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The rapid growth of electric vehicles (EVs) has led to a significant increase in the demand for
accurate forecasting of charging pile usage, essential for optimizing infrastructure planning and
energy management. Effective prediction models help to balance grid loads, reduce waiting times,
and enhance the overall charging experience. Existing methods, based on traditional Machine
Learning (ML) or basic neural network models, struggle to capture complex spatial-temporal
relationships and multivariate dependencies. To address these limitations, this research proposes
an advanced hybrid Mandrill-tuned Convolutional Long Short Memory with Auto Encoder
(MCLSM-AE) framework that combines the Mandrill Optimization Algorithm (MOA), Auto
Encoder (AE), and CNN-LSTM with an Attention Mechanism. The novelty of this approach lies in
integrating MOA for optimal hyper parameter tuning, AE for dimensionality reduction and CNN-
LSTM for spatial-temporal demand modeling, enhanced with an attention mechanism for improved
interpretability. The model is trained on a dataset comprising historical EV charging data, traffic
patterns, weather information, and spatial grid mappings. Preprocessing steps include data
normalization and Missing Value Imputation (MVI) to ensure data quality. The proposed model
workflow involves reducing data dimensionality with AE, extracting spatial patterns with CNN, and
capturing temporal dependencies using LSTM, with MOA optimizing model parameters.
Experimental results demonstrate the suggested MCLSM-AE model superior performance,
achieving a MSE (0.00000000022) RMSE of (0.000014832), and MAE (0.0275) compared to
existing methods. The research provides a robust and scalable solution for EV charging demand
forecasting, addressing existing limitations and contributing to better infrastructure and energy
management strategies

Povzetek: Studija je razvila hibridni model MCLSM-AE, ki zdruzuje mandrillovo optimizacijo,
AutoEncoder, CNN-LSTM in pozornost za napovedovanje povprasevanja po polnilnicah elektricnih
vozil. Model ucinkovito obdela prostorsko-casovne podatke ter doseze izjemno nizke napake, kar
podpira optimalno energetsko in infrastrukturno nacrtovanje.

1 Introduction

The Electric Vehicle (EV) sector has developed as the
most important socially sustainable technology, with
enormous potential for reducing carbon dioxide
emissions while lowering dependency on oil [1]. EVs
are a crucial solution for reducing the transportation
sector's massive greenhouse gas emissions. The fast
development of EVs is partly dependent on the
building and arrangement of charging facilities [2]. The
great amount of EVs associated with the grid creates an
enormous strain on the electrical grid [3]. The rapid
popularization of new Electric Vehicles (EVs),

primarily its extensive promotion in various countries,
relies heavily on the presence of charging facilities, like
Charging Piles (CP), CP are a critical element in the
period of electrified transportation, providing
important fast charging service stations for new EVs,
ensuring that daily travel demands are fulfilled and
promoting the widespread adoption of EVs [4]. There
are two categories of CPs such as DC quick charging
and Alternating Current (AC) slow charging. The
service style is self-pay and self-charge, and the
locations are much more spread out than petrol stations
[5]. Charging infrastructure has a huge impact on the
growth of EVs due to its accessibility, dependability,
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cost efficiency, smart networking, and environmental
sociability [6]. However, inadequate charging services
have developed as a key impediment for the EV sector.
As EVs become more prevalent in urban areas, it is
becoming more difficult to predict Charging Demand
(CD) and plan for infrastructure [7]. To overcome the
above challenges, the research proposed an advanced
hybrid Mandrill-tuned Convolutional Long Short
Memory with Auto Encoder (MCLSM-AE) framework
that combines the Mandrill Optimization Algorithm
(MOA), AutoEncoder (AE), and CNN-LSTM with an
Attention Mechanism to develop a robust and scalable
forecasting model for EVCP demand. This research
offers a strong framework on EV charging demand
prediction that may be utilized for better infrastructure
development, grid load balancing, and user experience.
For data-oriented policy and planning related to the
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long-term adoption of electric vehicle networks, it is
especially beneficial for policy makers, utility
companies, urban planners, and charging station
operators.

The organization of the research contains the following
sub divisions. Section 2 contains the related work and
Section 3 explains the methods used to forecast the
Electric VehicleCharging Demand (EVCD). The
outcomes of the method were performed and discussed
in Section 4. The research concluded in Section 5.

2 Related work

The research was compared with existing research as
shown in the Table 1, which represents the summary of
literature on EV charging demand forecasting.

Table 1: Summary of literature on EV charging demand forecasting

Ref. | Area Focused Algorithms/Models Used | Result Limitations

No.

[8] Urban EV quick | Regret Theory, Human | Improved CD | Limited scalability due to
charging demand | behavior modeling, Data | forecast  accuracy | localized  data  from
forecasting mining using real ride- | Nanjing

hailing data

[9] EV public | Demand-supply High-resolution Assumptions in  user
charging demand | stochasticity model, User | spatial-temporal behavior; uncertainty in
forecasting heterogeneity modeling forecasts future transport networks

[10] | EVCD forecasting

under noisy data

CFMM-GEP
(AutoEncoder + SVM +
GEP)

Outperformed 6
models in MAPE,
RMSE, MAE, R

Impacted by complex or
irregular noise patterns

[11] | Charging station
(CS) planning with

multi-type CDs

Firefly algorithm, Roulette,
K-Means, Markov Chain

Reduced cost and
improved efficiency
in real urban setting

Assumptions in user travel
behavior; data uncertainty

load

[12] | Smart  charging | Simulation-based Shifted peak load, | Based on one city’s data;
and private | modeling improved charging | lacks generalizability
charging piles profile

[13] | Automated 1-to-N system, robotic arm, | Validated in real- | High implementation cost;
charging 2-layer iterative scheduling | time via hardware- | scalability issues
infrastructure in-loop experiments

[14] | EV charging | Submodular functions, | High efficacy and | May struggle in highly
infrastructure Erlang-loss, Lazy Greedy | efficiency in site | dynamic and complex
deployment (LGDG & LGEG) planning environments

[15] | Smart EV-CP | IoT, K-Means, Multisim | Reduced cost, | Simulation-based
management simulation improved  voltage | validation only; needs
system stability and wuser | real-world testing

experience

[16] | Spatial-temporal Monte Carlo simulation Showed distinct | Requires detailed regional
distribution of EV regional and | data; may not generalize

globally
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temperature-based
load variation
[17] | EV charging | DL models, Transformer, | Improved forecast | Regional focus
prediction  using | statistical models accuracy (Shenzhen); potential bias
UrbanEV dataset due to geography/weather
[18] | Citywide EVCD | CityEVCP (Hypergraph + | Outperformed Scalability challenges in
prediction POI clustering + Gated | baseline models in | larger cities; POI data
Transformer) spatial-temporal dependence
accuracy
[19] | EV-CS  position | NSGA-II, Deep Learning, | Enhanced efficiency, | Difficulty estimating
and capacity | Queueing Theory reduced waiting time | computational
optimization complexity; uncertain
service rates
[20] | Short-term EVCD | LSTM, compared with | LSTM outperformed | Prediction depends
forecasting ~ with | ARIMA, MLP others (MAPE = | heavily on data interval
private EVs 6.83%) and input structure
[21] | Short/long-term Transformer, RNN, LSTM, | Transformer Requires  large  data
EVCD forecasting | ARIMA, SARIMA achieved highest | volumes for generalization
accuracy and robustness

The existing model [8] was not scalable since it used
Nanjing-specific data, and hence it would not be
effective for other regions or large datasets. CFMM-
GEP [10] contained complex or unusual noise patterns
that influence the model's performance. The [14]
method utilized submodular functions and Lazy
Greedy algorithms to struggle with dynamic and
complex environments; it might not be ideal for
infrastructure deployment under dynamic conditions.
Lastly, the method outlined in [19] that combined
NSGA-II, deep learning, and queueing theory was
facing the challenge of forecasting computing
complexity and dealing with uncertain service rates,
which can limit its performance in real-time
optimization. To address these limitations, the research
proposed an advanced hybrid MCLSM-AE framework.

3 Materials and methods

The research aimed to develop a robust and accurate
forecasting model for the EVCD using the proposed
advanced hybrid MCLSM-AE model. The model is
trained on a dataset comprising historical EV charging
data, traffic patterns, weather information, and spatial
grid mappings. Data preprocessing includes data
normalization and MVI to verify data quality. The
MCLSM-AE method was used for predicting EVCD.
The MCLSM-AE method design for prediction of
EVCD is shown in Figure 1.

Data Collection Data Preprocessing

, EY Charging
@ Demand Prediction
£+ Min-Max Normaliation £ Mundrilkoned

¢ Convolutional Long Short

EV Charging Demand + Missing Value
i H & Memory with Auto Encoder |

data ] i+ Imputation

!

Figure 1: Structure for proposed framework to predict
the electric vehiclescharging demand

3.1 Data collection

The data was gathered from Kaggle Link:
https://www.kaggle.com/datasets/ziya07/charging-
pile-demand-forecasting-dataset/data. The Charging
Pile Demand  Forecasting  Dataset  offers
comprehensive information for forecasting how often
electric vehicle (EV) charging piles will be used. This
dataset contains a number of characteristics that affect
the need for charging, including charging time, energy
usage, traffic patterns, meteorological conditions, and
geographic considerations. In order to accurately
simulate real-world situations, it also takes into account
variables like car type, charging station density, and
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government incentives. The percentage of time spent
using a charging pile is represented by the goal
variable, charging pile usage rate, which is essential
for improving energy management and infrastructure
planning in the expanding electric car market. By
reducing wait times, balancing grid loads, and
enhancing user experience, this dataset seeks to support
the development of predictive models for effective EV
charging stations. Table 2 show the overall dataset
features. The data was split into testing and training
with 80:20 ratio.

Table 2: Overall dataset features

Feature
Charging Duration

Description

Duration for which EVsuse
the charging pile (in hours).
Total energy consumed
during charging (in kWh).

Energy Consumed

Traffic Flow Number of vehicles passing
through  the  charging
station area.

Weather Conditions | Includes temperature,
humidity,  precipitation,
and wind speed.

Geographical Location-based  features

Information such as latitude, longitude,

and distance to the nearest
road.

Charging Price and | Charging price per kWh
Incentives and availability of
government incentives.

3.2 Data preprocessing

Data preprocessing is a process of converting raw data
into an organized form that can improve the
performance of the ML models. It facilitates the
handling of inconsistency, noise, and missing values,
resulting in consistent inputs for training. EV charging
data were preprocessed by normalization using Min-
Max Normalization and imputation using Multiple
Imputation (MI). The Min-Max Normalization was
applied to normalize EVCD data to the same range. M1
was used to impute missing values that ensured
completeness of data.

3.2.1 Data normalization

Data Normalization is used for normalizing numerical
data into the standard range, typically between 0 and 1,
thus allowing the different features of different
magnitudes and different units not to dominate the
process of model learning. Min-Max Normalization
has been used in the normalization of the EV charging
data. Min-Max Normalization is also employed to map
historic EVCD data, traffic flow patterns, weather
states, and grid space values onto the same scale. This
approach applies the following Eq. (1).
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Y—min (Y
Yoow —_Ymn® (1)

max (Y)—min (Y)
Where Y is the old value, max (Y) is the dataset's
maximum value, min (Y) is its minimum value, and
Y,ew 1s the new value derived from the normalized
findings.

3.2.2 Missing value imputation (MVI)

MVI refers to the process of filling missing or
incomplete data points with imputed values to maintain
the integrity of the dataset. It ensures accurate EVCD
forecasting by maintaining spatial-temporal data
integrity despite missing records. MVI was applied
using MI to deal with missing data-induced uncertainty
and bias when EVCD is forecasted. The final parameter
estimates, f8 are produced by pooling these values as
given in Eq. (2).

B=~Yne1Bm )

Where [ represents the final pooled parameter
estimate, n is the number of imputed datasets, and £,
refers to the parameter estimates from each m™imputed
dataset.

3.3 Charging pile demand forecasting
model using mandrill-tuned convolutional
long short memory with auto encoder

(MCLSM-AE)
MCLSM-AE integrates MOA's hyperparametertuning,
uses CNNto extract spatial features, enabling such that
the model can identify complex patterns in the data,
and LSTM networks are utilized for extracting
temporal dependencies, which are important in
precisely predicting future EV charging demands. AE
dimensionally compresses the data, which simplifies
the data and makes the model more efficient by
preserving only important features. This methodology
maximizes the model's capability to estimate complex,
multivariate, and spatial temporal demand patterns of
EV CS. MOA was incorporated into MCLSM-AE to
improve model performance by tuning parameters
while AE's dimensionality reduction helpssimplify
complex data and retain essential features. The
combination helps make prediction performance
reasonable in real-world scenarios, where functions
have complex, non-linear relationships, and multiple
influencing factors.

3.3.1 AutoEncoder (AE)

An AE is an unsupervised neural network that
compresses input into lower-dimensional
representations before reconstructing it to determine
the quality of retrieved features. It is used to extract
critical spatial-temporal elements from upstream and
downstream EVCD data, hence improving forecasting
accuracy. A function f is used to obtain the
characteristic sequence of an original input sequence
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Y = (y1,Y1,..., Yk}, where y; € RY The output T =
{ti, ty..., t}, where t; € R, reflects the encoded
properties of X. The encoder's output is provided to the
decoder, which reconstructs the original data from T,
resultinginZ = {z;,z,,...,2;}, where z; € RY. After
training the AE, the encoder is used for feature
extraction, revealing the data's underlying structure.
Eq. (13) and (14) determines the encoding and
decoding operation.

(13)
(14

ti=fwe vy +c)
zi=g(w, - tj + c;)

Where w,, w,, ¢;, and ¢, are weights and biases,
respectively, and f(-) and g(-) are sigmoid functions.
y; € R%is the original input vector of dimension d, the
encoder weight matrix is given by w;, and c; is the
encoder bias. t; € R' is the encoded feature from the
encoder, the decoder weight matrix is w,, and c, is the
decoder bias. Eq. (15) states that the AE is trained by
minimalizing the reconstruction error.

L(Y,2) = 350y - 5 (15)
This is a loss function calculates the rebuilding error
between the input (y;) and output (z;). The Mean
Squared Error (MSE) is calculated by over all n
samples to ensure the encoder captures significant data
characteristics. When the reconstruction error is
sufficiently small, T is considered a valid
representation of the original datalet Y, =
V1, Yv2s-- o Yomdand  Yd = {ydy, yd,,...,ydnm},
where y,,;,yd; € RY, be the upstream and downstream
charging load data. The characteristic sequence x; =
{x1,%2,..., %y}, with x; €R!, is calculated using
Eq.(16) and (17).

Xj = fw, - (yvj + Yej) + ¢x) (16)

z; = glw, - X + Cz) (17)

Yvj € R%are the upstream and downstream traffic flow
vectors, w; is the encoder weight andc, is the bias. x;
is the encoded feature of combined traffic flow, w, and
¢, are decoder weights and bias. g(-)is the sigmoid
function producing the reconstructed output z;, helping
assess the effectiveness of the encoded features.

3.3.2 Convolutional long short memory with auto
encoder (CLSM-AE)

The CLSM-AE combines CNN with LSTM and AE:
CNN can be used to extract the specialcharacteristics,
LSTM can be used to extract the temporal dynamics
and AE can be used to boil down the dataset into lower
dimensions. The capacity to extract both temporal and
spatial characterizations with dimensional reduction
offers a sound and powerful forecasting method for
complex and high-dimensional patterns of EVCD in
spatial-temporal situations.

Informatica 49 (2025) 317-328 321

3.3.3. Convolutional short
withattention mechanism

The model has two LSTM layers, an attention layer,
single input layer, two convolution layers, and a single
output layer. The input is first given to the model and
the local characteristics are retrieved using CNN
layers. The CNN layer’s outputs are passed to the first
LSTM layer to extract long-range relationships among
variables. The attention layer leverages the hidden
states of all LSTM layers to determine relevance for
themselves. Finally, a weighted sum computes the
output.

long memory

3.3.4. Convolutional neural networks (CNN)

CNN is a type of DL model that extracts spatial patterns
and characteristics from data, such as images or grids.
CNN is utilized to capture spatial dependencies in
EVCD data, allowing for more accurate predictions by
modeling the spatial distribution of CS and traffic
patterns. The one-dimensional convolutional layer
(Convld) receives the input Y = {y;, v, ¥Vr}
which is specified by Eq. (3).

g1 = ELU (W,,Y + by,) 3)

Where g; is m" filter output, the activation function is
represented by ELU, W,,is a matrix of weights and the
bias vector is represented by b,y,.

3.3.5. Long Short-Term Memory (LSTM)

LSTM is a type of Recurrent Neural Network (RNN)
that predicts the long-term associations in sequential
input. LSTM was utilized to describe the temporal
dependencies in EVCD, allowing the forecasting
model to consider historical charging patterns and
more correctly estimate future demand over time. The
outputs of the convolutional layers were given to the
layer of the LTSM. There arethree gates, such as input,
forget and output gate, and cell state. The forget gate
removed some data in the first step and the input gate
chooses which type of data is kept in the cell state, as
shown in Figure 2. Eq. (4) to (6) provides the equations
for these gates.

fe= 0 W+ [ge-1,Ye] + by) )
ig = oW [9e-1,Y:] + by) Q)
Ce = ELU W - [ge-1, Vel + be) (6)

Where g;_, is represented as hidden state of t —
1,forget gate is given by f;, W is the weight matrix
of the respective gate,y; is the input of the layer in the
time t, the bias of three gates is given by b,i; is the
input gate and C; is the candidate value. The state of the
cell at time t is depicted by the input gate i;and C;.
Finally, the output gate (o0;) determines the current
output as given by Eq. (7) to (9).

Ce =fr * Ceoq +ip * G, (7
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Figure 2: Architecture of LSTM

3.4 Attention mechanism

The Attention Mechanism is a DL approach that allows
the model to focus on significant parts of the input data,
weighting relevant characteristics and ignoring less
important features. It was utilized to prioritize crucial
spatial-temporal information in EVCD forecasting,
resulting in improved accuracy and interpretability.
After the LSTM layers have pulled out the long-term
dependences from the features, it will take their output
and use it as input for the attention layer. The necessary
equations are as follows in Eq. (10) to (12).

kK _ exp df
at - 2?21‘1{ (10)
df = vio W, [ge-1,Ce-1] + Uage + ca
(11)
zZ; = Z{atT gt
(12)

The variables v,,c; € RT, W, € RT*™ and U, €
R™*™Mwas learned, while m denotes the number of
neurons, the output of the attention layer utilizing a
weighted sum of all the hidden states is Z;, and the
attention weights of the k™ input at time t are denoted
by afand dFdenote the significance of the g,. The
structure for the CLSM with Attention Mechanism was
illustrated in Figure 3.
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Figure 3: Structure of MCLSM-AE

3.5. Mandrill optimization (MO)

MO is a swarm intelligence-based metaheuristic
inspired by mandrills' natural social structure and
behavior. It is used to improve the spatial-temporal
EVCD forecasting model by balancing exploration and
exploitation for higher prediction accuracy. The
particles are represented as a matrix with each row
representing a particle's whole location as given by Eq.
(18), where d is the amount of dimensions and n is the
total amount of mandrills.

P11 P12 - e P1a
P = P2:,1 P2:,2 ------ P2:,1
pn,l Pn,z ------ pn,d

(18)

The technique of calculating and changing these places
is described in mathematical terms. Initially, these
places are produced semi-randomly and this process
known as the initialization stage. Once each particle is
allocated a place and, as a result, a fitness value, the
positions are updated using the mathematical model of
hierarchical dominance observed in mandrill hordes.
The objective function F(x), optimized by the Mandrill
Optimization Algorithm, is defined as the Mean
Squared Error (MSE) computed on the validation set
predictions during training.
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3.6 Initialization phase

During this phase, research provides a semi-greedy
initialization strategy. The first dimension of the search
space is split into segments equal to the number of
particles, guaranteeing that each particle is assigned to
a unique segment along this dimension. For the
remaining dimensions, particle placements are given at
random, bringing variation to the starting population.

3.7 Dominator assignment

The next stage is to identify the dominator of each
mandrill in the horde. Dominator assignment replicates
the mandrill social hierarchy by ranking particles
according to fitness values. To imitate this, research
builds a parameter named @, which decreases linearly
from 1 to 0 as the optimization process progresses. The
equation for calculating « is given by Eq. (19).

current iteration
a=1-—

max iteratiatin (19)
As a result, as iterations pass, the chance of a child
being ventral reduces as given by Eq. (20) and the
attendance rate B(t) at iteration t is computed using
the following Eq. (21).

ventrality =

a < random (0,1) (20)

B(t) =M x |L+ (U-L) X a] (21

The percentage of male participants at iteration ¢t is
given by B(t), whereas L and U are the lower and
upper bounds. This is mathematically expressed as
follows: Eq. (22).

fk
P, =
J Z‘I’(lzlfk

(22)

The chance of the j™ mandrill winning the competition
is represented by P;, the fitness value of the j™ mandrill
is represented by f,, and the number of male mandrills
competing is represented by n.

3.8 Finding radius vector

The velocity or ideal distance of a particle is essential
for updating its location. In this suggestion, the term
radius refers to an ellipsoidal-based method for
creating points. Finding the ideal radius vector
throughout the space's dimensions is essential to the
algorithm's performance, as given by Eq. (23).

d 2
Dy, = | Zer (P = Byy) (23)
The dimensionality of the solution space is indicated
by d, while the U-th dimension of the dominator and
the i-th position of the particle are represented by P.

Informatica 49 (2025) 317-328 323

3.9 Ellipsoidal new solution generation
The ellipsoidal new solution generation mechanism is
an innovative technique for solution generation inside
metaheuristic optimization algorithms. This technique
increases the algorithm's durability as the ellipsoid is
completely encompassed within the hypercube defined
by the same distance vector (radius vector). The
ellipsoidal technique removes superfluous areas for
fresh solution generation from the hypercube as
provided by Eq. (24).

x—)Ta Y (y-c)<1

24

Where B is a positive-definite shape matrix, c is the
center of the ellipsoid, and y is the candidate solution
vector. The MCLSM-AE model has a unique benefit in
EVCD forecasting by appropriately incorporating both
spatial and temporal dependencies by utilizing CNN
and LSTM components, respectively. The result is
extremely accurate and robust predictions that are
beyond existing techniques. Algorithm 1 depicts the
Pseudocode for the MCLSM-AE model.

Algorithml: MCLSM-AE)

Input:

— Objective function F(x)

— Number of mandrills (n)

— Dimensions of the search space (d)

— Lower and upper bounds of search space (L,U)
— Maximum number of iterations (Max_iter)

Output:

— Best solution found (X_best)
— Best fitness value (F_best)
Step 1: Initialize the position matrix P [n

X d] using semi
— greedy strategy:

Fori = 1ton:
Set P[i][0] to segment i of dimension 1

Forj =

1tod—1:

Set P[i][j] randomly in [L[j], U[]]
Step 2: Evaluate initial fitness f_k

Step 3: Fort
Step 4:
Step 5:
Step 6:

= F(P[kDVk € {1,2,...,n}

= 1to Max_iter do:

Update alpha (@) using Eq. (19):

Compute attendance rate B(t) using Eq.(21):
Assign dominators:

Sort all mandrills by fitness (ascending)
Assign top B(t) mandrills as dominators

Step 7: For eachmandrillj = 1ton:
Step 8:  Evaluate ventrality using Eq.(20)
Step 9: Select a dominator (based on P_j in Eq.22)
Step 10: Calculate Radius Vector D_pj using Eq.(23):
Step 11: Generate ellipsoidal new solution y using Eq. (24):
Step 12: If y is inside bounds [L,U]:
Evaluate fitness f .y = F(y)
If fy < fj:
Replace P[j] « y
fJ<«fy
Step 13:  End For
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Step 14: Update global best:
If any f_j < F_best:
X _best « P[j]
F_best « f_j
Step 15: End For
Return X _best, F_best

4 Result

The main aim of the study was to create a reliable and
close forecasting model for EVCD based on an
MCLSM-AE model. This section contains the
description of the experimental setup, and prediction
metrics used to predict the EVCD.

4.1 Experimental setup

The experimental setup was executed in Python with
the TensorFlow and Keras libraries on a PC system
with an Intel Core i7 processor, NVIDIA RTX 3080
GPU and 32GB RAM. The models were tested and
trained on a 1TB SSD storage with Windows 11 to help
manage data efficiently and make it more efficient to
perform computations.

4.2 Outcome of performance metrics

The performance metrics used to forecast the EVCD,
such as convergence curve, and charging time
prediction time.

4.2.1 Convergence curve

The convergence curve shows how the optimization
process reduces the loss or error along iterations. It
shows the efficiency and strength of the model training
process in attaining optimal EVCD forecasting
performance, as illustrated in the Figure 4.The
convergence curve of the MCLSM-AE model displays
a precipitous decline in fitness from the initial level of
approximately 1.72x10° to the terminal value of
approximately 1.24x10°¢ in the first 40 iterations, which
shows efficient optimization and faster convergence
compared to usual methods, and confirms the high-
level learning and predictive power of the MCLSM-AE
in EVCD forecasting.
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Figure 4: Convergence curve for EVCD Forecasting

4.2.2 Charging demand forecasting time

Charging demand forecasting time refers to the time a
forecasting model takes to precisely predict future
EVCD using the historical and real-time information.
It is essential to facilitate timely energy distribution,
grid operation optimization, and removal of charging
delays in smart city infrastructures. Visual
representation of the charging demand forecasting time
was illustrated in Figure 5.

Fig.5 shows the forecasted charging demand over time
by using the MCLSM-AE model, which begins at 10
units and increases smoothly to 65 units for a 4-hour
period. The curve shows that the model can reproduce
the nonlinear trend of increasing growth in CD
accurately.
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Figure 5: Charging demand forecasting time

4.3 Comparison phase

In this segment, performance indicators like Mean
Absolute Error (MAE), RMSE, Mean Absolute
Percentage Error (MAPE) and MSE to predict the
EVCD using MCLSM-AE model. MCLSM-AE was
compared to base models which are already present
such as empirical mode decomposition with arithmetic
optimization algorithm and deep LSTM combined
(EMD-AOA-DLSTM) [22], PAG [23] and Fusion
graph convolutional network with enhanced gate
recurrent unit and Red Kite Optimization Algorithm
(FGCN-EGRU-RKOA) [24], which all were used for
prediction of EV charging demand.

4.3.1. Mean absolute error (MAE)

MAE computes the average magnitude of errors
between predicted and actual values irrespective of
their direction. It was utilized to measure the accuracy
of EVCD predictions, which helps in determining how
well the MCLSM-AE's predictions compare against
actual values.

1 ~
MAE = —¥iLly; = 3l Q)

4.3.2. Root mean square error (RMSE)

RMSE provides a simple evaluation of the amount of
the model prediction error by quantifying the square
root of the average of squared discrepancies between
actual and forecasted values. Lower RMSE illustrates
better generalizability and predictability.

1 ~
RMSE = |- X, (i = 91)? 2

4.3.3. Mean Squared Error (MSE)

MSE is a mean of the squared errors between the
expected and the real values, giving more importance
to important errors. Lower MSE means the model is
effectively minimizing prediction error in training and
validation.

MSE = -3, (y; — 9)° (3)
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4.3.4. Mean absolute percentage error (MAPE)

MAPE analyzes the average total percentage error
between the projected and the real data to yield a
normalized error measure. It is particularly valuable for
assessing forecast precision at various EV charging
load demand levels. A lower MAPE value shows that
the forecasting model is stronger and relevant to real-
world applications.

MAPE =157, |yyi| )

Figure 6 illustrates the graphical representation of
RMSE and MSE using the MCLSM-AE model for
EVCD prediction. The EMD-AOA-DLSTM [22]
approach reported an RMSE of 0.000020628 and MAE
of 0.1083, which shows relatively higher errors than
the other approaches. The PAG [23] approach gave
much better results with an RMSE of 0.0548 and MAE
of 0.0333, displaying improved accuracy. The FGCN-
EGRU-RKOA approach gave moderate results with an
RMSE of 0.1735 and MAE of 0.3228. Conversely, the
MCLSM-AE had excellent performance with RMSE of
0.000004 and MAE of 0.0275, superior to that of all the
other models, which also showed its high accuracy and
reliability in the forecasting task. Table 3 shows the
RMSE and MAE of MCLSM-AE for EVCD
prediction.

Table 3: RMSE and MAE values of the MCLSM-AE
model for EVCD prediction

Method MAE
s

EMD-
AOA-
DLSTM
[22]
PAG
[23]
FGCN-
EGRU-
RKOA
[24]
MCLS
M-AE
[Propos
ed]

RMSE

0.000020628 0.1083

0.0548 0.0333

0.1735 0.3228

0.00001483240.00
00012

0.0275£0.0
011
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Figure 6: Graphical Representation of RMSE and
MAE using MCLSM-AE model for EVCD prediction

Table 4 and Figure 7 show the model evaluation of
MSE for MCLSM-AE with the existing method. The
MCLSM-AE  method  demonstrates  superior
performance with an MSE of 0.0000015, while the
other methods, such as EMD-AOA-DLSTM [22]
(0.00004255) and FGCN-EGRU-RKOA [24] (0.0301),
show comparatively poor results.

Table 4: Model Evaluation Table of MSE for
MCLSM-AE with Existing Method

Methods MSE

EMD-
AOA-
DLSTM
[22]
FGCN-
EGRU-
RKOA
[24]
MCLSM- | 0.00000000022+0.000000000
AE 05

[Proposed

1

0.00004255

0.0301

T. Jin et al.
0.035
0.03 -
0.025 -
% 00
H
0.015 -
0.01 -
0.005 -
y 4 y 4
0
EMD-AOA-DLSTM  FGCN-EGRU-RKOA  MCLSM-AE [Proposed]
[22] [24]
Methods

Figure 7: Performance Comparison of MSE across
Different Models for EVCD Prediction

Table 5 and Figure 8 illustrate the MAPE-based
performance comparison between PAG and MCLSM-
AE models. The proposed MCLSM-AE model
achieves a lower MAPE 0f 0.0934, compared to 0.1687
for the PAG [23] method, indicating improved
accuracy.

Table 5: Summary of the MAPE value for the

MCLSM-AE
Methods MAPE
PAG [23] 0.1687
MCLSM-AE
[Proposed] 0.093410.0043

MAPE Comparison of Methods
0.1687

0.16

014

0.12

00934

MAPE
o
8

0.04

0.02

0.00
PAG MCLSM-AE (Proposed)

Methods

Figure 8: MAPE-Based Performance Comparison
between PAG [23] and MCLSM-AE
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Figure 9 depicts the 5-fold cross validation and average
values facilitating more effective energy distribution
and infrastructure planning.

5 Accuracy
Precision
Recall
F1-Score
[T P — F1-Score
80
z ﬁ Recall
< 60 H
H H
3
; 9 Precision |
20
A
: —
Fold1 Fold2 Fold3 Fold4 Fold§
5 Fold Cross Validation 00 4 60 80 100
Average Values (%)
(a) (b)

Figure 9: Outcome of (a) 5-Fold Cross Validation (b)
average values

4.4 Discussion

The MCLSM-AE approach has a lower MAPE of
0.0934, which shows better accuracy in prediction than
the PAG [23] approach with a MAPE of 0.1687. The
research proposed an advanced hybrid MCLSM-AE
model to predict the EVCD. There are some limitations
of existing models like EMD-AOA-DLSTM [22], PAG
[23], and FGCN-EGRU-RKOA [24]. EMD-AOA-
DLSTM [22] and FGCN-EGRU-RKOA [24] have high
RMSE and MAE values, reflecting poor accuracy and
ineffective noise and spatial-temporal dependency
handling. Model like PAG [23] does not provide
holistic error reporting, which degrades the evaluation
quality. However, MCLSM-AE achieves a better
performance compared to the below models with least
RMSE, MAE, and MSE, indicating higher precision.
Its strong robustness, noise resistance, and dynamic
learning provide a better solution to actual real-world
CD of EVs. The MCLSM-AE model greatly improved
the EVCD prediction accuracy, facilitating more
effective energy distribution and infrastructure
planning. This helps in more intelligent grid
management and sustainable development of electric
mobility.

5 Conclusion

The MCLSM-AE model was successfully developed
and validated for estimating EVCD with the
introduction of the MOA, AE, CNN-LSTM, and
attention mechanism. The model was successfully
trained on a dataset comprising historical EV charging
data, traffic patterns, weather information, and spatial
grid mappings. The model addressed complex spatial-
temporal patterns and noisy behaviors by applying
rigorous ~ preprocessing methods, including
normalization, MVI, and feature reduction. The
implementation of MOA allowed for intelligent
hyperparameter fine-tuning, while CNN and LSTM
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captured spatial and temporal trends, respectively. The
model outperformed baseline methods, decreasing with
a reduced RMSE of 0.000004. However, the research
was limited by the availability and quality of real-time
charging and traffic metrics, and the model's
generalizability across regions was not properly
validated. Future research could focus on real-time
adaptive learning, integration with Renewable Energy
(RE) sources, and deployment in a variety of urban
settings to improve the scalability and effectiveness of
the EV infrastructure planning and the energy
management. Future work focuses on incorporating
these tests to rigorously validate the improvements of
the proposed model over baseline methods.
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