifier 54.37 59 55 54
CNN/GRU/LSTM 0.87 0 1 0

including ridge classifiers, logistic regression, and MLP,
achieved better accuracy and reliability than deep learning
approaches. The ensemble methods, Random Forest and
Calibrated Classifier CV demonstrated strong performance
because they excel at detecting complex EEG patterns. The
deep learning models CNN, LSTM, and GRU achieved sig-
nificantly lower accuracy because feature extraction proved
difficult and the dataset size remained limited.
Research indicates that EEG-based authentication works

best through well-optimized machine learning models that
create a secure and reliable biometric verification system.
Future research should investigate the development of hy-
brid models that combine feature engineering techniques
with deep learning methods to boost the classification ac-
curacy. The performance of deep learning models in EEG
biometrics can be enhanced using larger dataset sizes and
sophisticated augmentation methods. This research adds to
the EEG authentication literature while offering essential
guidance for selecting appropriate models for real-world
implementations.
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