
Informatica 30 (2006) 253–277 253

An Overview of Slicing Techniques for Object-Oriented Programs

Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar1

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, WB 721 302, India
E-mail: {durga, rajib, rkumar}@cse.iitkgp.ernet.in

Keywords: program slicing, program dependence graph, debugging, object-oriented programs, concurrent object-
oriented program, multi-threading, distributed programming.

Received: April 15, 2005

This paper surveys the existing slicing techniques for object-oriented programs. Many commercial object-
oriented programs are concurrent in nature. Concurrency is typically implemented in the form of multi-
threading or message passing using sockets or both. We therefore review the available techniques in slicing
of concurrent object-oriented programs. Another trend that is clearly visible in object-oriented program-
ming is client-server programming in a distributed environment. We briefly review the existing techniques
for slicing of distributed object-oriented programs

Povzetek: Opisana je tehnika analize objektnih programov.

1 Introduction

Program slicing is a program analysis technique. The main
applications of program slicing includes various software
engineering activities such as program understanding, de-
bugging, testing, program maintenance, complexity mea-
surement etc. It can also be used to extract the statements
of a program that are relevant to a given computation. A
program slice consists of the parts or components of a pro-
gram that (potentially) affect the values computed at some
point of interest, referred to as a slicing criterion. Typi-
cally, a slicing criterion consists of a pair < s, V >, where
s is the statement number and V is a variable. The com-
ponents of a program which have a direct or indirect effect
on the values computed at a slicing criterion < s, V > are
called the program slice with respect to the slicing criterion
< s, V >.

The concept of a program slice was introduced by
Weiser [92]. Various slightly different notions of program
slices have been proposed. There has also been a prolifera-
tion of the number of methods to compute slices. The main
reason for this proliferation of slicing techniques is that
different applications require different properties of slices.
Weiser [91] defined a program slice S as a reduced, exe-
cutable program obtained from a program P by removing
statements, such that S replicates part of the behavior of
P . The program slicing technique originally introduced by
Weiser [91, 92, 93] is now called static backward slicing. It
is static in the sense that the slice is independent of the in-
put values to the program. It is backward because the con-
trol flow of the program is considered in reverse while con-
structing the slice. Another common definition of a slice
is a subset of the statements and control predicates of the
program which directly or indirectly affect the values com-

puted at the slicing criterion, but which do not necessarily
constitute an executable program.

Object-oriented programming style is becoming the
norm. These programs may be very large as well as con-
current. In some applications the programs run in a dis-
tributed manner on several nodes connected through a net-
work. The code size of these object-oriented programs of-
ten exceeds million of lines. Making such programs de-
pendable and trust worthy is a major challenge. Program
slicing is advocated as a technique to automatically ana-
lyze a program. The results of the analysis can be used to
help in debugging, test case design, test coverage analysis
and others [94, 82, 96, 19].

Slicing object-oriented programs presents new chal-
lenges which are not encountered in traditional program
slicing. To slice an object-oriented program, features such
as classes, dynamic binding, encapsulation, inheritance,
message passing and polymorphism need to be considered
carefully. Although the concepts of inheritance and poly-
morphism are strengths of object-oriented programming
languages, they pose special challenges in program slicing.
Due to inheritance and dynamic binding in object-oriented
programs, the process of tracing dependencies becomes
more complex than that in a procedural program. Larson
and Harrold were the first to consider these aspects in their
work [60]. To address these object-oriented features, they
enhanced the system dependence graphs (SDG) [48] to rep-
resent object-oriented software. After the SDG is con-
structed, the two phase algorithm of Horwitz et al. [48] is
used with minor modifications for computing static slices.
Larson and Harrold have reported only a static slicing tech-
nique for object-oriented programs [60], and did not ad-
dress dynamic slicing aspects. The dynamic slicing aspects
have been reported by Zhao [100], Song et al. [84], Xu et

254 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

al. [94] and Wang et al. [90].
Most of the commercial object-oriented programs are

concurrent in nature and run in different machines con-
nected through a network. It is usually accepted that under-
standing and debugging concurrent and distributed object-
oriented programs are much harder compared to the se-
quential programs. Slicing techniques promise to come in
handy at this point. However, most of the research work in
the program slicing area have focused attention on sequen-
tial programs. Research reports addressing slicing of con-
current and distributed object-oriented programs are scarce
in literature [102, 17, 54, 55, 75].

Several comprehensive surveys are available for pro-
gram slicing in general [86, 12, 63, 45, 95, 20]. But, sur-
veys on slicing of object-oriented programs have not been
reported to the literature to the best of our knowledge. In
this paper, we present a brief survey of the existing slicing
techniques for object-oriented programs. Also, we have re-
viewed the available literatures on the available techniques
for slicing concurrent object-oriented programs. Subse-
quently, we have discussed the current trend in the area of
slicing of distributed object-oriented programs. In this sur-
vey, we discuss the contribution of each work and compare
the major difference between them.

In the following, we review some basic slicing concepts
that would be useful to understand the rest of the paper.

1.1 Categories of Program Slicing
Several categories of program slicing as well as methods
to compute them are found in literature. The main rea-
son for the existence of so many categories of slicing is
the fact that different applications require different types
of slices. Slices can be backward or forward [48, 98],
static or dynamic [3, 52, 27], intra-procedural or inter-
procedural [48].

Static Slicing and Dynamic Slicing: Static slicing tech-
nique uses static analysis to derive slices. That is, the
source code of the program is analyzed and the slices are
computed for all possible input values. Therefore static
slices are conservative and contain more statements than
necessary. For object-oriented programs the situation is
still worse as the computed static slice will contain all
most all of the statements present in the program. This is
due to the various relationships such as inheritance, poly-
morphism, dynamic binding etc. existing among classes.
Therefore, static slices are of little use in the context of
object-oriented programs.

Korel and Laski [52] introduced the concept of dynamic
program slicing. Dynamic slicing makes use of the infor-
mation about a particular execution of a program. A dy-
namic slice with respect to a slicing criterion < s, V >,
for a particular execution, contains those statements that
actually affect the slicing criterion in the particular exe-
cution. Therefore, dynamic slices are usually smaller than
static slices and are more useful in interactive applications

1 main()

2 {

3 int i, sum;

5 sum = 0;

6 while(i <= 10)

7 {

8 sum=sum+i;

9 ++ i;

10 }

11 cout<< sum;

12 cout<< i;

13 }

4 cin>> i;

Figure 1: An example program

such as program debugging and testing. Dynamic slicing is
more suitable for object-oriented programs than static slic-
ing as the computed dynamic slice will contain only those
statements that actually affect the slicing criterion. In other
words, we can say that dynamic slicing techniques compute
precise slices. A comprehensive survey on the existing dy-
namic program slicing algorithms is reported in Korel and
Rilling [53] and Xu et al. [95].

Consider the C++ example program given in Fig. 1.
The static slice with respect to the slicing criterion <
11, sum > is the set of statements {4, 5, 6, 8, 9}. Con-
sider a particular execution of the program with the input
value i = 15. The dynamic slice with respect to the slicing
criterion < 11, sum > for the particular execution of the
program is {5}.

Backward Slicing and Forward Slicing: As already
discussed, a backward slice contains all parts of the pro-
gram that might directly or indirectly affect the slicing cri-
terion [92]. Thus a static backward slice provides the an-
swer to the question: “which statements affect the slicing
criterion?”.

A forward slice with respect to a slicing criterion <
s, V > contains all parts of the program that might be af-
fected by the variables in V used or defined at the program
point s [84, 98]. A forward slice provides the answer to the
question: “which statements will be affected by the slicing
criterion?”.

Intra-procedural Slicing and Inter-procedural Slicing:
Intra-procedural slicing computes slices within a single
procedure. Calls to other procedures are either not handled
at all or handled conservatively. If the program consists of
more than one procedure, inter-procedural slicing can be
used to derive slices that span multiple procedures [48].

For object-oriented programs, intra-procedural slicing is
meaning less as practical object-oriented programs contain
more than one method. So, for object-oriented programs,
inter-procedural slicing is more useful.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 255

Other Slicing Categories: Many examples of slicing
are combinations of the categories above. For example,
Weiser’s original work [91] describes backward, static,
intra-procedural slicing; although he also later gave an al-
gorithm for backward, static, inter-procedural slicing [93].
The work of Kamkar [49] produces backward, dynamic,
inter-procedural slicing. It is also possible to combine the
features of static slicing with the features of dynamic slic-
ing. This new form of slicing is called hybrid slicing [40].
Hybrid slicing is an approach for refining static slices using
dynamic information.

There are variants of slicing in between the two extremes
of static and dynamic, where some but not all properties
of the initial state are known. These are known as con-
ditioned slices [13, 31, 42, 25] or constrained slices [29].
Traditional slicing methods are all based on statement dele-
tion. In a recently reported form of slicing called amor-
phous slicing [11, 43, 46], slices are not necessarily pro-
duced by deleting statements and may not necessarily even
be made from components of the original program being
sliced. The slice is computed based on the semantics of the
program. Recently, another form of slicing called modular
monadic slicing has been developed where slices are com-
puted based on the modular monadic semantics of the pro-
gram analyzed [99]. This method computes slices directly
on abstract syntax of the program without constructing in-
termediate representations such as dependence graphs.

1.2 Applications of Program Slicing

This section describes the use of program slicing tech-
niques in various applications. In trying to use the basic
slicing concepts in diverse domains, several variations of
the notions of program slicing as described in Section 1
are developed. The program slicing technique was origi-
nally developed to realize automated static code decompo-
sition tools. The primary objective of those tools was to
aid program debugging [92, 64]. From this modest begin-
ning, the use of program slicing techniques has now ram-
ified into a powerful set of tools for use in such diverse
applications as program understanding, program verifica-
tion, automated computation of several software engineer-
ing metrics, software maintenance and testing, functional
cohesion, dead code elimination, reverse engineering, par-
allelization of sequential programs, software portability,
reusable component generation, compiler optimization,
program integration, showing differences between pro-
grams, software quality assurance, software fault-injection
etc. [10, 96, 65, 86, 32, 49, 44, 39, 104, 21, 30, 42, 19].
Slicing methods also play an important role in software
fault-injection, see [89] for using slicing methods in soft-
ware fault-injection. A comprehensive study on the appli-
cations of program slicing is made by Binkley and Gal-
lagher [12], Lucia [63] and Qi et al. [82].

1.3 Paper Organization
The remainder of this paper is organized as follows. In
Section 2, we discuss the inter-procedural slicing tech-
nique, that would be useful in understanding slicing of
object-oriented programs. In Section 3, methods for slic-
ing object-oriented programs are discussed. In Section
4, we review the slicing techniques for concurrent object-
oriented programs. In Section 5, techniques for slicing of
distributed object-oriented programs are discussed. Section
6 concludes the paper.

2 Inter-Procedural Slicing
Horwitz et al. [48] developed the system dependence graph
(SDG) as an intermediate program representation and pro-
posed a two-phase graph reachability algorithm on the
SDG to compute inter-procedural slice. A system de-
pendence graph is a collection of procedure dependence
graphs, one for each procedure. A procedure dependence
graph represents a procedure as a graph in which vertices
are statements or predicate expressions and the edges rep-
resent the dependence relationships. There are two types
of dependence edges: data dependence edge and control
dependence edge. Data dependence edges represent flow
of data between statements or expressions, and control de-
pendence edges represent control conditions on which the
execution of a statement or expression depends. Each pro-
cedure dependence graph contains an entry vertex that rep-
resents entry into the procedure. To model parameter pass-
ing, an SDG associates each procedure entry vertex with
formal-in and formal-out vertices. An SDG contains a
formal-in vertex for each formal parameter of the proce-
dure and a formal-out vertex for each formal parameter that
may be modified by the procedure. An SDG associates
each call site in a procedure with a call vertex and a set
of actual-in and actual-out vertices. An SDG contains an
actual-in vertex for each actual parameter at the call site and
an actual-out vertex for each actual parameter that may be
modified by the called procedure. At procedure entry and
call sites, global variables are treated as parameters. Thus,
there are actual-in, actual-out, formal-in and formal-out
vertices for these global variables. SDGs connect proce-
dure dependence graphs at call sites. A call edge connects
a procedure call vertex to the entry vertex of the called pro-
cedure’s dependence graph. Parameter-in and parameter-
out edges represent parameter passing. parameter-in edges
connect actual-in and formal-in vertices, and parameter-
out edges connect formal-out and actual-out vertices. Hor-
witz et al. compute inter-procedural slices by solving a
graph reachability problem on the SDG. To obtain precise
slices, the computation of a slice must preserve the call-
ing context of called procedures, and ensure that only paths
corresponding to legal call/return sequences are consid-
ered. To facilitate the computation of inter-procedural slic-
ing that considers the calling context, an SDG represents
the flow of dependencies across call sites. A transitive flow

256 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

of dependence occurs between the actual-in vertex and an
actual-out vertex if the value associated with the actual-in
vertex affects the value associated with the actual-out ver-
tex. The transitive flow of dependence may be caused by
data dependencies, control dependencies or both. A sum-
mary edge models the transitive flow of dependence across
a procedure call. Fig. 2 represents a simple example pro-
gram containing two procedures i.e. add and inc. The sys-
tem dependence graph of Fig. 2 is shown in Fig. 3. In the
SDG of Fig. 3, circles represent program statements and
ellipses represent parameter vertices.

After constructing the SDG, Horwitz et al. [48] applied
a two-pass algorithm on the SDG to compute the static
slices. The first pass of the inter-procedural slicing algo-
rithm traverses backward along all edges except parameter-
out edges, and marks those vertices reached. The second
pass traverses backward from all vertices marked during
the first pass along all edges except call and parameter-in
edges, and marks reached vertices. The slice is union of the
vertices marked during pass one and pass two.

3 Slicing of Object-Oriented
Programs

In this section, we first discuss some work on static slicing
of object-oriented programs. Then, we discuss how these
basic slicing techniques have subsequently been extended
by researchers to handle dynamic slicing of object-oriented
programs.

3.1 Static Slicing of Object-Oriented
Programs

Static slicing of object-oriented programs has drawn con-
siderable research interest [56, 60, 88, 87, 62, 16, 59, 57,
58, 47, 66, 41]. While slicing object-oriented programs,
how to represent the programs is an important problem.
Larson and Harrold [60] extended the SDG of Horwitz et
al. [48] to represent object-oriented programs. They have
constructed Class Dependence Graphs (ClDG) for each
class in an object-oriented program. A ClDG captures the
control and data dependence relationships that can be de-
termined about a class without knowledge of calling envi-
ronments. Each method in a ClDG is represented by a pro-
cedure dependence graph [60]. Each method has a method
entry vertex that represents the entry into the method. A
ClDG also contains a class entry vertex that is connected
to the method entry vertex for each method in the class by
a class member edge. Class entry vertices and class mem-
ber edges let us quickly access method information when a
class is combined with another class or system. The ClDG
construction expands each method entry by adding formal-
in and formal-out vertices similarly as procedure depen-
dence graphs.

Fig. 4 contains an example program written in C++
which creates the class Elevator and AlarmElevator de-

pending on the command line arguments. Fig. 5 shows the
ClDG for the Elevator class. A rectangle represents the
class entry vertex and circles represent the statements. The
ellipses represent the parameter vertices. For example in
Fig. 5, the vertex 1 is the class entry vertex and 2, 6, 7, 9,
11, 13, 15 and 21 are method entry vertices. Bold dashed
edges represent class member edges that connect class en-
try vertex to method entry vertex. For example (1, 2), (1,
6), (1, 7), (1, 9) and (1, 11) are class member edges. Each
method entry vertex is the root of a subgraph that is itself
a partial SDG containing control dependence edges, data
dependence edges, call and parameter edges, and summary
edges.

Since methods in a class can interact with each other
or with other methods, a ClDG represents the effects of
method calls by a call vertex. At each call vertex, there
are actual-in and actual-out vertices to match the formal-
in and formal-out vertices present at the entry to the called
method. For example, in Fig. 5, vertices 18 and 20 repre-
sent calls to add().

To represent derived class, Larson and Harrold con-
structed a ClDG for the derived class by constructing a rep-
resentation for each method defined by the derived class,
and reusing the representations of all methods that are in-
herited from the base classes [60].

A polymorphic method call occurs when a method call is
made and the destination of the call is unknown at compile
time. The ClDG should represent the polymorphic method
call. For this purpose, the ClDG uses a polymorphic choice
vertex to represent the dynamic choice among the possible
destinations. A call vertex corresponding to a polymorphic
call has a call edge incident to a polymorphic choice vertex.
A polymorphic choice vertex has call edges incident to sub-
graphs that represent calls to each possible destination. The
polymorphic choice vertex represents the dynamic selec-
tion of a destination. In fig. 6 P1 is a polymorphic choice
vertex that represents a dynamic choice between calls to El-
evator::go() and AlarmElevator::go(). The two unlabeled
vertices associated with P1 represent the dummy polymor-
phic choice vertices.

At last, the SDG for a complete program is constructed
by connecting calls in the partial system dependence graph
to methods in the ClDG for each class. This process in-
volves connecting call vertices to method entry vertices,
actual-in vertices to formal-in vertices, and formal-out ver-
tices to actual-out vertices. The summary edges for meth-
ods in a previously analyzed class are added between the
actual-in and actual-out vertices at call sites. This construc-
tion of the SDG for an object-oriented system maximizes
reuse of previously constructed portions of the representa-
tion.

Fig. 4 contains an example of an application program
that instantiates an object. The SDG of Fig. 4 is given in
Fig. 6. The variable e_ptr could point to an object of type
Elevator or AlarmElevator. This graph was constructed by
building a partial SDG for the main function, including the
previously computed representation for the Elevator and

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 257

{

 s = 0;

i = 1;

while (i < 10) do

 {

 add(s, i);

 inc(i);

 }

write(s);

 }

main()

 int s, i;

void add(int a, int b)

 {

 a = a + b;

 return;

 }

void inc(int z)

 {

 add(z,1);

 return;

 }

Figure 2: An example program

entry main

s=0 i=1 write(s)

add

ain= s bin= i s=aout

inc

in= i

entry inc

in add
zout=z

ain=z bin
=1

entry add

a=ain b=bin a=a+b a =a

call, parameter−in, parameter−out edge

data dependence edge

control dependence edge

summary edge

z=aout

while (i<10)

i=z out

z=z

z

out

Figure 3: The system dependence graph of the example program of Fig. 2

258 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

 && (current_floor <= top_floor)

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

31: void go(int floor)

32: { if (! alarm_on)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

/* initialization for Elevator */

20: add(current_floor, −1); } /* end if */

/* polymorphic method call */

 /* end of main */

8: { current_direction = UP; }

 public:

1: class Elevator{

30: {alarm_on = 0; }

33: Elevator :: go(floor);

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

 /* This method computes value of current_floor */

23: class AlarmElevator: public Elevator { /* AlarmElevator is derived from Elevator */

Figure 4: An example program

AlarmElevator classes, and connecting each graph using
call, parameter-in, and parameter-out edges. In Fig. 6, the
left hand side keys represent keys for formal parameter ver-
tices and right hand side keys represent keys for actual pa-
rameter vertices.

After constructing the SDG for a complete object-
oriented program, they have used the two-pass graph reach-

ability algorithm [48] for computing slices. Fig. 6 shows
the SDG of the example program given in Fig. 4 and the
static slice with respect to the call to which_floor() at ver-
tex 39, which includes all statements that may affect cur-
rent_floor. The shaded vertices in the SDG represent the
statements included in the slice. The static slice is shown
in Fig. 7 in more detail. Since Larson and Harrold [60] have

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 259

2

3

6

9

10

15

16

17

19

18

20

21

22

F4−in F1−out F2−out F3−out

4 5

1

7

F2−in F2−out

8

F2−in F2−out

F1−in

11
13

14

F2−in

12

F1−in F2−n F3−in F5−in

A2−in
A1−out

F6−in F7−in
F6−out

A1−in A3−in A1−out

A1−in

F1−out

KEY FOR PARAMETER VERTICES

F2−in: Current_dirn=Current_dirn_in

F1−in: Current _floor = Current_floor_in
F1−out: Current_floor_out=current_floor

F2_out: Current_dirn_out=Current_dirn
F3−in: Top_floor=Top_floor_in
F3−out: Top_floor_out=top_floor
F4−in: 1_toop_floor=1_top_floor_in
F5−in: Floor=Floor_in
F6−in: a=a_in
F6−out: a_out=a
F7−in: b=b_in

A1−in: a_in=Current_floor

A1−out: Current_floor=A_out

A2−in: b_in=1

A3−in: b_in=−1

Formal Parameters Actual Parameters

Class membership edge

Data dependence edge

Summary edge

Call edge, parameter edge

Control dependence edge

Figure 5: The ClDG for class Elevator

computed the static slice, so all most all of the statements
in the example program are included in the slice.

One limitation of this approach is that the data dependen-
cies obtained using the approach for creating the individual
procedure dependence graphs are imprecise: by treating
data members declared in a class as if they were global to
the methods of that class, the approach fails to consider the
fact that in different method invocations, the data members
used by the methods might belong to different objects. A
second limitation of the approach is that it does not handle
cases in which an object is used as a parameter or as a data
member of another object.

Tonella et al. [88] have addressed the first limitation by
extending a methods signature to include data members of
the class as formal parameters so that an object can pass
its data members into the method as actual parameters.
Their approach, however, is unnecessarily expensive be-

cause each method call site has actual parameter vertices
for all data members of the object, even if only a few of
them are referenced by the method. They addressed the
second limitation by representing an object as a single ver-
tex when the object is used as a parameter. This representa-
tion, however, might cause the slicer to produce imprecise
slices because the slice may include all the data members of
the object even if a few of them affects the slicing criterion.

Liang et al. [62] developed a more efficient intermediate
representation to overcome the above limitations. To obtain
more precision when an object is used as a parameter (pa-
rameter object), their modified SDG explicitly represents
the data members of the object. They have represented
the parameter object as a tree. The root of the tree rep-
resents the object itself, the children of the root represent
the data members of the object and the edges of the tree
represent the data dependencies between the object and it’s

260 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

A10_in

34

35

37 36

24

25

26

3 4 5

31

32

33

15

16

19

18

21

F1_in F5_in F1_out

F6_in F7_in

A5_out A6_out A7_out

F3_in F1_out F2_out F8_out

A8_in A4_out A5_out A6_out

A11_in A4_out A5_out A6_out

A4_in A5_in A6_in A7_in A9_in

F1_in F2_in F3_in F5_in F1_out

A4_in A5_in A6_in A9_in

F4_in F3_out

A4_in A5_in A6_in A8_in

P1

39

A4_in

F1_in

11

A4_out

12

F2_out

2

38

A1_in A2_in A1_out A1_in A3_in A1_out

20key for parameter vertices

F1_in: current_floor = current_floor_in
F1_out: current_floor_out = current_floor

F3_in: top_floor = top_floor_in
F3_out: top_floor_out = top_floor

F5_in: floor = floor_in
F6_in: a = a_in
F6_out: a_out = a
F7_in: b = b_in
F8_in: alarm_on = alarm_on_in
F8_out: alarm_on_out = alarm_on

F2_in: current_dirn = current_dirn_in
F2_out: current_dirn_out = current_dirn

 A1_in: a_in = current_floor
 A1_out: current_floor = a_out

 A2_in: b_in = 1
 A3_in: b_in: = −1

 A4_in: current_floor_in = current_floor
 A4_out: current_floor = current_floor_out
 A5_in: current_dirn_in = current_dirn
A5_out: current_dirn = current_dirn_out

F4_in: 1_top_floor = 1_top_floor_in A6_in: top_floor_in = top_floor
A6_out: top_floor = top_floor_out

A7_in: alarm_on_in = alarm_on
A7_out: alarm_on = alarm_on_out
A8_in: 1_top_floor_in = 1_top_floor
A9_in: floor_in = 5

control dependence edge

summary edge

22

F6_out

17

F2_in F3_in

F1_out

 slice point

call edge, parameter edge

A!0_in: top_floor = 10
A11_in: 1_top_floor = 10

data dependence edge

F3_out

F8_in

A4_out

A4_out

A4_out

Figure 6: The system dependence graph of Fig. 4

data members. Under this representation, if a data member
of the object is another object, then this data member can
be further expanded into a subtree.

In this representation, a polymorphic object is repre-
sented as a tree in which the root of the tree represents the
polymorphic object itself and the children of the root repre-
sent objects of the possible types. When the polymorphic
object is used as a parameter, the children are further ex-
panded into trees. When the polymorphic object receives a
message, the children are further expanded into call sites.
Note that, in this case, the technique of Liang et al. [62]
differs from that of Larson and Harrold [60]. Liang et al.
have used one call site for each possible object type, in
their representation. But in the representation of Larson
and Harrold, different call sites are used only for different
implementations of a virtual method.

To represent inheritance, Liang et al. [62] have main-
tained one copy of the representation for a method within
a class hierarchy. Then, this representation can be shared
by different classes in the hierarchy. The class entry vertex
in the SDG groups the methods belonging to one class to-
gether using class member edges [60]. But in some cases,

a method might require a new representation when the pro-
gram dependence graph for a new class to the hierarchy, is
constructed. Liang et al. [62] suggested that, a method will
require a new representation, if

– the method is declared in the new class, or

– the method is declared in a lower level class in the
hierarchy and calls a newly redefined virtual method
directly or indirectly.

Liang et al. [62] have also introduced a new concept
called object slicing, which enables the user to inspect the
effects of a particular object on the slicing criterion. Ob-
ject slicing provides better support for debugging and pro-
gram understanding for large scale programs. Sometimes
the user may like to focus attention on one object at a time.
To do this, they have designed a method to identify the
statements in the methods of a particular object that might
affect the slicing criterion.

The shortcomings of their method are that:

1. When slicing the object, we must obtain the complete

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 261

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

23: class AlarmElevator: public Elevator

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

30: {alarm_on = 0 }

31: void go(int floor)

32: { if (! alarm_on)

33: Elevator :: go(floor)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

8: { current_direction = UP; }

 public:

1: class Elevator{

 /* end of main */

/* initialization for Elevator */

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

/* polymorphic method call */

 && (current_floor <= top_floor)

 /* This method computes value of current_floor */

/* AlarmElevator is derived from Elevator */

20: add(current_floor, −1); } /* end if */

Figure 7: The static slice of Fig. 4 on slicing criterion (39, current_floor)

slice first for the program. This might be too expen-
sive.

2. When an object’s method invokes other methods or is
invoked by other methods, we must traverse backward
through several methods.

Hammer et al. [41] proposed a new slicing algorithm
for Java, which includes all dependencies between fields
of nested objects but is more precise than previous algo-
rithms [60, 88, 62]. Instead of limiting the tree level, Ham-
mer et al. [41] unfold the tree completely. As this is not
possible for recursive data structures, they have presented
a condition for safe termination of unfolding. The condi-

tion is based on points-to information. This method keeps
all trees finite but guarantees that no dependencies are lost.
Points-to information is also used to constrain run-time tar-
gets of method calls. As a by-product, a call graph is ex-
tracted. But, even the best points-to analysis will not re-
solve all object polymorphism, and the object trees must
represent all possible run-time types of an object. Unlike
[62], Hammer et al. [41] do not represent polymorphic ob-
jects as a set of trees, but as one merged tree. To disam-
biguate fields with the same name but defined in different
classes, they have used the fully qualified field name. Thus
merging does not reduce the precision of the final SDG. It
just reduces the size of the SDG. The short coming of this

262 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

approach is that it is more expensive than [60, 62].
Krishnaswamy [56] proposed a different approach

to slicing object-oriented programs. He used an-
other dependence-based representation called the object-
oriented program dependency graph (OPDG) to represent
the object-oriented programs. The OPDG of an object-
oriented program represents control flow, data dependen-
cies and control dependencies. The OPDG representation
of an object-oriented program is constructed in three lay-
ers, namely: Class Hierarchy Subgraph (CHS), Control
Dependence Subgraph (CDS), and Data Dependence Sub-
graph (DDS). The CHS represents inheritance relationship
between classes, and the composition of methods into a
class. A CHS contains a single class header node and a
method header node for each method that is defined in the
class. Inheritance relationships are represented by edges
connecting class headers. Every method header is con-
nected to the class header by a membership edge. Subclass
representations do not repeat representations of methods
that are already defined in the super classes. Inheritance
edges of a CHS connect the class header node of a derived
class to the class header nodes of it’s super classes. In-
herited membership edges connect the class header node of
the derived class to the method header nodes of the meth-
ods that it inherits. A CDS represents the static control
dependence relationships that exists within and among the
different methods of a class. The DDS represents the data
dependence relationship among the statements and pred-
icates of the program. The OPDG of an object-oriented
program is the union of three subgraphs: CHS, CDS and
DDS. Slices can be computed using OPDG as a graph-
reachability problem. He also computed the polymorphic
slices of object-oriented programs based on the OPDG.

The OPDG of an object-oriented program is constructed
as the classes are compiled and hence it captures the com-
plete class representations. The main advantage of OPDG
representation over other representations is that the repre-
sentation has to be generated only once during the entire
life of the class. It does not need to be changed as long as
the class definition remains unchanged. Fig. 8 represents
the CHS of the example program of Fig. 4.

Kung et al. [59, 57, 58] presented a representation for
object-oriented software. Their model consists of an ob-
ject relation diagram and a block branch diagram. The
object relation diagram of an object-oriented program pro-
vides static structural information on the relationships ex-
isting between objects. It models the relationship that exists
between classes such as inheritance, aggregation and asso-
ciation. The block branch diagram of an object-oriented
program contains the control flow graph of each of the class
methods, and presents a static implementation view of the
program. Harrold and Rothermel [47] presented the con-
cept of Call Graph. A call graph provides a static view
of the relationship between object classes. A call graph is
an inter-procedural program representation in which nodes
represent individual methods and edges represent call sites.
However, a call graph does not represent important object-

oriented concepts such as inheritance, polymorphism and
dynamic binding.

Chen et al. [14] proposed an intermediate representa-
tion called Object-Oriented Dependency Graph (ODG) to
represent object-oriented programs. The ODG is a multi-
diagraph which is extended from a directed graph by aug-
menting multiple edge types, vertex properties, and prop-
erty relations. With this extension, the ODG can avoid
some dependencies due to object encapsulation. Based on
the ODG, Chen et al. [14] presented an algorithm for slic-
ing of object-oriented programs.

Chen et al. [15] defined two types of program slices,
state and behavior slices by considering the dependencies
of object-oriented features. A state slice for an object is a
set of messages and control statements that might affect the
state of the object. A behavior slice for an object is a set of
attributes and methods defined in related classes that might
affect the behavior of the object.

Although, these approaches [56, 60, 88, 87, 62, 16, 59,
57, 58, 47, 66, 41] represent many features of object-
oriented programs, still there are some drawbacks with
these approaches. First, these techniques are not fit to rep-
resent larger programs, because all the procedure depen-
dence graphs of subprograms are connected in the SDG,
and for a large program the SDG will be too large to man-
age and understand. Second, the existing techniques only
slice statements in methods of a class. A class consists of a
set of methods and data members. Statement slicing is not
enough to analyze and understand classes. Finally, to im-
prove the efficiency, most of the PDGs of methods should
be reused.

To overcome these drawbacks, Chen and Xu [18] have
proposed a new approach to represent dependence for
object-oriented Java software that is quite different from
the existing SDG representations [60, 88, 62, 56], which
connect all PDGs of methods. This new program depen-
dence graph is a set of PDGs with tags that are not con-
nected. The PDG of a class consists of a set of PDGs of
its methods. Each PDG is an independent graph, and does
not connect to any other PDGs. The tags have the form (x,
y) (where x and y are variables) and are used to distinguish
the different definitions and dependencies in a statement.
They have used the following sets in their approach: def(s),
ref(s), Def(s, x), Dep_D(s, x), and Dep_R(s). They have
defined these sets as follows:

– Def(s) denotes the variables whose values are defined
(modified) at s. The in formal parameters are defined
at entry node of the subprogram.

– Ref(s) denotes the variables whose values are refer-
eed, but not modified at s.

– Def(s, x) denotes the variables used when defining
variable x at s.

– Dep_D(s, x) = {(x, s1, y), such that y ∈
Def(s, x)andy ∈ Def(s1) and there exists a
path from s1 to s on which y is not redefined}.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 263

Method Direction()

Method Elevator()

Class header Elevator

Class header AlarmElevator

Method downMethod up() ()

Method which_floor()

Method ~Elevator()

Method go()

Method set_alarm() Method reset_alarm()Method AlarmElevator()

inherited method

inheritance

class membership

Figure 8: The CHS for the example program of Fig. 4

– Dep_R(s) = {(x, s1, x), such that if s is a control
statement, x is a conditional variable used at s, and
x ∈ Def(s1) and there exists a path from s1 to s on
which x is not redefined}.

Chen and Xu [18] defined the program dependence
graph (PDG) of a method M as a directed graph with tags.
According to this approach, PDG is triplet < S1, E1, T >,
where node set S1 = S (S is the node set of M’s CFG),
edge set E1 = E1 ∪ E2, whereE1 is the set of di-
rect control dependence edges and E2 = {< s1, s2 >
suchthat(x, s2, y) ∈ Dep_D(s1, x)and(x, s2, x) ∈
Dep_R(s1)} is the set of direct data dependence edges. T
is a tag set. The tag on an edge < s1, s2 > can be obtained
in the following way:

– If < s1, s2 >∈ E1, then its tag is (*, *);

– If < x, s2, y >∈ Dep_D(s1), then its tag is (y, x);

– If < x, s2, x >∈ Dep_R(s1), then its tag is (x, x);

For example, consider the sample program in Fig. 4. The
PDG of the method Elevator, according to the approach
of Chen and Xu [18], is shown in Fig. 9. Similarly the
PDG of other methods can be drawn. According to the
approach of Chen and Xu [18], in Fig. 9, the tag for the
edge (2, 3) is (current_floor, 1), the tag for edge (2, 4) is
(current_direction, UP) and the tag for the edge (2, 5) is
(top_floor, 1). There are three classes, Elevator, AlarmEle-
vator and main, in the sample program. The PDG of class
Elevator is shown in Fig. 10. It may be observed that the

PDG of each method in Fig. 10,is independent. Using the
PDG of a method, Chen and Xu [18] solved intra-method
slicing as a graph-reachability problem with tags. The ap-
proach of Chen and Xu [18] differs from the previous ap-
proaches [48] in that it checks not only the edges but also
the tags on these edges. Based on this new model, they
have introduced the concepts of partial slicing, object slic-
ing and class slicing.
Partial slicing: partial slicing can make the user pay at-
tention to the interesting parts of the program, and slice
incomplete programs or components from a third party
without source codes. Informally, given a slicing criterion
< s, v >, the partial slicing only slices the interested parts
of the program such as a class, few methods of a class or an
object. To slice parts of a program, they have constructed
the PDGs of interested subunits. For other methods, only
the interfaces, i.e., the dependencies among parameters are
needed. It is enough to know the interface (how to use
the method) of incomplete programs or components from a
third party. When we construct the PDG of a program, all
PDGs of methods have been constructed. Based on these
PDGs, we can use the partial slicing algorithm. In the slic-
ing algorithm, each method is sliced independently. If the
method is not considered, we just do not slice it.
Object slicing: Object slicing was first introduced by
Liang et al. [62]. It is mainly used for tasks, such as de-
bugging and program understanding. Object slicing iden-
tifies statements in methods of an object that might affect
the slicing criterion. To slice an object, the slicing criterion
is changed to < s, v, Object >. Informally, given a slic-
ing criterion < s, v,Object >, object slicing identifies the

264 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

2

4

(current_direction, UP)(current_floor, 1)

3 5

 (top_floor, 1_top_floor)

Figure 9: The PDG of method Elevator of the example program of Fig. 4

PDG of Elevator PDG of up PDG of down

PDG of which_floor PDG of direction PDG of go PDG of add

Figure 10: The PDG of class Elevator of the example program of Fig. 4

statements in the methods of the object that might affect
slicing criterion < s, v >.
Class slicing: Class slicing identifies data members and
statements in methods of the class that might affect the slic-
ing criterion. Class slicing slices not only the methods, but
also all the data members. To slice a class, the slicing cri-
terion is changed to < s, v, Class >. Informally, given a
slicing criterion < s, v, Class >, the result of class slicing
of a class is a class that includes partial data members and
statements in the methods of class, and these data members
and statements might influence the variable defined at s.
To slice a class, one method is to union all the object slices
of the class and record the data members used. When the
number of objects is large, this method will be too expen-
sive. Another way is that, when constructing the PDG, we
do not distinguish data members for different objects in-
stantiated from the same class. But using such PDG will
lose much information that is useful for other slicing. The
best way is to traverse backward from s when slicing and
mark the statements and data members used in the class
based on this new PDG.

The advantages of this approach [18] are that:

– It distinguishes data members for different objects and
represents the effects of polymorphism and dynamic
binding.

– Using this representation, the PDGs can be con-
structed concurrently as each PDG is independent. So,
this representation is quite fit for representing larger
programs.

– Object slicing enables users to inspect statements in
a slice, object by object. Class slicing enables users
to inspect not only the statements in methods but also
data members in classes.

– According to this slicing algorithm, when the slicing
criterion changes, most PDGs need not be traversed,
because the previous results that are saved on disks,
can be reused.

The shortcoming of this approach is that when we only
slice once or few times, the cost might be too much, be-
cause all the methods are analyzed first before slicing and
the results are stored in libraries on disk.

Steindl [85] has developed a fully operational program
slicing tool, Oberon Slicing Tool, for the programming lan-
guage Oberon-2. It generates state-of-the-art algorithms
and applies them to a strongly-typed object-oriented pro-
gramming language. It extends them to support inter-
modular slicing of object-oriented programs. Control and
data flow analysis considers inheritance, dynamic binding
and polymorphism, as well as side-effects of functions,
short circuit evaluation of Boolean expressions and aliases
due to reference parameters and pointers. The algorithm
for alias analysis is fast but effective by taking into account
information about the type of variables and the place of
their declaration. The result of static program analysis is
visualized with active text elements: hypertext links con-
nect the call sites with the possible call destinations, pa-
rameter information elements indicate the direction of data
flow at calls. Since static program analysis must make con-
servative assumptions about actual program executions, the
sets of possible aliases and call destinations due to dynamic
binding are more general than necessary. Steindl has vi-
sualized these sets and allowed the programmer to restrict
them via user interaction. These restrictions are then used
to compute more precise control and data flow information.
In this way, the programmer can limit the effects of aliases
and dynamic binding and bring in his knowledge about the
program into the analysis.

The disadvantages of this technique are:

– The layout of the the original source code is lost.

– The front-end of the compiler skips all comments, so
they are lost and cannot be displayed.

– The front-end of the compiler performs some simple
optimizations such as constant folding, transformation

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 265

of IF statements with constant conditions, replace-
ment of integer multiplication by a power of two by
arithmetic shifts, etc. These optimizations cannot be
undone and the results are presented to the user. This
may give insights, but may also confuse.

– The reconstruction of the source code is difficult, the
module implementing the reconstruction and the user
interface is very big, approximately 3000 lines.

3.2 Dynamic Slicing of Object-oriented
Programs

Korel and Laski [52] introduced a new form of slicing. This
new form of slicing is dependent on input data and is gener-
ated during execution-time analysis as opposed to Weiser’s
static slicing [92] and is therefore called dynamic slicing.
Similar to the major objective of static slicing, dynamic
slicing was specifically designed as an aid to debugging,
and can be used to help in the search for offending state-
ments which caused the program error [63].

Considerable research results on dynamic slicing of pro-
cedural programs are available [4, 52, 3, 49, 2, 78, 79, 37,
27, 98]. But dynamic slicing of object-oriented programs
have scarcely been reported in the literature [100, 84, 94,
90].

Agrawal and Horgan [4] were the first to present al-
gorithms for finding dynamic program slices using pro-
gram dependence graphs. They proposed a dynamic slic-
ing method by marking nodes on a static program depen-
dence graph. The computed slice is not always precise,
because some dependencies might not hold in dynamic ex-
ecution. They also proposed a precise method based on
the dynamic dependence graph (DDG) [4]. Zhao [100] ex-
tended the DDG of Agrawal and Horgan [4], known as dy-
namic object-oriented dependence graph (DODG) to rep-
resent various dynamic dependencies between statement
instances for a particular execution of an object-oriented
program. The DODG is an arc-classified diagraph (V, A),
where V is the multi-set of flow-graph vertices, and A is
the set of arcs representing dynamic control dependencies
and data dependencies between vertices. Zhao’s construc-
tion of DODG is based on dynamic analysis of control
flow and data flow of the program, and similar to those
for constructing dynamic dependence graphs for procedu-
ral programs [2]. Zhao constructed the DODG by creating
a new node for each occurrence of a statement in the execu-
tion trace, and creating all the dependence edges associated
with the occurrence at run-time. The execution trace of the
example program in Fig. 4 on input argument argv[1] = 3,
is given in Fig. 11. Fig. 12 shows the DODG of the exam-
ple program in Fig. 4 with respect to the execution trace in
Fig. 11.

Zhao [100] has considered the specific features of object-
oriented programs such as method calls, inheritance, poly-
morphism and dynamic binding etc. in his algorithm. Zhao
has regarded a call statement in an object-oriented program
as one of the following statements:

– a statement that calls a free standing procedure,

– a statement that has function application,

– a statement that creates an object,

– a statement that invokes a method, or

– a statement that returns a value to its caller.

Using similar techniques proposed by Agrawal and Hor-
gan [4], Zhao has solved the problem of representing a call
statement in the DODG.

Zhao has adopted the following concepts for dynamic
slicing of object-oriented programs:

– A slicing criterion for an object-oriented program is
of the form (s, v, t, i), where s is a statement in the
program, v is a variable used at s, and t is an execution
trace of the program with input i.

– A dynamic slice of an object-oriented program on a
given slicing criterion (s, v, t, i) consists of all state-
ments in the program that actually affected the value
of a variable v at statement s.

Based on the DODG, Zhao has used a two-phase algo-
rithm to compute dynamic slices of object-oriented pro-
grams. Computation of dynamic slices using the DODG
is carried out as a graph-reachability problem. The two
phases of the algorithm are:

1. Computing a dynamic slice over the DODG of the
object-oriented program.
(This can be done by using a usual depth-first or
breadth-first graph traversal algorithm to traverse the
DODG of the program by taking the vertex corre-
sponding to the statement of interest as the start point
of traversal.)

2. Mapping the slice over the DODG to the source code
to obtain a dynamic slice of the program.
(This can be done by simply defining a mapping func-
tion.)

It may be noted that the dynamic slice computed by
Zhao [100] is not executable. This is in contrast to that
presented in [52] which defines a dynamic slice as an ex-
ecutable subprogram. For program debugging and testing,
a non-executable dynamic slice can also supply enough in-
formation as an executable dynamic slice, but can be com-
puted more easily.

Fig. 13 shows the dynamic slice of the example pro-
gram in Fig. 4 with respect to the slicing criterion (39, cur-
rent_floor, t, argv[1] = 3), where t is the execution trace
given in Fig. 11. The statements within the boxes are in-
cluded in the slice. It can be marked that the size of the re-
sulting dynamic slice is reduced significantly compared to
its corresponding static slice. The disadvantage of Zhao’s
approach is that the number of nodes in a DODG is equal

266 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

34(0) main(argc, char **argv)

37(0) e_ptr = new Elevator(10);
2(0) Elevator(int 1_top_floor);
3(0) current_floor = 1;
4(0) current_direction = UP;
5(0) top_floor = 1_top_floor;
38(0) e_ptr go(3);

15(0) virtual void go(int floor);

16(0) if (current _direction = UP)

18(0) add(current_floor, 1),

21(0) add(int &a, const int &b);
22(0) a = a + b;

17(0) while ((current_floor != floor) && (current_floor) <= top_floor));

;

17(1) while ((current_floor != floor) && (current_floor) <= top_floor));

18(1) add(current_floor, 1);

21(1) add(int &a, const int &b);

22(1) a = a + b;

17(2) while ((current_floor != floor) && (current_floor) <= top_floor));

39(0) cout << "\n currently on floor:" << e_ptr which_floor() <<"

11(0) int which_floor ();
12(0) return current_floor;

35(0) if (argv[1])

Figure 11: An execution trace of the example program in Fig. 4 on input argv[1] = 3.

34

35

36

38

39 11 12

 2 3 4 5

15 16 17 18 21 22

 17 18 21 22

17

data dependence arc

control dependence arc

Figure 12: The DODG of the program of Fig. 4 on input argv[1]=3

to the number of executed statements, which may be un-
bounded for programs having many loops. Further, Zhao
has used trace files to store the execution history which is
expensive. The space complexity and the time complexity
of this dynamic slicing algorithm are of O(S) and O(S2),
respectively, where S is the length of execution of the pro-
gram.

Song et al.[84] proposed a method to compute forward
dynamic slice of object-oriented programs using dynamic
object relationship diagram (DORD). In this method, they
computed the dynamic slices for each statement immedi-

ately after the statement is executed. When the last state-
ment is executed, the dynamic slices of all executed state-
ments have been obtained. However, only some special
statements in the loops need to compute dynamic slices.
So the dynamic slices computed by this technique is un-
necessarily expensive.

Xu et al. [94] extended their earlier method [18] to dy-
namically slice object-oriented programs. Their method
uses object program dependence graph (OPDG) and other
static information to reduce the information to be traced
during execution. Their method computes dynamic slices

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 267

 else

 && (current_floor > 0)

 private:

 protected:

 int current_floor;

 Direction current_direction;

 int top_floor;

 };

 public:

 };

 protected:

 int alarm_on;

 };

 Elevator *e_ptr;

 else

 << e_ptr −> which_floor();

 }

 };

2: Elevator(int 1_top_floor)

3: { current_floor = 1;

4: current_direction = UP;

6: virtual ~Elevator() { }

7: void up()

9: void down()

10: { current_direction = DOWN; }

11: int which_floor()

12: { return current_floor; }

13: Direction direction()

14: { return current_direction; }

16: { if (current_direction = UP)

17: { while (current_floor != floor)

18: add(current_floor, 1); }

19: { while (current_floor != floor)

21: add(int &a, const int &b)

22: { a = a+b; } ;

23: class AlarmElevator: public Elevator

24: AlarmElevator(int top_floor);

25: Elevator(top_floor)

26: {alarm_on = 0; }

27: void set_alarm()

28: {alarm_on = 1; }

29: void reset_alarm()

30: {alarm_on = 0 }

31: void go(int floor)

32: { if (! alarm_on)

33: Elevator :: go(floor)

34: main(int argc, char **argv) {

35: if (argv[1])

36: e_ptr = new Elevator(10);

37: e_ptr = new AlarmElevator(10);

38: e_ptr −> go(3);

39: cout << "\n currently on floor:"

20: add(current_floor, −1); } /* end if */

8: { current_direction = UP; }

 public:

1: class Elevator{

 /* end of main */

/* initialization for Elevator */

5: top_floor = 1_top_floor; } /* end of Elevator */

15: virtual void go(int floor) /* declaration for method go() */

/* polymorphic method call */

 && (current_floor <= top_floor)

 /* This method computes value of current_floor */

/* AlarmElevator is derived from Elevator */

Figure 13: The dynamic slice of the example program in Fig. 4 on slicing criterion (39, current_floor, t, argv[1] = 3).

by combining static dependence information and dynamic
execution of the program. By analyzing the control flow
graph of the given program, fewer breakpoints are inserted
to trace the execution of the program. It is an approach
combining forward analysis with backward one. In the for-
ward process, it marks nodes on the OPDG and computes
intermediate dynamic slices (which are used to record dy-
namic execution information) at the necessary points dur-
ing the program execution. In the backward process, it tra-
verses the OPDG marked to obtain the final dynamic slice.
Based on this model, they have proposed algorithms to dy-
namically slice methods, objects and classes.

Wang et al. [90] presented a new dynamic slicing algo-

rithm for Java programs which operates on compact byte
code traces. According to their algorithm, first, the byte
code stream corresponding to an execution of a Java pro-
gram is compactly represented. Then, they perform a back-
ward traversal of the compressed program trace to compute
data/control dependencies on-the-fly. The slice is updated
as these dependencies are encountered during the traversal.

The compactness of the trace representation is owing to
several factors. First, byte codes which do not correspond
to memory read/write (i.e., data transfer to and from the
heap) or control transfer are not stored in the trace. These
byte codes can be ignored for computing control and data
dependencies. Secondly, the sequence of addresses used by

268 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

each memory reference, control transfer byte code is stored
separately. Since these sequences typically have high repe-
tition of pattern, they exploit such repetition to save space.
They have extended the dynamic slicing algorithm to ex-
plain certain classes of omission errors.

The important advantage of their technique is that it is
more space efficient than that of Zhao [100] since they use
the results from data compression to compactly represent
byte code traces of Java programs. The major space sav-
ings come from the optimized representation of data (in-
struction) addresses used by memory reference (branch)
byte codes as operands. Also, their algorithm can directly
traverse the compact traces without restoring to costly de-
compression. The disadvantage of this approach is that it
uses trace files, which are expensive to handle.

Mohapatra et al. [70, 72] proposed a new algorithm for
dynamic slicing of object-oriented programs. They have
used extended system dependence graph (ESDG) as the in-
termediate representation. They have statically constructed
the ESDG only once before the execution of the program
starts. Their algorithm is based on marking and unmarking
the edges of the ESDG as and when the dependencies arise
and cease during run-time. So, they have named their al-
gorithm edge marking dynamic slicing (EMDS) algorithm
for object-oriented programs. The EMDS algorithm marks
an edge of the ESDG when the corresponding dependency
arises and unmarks an edge when the dependency ceases
to exist. Mohapatra et al. [70, 74] also proposed another
algorithm called node marking dynamic slicing (NMDS)
algorithm for object-oriented programs. The NMDS algo-
rithm also uses ESDG as the intermediate representation.
The NMDS algorithm is based on marking and unmarking
the executed nodes of the ESDG appropriately during run-
time. The space complexity of both the algorithms (EMDS
and NMDS) is O(n2), where n is the number of statements
in the program. The time complexity of both the algorithms
(EMDS and NMDS) is O(n2S), where S is the length of
the execution trace. Each vertex of ESDG is annotated with
its most recent dynamic slice during execution of program.
Thus, slices can be extracted in constant time i.e., in O(1)
time.

The advantage of both the algorithms [72, 74] compared
to the related ones [100, 84, 94, 90] is that they do not not
require any new nodes to be created and added to the in-
termediate representation at run-time nor do they require to
maintain any execution trace in trace files. This saves the
expensive node creation and file I/O steps. Another im-
portant advantage of their algorithms is that when a request
for a slice is made, it is already available. Once a slicing
command is given the algorithms produce results almost in-
stantus through a mere table-lookup and avoid on-demand
slicing computation. They have shown that the EMDS and
NMDS algorithms are more space and time efficient than
the related algorithms [100, 84, 94, 90]. They have also
shown that the NMDS algorithm is faster than the EMDS
algorithm. Table 1 shows the comparison of various dy-
namic slicing algorithms for object-oriented programs.

Ohata et al. [81] observed that static slicing cannot com-
pute precise slices and dynamic slicing requires too much
computation time and memory space. So, they adopted an
intermediate slicing method between static and dynamic
slicing called Dependence-Catch (DC) slicing to object-
oriented programs. DC slicing method uses dynamic data
dependence analysis and static control dependence anal-
ysis. Dependence-Catch slicing computes more precise
slices than static slicing and needs less computation time
and memory space.

4 Slicing of Concurrent
Object-Oriented Programs

Concurrent object-oriented programs are becoming more
popular. Many of the real life object-oriented programs are
concurrent which run on different machines connected to a
network. It is usually accepted that understanding and de-
bugging of concurrent object-oriented programs are much
harder compared to those of sequential programs. The non-
deterministic nature of concurrent programs, lack of global
states, unsynchronized interactions among objects, multi-
ple threads of control and a dynamically varying number of
objects are some reasons for this difficulty [6, 9, 8]. An in-
creasing amount of resources are being spent in debugging,
testing and maintaining these products. Slicing techniques
promise to come in handy at this point. However research
attempts in the program slicing area have focused attention
largely on sequential programs. But research reports deal-
ing with slicing of concurrent object-oriented programs are
scarce in literature [104, 101, 102, 17, 103, 105, 82, 97, 73].

4.1 Static Slicing of Concurrent
Object-Oriented Programs

Static slicing of concurrent procedural programs has
drawn the attention of many researchers [36, 35, 38, 7].
Also, static slicing of concurrent object-oriented programs
has been addressed by some researchers [17, 103, 102, 105,
82, 97]. Excellent surveys on static slicing of concurrent
object-oriented programs can be found in [20].

Zhao et al. [104] presented a dependence based represen-
tation called the system dependence net (SDN) which ex-
tends the previous dependence based representations [60]
to represent various dependence relationships in concur-
rent object-oriented programs. An SDN of a concurrent
object-oriented program consists of a collection of depen-
dence graphs each representing a main procedure, a free
standing procedure, or a method in a class of the pro-
gram. It also consists of some additional arcs to represent
direct dependencies between a call and the called proce-
dure/method and transitive inter-procedural data dependen-
cies. To represent interprocess communications between
different methods in a class of a concurrent object-oriented
program, they have introduced a new type of program de-
pendence arc named as external communication depen-

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 269

Table 1: Comparison of algorithms for dynamic slicing of object-oriented programs

Approach Category Break points Trace
of slice inserted files used

Zhao backward no yes
Song et al. forward no yes
Xu et al. backward yes yes

Wang et al. backward no yes
Mohapatra et al. backward no no

dence arc into the SDN. An SDN can be used to represent
either object-oriented features or concurrency issues in a
concurrent object-oriented program.

Based on the SDN, Zhao et al. [104] have used the two-
phase algorithm [48] to compute static slices of concurrent
object-oriented programs such as CC++. In CC++, syn-
chronization between different threads is realized by using
a single assignment variable. Threads that share access to
a single assignment variable can use that variable as a syn-
chronization element. Their system dependence net (SDN)
is an extension of the SDG of Larson and Harrold [60]
and therefore can be used to represent many object-oriented
features in a CC++ program. To handle concurrency issues
in CC++, they used an approach proposed by Cheng [22]
which was originally used for representing concurrent pro-
cedural programs with a single procedure each. However,
their approach, when applied to concurrent Java programs
suffers from some problems due to the fact that the concur-
rency models of CC++ and Java are essentially different.
While Java supports monitors and some low level thread
synchronization primitives, CC++ uses a single assignment
variable mechanism to realize thread synchronization. This
difference leads to different sets of concurrency constructs
in both the languages, and therefore requires different tech-
niques to handle concurrency issues in computing slices.

Zhao [102] has also presented a dependence-based rep-
resentation called the multi-threaded dependence graph
(MDG) to represent concurrent Java programs. The MDG
is composed of a collection of thread dependence graphs
(TDG) each representing a single thread in the program,
and some special kinds of dependence arcs to represent
thread interactions between different threads. The TDG
is used to represent a single thread in a concurrent Java
program and is similar to the SDG [60]. The TDG of
a thread is an arc-classified diagraph that consists of a
number of method dependence graphs each representing
a method, and some special kinds of dependence arcs to
represent direct dependencies between a call and the called
method and transitive inter-procedural data dependencies
in the thread. The method dependence graph is similar to
the procedure dependence graph proposed by Horwitz [48].
To represent synchronization among threads and communi-
cation among shared objects in different threads, Zhao has
used two special types of dependence arcs in the MDG.
He has used synchronization dependence arcs to repre-

sent dependence relationships between different threads
due to inter-thread synchronization and communication de-
pendence arcs to represent dependence relationships be-
tween different threads due to inter-thread communication.

Zhao [102] has constructed the MDG for a complete
concurrent Java program by combining the TDGs for all
threads in the program at synchronization and communica-
tion points by adding synchronization and communication
dependence arcs between these points. Based on the MDG,
Zhao [102] has presented a two-phase algorithm for com-
puting static slices of concurrent Java programs.

Zhao et al. [105] developed another dependence-based
representation called concurrent program dependence
graph (CPDG) to represent program dependencies in a con-
current Java program. The CPDG is a diagraph which
consists of a collection of dependence graphs each rep-
resenting a single method in the class. Also, it includes
a few additional vertices and arcs to model parameter
passing between different methods in a class, and inter-
thread synchronization and communication between differ-
ent threads. Zhao et al. [105] used the two phase algo-
rithm [48] to compute static slices of concurrent Java pro-
grams.

Cheng [23] introduced an intermediate representation
called program dependence net (PDN) for parallel and dis-
tributed programs. Cheng [23] has also discussed various
possible applications of PDN including slicing concurrent
programs. Cheng has defined a dynamic slicing criterion
of a concurrent program as a quadruplet (s, V, H, I), where
s is a statement in the program, V is a set of variables used
at s, and H is a history of an execution of the program with
input I . According to Cheng, the dynamic slice DS(s, V, H,
I) of a concurrent program on a given slicing criterion (s,
V, H, I) consists of all statements in the program that actu-
ally affected the beginning or end of execution of s and/or
affected the values of variables in V at s in the execution
with I that produced H .

All these approaches [103, 102, 105, 23] slice concur-
rent programs by solving a node reachability problem in
the graph. A shortcoming of these algorithms is that the
resulting slice is not precise since they consider that de-
pendencies between concurrently executed statements are
transitive. But, in practice, the dependencies between con-
currently executed statements are not transitive due to the
presence of synchronization dependence and communica-

270 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

tion dependence [17].
To get a more precise slice than that of Zhao [102]

and Cheng [23], Krinke [54] introduced a slicing algo-
rithm without synchronization. Krinke has introduced a
new type of dependence called interference dependence,
among threads. In Krinke’s algorithm, the interference de-
pendence is not transitive. So, the resulting slice is more
precise. However, synchronization is widely used in con-
current programs and in some environments unavoidable.
Thus Krinke’s algorithm can be used only in some re-
stricted applications.

Krinke [55] has also developed another technique for
context sensitive slicing of concurrent programs. In this
technique, Krinke has extended the control flow graph
(CFG) and program dependence graph (PDG) [48] to repre-
sent concurrent programs with interference. This technique
does not require serialization or inlining of called proce-
dures. Nanda and Ramesh [80] have extended Krinke’s
technique [54] to compute static slices of concurrent pro-
grams with synchronization. In their approach, they have
considered loop-carried data dependence while computing
the slice. They have proposed some optimizations to slice
more efficiently. They have claimed that it could get near
linear behavior for many practical concurrent programs.

Qi and Xu [82] have developed a task synchronization
reachability graph (TSRG) for analyzing concurrent Ada
programs. Based on the TSRG, they determine the syn-
chronization dependencies in a concurrent Ada program,
and construct a new type of program dependence graph,
TSRG-based program dependence graph (RPDG). They
have discussed various applications of RPDG including
program understanding, debugging, testing and software
maintenance etc. A limitation of this approach is that, it
does not consider the communication dependencies in a
concurrent program. But, communication dependencies do
exist in many practical situations and is normally unavoid-
able in a concurrent object-oriented program. This makes
Qi and Xu’s approach [82] difficult to use in many practical
situations.

Chen and Xu [17] have developed concurrent control
flow graphs (CCFG) and concurrent program dependence
graphs (CPDG) to represent concurrent Java programs.
Based on the CPDG, they proposed a static slicing algo-
rithm for concurrent Java programs [17]. In their algorithm,
they have considered the fact that the inter-thread data de-
pendencies are not transitive. So, the resulting slice is more
precise than that of Zhao [102] and Cheng [23].

All the reported approaches [104, 101, 102, 23, 54, 55,
17, 82] focus on static slicing. They have not considered
the dynamic slicing aspects.

4.2 Dynamic Slicing of Concurrent
Object-Oriented Programs

Reports on dynamic slicing of concurrent object-oriented
programs are scarcely available in the literature [71, 73, 76,
77].

Mohapatra et al. [71] extended the dynamic slicing al-
gorithm of Zhao [100] to compute dynamic slices of con-
current object-oriented programs. They have used dynamic
multi-threaded dependence graph (DMDG) as the interme-
diate representation. The DMDG is an arc-classified dia-
graph (V, A), where V is the multi-set of flow graph ver-
tices, and A is the set of arcs representing dynamic con-
trol dependencies, data dependencies, synchronization de-
pendencies and communication dependencies between the
vertices. Based on the DMDG, they have used a two-phase
algorithm to compute dynamic slices of concurrent object-
oriented programs. The space complexity and the time
complexity of this algorithm are of O(S) and O(S2), re-
spectively, where S is the length of the execution trace. The
disadvantage of this approach is that they have used a trace
file to store the execution history, which is expensive.

Mohapatra et al. [70, 73, 77] have also proposed another
algorithm for dynamic slicing of concurrent Java programs
without using trace files. They have used concurrent con-
trol flow graph (CCFG) and concurrent system dependence
graph (CSDG) as the intermediate representations. Ac-
cording to their approach, first the CCFG is constructed
statically. Then, the CSDG is constructed by using the
CCFG. A concurrent system dependence graph (CSDG)
GC of a concurrent object-oriented program P is a directed
graph (NC , EC) where each node n ∈ NC represents a
statement in P . For x, y ∈ NC , (x,y) ∈ EC iff one of the
following holds:

1. y is control dependent on x. Such an edge is called a
control dependence edge.

2. y is data dependent on x. Such an edge is called a data
dependence edge.

3. y is synchronization dependent on x. Such an edge is
called a synchronization dependence edge.

4. y is communication dependent on x. Such an edge is
called a communication dependence edge.

Based on the CSDG, they have proposed a marking
based dynamic slicing (MBDS) algorithm for concurrent
Java programs. The MBDS algorithm is based on mark-
ing and unmarking the edges of the CSDG as and when the
dependencies arise and cease during run-time. MBDS al-
gorithm permanently marks the control dependence edges
as control dependencies do not change during program ex-
ecution. The algorithm considers all the data dependence
edges, synchronization dependence edges and communica-
tion dependence edges for marking and unmarking during
run-time. During execution of the program P , MBDS al-
gorithm marks an edge of the CSDG when its associated
dependence exists, and unmarks when its associated de-
pendence ceases to exist. After each statement u is exe-
cuted, MBDS algorithm unmarks all incoming marked de-
pendence edges excluding the control dependence edges,
associated with the object obj, corresponding to the pre-
vious execution of the statement u. Then, the algorithm

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 271

marks the dependence edges corresponding to the present
execution of the statement u.

MBDS algorithm operates in three main stages:

Stage 1: Statically constructing the intermediate program
representation graph,

Stage 2: Managing the CSDG at run-time, and

Stage 3: Computing the dynamic slice.

In the first stage of MBDS algorithm, the CCFG is con-
structed from a static analysis of the source code. Also at
this stage, using the CCFG the static CSDG is constructed.
The stage 2 of the algorithm is responsible for maintain-
ing the CSDG during run-time. The maintenance of the
CSDG at run-time involves marking and unmarking the
different dependencies such as data dependencies, synchro-
nization dependencies and communication dependencies as
they arise and cease. The stage 3 is responsible for comput-
ing the dynamic slices for a given slicing criterion using the
uptodate CSDG. However, the third step is simply a look up
as the dynamic slice computed during run-time is already
available. So, when a request for a slice is made, it is im-
mediately obtained. The space complexity of the MBDS
algorithm is O(n2), where n is the number of statements
in the program. The time complexity of the MBDS algo-
rithm is O(n2S), S being the length of the execution trace.
Each node of the CSDG is annotated with its most recent
dynamic slice during execution of the program. Thus, the
dynamic slices can be looked up in constant time i.e., in
O(1) time.

The important features of the MBDS algorithm are listed
below.

– It computes correct dynamic slices with respect to any
slicing criterion.

– It can handle inter-thread synchronization by using
primitives such as wait() and notify().

– It can handle inter-thread communication through
shared objects.

– No trace files are used. All information are maintained
and updated dynamically for all threads and are dis-
carded at run-time of a program on termination of a
thread.

– It does not create any additional nodes during run-
time. This saves the expensive node creation steps.

– When a request for a slice is made, it is already avail-
able.

– No serialization of the events of the concurrent pro-
gram is required.

– As MBDS algorithm marks an edge of the CSDG only
when the dependence exists, so the transitive prob-
lem [17] does not arise at all. So, MBDS algorithm
often results in slices that are more precise.

– It can be easily extended to compute dynamic slices
of distributed object-oriented programs as each com-
ponent program of the whole distributed program can
be considered as a single concurrent program.

Mohapatra et al. [70, 77] have developed a slicing a
tool called Dynamic Slicer for Concurrent Object-Oriented
Programs (DSCOP) to implement the MBDS algorithm.
DSCOP can compute the dynamic slice of a concurrent
object-oriented program with respect to any given slicing
criterion. DSCOP can handle only a subset of the Java syn-
tax. However, the tool supports inter-thread synchroniza-
tion and inter-thread communication using shared memory.
The lexical analyzer, parser and semantic analyzer com-
ponents of DSCOP have been implemented using ANTLR
(Another Tool for Language Recognition) [1, 67]. Dur-
ing semantic analysis, the input program code is appropri-
ately instrumented so as to facilitate computation of dy-
namic slices and to update other associated run-time data
structures after execution of each statement, as described in
the MBDS algorithm. The Compile and Execute block of
DSCOP compiles and links the instrumented source code
using the Java compiler.

5 Slicing of Distributed
Object-Oriented Programs

As software applications grow larger and become more
complex, program maintenance activities such as adding
new functionalities, porting to new platforms, and correct-
ing the reported bugs consume enormous effort. This is
especially true for distributed object-oriented programs. In
order to cope with this scenario, programmers need effec-
tive computer-supported techniques for decomposition and
dependence analysis of programs. Program slicing is one
technique for such decomposition and dependence analy-
sis.

Many real life object-oriented programs are distributed
in nature and run on different machines connected to a
network. The emergence of message passing standards,
such as MPI, and the commercial success of high speed
networks have contributed to making message passing pro-
gramming common place. Message passing programming
has become an attractive option for tackling the vexing is-
sues of portability, performance, and cost effectiveness. As
distributed computing gains momentum, development and
maintenance tools for these distributed systems seem to
gain utmost importance.

Development of real life distributed object-oriented
programs presents formidable challenge to the program-
mer. Distributed object-oriented programs introduce sev-
eral problems which do not exist in sequential programs.
The non-reproducible behaviors, non-deterministic selec-
tion of communication events, lack of global states and un-
synchronized interactions among threads are some of the
problems which arise in case of distributed object-oriented

272 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

programs [83]. An increasing amount of effort is being
spent in debugging, testing and maintaining these products.
Slicing techniques promise to come in handy at this point.
Through the computation of a slice for a message pass-
ing program, one can significantly reduce the amount of
code that a maintenance engineer has to analyze to achieve
some maintenance tasks. However, research attempts in
program slicing area have focused attention largely on se-
quential programs. Slicing of distributed procedural pro-
grams [26, 51, 28, 22, 50, 24, 61] has also drawn the atten-
tion of many researchers. But, research reports on slicing
of distributed object-oriented programs are scarcely avail-
able in the literature [34, 75].

Goel et al. [34] proposed compression schemes for rep-
resenting execution profiles of shared memory parallel pro-
grams. Their representation captures control flow, data
flow and synchronization in the execution of a shared mem-
ory multi-threaded program running on a multiprocessor
architecture. According to their approach the control and
data flow of each processor is maintained individually as
whole program paths (WOP). The total order of the syn-
chronization operations executed by all processors and the
annotation of each processor’s WOP with synchronization
counts help to capture the inter-processor communications
which are protected via synchronization primitives such as
lock, unlock and barriers. They have illustrated the appli-
cations of compact execution traces in program debugging,
program comprehension, code optimization, memory lay-
out etc. They have used trace files to store the execution
history. This leads to slow I/O operations. They have con-
sidered that the communication across different threads oc-
curs only via synchronization primitives. Communication
via shared variable accesses is not explicitly represented in
their method. We have considered communications among
threads through shared variables as well as message pass-
ing.

Garg et al. [33] introduced the notion of a slice of a dis-
tributed computation. They have defined the slice of a dis-
tributed computation with respect to a global predicate, as
a computation which captures those and only those con-
sistent cuts of the original computation which satisfy the
global predicate. A computation slice differs from a dy-
namic slice in that it is defined for a property rather than
a set of variables of a program. Unlike a program slice,
which always exists, a computation slice may not always
exist. They have proved that the slice of a distributed com-
putation with respect to a predicate exists iff the set of con-
sistent cuts that satisfy the predicate, forms a sub lattice
of the lattice of consistent cuts. Mittal and Garg [68, 69]
presented an efficient algorithm to graft two slices, that is,
given two slices, either compute the smallest slice that con-
tains all consistent cuts that are common to both slices or
compute the smallest slice that contains all consistent cuts
that belong to at least one of the slices.

Mohapatra et al. [75] were the first to propose an al-
gorithm for dynamic slicing of distributed object-oriented
programs. They have introduced the notion of distributed

program dependence graph (DPDG) as the intermediate
program representation. In distributed object-oriented pro-
grams, communication dependency may exist among sub
programs running on different machines. A rcvmsg() call
executed on one machine, might have a pairing sndmsg()
on some other remote machine. To represent this aspect,
they have introduced a logical (dummy) node in the DPDG.
They have named this logical node as a C-node. They have
defined a C-node in the following way:

Let GD1 and GD2 be the DPDGs of two sub programs
P1 and P2 respectively. Let x be a node in GD1 represent-
ing a statement invoking a sndmsg() method. Let y be a
node in GD2 representing the statement invoking the corre-
sponding rcvmsg() method. A C-Node represents a logical
connection of the node y of DPDG GD1 with the node x of
the remote DPDG GD2 . Node x represents the pairing of
sndmsg() with a rcvmsg() call at node y. Node y is Com-
munication dependent on node x.

The C-nodes maintain the logical connectivity among
DPDGs representing different sub programs. A C-node
does not represent any specific statement in the source
code of a sub program. Rather, it encapsulates the triplet: <
send_PID,send_node_number, dynamic_slice_at_send_node >
representing the pairing of the components in a distributed
program. Here, send_PID represents the id of the process
sending the message, send_node_number represents the
particular label number of the statement sending the
message and dynamic_slice_at_send_node represents
the dynamic slice at the sending node. C-nodes capture
communication dependencies among the processes of
different sub programs. It may be noted that the number
of C-nodes in the DPDGs of a distributed C++ program,
equals the number of rcvmsg() calls present in the program.
In the DPDG, for a rcvmsg() node x, the corresponding
C-node is represented as C(x).

They have defined a distributed program dependence
graph (DPDG) in the following way:

Let P = (P1, . . . , Pn) be a distributed C++ program, and
Pi be a sub program of P . P is represented using a set of
DPDGs (GD1 , . . . GDn). The distributed program depen-
dence graph (DPDG) GDi of the component-program Pi is
a directed graph (NDi , EDi) where each node n (excepting
the dummy nodes) represents a statement in Pi. For x, y ∈
NDi , (y,x) ∈ EDi iff any one of the following holds:

1. y is control dependent on x. Such an edge is called a
control dependence edge.

2. y is data dependent on x. Such an edge is called a data
dependence edge.

3. y is fork dependent on x. Such an edge is called a fork
dependence edge.

4. y is communication dependent on x. Such an edge is
called a communication dependence edge.

For all the nodes x, representing rcvmsg() calls, in the
sub program Pi, a dummy node C(x) is created, and a corre-
sponding dummy communication edge (x, C(x)) is added.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 273

The set of DPDGs for each sub program of the dis-
tributed program is constructed statically only once before
the execution of the distributed program starts. Based on
the DPDG, Mohapatra et al. [75] have proposed an al-
gorithm for dynamic slicing of distributed object-oriented
programs. They have named their algorithm parallel dy-
namic slicing (PDS) algorithm as the algorithm can run par-
allely on several machines connected through a network.
The PDS algorithm is based on marking and unmarking the
edges of the DPDG as and when the dependencies arise and
cease at run-time. To achieve fast response time, the PDS
algorithm can run parallely on several machines connected
through a network. For this purpose, we use local slicers at
each remote machine. Our slicing algorithm in effect op-
erates as the coordinated activities of local slicers running
at the remote machines. Each local slicer contributes to the
dynamic slice by determining its local portion of the global
slice in a fully distributed fashion.

The PDS algorithm addresses the concurrency issues
of object-oriented programs while computing the dynamic
slices. It also handles the communication dependency aris-
ing due to objects shared among processes on same ma-
chine and due to message passing among processes on dif-
ferent machines. The space complexity of the PDS algo-
rithm is O(N2), N being the total number of statements of
the distributed program. The time complexity of the PDS
algorithm is O(N2S), where S is the total length of execu-
tion of the distributed program.

The advantage of PDS algorithm is that it does not re-
quire any trace file to store the execution history. Another
important advantage of their algorithm is that when a slic-
ing command is given, the dynamic slice is extracted im-
mediately by looking up the appropriate data structure, as
it is already available during run-time.

Mohapatra et al. [70] also have developed another al-
gorithm for distributed dynamic slicing of Java programs.
They have named their algorithm distributed dynamic slic-
ing (DDS) algorithm for Java programs. To achieve fast re-
sponse time, DDS algorithm can run in a fully distributed
manner on several machines connected through a network,
rather than running it on a centralized machine. They have
used local slicers at each node in a network. A local slicer
is responsible for slicing the part of the program executions
occurring on the local machine.

DDS algorithm uses a modified program dependence
graph (PDG) [48] as the intermediate representation. This
intermediate representation is called as distributed program
dependence graph (DPDG). First, the DPDG is constructed
statically before run-time. DDS algorithm marks and un-
marks the edges of the DPDG appropriately as and when
dependencies arise and cease during run-time. Such an ap-
proach is more time and space efficient and also completely
does away with the necessity to maintain a trace file. This
eliminates the slow file I/O operations that occur while ac-
cessing a trace file. Another advantage of DDS algorithm
is that when a request for a slice for any slicing criterion is
made, the required slice is already available. This appre-

ciably reduces the response time of slicing commands.
Mohapatra et al. [70] have developed a slicing tool to

implement the DDS algorithm. The tool can compute the
dynamic slice of a distributed Java program with respect
to a given slicing criterion. The tool handles only a subset
of Java language constructs. They have named their tool
Dynamic Slicer for Distributed Java programs (DSDJ). To
construct the intermediate graphs they have used the com-
piler tool ANTLR [1, 67]. A distributed Java program is
given as the input to the ANTLR program. The ANTLR
program automatically generates the DPDGs for the com-
ponent programs. The lexical analyzer, parser and seman-
tic analyzer components of DSDJ are combined and the
joint component is termed as program analysis compo-
nent [5]. The lexical analyzer, parser and semantic ana-
lyzer components of DSDJ have been implemented using
ANTLR [1, 67]. During semantic analysis, the Java source
code is analyzed token by token to gather the various pro-
gram dependencies. The tokens are first used to construct
the DCFG (Distributed Control Flow Graph). Next, us-
ing the DCFG the corresponding DPDG (Distributed Pro-
gram Dependence Graph) is constructed. The source pro-
gram is then automatically instrumented, by adding calls
to the slicer module after every statement in the source
program. After the execution of each statement, the up-
date_slice() method is invoked, which marks and unmarks
the edges of the DPDG appropriately and updates the dy-
namic slice. For storing the dynamic slice of each state-
ment they have used a two dimensional integer array. When
the dynamic slice of a particular statement is requested, the
compute_slice() method is invoked, and it provides the dy-
namic slice for the given slicing criterion.

6 Conclusions

We have reviewed the recent works in the area of object-
oriented program slicing including static slicing of object-
oriented programs, dynamic slicing of object-oriented pro-
grams, static slicing of concurrent object-oriented pro-
grams and dynamic slicing of concurrent object-oriented
programs. We have presented a brief review on slicing of
distributed object-oriented programs. We have also dis-
cussed some available tools for slicing of object-oriented
programs. Starting with the basic sequential program con-
structs researchers are now trying to address various issues
of slicing distributed object-oriented programs. Since mod-
ern software products are often large and consist of millions
of lines of code, processing a single data structure becomes
very slow and therefore development of parallel algorithms
for slicing has assumed importance.

References

[1] Antlr. http://www.antlr.org/.

274 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dy-
namic slicing in the presence of unconstrained point-
ers. In Proceedings of the ACM Fourth Symposium
on Testing, Analysis and Verification (TAV4), pages
60 – 73, 1991.

[3] H. Agrawal, R. A. DeMillo, and E. H. Spafford.
Debugging with dynamic slicing and backtracking.
Software Practice and Experience, 23(6):589 – 616,
1993.

[4] H. Agrawal and J. Horgan. Dynamic program slic-
ing. In Proceedings of the ACM SIGPLAN’90 Con-
ference on Programmimg Lanuages Design and Im-
plementation, SIGPLAN Notices, Analysis and Veri-
fication, volume 25, pages 246 – 256, White Plains,
NewYork, 1990.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[6] G. R. Andrews. Concurrent Programming: Princi-
ples and Practice. Addison-Wesley, 1991.

[7] G. R. Andrews and F. B. Schneider. Concepts and
notations for concurrent programming. ACM Com-
puting Surveys, 15:3 – 43, 1983.

[8] M. Awad and J. Ziegler. A practical approach to the
design of concurrency in object-oriented systems.
Software Practice and Experience, 27:1013 – 1034,
1997.

[9] M. Ben-Ari. Principles of Concurrent and Dis-
tributed Programming. Prentice Hall, 1990.

[10] D. Binkley. The application of program slicing to
regression testing. Information and Software Tech-
nology, Special Issue on Program Slicing, 40(11-
12):583 – 594, 1998.

[11] D. Binkley. Computing amorphous program slices
using dependence graphs and a data flow model.
In Proceedings of the ACM Symposium on Applied
Computing, ACM Press, 1999.

[12] D. Binkley and K. B. Gallagher. Program Slic-
ing, Advances in Computers, volume 43. Academic
Press, San Diego, CA, 1996.

[13] G. Canfora, A. Cimitile, and A. D. Lucia. Condi-
tioned program slicing. Information and Software
Technology, 40:595 – 607, 1998.

[14] J. Chen, F. Wang, and Y. Chen. An object-
oriented dependency graph. Technology of Object-
Oriented Languages and Systems Tools, Beijing,
China, 1997.

[15] J. Chen, F. Wang, and Y. Chen. Slicing object-
oriented programs. In 4th Asia-Pacific Software En-
gineering and International Computer Science Con-
ference (APSEC-97 / ICSC-97), Hong Kong, 1997.

[16] J. T. Chen, F. J. Wang, and Y. L. Chen. Slicing
object-oriented programs. In Proceedings of the
APSEC’97, pages 395 – 404, Hongkong, China, De-
cember 1997.

[17] Z. Chen and B. Xu. Slicing concurrent Java pro-
grams. ACM SIGPLAN Notices, 36:41 – 47, 2001.

[18] Z. Chen and B. Xu. Slicing object-oriented Java pro-
grams. ACM SIGPLAN Notices, 36:33 – 40, 2001.

[19] Z. Chen, B. Xu, and H. Yang. Test coverage analysis
based on program slicing. In Proceedings of IRI,
pages 559 – 565, 2003.

[20] Z. Chen, B. Xu, and J. Zhao. An overview of meth-
ods for dependence analysis of concurrent programs.
ACM SIGPLAN Notices, 37(8):45 – 52, 2002.

[21] Z. Chen, Y. Zhou, B. Xu, J. Zhao, and H. Yang. A
novel approach for measuring class cohesion based
on dependence analysis. In Proceedings of Interna-
tional Conference on Software Maintenance, IEEE
Press, pages 377 – 384, 2002.

[22] J. Cheng. Slicing concurrent programs - a graph the-
oretical approach. In Automated and Algorithmic
Debugging, AADEBUG’93, LNCS, Springer-Verlag,
pages 223 – 240, 1993.

[23] J. Cheng. Dependence analysis of parallel and dis-
tributed programs and its applications. In Interna-
tional Conference on Advances in Parallel and Dis-
tributed Computing, pages 370 – 377, 1997.

[24] J. D. Choi, B. Miller, and R. Netzer. Techniques for
debugging parallel programs with flowback analy-
sis. ACM Transactions on Programming Languages
and Systems, 13:491 – 530, 1991.

[25] S. Danicic, M. Daoudi, C. Fox, M. Harman, R. M.
Hierons, J. R. Howroyd, L. Ourabya, and M. Ward.
ConSUS: a light-weight program conditioner. Jour-
nal of Systems and Software, 2005.

[26] S. Danicic, Mark Harman, and Yoga Sivagu-
runathan. A parallel algorithm for static program
slicing. Information Processing Letters, 56:307 –
313, 1995.

[27] D. M. Dhamdhere, K. Gururaja, and P. G. Ganu. A
compact execution history for dynamic slicing. In-
formation Processing Letters, 85:145 – 152, 2003.

[28] E. Duesterwald, R. Gupta, and M. L. Soffa. Dis-
tributed slicing and partial re-execution for dis-
tributed programs. In Fifth Workshop on Languages
and Compilers for Parallel Computing, New Haven
Connecticut, LNCS Springer-Verlag, pages 329 –
337, August 1992.

[29] J. Field, G. Ramalingam, and F. Tip. Parametric pro-
gram slicing. In Conference Record of the Twenty-
Second ACM Symposium on Principles of Program-
ming Languages, pages 379 – 392, San Francisco,
CA, USA, 1995.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 275

[30] I. Forgacs and A. Bertolino. Feasible test path selec-
tion by principal slicing. In Proceedings of 6th Eu-
oropean Software Engineering Conference, Septem-
ber 1997.

[31] C. Fox, S. Danicic, M. Harman, and R. M. Hi-
erons. Consit: a fully automated conditioned pro-
gram slicer. Software Practice and Experince,
34:15 – 46, 2004.

[32] K. Gallagher and J. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Soft-
ware Engineering, SE-17(8):751 – 761, 1991.

[33] V. K. Garg and N. Mittal. On slicing a distributed
computation. In Proceedings of 21st IEEE Inter-
national Conference on Distributed Computing Sys-
tems (ICDCS), pages 322 – 329, 2001.

[34] A. Goel, A. RoyChoudhury, and T. Mitra. Com-
pactly representing parallel program executions.
In Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 191 – 202, 2003.

[35] D. Goswami and R. Mall. Fast slicing of concur-
rent programs. In Sixth International Conference
on High Performance Computing (HiPC), LNCS
Springer-Verlag, pages 38 – 42, December 1999.

[36] D. Goswami and R. Mall. Dynamic slicing of con-
current programs. In Seventh International Con-
ference on High Performance Computing (HiPC),
LNCS Springer-Verlag, pages 17 – 26, December
2000.

[37] D. Goswami and R. Mall. An efficient method for
computing dynamic program slices. Information
Processing Letters, 81:111 – 117, 2002.

[38] D. Goswami, R. Mall, and P. Chatterjee. Static slic-
ing in unix process environment. Software Pracice
and Experience, 30:17 – 36, 2000.

[39] R. Gupta, M. J. Harrold, and M. L. Soffa. Program
slicing-based regression testing techniques. Journal
of Software Testing, Verification and Reliability, 6,
1996.

[40] R. Gupta and M. L. Soffa. Hybrid slicing: An ap-
proach for refining static slices using dynamic infor-
mation. In Proceedings of ACM SIGSOFT, pages
29 – 40, 1995.

[41] C. Hammer and G. Snelting. An improved slicer for
Java. In Proceedings of PASTE, pages 107 – 112,
2004.

[42] M. Harman. Conditioned slicing supports partition
testing. Journal of Software Testing, Verification and
Reliability, 12:23 – 28, 2002.

[43] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software,
68:45 – 64, 2003.

[44] M. Harman and S. Danicic. Using program slicing
to simplify testing. Journal of Software Testing, Ver-
ification and Reliability, 5, 1995.

[45] M. Harman and R. M. Hierons. An overview of pro-
gram slicing. Software Focus, 2:85 – 92, 2001.

[46] M. Harman, L. Hu, M. Mumro, X. Zhang, D. Bink-
ley, and S. Danicic. Syntax-directed amorphous slic-
ing. Automated Software Engineering, 11:27 – 61,
2004.

[47] M. J. Harrold and G. Rothermel. Performing data
flow testing on classes. In Second ACM SIGSOFT
Symposium on the Foundation of Software Engineer-
ing, pages 154 – 163, December 1994.

[48] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs. ACM Trans-
actions on Programming Languages and Systems,
12(1):26 – 61, 1990.

[49] M. Kamkar. Inter Procedural Dynamic Slicing with
Applications to Debugging and Testing. PhD thesis,
Linkoping University, Sweden, 1993.

[50] M. Kamkar and P. Krajina. Dynamic slicing of dis-
tributed programs. In International Conference on
Software Maintenance, IEEE CS Press, pages 222 –
229, October 1995.

[51] B. Korel and R. Ferguson. Dynamic slicing of dis-
tributed programs. Applied Mathematics and Com-
puter Science, 2:199 – 215, 1992.

[52] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155 – 163,
1988.

[53] B. Korel and J. Rilling. Dynamic program slic-
ing methods. Information and Software Technology,
40:647 – 659, 1998.

[54] J. Krinke. Static slicing of threaded programs. ACM
SIGPLAN Notices, 33:35 – 42, April 1998.

[55] J. Krinke. Context-sensitive slicing of concurrent
programs. In Proceedings of ACM SIGSOFT Soft-
ware Engineering Notes, pages 178 – 187, 2003.

[56] A. Krishnaswamy. Program slicing: An application
of program dependency graphs. Technical report,
Department of Computer Science, Clemson Univer-
sity, August 1994.

[57] D. Kung, J. Gao, P. Hisa, and Y. Toyoshima.
Change impact identification in object-oriented soft-
ware maintenance. In Proceedings of International
Conference on Software Maintenance, pages 202 –
211, September 1994.

276 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

[58] D. Kung, J. Gao, P. Hisa, and Y. Toyoshima. Fire-
wall regression testing and software maintenance of
object-oriented systems. Journal of Object-Oriented
Programming, 1994.

[59] D. Kung, J. Gao, P. Hisa, Y. Toyoshima, and
C. Chen. Design recovery for software testing of
object-oriented programs. In Working Conference
on Reverse Engineering, pages 202 – 211, May
1993.

[60] L. D. Larson and M. J. Harrold. Slicing object-
oriented software. In Proceedings of the 18th Inter-
national Conference on Software Engineering, Ger-
man, March 1996.

[61] Hon. F. Li, Juergen Rilling, and Dhrubajyoti
Goswami. Granularity-driven dynamic predicate
slicing algorithms for message passing systems. Au-
tomated Software Engineering, 11:63 – 89, 2004.

[62] D. Liang and L. Larson. Slicing objects using sys-
tem dependence graphs. In Proceedings of Interna-
tional Conference on Software Maintenance, pages
358 – 367, November 1998.

[63] A. D. Lucia. Program slicing: Methods and applica-
tions. In Proceedings of IEEE International Work-
shop on Source Code Analysis and Manipulation,
pages 142 – 149, 2001.

[64] J. R. Lyle and M. D. Weiser. Automatic program bug
location by program slicing. In Proceedings of the
second International Conference on Computers and
Applications, Peking, China, pages 877 – 882, 1987.

[65] R. Mall. Fundamentals of Software Engineering.
Prentice Hall, India, 2nd Edition, 2003.

[66] B. A. Malloy, J. D. McGregor, and A. Krish-
naswamy. An extensible program representation for
object oriented software. In Proceedings of ISFST,
pages 105 – 112, 2004.

[67] A. J. S. Mills. Antlr. The University of Birmingham,
2002.

[68] N. Mittal and V. K. Garg. Computation slicing:
Techniques and theory. Technical Report, TR-PDS-
2001-02, The Parallel and Distributed Systems Lab-
oratory, Department of Electrical and Computer En-
gineering, The University of Texas at Austin, 2001.

[69] N. Mittal and V. K. Garg. Computation slicing:
Techniques and theory. In Proceedings of Sympo-
sium on Distributed Computing, 2001.

[70] Durga Prasad Mohapatra. Dynamic slicing of object-
oriented programs. PhD thesis, Indian Institute of
Technology, Kharagpur, India, 2005.

[71] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. Dynamic slicing of concurrent object-
oriented programs. In Proceedings of Interna-
tional Conference on Information Technology: Pro-
gresses and Challenges (ITPC), pages 283 – 290,
Kathamandu, May 2003.

[72] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. An edge marking dynamic slicing technique
for object-oriented programs. In Proceedings of 28th
IEEE Annual International Computer Software and
Applications Conference, IEEE CS Press, pages 60 –
65, September 2004.

[73] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. An efficient techinque for dynamic slic-
ing of concurrent Java programs. In Proceedings
of Acian Applied Conference on Computing (AACC-
2004), Kathmandu, LNCS Springer-Verlag, volume
3285, pages 255 – 262, October 2004.

[74] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A node marking dynamic slicing technique
for object-oriented programs. In Proceedings of
Workshop on Software Development and Architec-
ture (SoDA), pages 1 – 15, Bangalore, January 2004.

[75] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A novel approach for dynamic slicing of dis-
tributed object-oriented programs. In Proceedings of
International Conference on Distributed Computing
and Internet Technology (ICDCIT), Bhubaneswar,
LNCS Springer-Verlag, volume 3347, pages 304 –
309, December 2004.

[76] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. A novel method for computing dynamic
slices of concurrent C++ programs. In Proceedings
of International Conference on Advanced Comput-
ing and Communications, pages 744 – 750, Ahmed-
abad, December 2004.

[77] Durga Prasad Mohapatra, Rajib Mall, and Rajeev
Kumar. Computing dynamic slices of concurrent
object-oriented programs. Information and Software
Technology, 2005.

[78] G. B. Mund, R. Mall, and S. Sarkar. An efficient dy-
namic program slicing technique. Information and
Software Technology, 44:123 – 132, 2002.

[79] G. B. Mund, R. Mall, and S. Sarkar. Computation of
intraprocedural dynamic program slices. Informa-
tion and Software Technology, 45:499 – 512, April
2003.

[80] M. G. Nanda and S. Ramesh. Slicing concurrent pro-
grams. In ACM International Symposium on Soft-
ware Testing and Analysis, August 2000.

AN OVERVIEW OF SLICING TECHNIQUES. . . Informatica 30 (2006) 253–277 277

[81] F. Ohata, K. Hirose, M. Fuji, and K. Inoue. A slic-
ing method for object-oriented programs using dy-
namic light weight information. In Eighth Asia-
Pacific Software Engineering Conference (APSEC-
01), China, 2001.

[82] X. Qi and B. Xu. Dependence analysis of concurrent
programs based on rechability graph and it’s appli-
cations. In Proceedings of International Conference
on Computational Science, pages 405 – 408, 2004.

[83] M. Singhal and N. G. Sivaratri. Advanced Con-
cepts in Operating Systems - Distributed, Database,
and Multiprocessor Operating Systems. TATA Mc-
GRAW HILL, 2002.

[84] Y. Song and D. Huynh. Forward Dynamic Object-
Oriented Program Slicing, Application Specific Sys-
tems and Software Engineering and Technology (AS-
SET’99). IEEE CS Press, 1999.

[85] C. Steindl. Program slicing for object-oriented pro-
gramming languages. PhD thesis, Johannes Kepler
University Linz, 1999.

[86] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121 –
189, 1995.

[87] F. Tip, J. D. Choi, J. Field, and G. Ramalingam.
Slicing class hierarchies in C++. In Conference on
Object-Oriented Programming Systems, Languages
and Applications, pages 179 – 197, 1996.

[88] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo.
Flow insensitive C++ pointers and polymorphism
analysis and its application to slicing. In Proceed-
ings of 19th International Conference on Software
Engineering, pages 433 – 443, May 1997.

[89] M. Jeffrey Voas and Gary McGraw. Software fault-
injection: inoculating programs against errors. Wi-
ley and Sons, 1998.

[90] T. Wang and A. RoyChoudhury. Using compressed
bytecode traces for slicing Java programs. In Pro-
ceedings of IEEE International Confrence on Soft-
ware Engineering, pages 512 – 521, 2004.

[91] M. Weiser. Program Slices: Formal, Psychological,
and Practical Investigations of an Automatic Pro-
gram Abstraction Method. PhD thesis, University of
Michigan, Ann Arbor, MI, 1979.

[92] M. Weiser. Programmers use slices when debug-
ging. Communications of the ACM, 25(7):446 – 452,
1982.

[93] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352 – 357, 1984.

[94] B. Xu and Z. Chen. Dynamic slicing object-oriented
programs for debugging. In SCAM, pages 115 – 122,
2002.

[95] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A
brief survey of program slicing. ACM SIGSOFT
Software Engineering Notes, 30(2):1 – 36, 2005.

[96] L. Xu, B. Xu, Z. Chen, J. Jiang, H. Chen, and
H. Yang. Regression testing for web applications
based on slicing. In Proceedings of 28th IEEE An-
nual International Computer Software and Applica-
tions Conference, IEEE CS Press, pages 652 – 656,
2003.

[97] J. Zeng, C. Soviani, and S. A. Edwards. Generat-
ing fast code from concurrent program dependence
graph. In Proceedings of ACM LCTES, pages 175 –
181, 2004.

[98] X. Zhang, R. Gupta, and Y. Zhang. Efficient for-
ward computation of dynamic slices using reduced
ordered binary decision diagrams. In International
Conference on Software Engineering, 2004.

[99] Y. Zhang, B. Xu, L. Shi, B. Li, and H. Yang. Modu-
lar monadic program slicing. In Proceedings of 28th
IEEE Annual International Computer Software and
Applications Conference, IEEE CS Press, pages 66 –
71, September 2004.

[100] J. Zhao. Dynamic slicing of object-oriented pro-
grams. Technical report, Information Processing So-
ciety of Japan, May 1998.

[101] J. Zhao. Multithreaded dependence graphs for cun-
current Java programs. In Proceedings of the 1999
International Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE’99),
1999.

[102] J. Zhao. Slicing concurrent Java programs. In Pro-
ceedings of the 7th IEEE International Workshop on
ProgramComprehension, May 1999.

[103] J. Zhao, J. Cheng, and K. Ushijima. Static slicing of
concurrent object-oriented programs. In 20th IEEE
Annual International Computer Software and Appli-
cations Conference, pages 312 – 320, August 1996.

[104] J. Zhao, J. Cheng, and K. Ushijima. A dependence-
based representation for concurrent object-oriented
software maintenance. In Proceedings of 2nd Eu-
romicro Conference on Software Maintenance and
Reengineering, pages 60 – 66, March 1998.

[105] J. Zhao and B. Li. Dependence based representation
for concurrent Java programs and it’s application to
slicing. In Proceedings of ISFST, pages 105 – 112,
2004.

278 Informatica 30 (2006) 253–277 D.P. Mohapatra et al.

