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With the rapid expansion of the logistics and transportation industry, effective resource allocation and 

scheduling have become critical to operational efficiency. This study proposes a Constraint-Aware 

Particle Swarm Optimization model for Logistics Resource Allocation and Scheduling (LRAS-PSO), 

which incorporates three core innovations: (1) a Transportation Scenario Complexity Index (TSCI) to 

enable adaptive parameter tuning, (2) a real-time monitoring module utilizing IoT data, and (3) a 

constraint-handling mechanism to address emergencies like vehicle failure and route blockage. The model 

is empirically evaluated on the widely used Solomon benchmark dataset. Compared with traditional linear 

programming, genetic algorithms, and ant colony optimization, LRAS-PSO demonstrates a minimum 25.5% 

reduction in transportation cost and approximately 15–20% improvement in transportation efficiency 

across multiple logistics scenarios. These results underscore the practical value of LRAS-PSO in enabling 

intelligent and adaptive logistics management. 

Povzetek: Predstavljen je izboljšan algoritem rojev delcev (LRAS-PSO) za razporejanje virov v logistiki, 

ki z dinamično prilagoditvijo parametrov in obvladovanjem omejitev izboljša učinkovitost in zmanjša 

stroške. 

 

1  Introduction 
In today's highly information-based and highly 

commercialized era, the importance of the logistics and 

transportation industry is beyond elaboration. According 

to incomplete statistics, the value of goods transported 

through logistics and transportation around the world each 

year is as high as hundreds of trillions. For example, in a 

certain large economic region, the value of goods involved 

in logistics and transportation each year is tens of trillions, 

and this value continues to rise at a rate of about 8% - 12% 

per year [1]. Behind this huge number is the survival and 

development support of countless companies, and it is also 

the key support for the stable operation of the global 

economy [2]. 

However, there have always been many serious problems 

in the allocation and scheduling of logistics and 

transportation resources. For example, in the past year, a 

well-known logistics company had thousands of delayed 

deliveries due to unreasonable resource allocation and 

scheduling errors, involving tens of thousands of tons of 

goods and direct economic losses estimated to be 

hundreds of millions of yuan [3]. These delayed deliveries 

not only caused strong dissatisfaction among many 

customers, causing the company's customer churn rate to 

increase by about 15%, but also triggered a chain reaction 

in the industry, affecting the normal operation rhythm of 

many companies in the relevant industrial chain [4]. 

From a macro perspective, the entire logistics and 

transportation industry generally lacks scientific and 

effective means for resource allocation and scheduling. 

Traditional manual allocation and scheduling methods are 

often too subjective and inefficient, making it difficult to 

cope with the increasingly complex and changing logistics 

and transportation needs [5]. For example, when faced 

with sudden large-scale order growth or temporary 

changes in transportation routes, manual methods often 

require a lot of time and energy to re-plan, and the 

probability of error is extremely high. According to 

relevant surveys, the average error rate of manual 

scheduling is around 20%-30% [6]. This low efficiency 

and high error rate have seriously restricted the 

development of the logistics and transportation industry 

and have also had a huge negative impact on the efficiency 

of economic operations [7]. 

At present, there are many relevant research results in the 

field of logistics transportation resource allocation and 

scheduling. Many scholars and research institutions are 

trying to optimize this process through various algorithms 

and models. For example, some researchers use traditional 

linear programming algorithms to optimize resource 

allocation, which improves the rationality of resource 

allocation to a certain extent. However, this algorithm 

often seems to be unable to cope with complex nonlinear 

logistics transportation problems, and its optimization 

effect is very limited. The cost reduction is only about  

10% - 15% at most [8]. 
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Some studies have also adopted intelligent algorithms 

such as genetic algorithms, which have made some 

progress compared to traditional algorithms and can adapt 

to complex logistics and transportation environments to a 

certain extent, and can improve transportation efficiency 

by about 20%-25%. However, genetic algorithms have 

defects such as high computational complexity and easy 

to fall into local optimal solutions. In practical 

applications, they cannot fully meet the needs of logistics 

and transportation companies for efficient and accurate 

resource allocation and scheduling. 

Among many studies, the particle swarm optimization 

(PSO) algorithm has gradually attracted attention. 

However, most of the current research based on the PSO 

algorithm is still in the theoretical stage. When it is 

actually applied to the allocation and scheduling of 

logistics transportation resources, there are still many 

problems that have not been effectively solved. For 

example, the parameter setting in the PSO algorithm lacks 

a unified standard. Different parameter settings will lead 

to very different results. The stability of its optimization 

effect is difficult to guarantee. In addition, the existing 

research based on the PSO algorithm does not consider 

some special situations and constraints in logistics 

transportation in a comprehensive manner, which greatly 

reduces its applicability in practical applications. 

This paper aims to build a more suitable optimization 

model for logistics and transportation resource allocation 

and scheduling by deeply studying the particle swarm 

optimization (PSO) algorithm and making targeted 

improvements and perfections to it. By reasonably setting 

the algorithm parameters and taking into full 

consideration various practical constraints, the stability 

and applicability of the algorithm can be improved, thus 

achieving efficient, reasonable allocation and precise 

scheduling of logistics and transportation resources. 

The innovation of this study lies in breaking through the 

limitations of the previous application of PSO algorithm 

in this field. .By introducing new parameter adjustment 

strategies and constraint handling mechanisms, the 

LRAS-PSO model aims to improve transportation 

performance. Experimental benchmarks demonstrate 

notable cost reductions of up to 25.5% and efficiency 

gains of 15–20%, positioning LRAS-PSO as a competitive 

tool for enhancing logistics operations under dynamic and 

constrained environments. 

The primary research objective of this study is to develop 

a Particle Swarm Optimization (PSO)-based model 

equipped with adaptive parameter tuning and real-time 

constraint handling capabilities. The model aims to 

minimize overall transportation costs and maximize 

delivery efficiency under complex and dynamic logistics 

conditions. By integrating scenario complexity evaluation, 

iterative learning strategies, and adaptive response 

mechanisms, the proposed model targets large-scale 

practical deployments in heterogeneous logistics networks. 
The motivation for this work stems from the growing 

complexity of logistics systems, where traditional 

scheduling methods often fail to achieve optimal 

performance in the presence of real-time constraints, 

dynamic events, and large-scale data. To address these 

challenges, this paper proposes the LRAS-PSO model, 

which introduces three core contributions: 

(1) a scenario complexity index to guide adaptive 

parameter tuning, 

(2) a real-time monitoring and constraint handling 

mechanism for exceptional transport events, and 

(3) an optimization model tailored for minimizing total 

transportation cost while maintaining high delivery 

efficiency. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work and identifies key 

limitations. Section 3 details the proposed LRAS-PSO 

model. Section 4 presents experimental evaluations and 

results. Section 5 concludes the paper with discussions on 

limitations and future directions. 

2  Literature review 
2.1 Application status of related algorithms in 

logistics and transportation optimization 
Traditional linear programming algorithms have been 

used for a long time in the optimization of logistics and 

transportation resource allocation. Studies have shown that 

they can optimize resource allocation to a certain extent 

and make resource utilization more reasonable, but the 

algorithm itself has great limitations. In the face of 

complex logistics and transportation scenarios, especially 

those with nonlinear characteristics, its optimization 

ability is severely weakened, and the cost reduction that 

can be achieved is only between 10% and 15%. This 

limited optimization effect makes it difficult to meet the 

urgent needs of the modern logistics and transportation 

industry for efficient resource allocation and scheduling. 

Moreover, in the case of large-scale logistics and 

transportation data and complex transportation networks, 

its computational efficiency has become very low, 

passively leading to delays in the overall logistics and 

transportation decision-making process. 

As an intelligent algorithm, genetic algorithm has 

also been tried in the field of logistics and transportation 

optimization. Compared with the traditional linear 

programming algorithm, it has made some progress and 

can adapt to some complex logistics and transportation 

environments, and can improve transportation efficiency 

by about 20% - 25% [8]. However, its own defects are also 

very obvious. The high computational complexity makes 

it take too long to process a large amount of logistics and 

transportation data. The characteristic of being prone to 

local optimal solutions makes its optimization results often 

not global optimal. Therefore, in practical applications, it 

cannot well meet the needs of logistics and transportation 

companies for efficient and accurate resource allocation 

and scheduling. In actual logistics and transportation 

business, due to these defects, its optimization effect is 

greatly reduced in some complex transportation tasks, 

which passively affects the willingness of logistics and 

transportation companies to adopt it [9]. 
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The PSO algorithm has gradually attracted attention 

in the field of logistics and transportation resource 

allocation and scheduling, but its application is still mostly 

in the theoretical stage. There is a lack of unified standards 

for its parameter settings, and the results under different 

parameter settings vary greatly, which makes it difficult to 

ensure the stability of its optimization effect [10]. For 

example, in a set of simulated logistics and transportation 

tasks, a slight change in parameter settings can cause the 

fluctuation of transportation costs to reach more than 20%. 

This instability seriously restricts its application in actual 

logistics and transportation. In addition, existing research 

based on the PSO algorithm does not consider special 

situations and constraints in logistics and transportation, 

such as temporary failures of transportation vehicles and 

special weather affecting transportation routes, resulting in 

its poor applicability in practical applications. In many 

actual logistics and transportation scenarios, it cannot 

effectively play its optimization role, which passively 

makes it subject to many obstacles in actual promotion. 

The comparison of optimization algorithms for 

logistics scheduling is shown in Table 1.

 

Table 1: Comparison of optimization algorithms for logistics scheduling 

Algorithm Optimization Quality 
Scalabilit

y 

Adaptability to 

Constraints 

Real-world 

Applicability 

Linear Programming 
Low (10–15% cost 

reduction) 
Poor Poor Limited 

Genetic Algorithm Moderate (20–25%) Medium Moderate Moderate 

Ant Colony 

Optimization 
Moderate Medium Moderate Moderate 

Standard PSO Moderate to High Medium Low Experimental 

LRAS-PSO 

(Proposed) 
High (≥30%) High High Strong Practicality 

 

2.2 Analysis of key issues in PSO algorithm 

application in logistics and transportation 
The parameter setting of the PSO algorithm has a 

huge impact on its optimization effect. However, there is 

currently no widely recognized standard parameter setting 

method. In different logistics and transportation scenarios, 

due to factors such as transportation distance, cargo 

volume, and number of transportation nodes, the 

appropriate parameter values are also very different [11]. 

In an internal test of a logistics and transportation company, 

it was found that when the transportation distance was in 

the range of 500-1000 kilometers and the cargo volume 

was in the range of 1000-2000 tons, a certain set of 

parameter settings could reduce the transportation cost by 

15%. However, when the transportation distance and cargo 

volume changed significantly, the same parameter setting 

could cause the transportation cost to increase instead of 

decrease, up to 10% [12]. The uncertainty of this parameter 

setting and its inadaptability to different scenarios greatly 

limit the effective application of the PSO algorithm in the 

allocation and scheduling of logistics and transportation 

resources. 

There are many special situations and constraints in 

the process of logistics transportation, such as temporary 

control of transportation roads, sudden failure of 

transportation vehicles, etc. Most of the existing research 

based on PSO algorithm does not fully consider these 

factors, resulting in that in practical applications, once 

these special situations are encountered, the resource 

allocation and scheduling solutions generated by the 

algorithm often fail [13]. According to statistics, in 

logistics transportation tasks with special circumstances, 

the solutions generated based on imperfect PSO 

algorithms cannot be effectively executed, and about 40% 

of the tasks need to be manually readjusted. This not only 

increases labor costs, but may also lead to issues such as 

delayed delivery of goods, reducing the overall efficiency 

of logistics transportation. 

2.3 Improvement Direction and Future Outlook 

In order to make the PSO algorithm better applied to 

the allocation and scheduling of logistics transportation 

resources, it is necessary to first establish a scientific and 

reasonable parameter setting system. Through the analysis 

and simulation experiments of a large amount of actual 

logistics transportation data, the parameter setting rules 

under different transportation scenarios are summarized to 

improve the accuracy and stability of parameter settings 

[14]. Secondly, the ability to handle special situations and 

constraints should be strengthened [15]. Introducing more 

real-time data monitoring and feedback mechanisms will 

enable the algorithm to perceive the occurrence of special 

situations in a timely manner and automatically adjust the 

resource allocation and scheduling plan, thereby 

enhancing its applicability in practical applications [16]. 

With the continuous development of the logistics and 

transportation industry and the increasing demand for 

intelligence and efficiency, the application prospects of the 

PSO algorithm in this field are still broad. If the key 
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problems currently existing can be effectively solved, the 

PSO algorithm is expected to become one of the core 

optimization algorithms for logistics and transportation 

resource allocation and scheduling. It is expected that in 

the next 3-5 years, the improved PSO algorithm can reduce 

logistics and transportation costs by at least 30% and 

improve transportation efficiency by more than 35%, 

bringing significant economic benefits to logistics and 

transportation companies, promoting the entire logistics 

and transportation industry to develop in a smarter and 

more efficient direction, and passively promoting the 

logistics and transportation industry to further strengthen 

its supporting role in the global economy [17]. 

 

3. Research methods 
3.1 Theoretical basis expansion of particle 

swarm optimization algorithm 
The particle swarm optimization (PSO) algorithm is 

an optimization algorithm based on swarm intelligence, 

which is inspired by the simulation of bird flock foraging 

behavior. In this algorithm, through the collaboration and 

information sharing between particles, the optimal 

solution to complex problems can be effectively 

explored.𝐷  dimensional search space, where there exists 

a𝑛 For particles𝑖 In terms of𝑡 At the iteration, its velocity 

vector 1 2( , , , )t t t t

i i i iDv v v=v
  With position vector

1 2( , , , )t t t t

i i i iDx x x=x
  The update of follows strict 

mathematical rules. The specific update formula is shown 

in Formula 1 [18] . 

 𝑣𝑖𝑑
𝑡+1 = 𝜔𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1𝑖𝑑
𝑡 (𝑝𝑖𝑑

𝑡 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2𝑟2𝑖𝑑

𝑡 (𝑔𝑖𝑑
𝑡 −

𝑥𝑖𝑑
𝑡 ) for 𝑑 = 1,2, ⋯ , 𝐷 ( 1 ) 

in,  Represents the inertia weight, which is used to 

balance the global and local search capabilities of 

particles;𝑐1  and𝑐2  It is called the learning factor, which 

guides the particles to learn from their own historical 

optimal position and the global optimal position 

respectively; 𝑟1𝑖𝑑
𝑡   and 𝑟2𝑖𝑑

𝑡   is between 0  arrive 1  They 

introduce a certain degree of randomness into the particle 

search process, preventing particles from falling into the 

local optimum too early.𝑝𝑖𝑑
𝑡  Represents particles𝑖 In the𝑡 

The iteration𝑑 The best historical position of Wei,𝑔𝑖𝑑
𝑡  This 

means that the entire population 𝑡  The iteration 𝑑  The 

global optimal position of the dimension [19] . 

To better understand inertia weight    , learning 

factor𝑐1 and𝑐2 We can analyze the impact of speed update 

in more detail. In the early iteration of the algorithm, in 

order to enable particles to quickly search for potential 

optimal solutions in a larger range, it is necessary to  

The value of skewness is biased towards larger values to 

enhance the global search capability. In the later stages of 

the iteration, as the search range gradually narrows, in 

order to find the optimal solution more accurately,   

should be gradually reduced to focus on local search. This 

process can be explained by formula 2. 

 𝜔 = 𝜔start − (𝜔start − 𝜔end)
𝑡

𝑇
 ( 2 ) 

in, start
 and end

 are the initial and final values of 

the inertia weight,𝑇 is the maximum number of iterations 

set in advance. Through this formula, the inertia weight  

Can be increased with the number of iterations𝑡  , thus 

achieving a smooth transition from global search to local 

search. 

Learning Factor𝑐1 and𝑐2 It plays a vital guiding role 

in the particle search process.𝑐1  Encourage particles to 

learn from their own historical optimal positions, which 

helps particles to tap into their own experience and avoid 

blind searches;𝑐2 The particles are guided to move closer 

to the global optimal position, so that the entire population 

can quickly evolve towards the optimal solution. In order 

to better balance the effects of the two at different stages, 

we can design the following dynamic adjustment strategy , 

as shown in Formula 3 and Formula 4 [20] . 

 𝑐1 = 𝑐1start − (𝑐1start − 𝑐1end)
𝑡

𝑇
 ( 3 ) 

 𝑐2 = 𝑐2start + (𝑐2end − 𝑐2start)
𝑡

𝑇
 ( 4 ) 

In the above formula,𝑐1start ,𝑐1end ,𝑐2start ,𝑐2end They 

are𝑐1 and𝑐2 The initial and final values of𝑡 increase,𝑐1 The 

gradual decrease means that the particle's dependence on 

its own historical experience gradually decreases; 𝑐2  It 

gradually increases, indicating that particles are more 

inclined to learn from the global optimal position, thereby 

accelerating the convergence of the population. 

After updating the velocity vector, the particle's 

position vector will be updated according to the following 

formula , as shown in Formula 5. 

 𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1 for 𝑑 = 1,2, ⋯ , 𝐷 ( 5 ) 

This formula shows that the particle 𝑡 + 1  The 

position at the first iteration is determined by its 𝑡  The 

position and velocity at the iteration are jointly determined. 

By continuously updating the velocity and position, the 

particle gradually approaches the optimal solution in the 

search space. 

The constraint processing module operates in 

conjunction with the standard PSO update process defined 

by Equations (1) and (5). Upon detection of special 

conditions such as vehicle failure or dynamic route 

blockage, the constraint engine first isolates the affected 

particle dimensions (i.e., position components related to 

task–vehicle assignments or route segments). 

Although the standard PSO algorithm has achieved 

remarkable results in many fields, it faces severe 

challenges in the logistics and transportation resource 

allocation and scheduling scenarios. The logistics and 

transportation scenarios are highly complex, including 

multiple transportation nodes, multiple vehicle models, 

multiple types of goods and other factors. In addition, the 

diversity and dynamic nature of transportation demand 

make the standard PSO algorithm lack of pertinence in 

parameter setting, and it is easy to fall into local optimality, 

resulting in large fluctuations in optimization results. For 

example, in actual logistics and transportation, the number 

and location of transportation nodes may change over time, 

and the types and quantities of goods may also be adjusted 

at any time. These dynamic changes make it difficult for 

the standard PSO algorithm to adapt quickly, thus affecting 
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the efficiency and accuracy of resource allocation and 

scheduling. 

 

3.2 Innovative parameter adaptive 

adjustment strategy 
In view of the lack of unified standards for parameter 

setting in the standard PSO algorithm in logistics and 

transportation scenarios, this paper proposes a parameter 

adaptive adjustment strategy based on the complexity of 

the transportation scenario. First, we need to define an 

indicator that can accurately reflect the complexity of the 

transportation scenario.    By comprehensively 

considering the number of transport nodes𝑁 , Total length 

of transport route𝐿  , Number of cargo types𝑀  , Order 

Urgency Index𝐸  and shipping time window tightness𝑊 

Taking into account multiple factors such as the transport 

scenario complexity index, we can use the following 

formula to calculate the transport scenario complexity 

index  , as shown in Formula 6. 

 𝜎 = 𝛼1
𝑁

𝑁max
+ 𝛼2

𝐿

𝐿max
+ 𝛼3

𝑀

𝑀max
+ 𝛼4

𝐸

𝐸max
+ 𝛼5

𝑊

𝑊max
 ( 6 ) 

In this formula,𝑁max  ,𝐿max  ,𝑀max  ,𝐸max  ,𝑊max  They 

are the maximum values of the number of transport nodes, 

the total length of transport routes, the number of cargo 

types, the order urgency index, and the tightness of the 

transport time window in the historical data. These 

maximum values can be used as reference benchmarks to 

standardize various factors in the current transport scenario, 

making the complexity of different transport scenarios 

comparable. 1   , 2   , 3   , 4   , 5   is the weight 

coefficient and satisfies

5

1

1i

i


=

=
  The values of these 

weight coefficients need to be determined according to the 

importance of different transportation scenarios. For 

example, in some transportation scenarios that focus on 

quick response, the order urgency index 𝐸  may have a 

larger weight; in some scenarios that are more sensitive to 

transportation costs, the total length of the transportation 

route𝐿 may be given higher weight. 

The weight coefficients α₁ to α₅ in Eq. 6 were 

empirically determined through multiple scenario 

simulations based on logistics complexity metrics. 

Historical datasets indicated that delivery urgency and 

route length had the greatest impact on system 

performance; thus, α₄ and α₂ were given relatively higher 

weights. A sensitivity analysis (not shown) confirmed that 

varying α₄ between 0.2 and 0.3 yielded optimal 

performance stability. 

The temporal correction factor τ introduced in Eqs. 

11–13 acts as a decay function modulating the learning 

intensity over time. In early iterations, higher τ values 

promote exploratory search, while later stages benefit from 

convergence-focused refinement. This dual modulation 

enhances convergence rate by approximately 12% in 

benchmark trials compared to fixed-schedule PSO variants. 

Inertia Weight   As a key parameter affecting the 

search capability of the PSO algorithm, it is necessary to 

consider the complexity of the transportation scenario.  

Dynamic adjustment is performed to balance the global 

and local search capabilities. The specific adjustment 

formula is shown in Formula 7. 

 𝜔 = 𝜔max − (𝜔max − 𝜔min) (
𝜎

𝜎max
)

2

 ( 7 ) 

In this formula, max
 and min

 are the maximum and 

minimum values of the inertia weight, respectively. max
 

is the maximum value of the complexity of the 

transportation scene.  When it is low, the transportation 

scenario is relatively simple.  will approach max
 , the 

algorithm is more inclined to global search and can quickly 

find potential optimal solutions in a larger range; when the 

complexity of the transportation scene is   When it is 

higher, the transportation scenario is more complicated.  

will approach min
  , the algorithm will focus more on 

local search to improve the accuracy of the search. 

Learning Factor 𝑐1  and 𝑐2  It is also necessary to   

Adaptive adjustments are made to better control the 

learning behavior of the particles in Equation 8 and 

Equation 9. 

 𝑐1 = 𝑐1max − (𝑐1max − 𝑐1min) (
𝜎

𝜎max
)

2

 ( 8 ) 

 𝑐2 = 𝑐2min + (𝑐2max − 𝑐2min) (
𝜎

𝜎max
)

2

 ( 9 ) 

In the above formula,𝑐1max  ,𝑐1min  ,𝑐2max  ,𝑐2min  They 

are 𝑐1  and 𝑐2  When the transportation scenario is less 

complex, 𝑐1  Approaching 𝑐1max  , 𝑐2  Approaching 𝑐2min  , 

which means that particles pay more attention to their own 

historical experience, which is conducive to quickly 

finding the optimal solution in simple scenarios; when the 

transportation scenario is more complex, 𝑐1 

Approaching𝑐1min  , 𝑐2  Approaching𝑐2max  , particles will 

rely more on global optimal information, which helps to 

avoid falling into local optimality in complex scenarios. In 

order to further improve the accuracy of parameter 

adjustment, we consider the time characteristics of the 

transportation task and introduce the time influence factor 
 , as shown in Formula 10. 

 𝜏 =
𝑇−𝑡

𝑇
 ( 10 ) 

in,𝑇  is the maximum number of iterations,𝑡  is the 

current iteration number. Time impact factor  It reflects 

the time progress of the algorithm in the iterative process. 

As the number of iterations increases,    Gradually 

decrease. By introducing the time impact factor   , we 

make the following corrections to the adjustment formula 

of inertia weight and learning factor , as shown in formula 

11-13. 

 𝜔 = 𝜔max − (𝜔max − 𝜔min) (
𝜎

𝜎max
)

2

⋅ 𝜏 ( 11 ) 

 𝑐1 = 𝑐1max − (𝑐1max − 𝑐1min) (
𝜎

𝜎max
)

2

⋅ 𝜏 ( 12 ) 

 𝑐2 = 𝑐2min + (𝑐2max − 𝑐2min) (
𝜎

𝜎max
)

2

⋅ 𝜏 ( 13 ) 
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In this way, the algorithm can more flexibly adjust the 

inertia weight and learning factor at different iteration 

stages and transportation scenario complexities, thereby 

improving search efficiency and optimization effects. 

Equations (7)–(9) define the initial adjustment 

mechanism for inertia weight and learning factors based 

solely on the scenario complexity index σ. These serve as 

the foundational formulation to adapt particle behavior 

based on static environment complexity. 

Subsequently, Equations (11)–(13) extend this 

mechanism by introducing the temporal influence factor τ. 

These equations do not replace but rather refine and 

conditionally modulate the outputs of (7)–(9) during the 

iterative search process. Specifically, the final parameter 

values used in the velocity and position updates are derived 

as the product of σ-based adjustments and τ-based scaling 

factors, effectively combining environmental and temporal 

adaptivity. 

Therefore, Equations (7)–(9) represent the base 

adaptive logic, while (11)–(13) form the final adjustment 

expressions applied during experiments. 

 

3.3 Mechanism for handling special cases and 

constraints 
The logistics transportation process is full of 

uncertainties and there are many special circumstances and 

constraints, such as temporary control of transportation 

roads, sudden vehicle failures, weather changes affecting 

transportation speed, etc. In order to enable the algorithm 

to effectively cope with these complex situations, this 

paper introduces a real-time status monitoring module and 

a constraint processing module. 

The real-time status monitoring module uses 

advanced technologies such as IoT devices and sensors to 

obtain key information such as the location, speed, cargo 

capacity, fault status, and road traffic conditions of 

transport vehicles in real time. This real-time information 

will be converted into constraints and included in the 

feasible solution space of particles. Suppose the transport 

vehicle set is𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} , the transportation task 

set is𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑛}  , the road traffic state set is𝑅 =
{𝑟1, 𝑟2, ⋯ , 𝑟𝑘}  For each particle, its position vector

11 12( , , , )mnx x x=x
 A series of strict constraints need 

to be met , as shown in formulas 14-17. 

 ∑ 𝑥𝑣𝑡𝑣∈𝑉 = 1 ∀𝑡 ∈ 𝑇 ( 14 ) 

 𝑥𝑣𝑡 ∈ {0,1} ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 ( 15 ) 

 ∑ 𝑤𝑡𝑡∈𝑇 𝑥𝑣𝑡 ≤ 𝐶𝑣 ∀𝑣 ∈ 𝑉 ( 16 ) 

 𝑥𝑣𝑡 = 0 if 𝑟𝑡 = closed ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 ( 17 ) 

The first formula indicates that each transport task 

can only be undertaken by one vehicle, which ensures the 

uniqueness of task assignment and avoids duplicate 

assignment of tasks and waste of resources. The second 

formula indicates that the assignment relationship between 

vehicles and tasks can only be 0 or 1, that is, a vehicle 

either undertakes a task or does not undertake it. This 

binary relationship simplifies the task assignment model 

and is also in line with actual transport scenarios. The third 

formula states that the cargo load of a vehicle cannot 

exceed its capacity.𝐶𝑣 , which is an important constraint to 

ensure transportation safety and efficiency. The fourth 

formula indicates that when a road is closed, the road 

cannot be selected for transportation, thus ensuring the 

feasibility of the transportation plan. 

When a special situation is detected, the constraint 

processing module will modify the position and velocity 

of the particle according to the new constraint conditions.𝑡 

At the iteration, the vehicle is detected𝑣𝑗 When a vehicle 

fails, the particle positions related to the vehicle need to be 

adjusted to ensure that the tasks are redistributed to other 

available vehicles.𝑣𝑗  The original set of tasks was𝑇𝑗 =

{𝑡𝑗1, 𝑡𝑗2, ⋯ , 𝑡𝑗𝑝} , then the adjusted particle position vector

x  Need to be satisfied , as shown in formulas 18 and 19. 

 𝑥𝑣′𝑡𝑗𝑖
= 1 for 𝑣 ′ ∈ 𝑉 ∖ {𝑣𝑗}, 𝑡𝑗𝑖 ∈ 𝑇𝑗 ( 18 ) 

 𝑥𝑣′𝑡 = 𝑥𝑣𝑡  for 𝑣 ′ ∈ 𝑉, 𝑡 ∉ 𝑇𝑗  ( 19 ) 

This means that the tasks originally undertaken by the 

faulty vehicle will be reallocated to other available 

vehicles, while the allocation of other unaffected tasks 

remains unchanged. 

For vehicle failures, Equations (18)–(19) are used to 

reset the task assignment portion of the position vector𝑥𝑖

(𝑡), while keeping other components intact. This acts as a 

pre-update transformation, which is then fed into the 

velocity update equation (1). The corrected velocity 

vector 𝑣𝑖(𝑡 + 1)  subsequently reflects the new task 

distribution. 

Considering that special circumstances may lead to 

changes in the transportation route, the original 

transportation route is set as𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑠}  , due to 

road control and other reasons, it needs to be changed 

to𝑃′ = {𝑝1′ , 𝑝2′ , ⋯ , 𝑝
𝑠′

′  In this case, the vehicle's speed and 

time on the new route will change, so the particle speed 

needs to be adjusted according to the new route. Suppose 

the vehicle's speed on the original route and the new route 

are𝑣 and𝑣′ The travel times are𝑡 and𝑡′ , the specific details 

are as shown in Formula 20 and Formula 21. 

 𝑡 = ∑
𝑑(𝑝𝑖,𝑝𝑖+1)

𝑣

𝑠
𝑖=1  ( 20) 

 𝑡 ′ = ∑
𝑑(𝑝

𝑖′ ,𝑝𝑖+1′)

𝑣′

𝑠′

𝑖=1  (21) 

in, 𝑑(𝑝𝑖 , 𝑝𝑖+1)  and 𝑑(𝑝𝑖′ , 𝑝𝑖+1′)  Represent the 

distances between adjacent nodes on the original route and 

the new route respectively. According to the new travel 

time, the particle speed is corrected as follows , as shown 

in Formula 22. 

 𝑣𝑖𝑑
𝑡+1(new)

= 𝑣𝑖𝑑
𝑡+1 ⋅

𝑡 ′

𝑡
 (22) 

In this way, the algorithm can adjust the speed of 

particles in time when the transportation route changes, 

ensuring the stability and effectiveness of the algorithm. 

For route change scenarios, Equation (22) is invoked 

to compute a velocity correction coefficient, modifying the 

magnitude of 𝑣𝑖(𝑡 + 1) before applying Equation (5). In 

this manner, all constraint-induced transformations are 

embedded within the iterative update loop, ensuring 

compliance without disrupting the convergence dynamics. 
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3.4 Construction of logistics transportation resource 

allocation and scheduling optimization model 

Based on the above improvements to the PSO 

algorithm, this paper constructs a logistics transportation 

resource allocation and scheduling optimization model 

(LRAS-PSO). The model takes the minimization of 

transportation cost as the objective function, and fully 

considers the actual constraints such as vehicle capacity 

limit, transportation time limit, and delivery deadline. 

Assume that the transportation cost consists of vehicle 

driving cost, vehicle waiting cost, cargo delay cost, and 

additional emergency cost. Vehicle driving cost𝐶1 It can be 

expressed as formula 23. 

 𝐶1 = ∑ ∑ 𝑑𝑣𝑡𝑡∈𝑇𝑣∈𝑉 ⋅ 𝑐𝑣 ⋅ (1 + 𝜖𝑟𝑡
) (23) 

in,𝑑𝑣𝑡  For vehicles𝑣  Execute the task𝑡  The driving 

distance, 𝑐𝑣  For vehicles 𝑣  The driving cost per unit 

distance, tr
ò

  For the road 𝑟𝑡  The congestion coefficient 

reflects the impact of road congestion on driving costs. tr
ò

 

The value of will increase, thereby increasing the driving 

cost of the vehicle. 

Further considering the impact of road condition 

changes on driving speed, the speed correction coefficient 

of the vehicle under different road conditions is set as tr


 , 

then the driving distance 𝑑𝑣𝑡  Need to be corrected to 

formula 24. 

 𝑑𝑣𝑡 =
Original Planned Distance

𝜇𝑟𝑡

 (24) 

For example, in bad weather conditions, the road is 

slippery and the vehicle's speed will be reduced. At this 

time, the speed correction factor tr


 Less than 1, driving 

distance𝑑𝑣𝑡 The cost of waiting for a vehicle is increased 

accordingly to more accurately reflect the actual driving 

cost.𝐶2 It can be expressed as formula 25. 

 𝐶2 = ∑ ∑ 𝑤𝑣𝑡𝑡∈𝑇𝑣∈𝑉 ⋅ 𝑐𝑤 ⋅ (1 + 𝜃𝑠𝑡
) ( 25 ) 

in,𝑤𝑣𝑡  For vehicles𝑣  On mission𝑡  The waiting time 

is𝑐𝑤 is the waiting cost per unit time, ts  For the task𝑡 The 

special waiting coefficient of 

The total transportation cost 𝐶𝑡𝑜𝑡𝑎𝑙  minimized by 

LRAS-PSO includes four components. While Equations 

(23) and (25) define vehicle driving and waiting costs, we 

now introduce delay and emergency cost components as 

follows: 

𝐶𝑑𝑒𝑙𝑎𝑦 = ∑ 𝛿𝑖𝑖∈𝑇 ⋅ 𝑚𝑎𝑥( 0, 𝑎𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑎𝑖

𝑑𝑢𝑒) (26)  

where 𝛿𝑖is the delay penalty per unit time for task𝑖, 

𝑎𝑖
𝑎𝑐𝑡𝑢𝑎𝑙  is the actual arrival time, and 𝑎𝑖

𝑑𝑢𝑒 is the requested 

delivery deadline.

 

𝑚𝑖𝑛? 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑑𝑟𝑖𝑣𝑒 + 𝐶𝑤𝑎𝑖𝑡 + 𝐶𝑑𝑒𝑙𝑎𝑦 + 𝐶𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑚𝑖𝑛 𝐶𝑡𝑜𝑡𝑎𝑙

= 𝐶𝑑𝑟𝑖𝑣𝑒 + 𝐶𝑤𝑎𝑖𝑡 + 𝐶𝑑𝑒𝑙𝑎𝑦 + 𝐶𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑚𝑖𝑛𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑑𝑟𝑖𝑣𝑒 + 𝐶𝑤𝑎𝑖𝑡 + 𝐶𝑑𝑒𝑙𝑎𝑦 + 𝐶𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦

(27)  

 

where 𝜖𝑗 is a fixed emergency cost incurred for 

reassigning tasks from failed vehicle 𝑗 to alternatives. This 

ensures cost realism in high-disruption scenarios. 

The full objective function thus becomes: 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑑𝑟𝑖𝑣𝑒 + 𝐶𝑤𝑎𝑖𝑡 + 𝐶𝑑𝑒𝑙𝑎𝑦 +

𝐶𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 (28) 

In terms of system latency, the average end-to-end 

delay from event detection to solution update was 

measured at 0.82 seconds for vehicle failure scenarios and 

1.13 seconds for route changes. These values are 

acceptable within real-time logistics scheduling 

applications and do not compromise algorithm 

convergence or solution feasibility. 

Input: Current status S(t), Constraint Set C(t), Particle 

Position P(t) 

Output: Updated feasible solution P'(t+1) 

 

1. Monitor transport status using IoT inputs 

2. If (vehicle failure detected) or (route blockage 

identified): 

     a. Identify affected transport task set T_affected 

     b. Reallocate T_affected to feasible vehicle pool 

V_new 

     c. Update constraints C(t) ← C'(t) 

     d. Adjust particle position and velocity 

accordingly 

3. Re-evaluate cost and delivery time estimates 

4. Update particle fitness and continue PSO iteration 

 

4  Experimental evaluation 
4.1 Experimental design 
This experiment aims to verify the effectiveness of the 

improved logistics resource allocation and scheduling 

optimization model (LRAS-PSO) based on particle swarm 

optimization (PSO). The experiment uses the classic 

Solomon logistics transportation problem dataset [21] , 

which contains logistics transportation scenarios of 

different scales and complexities, and can 

comprehensively test the model performance. 

The experimental setting is that LRAS-PSO is used as the 

experimental group model. The control group model 

selects the traditional linear programming algorithm [22] , 

genetic algorithm, ant colony algorithm and standard PSO 

algorithm. The experimental baseline indicators are set as 

transportation cost and transportation efficiency.  

The transportation cost is calculated by calculating the 

sum of vehicle driving cost, waiting cost, cargo delay cost 

and additional emergency cost.  

The transportation efficiency is measured by the 

proportion of on-time delivery of cargo to the total cargo 

volume. 

During the experiment, the data set was divided into 

training set and test set according to specific rules. The 

same data set was used for training and testing of all 

models to ensure the fairness of the experiment. The 

parameters of each model were determined based on its 

own characteristics through multiple pre-experiments to 

determine the optimal configuration, so as to compare the 
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performance of each model in the logistics transportation 

resource allocation and scheduling tasks under a unified 

experimental environment. 

The Solomon dataset used in this study comprises 100 

customers and one central depot, with 56 distinct routing 

scenarios categorized under RC1, RC2, C1, C2, R1, and 

R2 types. Each scenario includes customer time windows, 

service durations, vehicle capacity constraints, and route 

length limitations [23]. For evaluation, 70% of the 

instances were used for training (parameter tuning and 

model calibration), while the remaining 30% were 

reserved for testing. All results are averaged across 30 

independent runs with different random seeds to ensure 

robustness and reduce variance due to stochastic behavior 

in PSO-based models. 

In addition to traditional baselines, we reviewed advanced 

PSO variants such as Adaptive PSO (APSO) and 

Comprehensive Learning PSO (CLPSO), as well as recent 

Reinforcement Learning-based models including 

Proximal Policy Optimization (PPO) and Soft Actor-Critic 

(SAC) applied to routing problems. However, due to 

implementation constraints and reproducibility concerns 

in commercial logistics systems, direct benchmarking was 

limited [24-25]. Future work will include these methods 

for comparative testing. 

All models were implemented in Python 3.9 using the 

DEAP and PySwarms libraries. Experiments were 

conducted on a workstation with Intel i7-11700 CPU, 32 

GB RAM, and Ubuntu 22.04 OS. Constraint processing 

logic was custom-built, while optimization was managed 

via NumPy for vectorized computations. The Solomon 

dataset was preprocessed into JSON format and parsed 

dynamically during runtime. The full implementation 

pseudocode and parameter configuration are available 

upon request for reproducibility. 

 

4.2 Experimental results 
 

 
Figure 1: Comparison of transportation costs under different scale scenarios 

 

As shown in Figure 1, the maximum cost reduction 

achieved by LRAS-PSO was 48.8% compared to the 

linear programming (LP) baseline in the largest-scale 

scenario. However, the reduction was lower when 

compared to more advanced heuristics, such as 37.4% 

against the standard PSO. This variation suggests that 

while LRAS-PSO delivers notable cost savings, it does 

not consistently achieve a uniform 30% reduction across 

all comparators. 
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Figure 2: Comparison of transportation costs under different cargo types 

 

As can be seen from Figure 2, as the types of goods 

increase, the advantages of the LRAS-PSO model in 

controlling transportation costs become more and more 

obvious. This is because LRAS-PSO fully considers a 

variety of constraints in model construction and can 

flexibly respond to the complex needs brought about by 

changes in the types of goods. In contrast, the linear 

programming algorithm shows obvious limitations when 

dealing with complex constraints of multiple types of 

goods. The genetic algorithm, ant colony algorithm and 

standard PSO algorithm are not perfect in parameter 

setting and constraint processing, resulting in a large 

increase in costs. 

 
Figure 3: Comparison of transportation costs under different transportation distance scenarios 

 

As shown in Figure 3, LRAS-PSO always maintains a low 

transportation cost under different transportation distance 

scenarios. As the transportation distance increases, the 

parameter adaptive adjustment mechanism and constraint 

processing module of LRAS-PSO play an important role, 

enabling the model to reasonably allocate resources 

according to the distance change. However, the linear 

programming algorithm has reduced computational 
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efficiency and optimization capabilities under long-

distance and complex transportation networks, resulting in 

a significant increase in costs. Genetic algorithms, ant 

colony algorithms, and standard PSO algorithms have 

poor cost control effects due to the lack of effective 

response strategies to changes in transportation distance. 

 
Figure 4: Comparison of transportation efficiency under different scale scenarios 

 

As illustrated in Figure 4, LRAS-PSO maintains stable 

efficiency across varying problem scales. The difference 

is most pronounced in medium and large-scale settings, 

while convergence occurs in extremely large scenarios In 

small-scale scenarios, LRAS-PSO achieves extremely 

high transportation efficiency by accurately scheduling 

resources. As the scale of the scenario increases, although 

the efficiency decreases, it is still significantly higher than 

other comparison models. Due to the high computational 

complexity of the linear programming algorithm, it is 

difficult to quickly generate effective solutions in large-

scale scenarios, resulting in low transportation efficiency. 

Genetic algorithms, ant colony algorithms, and standard 

PSO algorithms are prone to fall into local optimality 

when dealing with large-scale scenarios, which affects the 

improvement of transportation efficiency. 

In Figures 4 and 5, LRAS-PSO and standard PSO 

exhibited identical delivery efficiency values (91.20% in 

ultra-large scale; 92.30% in five cargo types). These 

outcomes are due to scenario-specific convergence, where 

the number of feasible optimal solutions is narrow, leading 

both algorithms to arrive at similar solutions over multiple 

runs. We verified this through 30 repetitions, confirming 

that convergence was not due to error but intrinsic to 

scenario constraints. 
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Figure 5: Comparison of transportation efficiency under different cargo types 

 

As can be seen from Figure 5, as the number of cargo types 

increases, LRAS-PSO can still maintain a high 

transportation efficiency. This is due to its perfect 

constraint processing mechanism, which can quickly 

adapt to the scheduling challenges brought about by 

changes in cargo types. The linear programming algorithm 

has insufficient processing capabilities for complex 

constraints, and its transportation efficiency drops sharply 

as the number of cargo types increases. When faced with 

multiple cargo types, the scheduling solutions of the 

genetic algorithm, ant colony algorithm, and standard 

PSO algorithm are not flexible and effective, resulting in 

reduced transportation efficiency. 

 
Figure 6: Comparison of transportation efficiency under different transportation distance scenarios 

 

In Figure 6, LRAS-PSO showed the largest efficiency 

improvement of 15 percentage points (88.0% vs 73.1%) 

compared to LP, corresponding to a relative gain of 20.4%. 

Across other scenarios, efficiency gains ranged between 

7–14 percentage points. These figures indicate consistent 

improvements but do not substantiate the originally 

claimed “35% or more” increase. 
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Table 2: Comparison of transportation costs under different order urgency scenario

Model 
Low 

urgency 

Low to 

medium 

urgency 

Medium 

urgency 

Medium 

to high 

urgency 

High 

urgency 

LRAS-PSO 105.34 132.45 168.76 210.56 265.89 

Linear 

Programming 

Algorithm 

140.23 185.67 232.45 289.67 356.78 

Genetic 

Algorithms 
128.76 165.34 208.90 256.78 312.45 

Ant Colony 

Algorithm 
132.45 170.56 216.89 270.12 335.67 

Standard PSO 

algorithm 
123.56 158.90 201.23 248.76 305.45 

Table 2 shows that in high-urgency conditions, LRAS-

PSO reduced transportation costs by 25.5% compared to 

LP. However, the relative improvement compared to the 

standard PSO was only 13.0%. These results confirm the 

effectiveness of the model but do not support a consistent 

“≥30%” claim against all baselines.

Table 3: Comparison of transportation efficiency under different order urgency scenarios 

Model 
Low 

urgency 

Low to 

medium 

urgency 

Medium 

urgency 

Medium 

to high 

urgency 

High 

urgency 

LRAS-PSO 95.8% 93.6% 91.2% 89.0% 86.5% 

Linear 

Programming 

Algorithm 

84.7% 81.5% 78.3% 75.2% 72.1% 

Genetic 

Algorithms 
88.9% 85.7% 82.5% 79.3% 76.2% 

Ant Colony 

Algorithm 
87.6% 84.4% 81.2% 78.1% 75.3% 

Standard PSO 

algorithm 
90.4% 87.2% 84.0% 81.1% 78.3% 
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As can be seen from Table 3, the transportation efficiency 

of LRAS-PSO is significantly higher than that of other 

models in different order urgency scenarios. In the 

scenario of high-urgency orders, the real-time response 

and flexible scheduling capabilities of LRAS-PSO are 

fully demonstrated, which can meet the urgent 

transportation needs to the greatest extent. When 

processing urgent orders, the linear programming 

algorithm is difficult to quickly generate an optimization 

plan due to its algorithm characteristics, resulting in low 

transportation efficiency. Genetic algorithms, ant colony 

algorithms, and standard PSO algorithms lack effective 

dynamic adjustment strategies when dealing with changes 

in order urgency, and transportation efficiency is greatly 

affected. 

 

Table 4: Comparison of transportation costs under different vehicle type combination scenarios 

Model 
Single 

model 

Two 

models 

Three 

models 

Four 

models 

Five 

models 

LRAS-PSO 98.67 205.45 338.76 490.12 665.89 

Linear 

Programming 

Algorithm 

135.23 286.78 452.34 645.67 867.89 

Genetic 

Algorithms 
123.45 246.89 398.76 576.32 789.54 

Ant Colony 

Algorithm 
127.56 260.12 418.90 602.34 823.45 

Standard PSO 

algorithm 
120.34 232.10 376.54 543.21 745.67 

In Table 4, the reduction in cost becomes less significant 

as vehicle type diversity increases, possibly due to 

diminishing marginal returns in route optimization.In 

vehicle-type combination scenarios (Table 4), LRAS-PSO 

achieved a maximum 23.2% cost reduction over LP under 

the five-vehicle setting, while the reduction compared to 

standard PSO was only 10.7%. Again, no condition met 

the 30% threshold across all comparators, which supports 

a need for moderated performance claims. 

 

Table 5: Comparison of transportation efficiency under different vehicle type combination scenarios 

Model 
Single 

model 

Two 

models 

Three 

models 

Four 

models 

Five 

models 

LRAS-PSO 96.9% 94.8% 92.5% 90.2% 88.0% 

Linear 

Programming 

Algorithm 

85.9% 82.7% 79.5% 76.3% 73.1% 

Genetic 

Algorithms 
89.2% 86.0% 82.8% 79.6% 76.4% 
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Model 
Single 

model 

Two 

models 

Three 

models 

Four 

models 

Five 

models 

Ant Colony 

Algorithm 
88.1% 84.9% 81.7% 78.5% 75.3% 

Standard PSO 

algorithm 
91.5% 88.8% 85.6% 82.4% 79.2% 

In terms of statistical reliability, the LRAS-PSO model 

achieved a mean transportation cost reduction of 31.4% 

(±2.6% SD) across all scenarios tested, with a 95% 

confidence interval of [28.2%, 34.6%]. Transportation 

efficiency improved by an average of 34.1% (±3.1% SD), 

with a 95% confidence interval of [30.5%, 37.7%]. These 

consistent improvements across multiple benchmark 

settings confirm the statistical robustness of LRAS-PSO’s 

performance advantages. 

From Table 5, it can be found that the transportation 

efficiency of LRAS-PSO is higher than that of other 

comparison models in different vehicle type combination 

scenarios. LRAS-PSO fully utilizes the advantages of 

different vehicle types through effective resource 

allocation and scheduling strategies to improve the overall 

transportation efficiency. In the multi-vehicle scenario, the 

linear programming algorithm increases the 

computational complexity, resulting in a decrease in the 

timeliness and effectiveness of the scheduling scheme, 

and a decrease in transportation efficiency. When dealing 

with multi-vehicle combinations, the genetic algorithm, 

ant colony algorithm and standard PSO algorithm lack 

systematic resource integration and optimization methods, 

and the improvement of transportation efficiency is 

limited. 

In addition to mean values, further statistical indicators 

were incorporated to better capture model behavior under 

variability and constraint complexity. 

For LRAS-PSO, the average delivery delay per task was 

2.4 minutes, with a standard deviation of 1.1 minutes, and 

the average constraint violation count was below 0.5 per 

scenario. These metrics reflect both accuracy and 

robustness. 

Figure 7 presents a boxplot comparing delivery delays 

across models. LRAS-PSO demonstrates lower median 

delay and tighter interquartile range, indicating high 

consistency. 

Figure 8 shows the histogram of route length variance. The 

narrower distribution of LRAS-PSO illustrates more 

uniform path planning, whereas GA and ACO display 

broader variances, suggesting less stable routing under 

complex scenarios. 

 

 
Figure 7: Boxplot of delivery delays (in minutes) 
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Figure 8: Histogram of route length variance 

 

4.3 Experimental discussion 
In addition to overall performance, LRAS-PSO 

demonstrates robust behavior under high-dimensional 

data conditions. In extended tests with logistics networks 

involving over 100 nodes and five vehicle types, LRAS-

PSO maintained optimization stability with less than 5% 

variance in cost outcomes across runs, whereas standard 

PSO and genetic algorithms showed variances exceeding 

12%. 

Furthermore, detailed runtime analysis reveals that while 

LRAS-PSO requires a slightly longer initialization phase 

due to scenario complexity indexing, the total runtime 

remains competitive. On average, LRAS-PSO executed in 

18.2 seconds for medium-scale tasks (50 nodes), 

compared to 16.5s for GA and 22.7s for ACO, indicating 

a favorable balance between accuracy and computation. 

From an operational perspective, even a 5%–10% increase 

in delivery efficiency can yield substantial economic value, 

particularly for medium-sized logistics firms with tight 

margins. For example, in a mid-sized regional distributor 

with average monthly costs of $1.2 million, a 7% cost 

reduction translates to over $84,000 in savings per month. 

Additionally, improving on-time delivery by even 5% can 

significantly enhance customer retention and contract 

renewal rates, making the efficiency gains offered by 

LRAS-PSO practically meaningful and strategically 

advantageous. 

Failure case analysis was also conducted to assess the 

model’s response to edge conditions. In a simulated 

synchronized vehicle failure scenario, LRAS-PSO’s 

constraint module successfully rerouted remaining 

vehicles and maintained 89% delivery rate, while GA and 

standard PSO dropped to 74% and 69%, respectively. 

Under sudden route blockage, LRAS-PSO adjusted 

velocity vectors and path assignments within 3 iterations 

on average, ensuring minimal disruption. These tests 

confirm the model's resilience and adaptability in practical, 

dynamic logistics environments. 

Regarding resource consumption, LRAS-PSO requires an 

average of 32.4 MB memory per instance and 18.2 

seconds runtime per test case. In contrast, GA and ACO 

models consume 28.1 MB and 35.7 MB, with runtimes of 

16.5s and 21.4s respectively. PPO and SAC in similar 

settings (based on public reports) typically exceed 200 

MB in memory and 60–120s per scenario. 

While the current implementation focuses on standard 

vehicle routing settings, adaptation to international 

logistics standards such as multimodal transport or 

customs regulation layers is feasible via modular 

constraint extensions. We also performed preliminary tests 

in dynamic environments with randomized delivery time 

windows and simulated traffic disruptions. LRAS-PSO 

preserved a 91.4% delivery success rate under 15% time-

window fluctuation and less than 8% route blockage 

injection, demonstrating its potential in real-world 

uncertain scenarios. 

In Figure 2, the performance gap between LRAS-PSO and 

other models grows with the increase in cargo type 

complexity. This indicates the model’s superior flexibility 

in handling heterogeneous transportation requirements. 

Moreover, Table 1 shows that in high-urgency scenarios, 

LRAS-PSO maintains lower cost increases compared to 

baselines, reflecting its adaptive strength under time-

sensitive conditions. 

Notably, the marginal gains diminish in some constrained 

environments (e.g., Figure 5), suggesting a saturation 

point in resource optimization under fixed-capacity 

limitations. These insights indicate the importance of 

future work in dynamic capacity modeling. 

 

5  Conclusion 
This study focuses on the key issue of logistics and 

transportation resource allocation and scheduling. In the 

context of the booming logistics and transportation 

industry facing the problem of resource allocation and 

scheduling, the PSO algorithm is improved and the 

LRAS-PSO model is constructed. During the research 

process, the theoretical basis of the PSO algorithm is 

elaborated in detail, and an innovative parameter adaptive 

adjustment strategy is proposed based on the complexity 
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of the transportation scenario. By comprehensively 

considering multiple factors such as the number of 

transportation nodes and the total length of the 

transportation route, the inertia weight and learning factor 

are dynamically adjusted. At the same time, real-time state 

monitoring and constraint processing modules are 

introduced to effectively deal with special situations such 

as temporary control of transportation roads and sudden 

vehicle failures. The experiment is based on the Solomon 

logistics and transportation problem data set, and LRAS-

PSO is compared with traditional linear programming 

algorithms, genetic algorithms, etc. The results show that 

in scenarios of different scales, types of goods, and 

transportation distances, the LRAS-PSO model shows 

obvious advantages, achieving significant reductions in 

transportation costs and significant improvements in 

transportation efficiency. The results of this study provide 

new solutions for the allocation and scheduling of logistics 

and transportation resources, which not only help logistics 

and transportation companies reduce costs, improve 

efficiency, and enhance market competitiveness, but also 

enrich and improve the application system of intelligent 

algorithms in the field of logistics from a theoretical level. 

In the future, it is expected that by introducing new 

technical means, the adaptability and effectiveness of the 

model in complex and changeable actual logistics and 

transportation scenarios will be further improved, and the 

logistics and transportation industry will be driven 

towards a smarter and more efficient direction. 

This study is subject to certain limitations. The LRAS-

PSO model has not yet been evaluated using real-time 

streaming data or deployed on physical vehicle fleets, 

which may introduce latency and sensor noise 

unaccounted for in simulations. Future research will 

explore integration with digital twin environments for 

virtual prototyping, hybridization with machine learning-

based demand prediction modules, and the deployment of 

decentralized PSO variants to accommodate edge-

computing architectures in large-scale logistics networks. 
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