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The rapid growth of electric vehicles (EVs) has led to a significant increase in the demand for 

accurate forecasting of charging pile usage, essential for optimizing infrastructure planning and 

energy management. Effective prediction models help to balance grid loads, reduce waiting times, 

and enhance the overall charging experience. Existing methods, based on traditional Machine 

Learning (ML) or basic neural network models, struggle to capture complex spatial-temporal 

relationships and multivariate dependencies. To address these limitations, this research proposes 

an advanced hybrid Mandrill-tuned Convolutional Long Short Memory with Auto Encoder 

(MCLSM-AE) framework that combines the Mandrill Optimization Algorithm (MOA), Auto 

Encoder (AE), and CNN-LSTM with an Attention Mechanism. The novelty of this approach lies in 

integrating MOA for optimal hyper parameter tuning, AE for dimensionality reduction and CNN-

LSTM for spatial-temporal demand modeling, enhanced with an attention mechanism for improved 

interpretability. The model is trained on a dataset comprising historical EV charging data, traffic 

patterns, weather information, and spatial grid mappings. Preprocessing steps include data 

normalization and Missing Value Imputation (MVI) to ensure data quality. The proposed model 

workflow involves reducing data dimensionality with AE, extracting spatial patterns with CNN, and 

capturing temporal dependencies using LSTM, with MOA optimizing model parameters. 

Experimental results demonstrate the suggested MCLSM-AE model superior performance, 

achieving a MSE (0.00000000022) RMSE of (0.000014832), and MAE (0.0275) compared to 

existing methods. The research provides a robust and scalable solution for EV charging demand 

forecasting, addressing existing limitations and contributing to better infrastructure and energy 

management strategies 

Povzetek: Študija je razvila hibridni model MCLSM-AE, ki združuje mandrillovo optimizacijo, 

AutoEncoder, CNN-LSTM in pozornost za napovedovanje povpraševanja po polnilnicah električnih 

vozil. Model učinkovito obdela prostorsko-časovne podatke ter doseže izjemno nizke napake, kar 

podpira optimalno energetsko in infrastrukturno načrtovanje. 

 

1 Introduction 

The Electric Vehicle (EV) sector has developed as the 

most important socially sustainable technology, with 

enormous potential for reducing carbon dioxide 

emissions while lowering dependency on oil [1]. EVs 

are a crucial solution for reducing the transportation 

sector's massive greenhouse gas emissions. The fast 

development of EVs is partly dependent on the 

building and arrangement of charging facilities [2]. The 

great amount of EVs associated with the grid creates an 

enormous strain on the electrical grid [3]. The rapid 

popularization of new Electric Vehicles (EVs), 

primarily its extensive promotion in various countries, 

relies heavily on the presence of charging facilities, like 

Charging Piles (CP), CP are a critical element in the 

period of electrified transportation, providing 

important fast charging service stations for new EVs, 

ensuring that daily travel demands are fulfilled and 

promoting the widespread adoption of EVs [4]. There 

are two categories of CPs such as DC quick charging 

and Alternating Current (AC) slow charging. The 

service style is self-pay and self-charge, and the 

locations are much more spread out than petrol stations 

[5]. Charging infrastructure has a huge impact on the 

growth of EVs due to its accessibility, dependability, 
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cost efficiency, smart networking, and environmental 

sociability [6]. However, inadequate charging services 

have developed as a key impediment for the EV sector. 

As EVs become more prevalent in urban areas, it is 

becoming more difficult to predict Charging Demand 

(CD) and plan for infrastructure [7]. To overcome the 

above challenges, the research proposed an advanced 

hybrid Mandrill-tuned Convolutional Long Short 

Memory with Auto Encoder (MCLSM-AE) framework 

that combines the Mandrill Optimization Algorithm 

(MOA), AutoEncoder (AE), and CNN-LSTM with an 

Attention Mechanism to develop a robust and scalable 

forecasting model for EVCP demand. This research 

offers a strong framework on EV charging demand 

prediction that may be utilized for better infrastructure 

development, grid load balancing, and user experience. 

For data-oriented policy and planning related to the 

long-term adoption of electric vehicle networks, it is 

especially beneficial for policy makers, utility 

companies, urban planners, and charging station 

operators. 

The organization of the research contains the following 

sub divisions. Section 2 contains the related work and 

Section 3 explains the methods used to forecast the 

Electric VehicleCharging Demand (EVCD). The 

outcomes of the method were performed and discussed 

in Section 4. The research concluded in Section 5. 

 

2 Related work 

The research was compared with existing research as 

shown in the Table 1, which represents the summary of 

literature on EV charging demand forecasting.

 

Table 1: Summary of literature on EV charging demand forecasting 

 

Ref. 

No. 

Area Focused Algorithms/Models Used Result Limitations 

[8] Urban EV quick 

charging demand 

forecasting 

Regret Theory, Human 

behavior modeling, Data 

mining 

Improved CD 

forecast accuracy 

using real ride-

hailing data 

Limited scalability due to 

localized data from 

Nanjing 

[9] EV public 

charging demand 

forecasting 

Demand-supply 

stochasticity model, User 

heterogeneity modeling 

High-resolution 

spatial-temporal 

forecasts 

Assumptions in user 

behavior; uncertainty in 

future transport networks 

[10] EVCD forecasting 

under noisy data 

CFMM-GEP 

(AutoEncoder + SVM + 

GEP) 

Outperformed 6 

models in MAPE, 

RMSE, MAE, R² 

Impacted by complex or 

irregular noise patterns 

[11] Charging station 

(CS) planning with 

multi-type CDs 

Firefly algorithm, Roulette, 

K-Means, Markov Chain 

Reduced cost and 

improved efficiency 

in real urban setting 

Assumptions in user travel 

behavior; data uncertainty 

[12] Smart charging 

and private 

charging piles 

Simulation-based 

modeling 

Shifted peak load, 

improved charging 

profile 

Based on one city’s data; 

lacks generalizability 

[13] Automated 

charging 

infrastructure 

1-to-N system, robotic arm, 

2-layer iterative scheduling 

Validated in real-

time via hardware-

in-loop experiments 

High implementation cost; 

scalability issues 

[14] EV charging 

infrastructure 

deployment 

Submodular functions, 

Erlang-loss, Lazy Greedy 

(LGDG & LGEG) 

High efficacy and 

efficiency in site 

planning 

May struggle in highly 

dynamic and complex 

environments 

[15] Smart EV-CP 

management 

system 

IoT, K-Means, Multisim 

simulation 

Reduced cost, 

improved voltage 

stability and user 

experience 

Simulation-based 

validation only; needs 

real-world testing 

[16] Spatial-temporal 

distribution of EV 

load 

Monte Carlo simulation Showed distinct 

regional and 

Requires detailed regional 

data; may not generalize 

globally 
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temperature-based 

load variation 

[17] EV charging 

prediction using 

UrbanEV dataset 

DL models, Transformer, 

statistical models 

Improved forecast 

accuracy 

Regional focus 

(Shenzhen); potential bias 

due to geography/weather 

[18] Citywide EVCD 

prediction 

CityEVCP (Hypergraph + 

POI clustering + Gated 

Transformer) 

Outperformed 

baseline models in 

spatial-temporal 

accuracy 

Scalability challenges in 

larger cities; POI data 

dependence 

[19] EV-CS position 

and capacity 

optimization 

NSGA-II, Deep Learning, 

Queueing Theory 

Enhanced efficiency, 

reduced waiting time 

Difficulty estimating 

computational 

complexity; uncertain 

service rates 

[20] Short-term EVCD 

forecasting with 

private EVs 

LSTM, compared with 

ARIMA, MLP 

LSTM outperformed 

others (MAPE = 

6.83%) 

Prediction depends 

heavily on data interval 

and input structure 

[21] Short/long-term 

EVCD forecasting 

Transformer, RNN, LSTM, 

ARIMA, SARIMA 

Transformer 

achieved highest 

accuracy 

Requires large data 

volumes for generalization 

and robustness 

 

The existing model [8] was not scalable since it used 

Nanjing-specific data, and hence it would not be 

effective for other regions or large datasets. CFMM-

GEP [10] contained complex or unusual noise patterns 

that influence the model's performance. The [14] 

method utilized submodular functions and Lazy 

Greedy algorithms to struggle with dynamic and 

complex environments; it might not be ideal for 

infrastructure deployment under dynamic conditions. 

Lastly, the method outlined in [19] that combined 

NSGA-II, deep learning, and queueing theory was 

facing the challenge of forecasting computing 

complexity and dealing with uncertain service rates, 

which can limit its performance in real-time 

optimization. To address these limitations, the research 

proposed an advanced hybrid MCLSM-AE framework. 

 

3 Materials and methods 
The research aimed to develop a robust and accurate 

forecasting model for the EVCD using the proposed 

advanced hybrid MCLSM-AE model. The model is 

trained on a dataset comprising historical EV charging 

data, traffic patterns, weather information, and spatial 

grid mappings. Data preprocessing includes data 

normalization and MVI to verify data quality. The 

MCLSM-AE method was used for predicting EVCD. 

The MCLSM-AE method design for prediction of 

EVCD is shown in Figure 1. 

 
 

Figure 1: Structure for proposed framework to predict 

the electric vehiclescharging demand 

 

3.1 Data collection 
The data was gathered from Kaggle Link: 

https://www.kaggle.com/datasets/ziya07/charging-

pile-demand-forecasting-dataset/data. The Charging 

Pile Demand Forecasting Dataset offers 

comprehensive information for forecasting how often 

electric vehicle (EV) charging piles will be used. This 

dataset contains a number of characteristics that affect 

the need for charging, including charging time, energy 

usage, traffic patterns, meteorological conditions, and 

geographic considerations. In order to accurately 

simulate real-world situations, it also takes into account 

variables like car type, charging station density, and 
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government incentives. The percentage of time spent 

using a charging pile is represented by the goal 

variable, charging_pile_usage_rate, which is essential 

for improving energy management and infrastructure 

planning in the expanding electric car market. By 

reducing wait times, balancing grid loads, and 

enhancing user experience, this dataset seeks to support 

the development of predictive models for effective EV 

charging stations. Table 2 show the overall dataset 

features. The data was split into testing and training 

with 80:20 ratio. 

 

Table 2: Overall dataset features 

 

Feature Description 

Charging Duration Duration for which EVs use 

the charging pile (in hours). 

Energy Consumed Total energy consumed 

during charging (in kWh). 

Traffic Flow Number of vehicles passing 

through the charging 

station area. 

Weather Conditions Includes temperature, 

humidity, precipitation, 

and wind speed. 

Geographical 

Information 

Location-based features 

such as latitude, longitude, 

and distance to the nearest 

road. 

Charging Price and 

Incentives 

Charging price per kWh 

and availability of 

government incentives. 

 

3.2 Data preprocessing  
Data preprocessing is a process of converting raw data 

into an organized form that can improve the 

performance of the ML models. It facilitates the 

handling of inconsistency, noise, and missing values, 

resulting in consistent inputs for training. EV charging 

data were preprocessed by normalization using Min-

Max Normalization and imputation using Multiple 

Imputation (MI). The Min-Max Normalization was 

applied to normalize EVCD data to the same range. MI 

was used to impute missing values that ensured 

completeness of data.  

 

3.2.1 Data normalization 

Data Normalization is used for normalizing numerical 

data into the standard range, typically between 0 and 1, 

thus allowing the different features of different 

magnitudes and different units not to dominate the 

process of model learning. Min-Max Normalization 

has been used in the normalization of the EV charging 

data. Min-Max Normalization is also employed to map 

historic EVCD data, traffic flow patterns, weather 

states, and grid space values onto the same scale. This 

approach applies the following Eq. (1). 

 

𝑌𝑛𝑒𝑤 =
𝑌−𝑚𝑖𝑛 (𝑌)

𝑚𝑎𝑥 (𝑌)−𝑚𝑖𝑛 (𝑌)
   (1) 

 

Where 𝑌 is the old value, 𝑚𝑎𝑥 (𝑌) is the dataset's 

maximum value, 𝑚𝑖𝑛 (𝑌) is its minimum value, and 

𝑌𝑛𝑒𝑤 is the new value derived from the normalized 

findings. 

 

3.2.2 Missing value imputation (MVI) 

MVI refers to the process of filling missing or 

incomplete data points with imputed values to maintain 

the integrity of the dataset. It ensures accurate EVCD 

forecasting by maintaining spatial-temporal data 

integrity despite missing records. MVI was applied 

using MI to deal with missing data-induced uncertainty 

and bias when EVCD is forecasted. The final parameter 

estimates, 𝛽̅ are produced by pooling these values as 

given in Eq. (2). 

 

𝛽̅ =
1

𝑛
∑ 𝛽̂𝑚

𝑛
𝑚=1     (2) 

 

Where 𝛽̅ represents the final pooled parameter 

estimate, 𝑛 is the number of imputed datasets, and 𝛽̂𝑚 

refers to the parameter estimates from each 𝑚thimputed 

dataset. 

 

3.3 Charging pile demand forecasting 

model using mandrill-tuned convolutional 

long short memory with auto encoder 

(MCLSM-AE) 
MCLSM-AE integrates MOA's hyperparametertuning, 

uses CNNto extract spatial features, enabling such that 

the model can identify complex patterns in the data, 

and LSTM networks are utilized for extracting 

temporal dependencies, which are important in 

precisely predicting future EV charging demands. AE 

dimensionally compresses the data, which simplifies 

the data and makes the model more efficient by 

preserving only important features. This methodology 

maximizes the model's capability to estimate complex, 

multivariate, and spatial temporal demand patterns of 

EV CS. MOA was incorporated into MCLSM-AE to 

improve model performance by tuning parameters 

while AE's dimensionality reduction helpssimplify 

complex data and retain essential features. The 

combination helps make prediction performance 

reasonable in real-world scenarios, where functions 

have complex, non-linear relationships, and multiple 

influencing factors. 

 

3.3.1 AutoEncoder (AE) 

An AE is an unsupervised neural network that 

compresses input into lower-dimensional 

representations before reconstructing it to determine 

the quality of retrieved features. It is used to extract 

critical spatial-temporal elements from upstream and 

downstream EVCD data, hence improving forecasting 

accuracy. A function 𝑓 is used to obtain the 

characteristic sequence of an original input sequence 
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𝑌 =  {𝑦1, 𝑦1 , . . . , 𝑦𝑘}, where 𝑦ᵢ ∈  ℝᵈ. The output 𝑇 =
 {𝑡1, 𝑡2, . . . , 𝑡𝑘}, where 𝑡𝑗  ∈  ℝˡ, reflects the encoded 

properties of 𝑋. The encoder's output is provided to the 

decoder, which reconstructs the original data from 𝑇, 

resulting in 𝑍 =  {𝑧1, 𝑧1, . . . , 𝑧𝑘}, where 𝑧ᵢ ∈  ℝᵈ. After 

training the AE, the encoder is used for feature 

extraction, revealing the data's underlying structure. 

Eq. (13) and (14) determines the encoding and 

decoding operation. 

 

𝑡𝑗 = 𝑓(𝑤𝑡 ⋅ 𝑦𝑗 + 𝑐𝑡)                    (13) 

𝑧𝑗 = 𝑔(𝑤𝑧 ⋅ 𝑡𝑗 + 𝑐𝑧)                                 (14) 

 

Where 𝑤𝑡 , 𝑤𝑧, 𝑐𝑡, and 𝑐𝑧 are weights and biases, 

respectively, and 𝑓(·) and 𝑔(·) are sigmoid functions. 

𝑦𝑗 ∈ 𝑅𝑑is the original input vector of dimension 𝑑,  the 

encoder weight matrix is given by 𝑤𝑡 , and 𝑐𝑡 is the 

encoder bias. 𝑡𝑗 ∈ 𝑅𝑙 is the encoded feature from the 

encoder, the decoder weight matrix is 𝑤𝑧, and 𝑐𝑧 is the 

decoder bias. Eq. (15) states that the AE is trained by 

minimalizing the reconstruction error. 

 

𝐿(𝑌, 𝑍) =
1

2
∑ ‖𝑦𝑗 − 𝑧𝑗‖

2𝑛
𝑗=1     (15) 

 

This is a loss function calculates the rebuilding error 

between the input (𝑦𝑗) and output (𝑧𝑗). The Mean 

Squared Error (MSE) is calculated by over all 𝑛 

samples to ensure the encoder captures significant data 

characteristics. When the reconstruction error is 

sufficiently small, 𝑇 is considered a valid 

representation of the original data.Let 𝑌𝑣 =
 {𝑦𝑣1, 𝑦𝑣2, . . . , 𝑦𝑣𝑚}and 𝑌𝑑 =  {𝑦𝑑1, 𝑦𝑑2, . . . , 𝑦𝑑𝑚}, 
where 𝑦𝑣𝑗 , 𝑦𝑑𝑗 ∈ ℝᵈ, be the upstream and downstream 

charging load data. The characteristic sequence 𝑥ₜ =
 {𝑥1, 𝑥2, . . . , 𝑥𝑚}, with 𝑥𝑗 ∈ ℝˡ, is calculated using 

Eq.(16) and (17). 

 

𝑥𝑗 = 𝑓(𝑤𝑧 ⋅ (𝑦𝑣𝑗 + 𝑦𝑒𝑗) + 𝑐𝑥)    (16) 

𝑧𝑗 = 𝑔(𝑤𝑧 ⋅ 𝑥𝑗 + 𝑐𝑧)    (17) 

𝑦𝑣𝑗 ∈ 𝑅𝑑are the upstream and downstream traffic flow 

vectors, 𝑤𝑧 is the encoder weight and𝑐𝑥 is the bias. 𝑥𝑗 

is the encoded feature of combined traffic flow, 𝑤𝑧 and 

𝑐𝑧 are decoder weights and bias. 𝑔(⋅)is the sigmoid 

function producing the reconstructed output 𝑧𝑗, helping 

assess the effectiveness of the encoded features. 

 

3.3.2 Convolutional long short memory with auto 

encoder (CLSM-AE) 

 

The CLSM-AE combines CNN with LSTM and AE: 

CNN can be used to extract the specialcharacteristics, 

LSTM can be used to extract the temporal dynamics 

and AE can be used to boil down the dataset into lower 

dimensions. The capacity to extract both temporal and 

spatial characterizations with dimensional reduction 

offers a sound and powerful forecasting method for 

complex and high-dimensional patterns of EVCD in 

spatial-temporal situations. 

 

3.3.3. Convolutional long short memory 

withattention mechanism 

The model has two LSTM layers, an attention layer, 

single input layer, two convolution layers, and a single 

output layer. The input is first given to the model and 

the local characteristics are retrieved using CNN 

layers. The CNN layer’s outputs are passed to the first 

LSTM layer to extract long-range relationships among 

variables. The attention layer leverages the hidden 

states of all LSTM layers to determine relevance for 

themselves. Finally, a weighted sum computes the 

output. 

 

3.3.4. Convolutional neural networks (CNN)  

CNN is a type of DL model that extracts spatial patterns 

and characteristics from data, such as images or grids. 

CNN is utilized to capture spatial dependencies in 

EVCD data, allowing for more accurate predictions by 

modeling the spatial distribution of CS and traffic 

patterns. The one-dimensional convolutional layer 

(Conv1d) receives the input 𝑌 =  {𝑦1 , 𝑦2,···, 𝑦𝑇  }, 
which is specified by Eq. (3).  

 

𝑔𝑙 =  𝐸𝐿𝑈 (𝑊𝑚𝑌 + 𝑏𝑚)   (3) 

 

Where 𝑔𝑙 is 𝑚th filter output, the activation function is 

represented by 𝐸𝐿𝑈, 𝑊𝑚is a matrix of weights and the 

bias vector is represented by 𝑏𝑚.  

 

3.3.5. Long Short-Term Memory (LSTM) 

 

LSTM is a type of Recurrent Neural Network (RNN) 

that predicts the long-term associations in sequential 

input. LSTM was utilized to describe the temporal 

dependencies in EVCD, allowing the forecasting 

model to consider historical charging patterns and 

more correctly estimate future demand over time. The 

outputs of the convolutional layers were given to the 

layer of the LTSM. There arethree gates, such as input, 

forget and output gate, and cell state. The forget gate 

removed some data in the first step and the input gate 

chooses which type of data is kept in the cell state, as 

shown in Figure 2. Eq. (4) to (6) provides the equations 

for these gates. 

 

𝑓𝑡 =  𝜎 (𝑊𝑓 ·  [𝑔𝑡−1, 𝑦̅𝑡]  +  𝑏𝑓)  (4) 

𝑖𝑡 =  𝜎 (𝑊𝑖 ·  [𝑔𝑡−1, 𝑦̅𝑡]  + 𝑏𝑖)   (5)  

𝐶̃𝑡  =  𝐸𝐿𝑈 (𝑊𝐶 ·  [𝑔𝑡−1, 𝑦̅𝑡]  + 𝑏𝐶)  (6)  

 

Where 𝑔𝑡−1 is represented as hidden state of 𝑡 −
 1,forget gate is given by 𝑓𝑡 , 𝑊 is the weight matrix 

of the respective gate,𝑦̅𝑡 is the input of the layer in the 

time 𝑡, the bias of three gates is given by 𝑏,𝑖𝑡 is the 

input gate and 𝐶𝑡 is the candidate value. The state of the 

cell at time 𝑡 is depicted by the input gate 𝑖𝑡and 𝐶𝑡. 

Finally, the output gate (𝑜𝑡) determines the current 

output as given by Eq. (7) to (9). 

 

𝐶𝑡  = 𝑓𝑡  ∗  𝐶𝑡−1  + 𝑖𝑡  ∗  𝐶𝑡     (7)  



322 Informatica 49 (2025) 317-328                                                                                                                        T. Jin et al. 

 

 

𝑜𝑡  
=  𝜎 (𝑊𝑜 ·  [𝑔𝑡−1, 𝑦̅𝑡]
+  𝑏𝑜)                                                                                                       

   (8) 

 

𝑔𝑡  = 𝑜𝑡  ∗  𝐸𝐿𝑈 (𝐶𝑡)      (9)  

 

 

  
 

Figure 2: Architecture of LSTM 

 

3.4 Attention mechanism  
The Attention Mechanism is a DL approach that allows 

the model to focus on significant parts of the input data, 

weighting relevant characteristics and ignoring less 

important features. It was utilized to prioritize crucial 

spatial-temporal information in EVCD forecasting, 

resulting in improved accuracy and interpretability. 

After the LSTM layers have pulled out the long-term 

dependences from the features, it will take their output 

and use it as input for the attention layer. The necessary 

equations are as follows in Eq. (10) to (12). 

 

𝑎𝑡
𝑘 =

 𝑒𝑥𝑝 𝑑𝑡
𝑘

∑ 𝑑𝑡
𝑗𝑛

𝑗=1

     (10)  

𝑑𝑡
𝑘  =  𝑣𝑑

𝑇𝜎 (𝑊𝑒  [𝑔𝑡−1, 𝑐𝑡−1]   +  𝑈𝑑𝑔𝑡 + 𝑐𝑑  

    (11) 

𝑧𝑡̅ = ∑ 𝑎𝑡
𝑇𝑇

𝑡 𝑔𝑡     

    (12)  

 

The variables 𝑣𝑒,𝑐𝑑 ∈  𝑅𝑇, 𝑊𝑒 ∈  𝑅𝑇 ×𝑚 and  𝑈𝑑 ∈
 𝑅𝑚×𝑚was learned, while 𝑚 denotes the number of 

neurons, the output of the attention layer utilizing a 

weighted sum of all the hidden states is 𝑧𝑡̅, and the 

attention weights of the 𝑘th input at time t are denoted 

by 𝑎𝑡
𝑘and 𝑑𝑡

𝑘denote the significance of the 𝑔𝑡. The 

structure for the CLSM with Attention Mechanism was 

illustrated in Figure 3. 

 

 
 

Figure 3: Structure of MCLSM-AE 

 

3.5. Mandrill optimization (MO) 

MO is a swarm intelligence-based metaheuristic 

inspired by mandrills' natural social structure and 

behavior. It is used to improve the spatial-temporal 

EVCD forecasting model by balancing exploration and 

exploitation for higher prediction accuracy. The 

particles are represented as a matrix with each row 

representing a particle's whole location as given by Eq. 

(18), where 𝑑 is the amount of dimensions and 𝑛 is the 

total amount of mandrills. 

 

 𝑃 = [

𝑝1,1 𝑝1,2 …
𝑝2,1 𝑝2,2 … 

⋮ ⋮ …

 … 𝑝1,𝑑

… 𝑝2,1

 … ⋮
𝑝𝑛,1 𝑝𝑛,2 … … 𝑝𝑛,𝑑

]                                                                       

(18) 

 

The technique of calculating and changing these places 

is described in mathematical terms. Initially, these 

places are produced semi-randomly and this process 

known as the initialization stage. Once each particle is 

allocated a place and, as a result, a fitness value, the 

positions are updated using the mathematical model of 

hierarchical dominance observed in mandrill hordes. 

The objective function F(x), optimized by the Mandrill 

Optimization Algorithm, is defined as the Mean 

Squared Error (MSE) computed on the validation set 

predictions during training. 
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3.6 Initialization phase 
During this phase, research provides a semi-greedy 

initialization strategy. The first dimension of the search 

space is split into segments equal to the number of 

particles, guaranteeing that each particle is assigned to 

a unique segment along this dimension. For the 

remaining dimensions, particle placements are given at 

random, bringing variation to the starting population.  

 

3.7  Dominator assignment 
The next stage is to identify the dominator of each 

mandrill in the horde. Dominator assignment replicates 

the mandrill social hierarchy by ranking particles 

according to fitness values. To imitate this, research 

builds a parameter named 𝛼, which decreases linearly 

from 1 to 0 as the optimization process progresses. The 

equation for calculating 𝛼 is given by Eq. (19). 

 

𝛼 = 1― 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑎𝑡𝑖𝑛
   (19) 

 

As a result, as iterations pass, the chance of a child 

being ventral reduces as given by Eq. (20) and the 

attendance rate 𝐵(𝑡) at iteration 𝑡 is computed using 

the following Eq. (21). 

 

𝑣𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =  𝛼 <  𝑟𝑎𝑛𝑑𝑜𝑚 (0, 1) (20) 

 

𝐵(𝑡)  = 𝑀 × ⌊𝐿 + (𝑈―𝐿) × 𝛼⌋  (21) 

 

The percentage of male participants at iteration 𝑡 is 

given by 𝐵(𝑡), whereas 𝐿 and 𝑈 are the lower and 

upper bounds. This is mathematically expressed as 

follows: Eq. (22).  

 

𝑃𝑗 =
𝑓𝑘

∑ 𝑓𝑘
𝑛
𝑘=1

                 (22)        

                                                                                   

The chance of the 𝑗th mandrill winning the competition 

is represented by 𝑃𝑗, the fitness value of the 𝑗th mandrill 

is represented by 𝑓𝑘, and the number of male mandrills 

competing is represented by 𝑛. 

 

3.8  Finding radius vector 
The velocity or ideal distance of a particle is essential 

for updating its location. In this suggestion, the term 

radius refers to an ellipsoidal-based method for 

creating points. Finding the ideal radius vector 

throughout the space's dimensions is essential to the 

algorithm's performance, as given by Eq. (23). 

 

𝐷𝑝𝑗
= √∑ (𝑃𝑑𝑗

− 𝑃𝑝𝑗
)
2

𝑑
𝑘=1              (23)                                                               

 

The dimensionality of the solution space is indicated 

by 𝑑, while the 𝑼-th dimension of the dominator and 

the 𝑖-th position of the particle are represented by 𝑃. 

 

 

3.9  Ellipsoidal new solution generation 
The ellipsoidal new solution generation mechanism is 

an innovative technique for solution generation inside 

metaheuristic optimization algorithms. This technique 

increases the algorithm's durability as the ellipsoid is 

completely encompassed within the hypercube defined 

by the same distance vector (radius vector). The 

ellipsoidal technique removes superfluous areas for 

fresh solution generation from the hypercube as 

provided by Eq. (24). 

 

(𝑥 − 𝑐)𝑇𝐴−1(𝑦 − 𝑐) ≤ 1        (24) 

                                                                                   

Where 𝐵 is a positive-definite shape matrix, 𝑐 is the 

center of the ellipsoid, and 𝑦 is the candidate solution 

vector. The MCLSM-AE model has a unique benefit in 

EVCD forecasting by appropriately incorporating both 

spatial and temporal dependencies by utilizing CNN 

and LSTM components, respectively. The result is 

extremely accurate and robust predictions that are 

beyond existing techniques. Algorithm 1 depicts the 

Pseudocode for the MCLSM-AE model. 

 

Algorithm1: MCLSM-AE) 

𝐼𝑛𝑝𝑢𝑡: 
    − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹(𝑥) 
    − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑛𝑑𝑟𝑖𝑙𝑙𝑠 (𝑛) 
    − 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 (𝑑) 
    − 𝐿𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 (𝐿, 𝑈) 
    − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑀𝑎𝑥_𝑖𝑡𝑒𝑟) 
𝑂𝑢𝑡𝑝𝑢𝑡: 
    − 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 (𝑋_𝑏𝑒𝑠𝑡) 
    − 𝐵𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 (𝐹_𝑏𝑒𝑠𝑡) 
𝑆𝑡𝑒𝑝 1:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑃 [𝑛 

×  𝑑] 𝑢𝑠𝑖𝑛𝑔 𝑠𝑒𝑚𝑖
− 𝑔𝑟𝑒𝑒𝑑𝑦 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦: 

        𝐹𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑛: 
            𝑆𝑒𝑡 𝑃[𝑖][0] 𝑡𝑜 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 1 
            𝐹𝑜𝑟 𝑗 =  1 𝑡𝑜 𝑑 − 1: 
                𝑆𝑒𝑡 𝑃[𝑖][𝑗] 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛 [𝐿[𝑗], 𝑈[𝑗]] 
𝑆𝑡𝑒𝑝 2:  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓_𝑘 

=  𝐹(𝑃[𝑘]) ∀ 𝑘 ∈  {1, 2, . . . , 𝑛} 
𝑆𝑡𝑒𝑝 3:  𝐹𝑜𝑟 𝑡 =  1 𝑡𝑜 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 𝑑𝑜: 
𝑆𝑡𝑒𝑝 4:      𝑈𝑝𝑑𝑎𝑡𝑒 𝑎𝑙𝑝ℎ𝑎 (𝛼) 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (19):  
𝑆𝑡𝑒𝑝 5:      𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝐵(𝑡) 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (21): 
𝑆𝑡𝑒𝑝 6:      𝐴𝑠𝑠𝑖𝑔𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠: 
            𝑆𝑜𝑟𝑡 𝑎𝑙𝑙 𝑚𝑎𝑛𝑑𝑟𝑖𝑙𝑙𝑠 𝑏𝑦 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔) 
            𝐴𝑠𝑠𝑖𝑔𝑛 𝑡𝑜𝑝 𝐵(𝑡) 𝑚𝑎𝑛𝑑𝑟𝑖𝑙𝑙𝑠 𝑎𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠 
𝑆𝑡𝑒𝑝 7:      𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑎𝑛𝑑𝑟𝑖𝑙𝑙 𝑗 =  1 𝑡𝑜 𝑛: 
𝑆𝑡𝑒𝑝 8:      𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑣𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (20) 

𝑆𝑡𝑒𝑝 9:     𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃_𝑗 𝑖𝑛 𝐸𝑞. 22) 

𝑆𝑡𝑒𝑝 10:              𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑅𝑎𝑑𝑖𝑢𝑠 𝑉𝑒𝑐𝑡𝑜𝑟 𝐷_𝑝𝑗 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (23): 
𝑆𝑡𝑒𝑝 11:             𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑𝑎𝑙 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (24): 
𝑆𝑡𝑒𝑝 12:             𝐼𝑓 𝑦 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑏𝑜𝑢𝑛𝑑𝑠 [𝐿, 𝑈]: 
                    𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓_𝑦 =  𝐹(𝑦) 
                    𝐼𝑓 𝑓_𝑦 <  𝑓_𝑗: 
                        𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑃[𝑗]  ←  𝑦 
                        𝑓_𝑗 ←  𝑓_𝑦 
𝑆𝑡𝑒𝑝 13:     𝐸𝑛𝑑 𝐹𝑜𝑟 
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𝑆𝑡𝑒𝑝 14:     𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡: 
            𝐼𝑓 𝑎𝑛𝑦 𝑓_𝑗 <  𝐹_𝑏𝑒𝑠𝑡: 
                𝑋_𝑏𝑒𝑠𝑡 ←  𝑃[𝑗] 
                𝐹_𝑏𝑒𝑠𝑡 ←  𝑓_𝑗 
𝑆𝑡𝑒𝑝 15: 𝐸𝑛𝑑 𝐹𝑜𝑟 
𝑅𝑒𝑡𝑢𝑟𝑛 𝑋_𝑏𝑒𝑠𝑡, 𝐹_𝑏𝑒𝑠𝑡 

 

4 Result 

The main aim of the study was to create a reliable and 

close forecasting model for EVCD based on an 

MCLSM-AE model. This section contains the 

description of the experimental setup, and prediction 

metrics used to predict the EVCD. 

 

4.1 Experimental setup 
The experimental setup was executed in Python with 

the TensorFlow and Keras libraries on a PC system 

with an Intel Core i7 processor, NVIDIA RTX 3080 

GPU and 32GB RAM. The models were tested and 

trained on a 1TB SSD storage with Windows 11 to help 

manage data efficiently and make it more efficient to 

perform computations. 

 

4.2 Outcome of performance metrics 
The performance metrics used to forecast the EVCD, 

such as convergence curve, and charging time 

prediction time. 

 

4.2.1 Convergence curve 

The convergence curve shows how the optimization 

process reduces the loss or error along iterations. It 

shows the efficiency and strength of the model training 

process in attaining optimal EVCD forecasting 

performance, as illustrated in the Figure 4.The 

convergence curve of the MCLSM-AE model displays 

a precipitous decline in fitness from the initial level of 

approximately 1.72×10⁶ to the terminal value of 

approximately 1.24×10⁶ in the first 40 iterations, which 

shows efficient optimization and faster convergence 

compared to usual methods, and confirms the high-

level learning and predictive power of the MCLSM-AE 

in EVCD forecasting. 

 
 

Figure 4: Convergence curve for EVCD Forecasting 

 

4.2.2 Charging demand forecasting time  
Charging demand forecasting time refers to the time a 

forecasting model takes to precisely predict future 

EVCD using the historical and real-time information. 

It is essential to facilitate timely energy distribution, 

grid operation optimization, and removal of charging 

delays in smart city infrastructures. Visual 

representation of the charging demand forecasting time 

was illustrated in Figure 5. 

Fig.5 shows the forecasted charging demand over time 

by using the MCLSM-AE model, which begins at 10 

units and increases smoothly to 65 units for a 4-hour 

period. The curve shows that the model can reproduce 

the nonlinear trend of increasing growth in CD 

accurately. 
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Figure 5: Charging demand forecasting time 

 

4.3 Comparison phase 
In this segment, performance indicators like Mean 

Absolute Error (MAE), RMSE, Mean Absolute 

Percentage Error (MAPE) and MSE to predict the 

EVCD using MCLSM-AE model. MCLSM-AE was 

compared to base models which are already present 

such as empirical mode decomposition with arithmetic 

optimization algorithm and deep LSTM combined 

(EMD–AOA–DLSTM) [22], PAG [23] and Fusion 

graph convolutional network with enhanced gate 

recurrent unit and Red Kite Optimization Algorithm 

(FGCN-EGRU-RKOA) [24], which all were used for 

prediction of EV charging demand. 

 

4.3.1. Mean absolute error (MAE)  

MAE computes the average magnitude of errors 

between predicted and actual values irrespective of 

their direction. It was utilized to measure the accuracy 

of EVCD predictions, which helps in determining how 

well the MCLSM-AE's predictions compare against 

actual values.  

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1             (1)       

    

4.3.2. Root mean square error (RMSE) 

RMSE provides a simple evaluation of the amount of 

the model prediction error by quantifying the square 

root of the average of squared discrepancies between 

actual and forecasted values. Lower RMSE illustrates 

better generalizability and predictability.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                (2) 

 

4.3.3. Mean Squared Error (MSE) 

 

MSE is a mean of the squared errors between the 

expected and the real values, giving more importance 

to important errors. Lower MSE means the model is 

effectively minimizing prediction error in training and 

validation.  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1               (3) 

 

 

 

4.3.4. Mean absolute percentage error (MAPE) 

 

MAPE analyzes the average total percentage error 

between the projected and the real data to yield a 

normalized error measure. It is particularly valuable for 

assessing forecast precision at various EV charging 

load demand levels. A lower MAPE value shows that 

the forecasting model is stronger and relevant to real-

world applications.  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦⃗ 𝑖

𝑦𝑖
|𝑛

𝑖=1          (4) 

Figure 6 illustrates the graphical representation of 

RMSE and MSE using the MCLSM-AE model for 

EVCD prediction. The EMD–AOA–DLSTM [22] 

approach reported an RMSE of 0.000020628 and MAE 

of 0.1083, which shows relatively higher errors than 

the other approaches. The PAG [23] approach gave 

much better results with an RMSE of 0.0548 and MAE 

of 0.0333, displaying improved accuracy. The FGCN-

EGRU-RKOA approach gave moderate results with an 

RMSE of 0.1735 and MAE of 0.3228. Conversely, the 

MCLSM-AE had excellent performance with RMSE of 

0.000004 and MAE of 0.0275, superior to that of all the 

other models, which also showed its high accuracy and 

reliability in the forecasting task. Table 3 shows the 

RMSE and MAE of MCLSM-AE for EVCD 

prediction. 

 

Table 3: RMSE and MAE values of the MCLSM-AE 

model for EVCD prediction 

 

Method

s 

RMSE MAE 

EMD–

AOA–

DLSTM 

[22] 

0.000020628 0.1083 

PAG 

[23] 

0.0548 0.0333 

FGCN-

EGRU-

RKOA 

[24] 

0.1735 0.3228 

MCLS

M-AE 

[Propos

ed] 

0.000014832±0.00

00012 

0.0275±0.0

011 
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Figure 6: Graphical Representation of RMSE and 

MAE using MCLSM-AE model for EVCD prediction 

 

Table 4 and Figure 7 show the model evaluation of 

MSE for MCLSM-AE with the existing method. The 

MCLSM-AE method demonstrates superior 

performance with an MSE of 0.0000015, while the 

other methods, such as EMD–AOA–DLSTM [22] 

(0.00004255) and FGCN-EGRU-RKOA [24] (0.0301), 

show comparatively poor results. 

 

Table 4: Model Evaluation Table of MSE for 

MCLSM-AE with Existing Method 

 

Methods MSE 

EMD–

AOA–

DLSTM 

[22] 

0.00004255 

FGCN-

EGRU-

RKOA 

[24] 

0.0301 

MCLSM-

AE 

[Proposed

] 

0.00000000022±0.000000000

05 

 
 

Figure 7: Performance Comparison of MSE across 

Different Models for EVCD Prediction 

 

Table 5 and Figure 8 illustrate the MAPE-based 

performance comparison between PAG and MCLSM-

AE models. The proposed MCLSM-AE model 

achieves a lower MAPE of 0.0934, compared to 0.1687 

for the PAG [23] method, indicating improved 

accuracy. 

 

Table 5: Summary of the MAPE value for the 

MCLSM-AE 

 

Methods MAPE 

PAG [23] 0.1687 

MCLSM-AE 

[Proposed] 
0.0934±0.0043 

 

Figure 8: MAPE-Based Performance Comparison 

between PAG [23] and MCLSM-AE 
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Figure 9 depicts the 5-fold cross validation and average 

values facilitating more effective energy distribution 

and infrastructure planning. 

 

Figure 9: Outcome of (a) 5-Fold Cross Validation (b) 

average values 

 

4.4 Discussion  
The MCLSM-AE approach has a lower MAPE of 

0.0934, which shows better accuracy in prediction than 

the PAG [23] approach with a MAPE of 0.1687. The 

research proposed an advanced hybrid MCLSM-AE 

model to predict the EVCD. There are some limitations 

of existing models like EMD-AOA-DLSTM [22], PAG 

[23], and FGCN-EGRU-RKOA [24]. EMD-AOA-

DLSTM [22] and FGCN-EGRU-RKOA [24] have high 

RMSE and MAE values, reflecting poor accuracy and 

ineffective noise and spatial-temporal dependency 

handling. Model like PAG [23] does not provide 

holistic error reporting, which degrades the evaluation 

quality. However, MCLSM-AE achieves a better 

performance compared to the below models with least 

RMSE, MAE, and MSE, indicating higher precision. 

Its strong robustness, noise resistance, and dynamic 

learning provide a better solution to actual real-world 

CD of EVs. The MCLSM-AE model greatly improved 

the EVCD prediction accuracy, facilitating more 

effective energy distribution and infrastructure 

planning. This helps in more intelligent grid 

management and sustainable development of electric 

mobility. 

 

5 Conclusion 

The MCLSM-AE model was successfully developed 

and validated for estimating EVCD with the 

introduction of the MOA, AE, CNN-LSTM, and 

attention mechanism. The model was successfully 

trained on a dataset comprising historical EV charging 

data, traffic patterns, weather information, and spatial 

grid mappings. The model addressed complex spatial-

temporal patterns and noisy behaviors by applying 

rigorous preprocessing methods, including 

normalization, MVI, and feature reduction. The 

implementation of MOA allowed for intelligent 

hyperparameter fine-tuning, while CNN and LSTM 

captured spatial and temporal trends, respectively. The 

model outperformed baseline methods, decreasing with 

a reduced RMSE of 0.000004. However, the research 

was limited by the availability and quality of real-time 

charging and traffic metrics, and the model's 

generalizability across regions was not properly 

validated. Future research could focus on real-time 

adaptive learning, integration with Renewable Energy 

(RE) sources, and deployment in a variety of urban 

settings to improve the scalability and effectiveness of 

the EV infrastructure planning and the energy 

management. Future work focuses on incorporating 

these tests to rigorously validate the improvements of 

the proposed model over baseline methods. 
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