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Aiming at the problem of insufficient accuracy and low efficiency of traditional athlete action recognition 

methods, this paper proposes a multimodal fusion action recognition system and biomechanical 

quantitative analysis method based on an improved convolutional neural network (CNN). The system 

integrates high-speed cameras (video), inertial sensors (IMUs), and force measurement platforms to 

construct a multimodal data acquisition framework. The backbone adopts an improved ResNet-50 network 

embedded with a squeeze-and-excitation (SE) module to enhance channel attention. A spatiotemporal 

feature fusion module and dynamic time warping (DTW) algorithm are introduced to capture temporal 

continuity and synchronize multi-source data. The system achieves a recognition accuracy of 97.8% with 

an average processing time of 288.7 ms. The dataset includes 10,200 video segments (3–5 seconds each) 

and synchronized biomechanical data (e.g., GRF, joint angles, EMG) from 50 professional athletes across 

6 sports (e.g., sprinting, long jump, tennis serve). The results demonstrate the effectiveness of the proposed 

method for intelligent sports analysis and injury prevention. This work provides a design paradigm for 

multimodal CNN-based action recognition and biomechanical evaluation. 

Povzetek: Članek uvaja multimodalni CNN sistem, ki združuje video, IMU senzorje in silo podlage za 

prepoznavanje gibov športnikov ter biomehansko analizo. Dosežek omogoča hitro analizo in 

preprečevanje poškodb. 

 

1 Introduction  
With the continuous improvement of sports competition 

level, the demand for accurate recognition and analysis of 

athletes' movements is becoming more and more urgent. 

Traditional rule-based recognition methods rely heavily 

on handcrafted features and prior domain knowledge, 

which often suffer from limited robustness in complex or 

dynamic sports environments [1]. In contrast, deep 

learning techniques—especially convolutional neural 

networks (CNNs)—have demonstrated superior capability 

in automatically learning hierarchical motion features 

from raw data, achieving promising performance in 

various action recognition tasks [2]. 

Based on the existing research, this paper proposes an 

athlete action recognition system based on CNN and 

integrates biomechanical analysis, aiming to further 

improve the accuracy and efficiency of action recognition. 

The system realizes comprehensive capture and in-depth 

analysis of athlete actions by integrating multimodal data 

sources such as high-speed cameras, inertial sensors 

(IMUs) and force platforms. In the design of the CNN 

model, a multi-branch hybrid architecture is adopted, 

combining 2D and 3D convolution kernels for 

spatiotemporal feature extraction, and the network 

performance is optimized through attention mechanism  

 

and batch normalization layer. In addition, a 

biomechanical analysis module is introduced, and the  

OpenSim platform is used to establish the association 

between video key points and skeletal muscle models, 

realizing cross-domain mapping from visual data to 

dynamic indicators, providing a scientific basis for the 

quantitative evaluation of athlete action quality. 

This paper proposes a CNN athlete motion 

recognition system based on multimodal data fusion to 

improve the accuracy and efficiency of motion 

recognition; introduces a biomechanical analysis module 

to achieve quantitative evaluation of the quality of athlete 

movements and provide support for sports training and 

event analysis; the effectiveness of the proposed system is 

verified through experiments, providing new ideas and 

methods for research in the field of athlete motion 

recognition. 

This paper first outlines the research background and 

motivation, and reviews the progress in the field of athlete 

motion recognition both domestically and internationally. 

It then introduces a CNN-based motion recognition 

system enhanced with multimodal data fusion (video, 

IMU, and GRF), as well as a biomechanical analysis 

module for quantitative evaluation. Experimental 

validation is conducted using a large-scale dataset with 
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synchronized biomechanical data to assess recognition 

accuracy, joint angle estimation, and torque prediction. 

The main contributions of this paper are as follows: 

(1) proposing a CNN-based recognition framework that 

integrates multimodal signals to enhance classification 

accuracy and efficiency; (2) developing a biomechanical 

modeling pipeline using OpenSim for joint kinematics and 

torque estimation, enabling deeper feedback for training 

optimization; (3) evaluating system robustness through 

ablation experiments and a dual-mode (professional vs. 

consumer) deployment test; and (4) constructing a 

comprehensive dataset covering six sports and over 

10,000 action clips, with detailed dataset access and 

structure provided in the appendix to support 

reproducibility and future research. 

2 Related work 
With the continuous development of sports and the 

increasing maturity of digital technology, the importance 

of athlete motion recognition technology in sports 

training, event analysis, and sports rehabilitation has 

become increasingly prominent. In order to solve the 

problems of insufficient feature-level motion information 

extraction and difficulty in capturing long-term temporal 

dependencies in basketball videos with similar 

backgrounds, Wang et al. [3] proposed a hybrid motion 

excitation and temporal enhancement network from local 

and global perspectives. The network consists of a hybrid 

motion excitation module and a temporal enhancement 

module that complement each other in temporal modeling. 

The hybrid motion excitation module fully characterizes 

the local motion information by calculating the feature-

level difference of the mixture between short-distance 

video frames, and explicitly excites the motion-sensitive 

channels. Without introducing additional optical flow and 

too many parameters, the experimental results on the 

SpaceJam basketball action dataset show that the proposed 

model has a higher accuracy in basketball player action 

recognition than other mainstream action recognition 

algorithms. Yang et al. [4] used an inertial measurement 

unit (IMU) to collect data samples and compared the 

results of surfer motion recognition using two machine 

learning methods: the support vector machine (SVM) 

model and the hidden Markov model (HMM). The results 

showed that both the SVM model (accuracy 83.4%) and 

the HMM model (accuracy 91.4%) were able to 

effectively recognize surfer motions, but the HMM model 

had a higher classification accuracy than the SVM model. 

Zhang [5] selected a color camera containing a CCD 

sensor and a CMOS sensor to capture images of tennis 

players’ serving actions, and fused different image 

coordinate systems. Based on the obtained serving action 

images, he extracted the serving action features. Based on 

the conditional independence hypothesis, he designed a 

Bayesian classifier based on the Bayesian algorithm. He 

recognized the serving action through the Bayesian 

classifier and realized the recognition of the serving action 

of tennis players. In order to effectively capture and 

recognize the movements of cheerleaders, Wen [6] 

proposed a cheerleader motion capture method based on 

pose estimation and depth image (PE-DI). This method 

uses a depth camera to collect the motion data of 

cheerleaders, and enhances the motion reconstruction 

effect in three-dimensional space by using depth images. 

Then, the pose estimation algorithm is used to analyze the 

athlete's motion accuracy and stability. Jiang [7] used a 

binocular camera to obtain the action images of track and 

field athletes, stereo-corrected the binocular camera, and 

realized the row alignment of the images to obtain the 

depth images of the track and field athletes. The extracted 

foreground image was input into the two-stream 

convolutional neural network model, and the foul action 

was intelligently identified through batch normalization, 

non-local feature extraction and A-softmax loss function. 

Khobdeh et al. [8] proposed a basketball action 

recognition method that combines YOLO and deep fuzzy 

LSTM networks. YOLO is used to detect players in the 

picture, and LSTM and fuzzy logic are combined for final 

classification. Pareek and Thakkar [1] discussed the latest 

progress, datasets, challenges and applications of human 

action recognition based on videos, covering all stages 

from data preprocessing, feature extraction to 

classification and recognition, and explored the 

advantages and disadvantages of different methods. Bilal 

et al. [9] combined transfer learning and spatiotemporal 

feature extraction to improve the recognition efficiency of 

long-term overlapping action categories through pre-

training models and task-specific fine-tuning. Russel and 

Selvaraj [10] demonstrated the potential of this method in 

improving action recognition accuracy by fusing spatial 

and dynamic convolutional neural network (CNN) 

streams to recognize actions. Studies have shown that 

combining spatial and dynamic features can significantly 

improve the performance of the model, especially when 

dealing with complex actions. Wu et al. [11] proposed a 

framework to improve zero-shot action recognition 

through human instructions and text descriptions. The 

framework predicts the video category by manually 

describing the video content and calculating the matching 

degree between the video and text features. In addition, 

recent international research published in Informatica has 

reinforced the role of deep learning in sports action 

recognition. Cui et al. [12] proposed a 3D‑CNN‑based 

algorithm tailored for basketball player recognition, 

achieving strong accuracy in complex video settings. Yan 

et al. [13] introduced a CNN model enhanced with 

attention mechanisms that improved multimodal 

recognition on NTU-RGBD and UTD-MHAD datasets. 

Song and Chen [14] further developed a pose-estimation-

based counting system capable of robust recognition 

across varying angles and movement styles. These studies 

provide additional validation for the CNN-based 

multimodal approach used in this work. 

In summary, the performance of existing research is 

shown in Table 1: 

Table 1 Summary of existing research 

Method Dataset 
Accurac

y 
Notes 

SVM Surfer 83.40% Traditional 
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IMU ML 

HMM 
Surfer 

IMU 
91.40% 

Temporal 

modeling 

YOLO + 

LSTM 

Basketball

-51 
89.20% 

Detection + 

RNN 

CNN + 

Biomechanic

s (Ours) 

Multi-

sport 

dataset 

97.80% 

Multimodal 

fusion + 

Biomechanic

al analysis 

 

As shown in Table 1, traditional methods such as 

SVM and HMM achieved moderate accuracy (up to 

91.4%) but were limited to single-modality data like IMU 

signals. More recent deep learning methods (e.g., YOLO 

+ fuzzy LSTM) improved performance through spatial-

temporal modeling but still lacked biomechanical 

interpretability. In contrast, the CNN-based system 

proposed in this paper achieves a significantly higher 

recognition accuracy of 97.8% by fusing multimodal data 

sources (video, IMU, and force platforms) and integrating 

biomechanical analysis modules. This not only improves 

recognition accuracy and real-time performance but also 

enables quantitative biomechanical evaluation. Therefore, 

this approach represents a novel and practical paradigm in 

athlete motion recognition, combining technical accuracy 

with biomechanical insight to support real-time training 

feedback and injury risk assessment. 

3 Method 
To clearly present the components and logic of the 

proposed system, an overview of the entire workflow is 

illustrated in Figure 1. The system consists of four main 

modules: (1) multimodal data acquisition and 

preprocessing, (2) CNN-based motion recognition, (3) 

biomechanical parameter extraction, and (4) feedback 

output for training guidance. The following subsections 

describe each component in detail. 

 

Figure 1: Overview of the proposed system for 

multimodal action recognition and biomechanical 

analysis. 

The pipeline consists of data acquisition (video, 

inertial sensors, force plate), preprocessing, CNN-based 

recognition, and biomechanical modeling, producing both 

action categories and dynamic joint indicators. 

3.1 Multimodal data acquisition and 

preprocessing 

Multimodal data acquisition and preprocessing 

integrate three data sources: NAC Memrecam HX-6E 

high-speed camera (1000fps@2560×1920), TDK ICM-

42688 inertial sensor (2000Hz sampling) and AMTI 3D 

force platform (1000Hz), and achieve spatiotemporal 

registration and feature fusion through collaborative 

processing. Although the dataset used in this study is not 

publicly released due to participant privacy and 

institutional restrictions, it is available upon reasonable 

request for non-commercial academic use. Researchers 

may contact the corresponding author to obtain access. To 

support reproducibility, the structure and content of the 

dataset are described in Appendix A. To ensure precise 

temporal alignment, video and IMU streams were 

synchronized using a combination of VINS-based 

extrinsic calibration and Dynamic Time Warping (DTW) 

for temporal offset correction. The timestamp resolution 

was maintained at 1 ms, and frame-level synchronization 

was achieved by matching the extrema in kinematic 

profiles (e.g., maximum knee flexion and peak angular 

velocity). This allowed high-fidelity fusion of multimodal 

signals. The IMU sampling rate was set to 2000 Hz, the 

video frame rate was 1000 fps, and the synchronization 

delay was controlled within 3 ms across all recording 

sessions. The video data collected by the high-speed 

camera is optimized for frame sampling to balance 

temporal resolution and computational overhead. At the 

same time, 2D/3D human key point detection based on 

algorithms such as OpenPose is used to extract joint 

coordinates and construct a skeleton topology map. 

Background denoising uses a Gaussian mixture model to 

separate the moving subject from the static background: 

p(x) = ∑ πkN(x ∣ μk, Σk)
K
k=1           (1) 

p(x) refers to the probability density of pixel x; K is 

the number of mixed components; πk is the weight of the 

kth Gaussian distribution; and N(x ∣ μk, Σk)  is the 

probability density function of the Gaussian distribution. 

The 6-DOF motion data output by the IMU sensor 

(accelerometer, gyroscope) is strictly synchronized with 

the video frame. Timestamp calibration and interpolation 

compensation are used to solve the hardware trigger delay 

problem. The IMU and camera coordinate systems are 

aligned through the spatiotemporal calibration method in 

the VINS framework. The noise filtering combines the 

Butterworth low-pass filter with Kalman dynamic 

prediction to eliminate high-frequency vibration and 

temperature drift interference. The transfer function of the 

Butterworth filter is H(s): 

H(s) =
1

1+(
s

ωc
)2n

                           (2) 

s is a complex frequency variable; ωc  is the cutoff 

frequency of the filter; n is the order of the filter. 

The ground reaction force (GRF) and center of 

pressure (COP) data collected by the force platform are 

zero-drift corrected and sample rate normalized, and the 

parameters (torque, angle) of different dimensions are 

mapped to the [0,1] interval through min-max 

standardization. 
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The time alignment of multimodal data adopts a 

sliding window dynamic matching strategy, with video 

frames as the benchmark, and the asynchronous signals of 

IMU and force platform are aligned through the dynamic 

time warping (DTW) algorithm. For biomechanical time 

series data, the Savitzky-Golay filter is used to smooth 

local jitter, and the missing values caused by sensor frame 

loss are filled by cubic spline interpolation. The output yi
′ 

of the Savitzky-Golay filter is: 

yi
′ = ∑ cjyi+j

k
j=−k                        (3) 

yi
′ is the filtered data point, i.e., the smoothed value at 

position i; yi+j  is the data point in the original data 

sequence, where j is the offset relative to position i; cj is 

the coefficient of the Savitzky-Golay filter; and k is the 

radius of the filter. 

The formula for cubic spline interpolation is: 

S(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3(4) 

S(x) is the interpolation function; ai, bi, ci and di are 

interpolation coefficients; xi is the horizontal coordinate 

of the known data point; x is the horizontal coordinate to 

be interpolated. 

The spatial normalization of video data relies on 

perspective transformation, which unifies the images of 

athletes shot from different positions into a standard 

coordinate system to eliminate perspective distortion. The 

bone data after key point detection needs to be further 

normalized in length to eliminate the impact of individual 

body shape differences on action classification: 

p′ =
p−proot

∥pend−proot∥
                        (5) 

p is the coordinate vector of the key point; proot is the 

coordinate of the root node; pend is the coordinate of the 

end node (such as the ankle); p′  is the normalized 

coordinate vector. 

The dataset construction stage decomposes the action 

into the preparation period, core period and recovery 

period according to the principles of sports biomechanics, 

and annotates the dynamic parameters such as the peak 

knee flexion angle and the extreme value of the vertical 

component of GRF in each stage [15-16]. The data 

augmentation strategy covers dual processing in the 

spatial and temporal domains: random rotation (±15°), 

scaling (0.9-1.1 times) and elastic deformation are used to 

simulate the change of shooting perspective in the spatial 

domain. Linear interpolation is used to generate 

intermediate frames in the temporal domain to expand the 

short-term action samples. For small sample action 

categories, a generative adversarial network (GAN) is 

introduced to synthesize virtual motion sequences with 

biomechanical plausibility, and its physical constraints are 

limited by the joint torque threshold derived from the 

Newton-Euler dynamics equation. The preprocessed 

multimodal data is finally encoded into a four-dimensional 

tensor (sample × time series × spatial feature × modal 

channel) as the input of the CNN network, where the 

weight distribution of different modalities can be 

dynamically optimized through the attention mechanism. 

3.2 Action recognition system based on 

improved CNN 

The CNN-based athlete action recognition system 

uses ResNet-50 with residual connections. Its skip 

connection structure alleviates the gradient vanishing 

problem of deep networks, and optimizes the channel 

attention mechanism through the compression-excitation 

(SE) module to increase the weight of key motion features 

[17-18]. The training process uses 7:1.5:1.5 hierarchical 

data partitioning, combined with spatiotemporal 

enhancement strategies (random cropping, time series 

slicing) to improve generalization. The batch size is set to 

32 during optimization, and the cosine annealing learning 

rate and Focal Loss are used to alleviate category 

imbalance, and the Kinetics-400 pre-trained weights are 

loaded to accelerate convergence. Figure 2 shows the 

architecture of ResNet-50: 

 

Figure 2: ResNet-50 architecture 

While Figure 2 illustrates the canonical ResNet-50 

backbone with SE attention for visual clarity, it does not 

include the complete architecture of the proposed 

recognition system. Specifically, additional modules—

such as the spatiotemporal feature fusion layer using 2D 

and 3D convolutions, the dilated temporal kernel for 

extended motion context, and the modality-specific 

attention mechanism for integrating video, IMU, and GRF 

inputs—are implemented after the backbone. These 

components are elaborated in the subsequent paragraph 

but are omitted from the figure to maintain structural 

simplicity. 

In response to the needs of spatiotemporal feature 

fusion, a spatiotemporal feature fusion module is cascaded 

after the backbone network: 2D convolution is used in the 

spatial dimension to extract local features such as joint 

posture, and 3D convolution kernels are used in the 

temporal dimension to capture the continuity of the action 

sequence. Multimodal inputs are concatenated at the 

feature level after initial modality-specific encoders, and 

fused through the spatiotemporal module following the 
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ResNet-50 backbone. The temporal receptive field of 3D 

convolution is expanded to more than 15 frames through 

dilated convolution to cover the complete action cycle. 

The deep layer of the network is embedded with batch 

normalization (BatchNorm) layer and Dropout layer (ratio 

0.5). The former performs Z-score normalization on the 

convolution output to accelerate convergence, and the 

latter randomly blocks 20% of neurons in the fully 

connected layer to prevent overfitting. 

In terms of training strategy, the loss function adopts 

a composite form of weighted cross entropy loss and 

temporal consistency constraint. Cross entropy loss 

balances the problem of uneven sample distribution 

through category weights: 

LCE = −∑ wi ⋅ yilog(pi)i                  (6) 

LCE  is the weighted cross entropy loss; wi  is the 

weight of category i; yi is the one-hot encoding of the true 

label; pi  is the category probability predicted by the 

model. 

The timing constraint calculates the KL divergence of the 

prediction results of consecutive frames, forcing the 

model to maintain the smoothness of the action evolution: 

Ltemporal = ∑ KL(Pt ∥ Pt+1)
T−1
t=1                (7) 

Ltemporal  refers to the time consistency constraint 

loss; Pt  and Pt+1  refer to the predicted probability 

distribution of two consecutive frames, respectively; t 

refers to the frame index in the time series; T refers to the 

total number of frames. 

The optimizer uses AdamW instead of the traditional 

Adam. Its decoupled weight decay mechanism (decay rate 

0.01) effectively controls the L2 regularization strength. 

The initial learning rate ηmax  is set to 3e-4 and 

dynamically adjusted with the cosine annealing strategy. 

The minimum learning rate ηmin is reduced to 1e-6 during 

the training cycle, so that the loss surface converges to a 

better local minimum point: 

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

t⋅T

Tmax
))    (8) 

ηt  is the learning rate of the tth iteration; T is the 

current iteration number; and Tmax is the total number of 

iterations for a complete training cycle. 

3.3 Biomechanical parameter extraction 

and analysis 

The extraction and analysis of biomechanical 

parameters realizes the cross-domain mapping from visual 

data to dynamic indicators [19-20]. The OpenSim 

biomechanical simulation platform is used to establish the 

association between the key points of the video and the 

skeletal muscle model. The coordinates of the 25 key 

points of the human body identified by CNN are input into 

the multi-rigid body dynamics model (which may lead to 

systematic underestimation of joint angles). In addition to 

keypoint localization, the CNN module also identifies the 

specific action category being performed. This recognition 

result serves as a basis to select the corresponding 

biomechanical reference template or normative motion 

dataset, ensuring that the subsequent dynamic evaluation 

is aligned with the expected movement pattern. The 

biomechanical analysis is thus action-specific, providing 

targeted feedback on movement quality and performance 

deviation. The inverse kinematics algorithm is used to 

calculate the three-dimensional angles of the main joints 

such as the hip, knee, and ankle. This process is 

implemented using the OpenSim biomechanical modeling 

platform, which maps the 2D/3D joint keypoints estimated 

by the CNN model onto a multi-rigid-body 

musculoskeletal model. Each body segment is assumed to 

behave as a rigid body, and soft tissue artifacts are not 

explicitly modeled. Although this assumption is widely 

accepted in biomechanical simulations, it can lead to 

underestimation of joint angles, particularly during high-

impact or rapid movements. While the biomechanical 

analysis using OpenSim and LSTM networks is 

comprehensive, it should be noted that simplified multi-

rigid body models may introduce systematic errors. 

Empirical evaluations showed that under high-load 

motions, such as explosive hip extension during sprinting, 

the model consistently underestimated the hip flexion 

angle by approximately 1.5°. This deviation is primarily 

caused by the rigid-body assumption and the absence of 

soft tissue compensation, which limit the model’s ability 

to capture complex joint deformations. In future work, we 

plan to integrate non-rigid body modeling techniques or 

employ learning-based compensation strategies to 

enhance the accuracy of biomechanical estimations under 

high-load conditions. Trunk keypoints are especially 

susceptible to occlusion, which introduces rotational 

estimation errors and affects downstream dynamic 

calculations. For instance, when trunk occlusion exceeds 

40% of the visible body surface in video frames, spinal 

curvature estimation errors of up to 8.2° were observed. 

These distortions propagate through the kinematic chain 

and compromise the accuracy of joint torque calculations. 

Although sEMG signals are not directly used in torque 

computation, they are employed during energy efficiency 

analysis and serve to calibrate muscle activation 

estimation (see Section 4.3). 

To quantify this error propagation, we performed a 

sensitivity analysis: a 1°error in the knee joint angle leads 

to a deviation of approximately 4.1 Nm in the peak knee 

flexion moment during inverse dynamics calculation. 

Similarly, a 3°deviation in ankle dorsiflexion angle can 

result in a 27 mm shift in the center of pressure (COP) 

trajectory due to nonlinear amplification effects. These 

findings demonstrate the importance of minimizing joint 

keypoint detection error at the visual stage, as even small 

angular inaccuracies can significantly impact 

biomechanical outcome variables. The inverse kinematics 

optimization is performed using the Levenberg-Marquardt 

algorithm, with average alignment error controlled within 

4.3 mm. 

 When the occlusion area exceeds 40% of the body 

surface, the estimated error of the spinal curvature can 

reach 8.2°. This error is transmitted through the kinematic 

chain, which will cause the calculation of the lower limb 

joint torque to be offset. Quantitative analysis of error 

propagation revealed that a detection error of 1° in the 

knee joint angle would lead to a deviation of 4.1 Nm in the 

peak flexion moment after inverse dynamics calculation. 
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The impact of the ankle joint angle error on the vertical 

component of the GRF showed a nonlinear amplification 

effect. A 3° angle deviation could expand the pressure 

center trajectory error to 27 mm. The inverse kinematics 

problem is solved by minimizing the objective function. 

The objective function J(q) is: 

 

𝐽(𝑞) = ∑ ‖𝑃𝑖(𝑞) − 𝑃𝐼
∗‖2𝑁

𝑖=1                  (9) 

Here, pᵢ* is the observed joint position, and the 

optimization target q represents the joint angle vector, not 

the rotation matrix itself. 

Its rotation matrix is iteratively solved by the 

Levenberg-Marquardt optimization algorithm, so that the 

average alignment error between the virtual skeleton and 

the video key points is controlled within 4.3mm. The 

Levenberg-Marquardt algorithm balances the 

characteristics of gradient descent and Gauss-Newton 

method by adjusting the damping parameter λ: 

 

Δq = −(JTJ + λI)−1JTr                       (10) 

 

Δq is the update amount of joint angle; J is the 

Jacobian matrix; r is the residual vector; λ is the damping 

parameter; I is the unit matrix; T is the transposition 

operation. 

For dynamic parameter estimation, a two-stage 

estimation network is constructed: the first stage predicts 

the linear acceleration and angular velocity of each limb 

segment from the joint angle sequence through the LSTM 

network, and the second stage recursively calculates the 

joint torque based on the Newton-Euler dynamic equation. 

The estimation of the lower limb joint torque introduces 

the GRF collected by the force platform as a boundary 

condition, so that the correlation coefficient of the knee 

flexion torque reaches 0.91 (p<0.01). The calculation of 

the center of mass trajectory adopts the segmented rigid 

body method, which divides the human body into seven 

rigid body segments, namely head-arm-torso-leg, and 

performs weighted fusion according to the center of mass 

position of each segment and its percentage of body 

weight, and finally outputs the three-dimensional center of 

mass trajectory error [21]. 

The action quality evaluation system includes two 

dimensions: kinematic standardization score and dynamic 

efficiency index. The standardization score uses the DTW 

dynamic time warping algorithm to align the real-time 

collected action sequence with the gold standard sequence 

annotated by experts in time and space, and calculate the 

root mean square error (RMSE) and Pearson correlation 

coefficient of the joint angle curve. The RMSE threshold 

of the knee joint angle curve is set to 5°. If the threshold is 

exceeded, the action deformation warning is triggered. 

Energy efficiency evaluation is based on the calculation 

model of muscle work. The Hill-type muscle model is 

used to simulate the contraction power of the main muscle 

groups (quadriceps and hamstrings), and the muscle 

activation parameters are calibrated in combination with 

electromyographic signals. Finally, the mechanical work 

ratio is output to quantify the economy of the movement. 

Joint load analysis is achieved through the contact force 

prediction model, which uses deep learning to regress the 

peak contact force and cumulative load of the joint surface 

to meet the needs of clinical biomechanical analysis. This 

paper also develops a biomechanical feature library for 

special sports. For example, the stepping and jumping 

phase analysis module for high jump events can 

automatically extract characteristic parameters such as the 

knee flexion angle of the stepping leg (sensitive range 50°-

65°) and the rising slope of the hip joint torque during the 

extension phase (standard value ≥85Nm/s), and establish 

a technical action-performance correlation model through 

multivariate regression analysis with sports performance. 

All biomechanical parameters are presented through the 

Biomechanics Analysis Toolkit (BAT) visualization 

module to provide coaches with a quantitative decision-

making basis. 

4 Results and discussion 

4.1 Experimental setup 

In the experimental design, the data set is constructed 

using a multimodal synchronous acquisition scheme, 

which includes 10,200 video clips (3-5 seconds/segment) 

and supporting biomechanical data generated by 50 

professional athletes in 6 sports (sprinting, long jump, 

basketball shooting, etc.). Some of the data are shown in 

Table 2. The 15 evaluation datasets used for recognition 

benchmarking (see Figures 3 and 4) are segmented subsets 

derived from the five core datasets (DS-001 to DS-005) in 

Table 2, each representing distinct action types or separate 

recording sessions. 

Table 2: Experimental data collection 

Datas

et ID 

Sport/Acti

vity 

Vide

o 

Clip

s 

Biomechani

cal Data 

Volume 

(GB) 

Participa

nts 

DS-

001 
Sprint 

1,80

0 
432 8 

DS-

002 
Long Jump 

1,65

0 
396 7 

DS-

003 

Basketball 

Shooting 

1,72

0 
413 9 

DS-

004 

Swimming 

Turn 

1,68

0 
403 6 

DS-

005 

Tennis 

Serve 

1,75

0 
420 10 

 

The synchronously collected biomechanical data 

include ground reaction force (GRF), joint angle and 

electromyographic signal (sEMG), with a sampling rate of 

200 Hz. Millisecond-level synchronization between video 

frames and mechanical data is achieved through 

timestamp calibration. The GRF data is subjected to 

Butterworth low-pass filtering to remove high-frequency 

noise. 

This paper hypothesizes that combining multimodal 

CNN with biomechanical models can improve the 

accuracy of action recognition and the fidelity of joint 
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torque estimation, and intends to conduct experimental 

verification. 

4.2 Performance comparison analysis 

In response to the long-standing problems of 

insufficient recognition accuracy and low efficiency in the 

field of motion recognition, this study conducts a 

comparative experiment to quantitatively evaluate the 

differences in core performance indicators between the 

traditional rule-based recognition method and the new 

CNN-driven recognition system. To ensure a fair 

comparison, the CNN-driven system in this experiment 

utilizes fused multimodal input—including video, IMU 

(inertial measurement unit), and GRF (ground reaction 

force)—while the traditional rule-based method relies 

solely on video signals. This design highlights the added 

value of multimodal fusion in enhancing recognition 

accuracy and efficiency. The results are shown in Figures 

3 and 4, respectively: 

 

Figure 3: Recognition accuracy 

In Figure 3, from the maximum value dimension, the 

highest recognition accuracy of the traditional method is 

77.1%, while the CNN model achieves 97.8% in the best 

performance, a difference of 20.7%. This gap fully 

demonstrates the significant advantage of the CNN model 

in feature representation. It is worth noting that the 

recognition rate of the CNN model on 5 sets of data sets 

exceeds 90%, showing excellent stability and 

generalization ability. The traditional method only 

achieves a recognition rate of more than 75% on 5 sets of 

data sets, and the highest value does not exceed 80%, and 

its performance has an obvious ceiling. From the 

perspective of minimum value, the minimum recognition 

rate of the traditional method is 60.7%, while the 

minimum performance of the CNN model is 80.1%, a 

difference of 19.4%. It is particularly noteworthy that the 

CNN model can still maintain a recognition rate of more 

than 80% under the worst performance conditions, a 

benchmark value that is even higher than the best 

performance of the traditional method. The CNN-based 

recognition system proposed in this paper surpasses 

traditional methods in terms of recognition accuracy. Its 

performance advantages are mainly reflected in three 

aspects: First, the CNN model breaks through the 

limitations of traditional methods that rely on manually 

designed features through an end-to-end deep learning 

framework and can automatically extract more 

discriminative motion features; in action category 

recognition, the CNN model maintains a recognition rate 

of more than 80%, while traditional methods show 

obvious performance degradation. These quantitative 

analysis results fully verify the technical superiority of the 

CNN model in the task of motion recognition and provide 

a more reliable recognition basis for subsequent 

biomechanical analysis. 

 

Figure 4: Recognition time 

The data in Figure 4 shows that the CNN-based 

recognition system significantly outperforms traditional 

rule-based methods in processing efficiency. While the 

traditional approach averages 677.8 milliseconds per 

sample (range: 508–796 ms), our system achieves an 

average of 288.7 milliseconds (range: 200 – 397 ms), 

marking a 57.4% reduction in latency. This efficiency gain 

stems from CNN’s parallel computing architecture and its 

end-to-end feature extraction capabilities, which eliminate 

the multi-step delays seen in conventional pipelines. 

Crucially, this sub-300 millisecond latency falls well 

within the real-time feedback threshold commonly cited in 

sports science literature. Previous studies have indicated 

that feedback delays under 300 ms are perceived as 

effectively instantaneous by athletes during high-speed 

movements. Therefore, our system is well-suited for real-

time training scenarios, enabling immediate feedback on 

movement quality. This responsiveness allows athletes to 

adjust technique and posture on the fly and helps coaches 

implement timely, data-driven training corrections. 

In practical terms, this low-latency feedback 

mechanism contributed to a measurable reduction in 

training cycles—from 6.2 to 3.8 weeks—in our controlled 

trial. This 38.7% improvement translates into faster skill 

acquisition, improved motion standardization, and more 

efficient use of coaching and facility resources. In 

competitive sports contexts, such acceleration in training 

response can directly impact performance outcomes and 

injury prevention. 
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4.3 Comparative analysis with SOTA 

methods 

In order to comprehensively evaluate the performance 

advantages of the CNN-based athlete action recognition 

system proposed in this paper, the SOTA method is 

selected as the basketball action recognition method 

proposed by Khobdeh that combines YOLO and deep 

fuzzy LSTM network. This method has achieved excellent 

results on the SpaceJam and Basketball-51 datasets. The 

recognition accuracy of this method on the SpaceJam and 

Basketball-51 datasets is shown in Table 3: 

Table 3: Comparative data 

Test ID 
SpaceJam 

Dataset 

Basketball-51 

Dataset 

1 98.9 99.2 

2 98.5 99.0 

3 97.8 98.5 

4 96.5 97.2 

5 95.0 96.8 

The table shows the performance comparison of five 

advanced technical solutions in the current field of 

basketball action recognition on two standard datasets, 

SpaceJam and Basketball-51. All test results achieved an 

ultra-high recognition accuracy of more than 95%, 

highlighting the advantages of this method over existing 

methods. 

4.4 Biomechanical analysis verification 

4.4.1 Joint angle measurement accuracy 

In the joint angle measurement accuracy verification, 

the CNN-based 3D key point estimation results are shown 

in Table 4: 

Table 4: Joint angle data 

Joint/Angle RMSE 
Pearson 

Correlation 

Key 

Observations 

Knee 

Flexion 

3.2° ± 

1.1° 

0.98 

(p<0.01) 

Max 

instantaneous 

error: 5.8° 

(initial phase 

of rapid 

extension) 

Hip 

Abduction 

2.7° ± 

0.9° 

0.96 

(p<0.01) 

Static error: 

1.5°; Dynamic 

error: 3.9° 

(movement 

complexity) 

Ankle 

Dorsiflexion 

4.1° ± 

1.3° 

0.94 

(p<0.01) 

Error rises to 

6.5° during 

foot occlusion 

 

The data in Table 4 show that the root mean square 

error (RMSE) of the knee flexion angle is 3.2° ± 1.1°, with 

a Pearson correlation coefficient of 0.98 (p < 0.01). The 

maximum instantaneous error occurs at the beginning of 

the rapid extension phase (5.8°), where motion blur and 

joint occlusion are most likely. The RMSE of the hip 

abduction angle is 2.7° ± 0.9°, with a correlation of 0.96 

(p < 0.01). Measurement accuracy in static postures (error 

≈ 1.5°) is notably higher than that in dynamic movements 

(error ≈ 3.9°), indicating the model’s sensitivity to motion 

complexity. The RMSE for ankle dorsiflexion is 4.1° ± 

1.3°, and the correlation is 0.94 (p < 0.01); however, error 

rises to 6.5° in cases of visual occlusion. 

Further analysis reveals that the resolution of the input 

video is a key limiting factor. Using a 1000 fps high-speed 

camera reduces the overall angular error by approximately 

18%. In addition, the ±2.3-pixel deviation in trunk 

keypoint detection from OpenPose propagates through the 

inverse kinematics solver. The simplified multi-rigid-

body modeling assumptions also contribute to a 

systematic underestimation (~1.5°) in hip joint angles 

under high-load conditions. 

While Table 4 focuses on joint-level biomechanical 

accuracy, the following Table 5 provides a comprehensive 

comparison of the proposed CNN + Biomech model with 

traditional and deep learning baselines on motion 

classification tasks, using multimodal inputs and extended 

evaluation metrics. 

Table 5: Comparative evaluation of motion recognition 

models 

Mode

l 

Accur

acy 

(%) 

RM

SE (

↓) 

M

AE 

(↓

) 

St

d 

De

v (

±) 

IC

C (

↑) 

AU

C (

↑) 

p-

val

ue 

SVM  85.6 0.37 
0.2

9 

2.

84 

0.7

32 

0.8

73 
– 

HM

M  
88.2 0.33 

0.2

5 

2.

36 

0.7

54 

0.8

94 
– 

YOL

O + 

LST

M  

91.4 0.25 
0.1

9 

1.

97 

0.8

18 

0.9

35 
– 

CNN 

+ 

Biom

ech  

97.8 0.18 
0.1

1 

1.

73 

0.9

62 

0.9

81 

<0.

05 

 

(Note: RMSE = Root Mean Square Error; MAE = 

Mean Absolute Error; Std Dev = Standard deviation of 

classification accuracy across action classes; ICC = 

Intraclass Correlation Coefficient for torque estimation; 

AUC = Area Under Curve of ROC. p-value derived from 

paired t-test versus YOLO + LSTM baseline.) 

The CNN + Biomech model outperforms all baseline 

methods across every evaluation metric. With an accuracy 

of 97.8%, it exceeds the best baseline (YOLO + LSTM, 

91.4%) by a margin of 6.4%. It also achieves the lowest 

RMSE (0.18) and MAE (0.11), demonstrating strong error 

suppression capabilities across multiple motion classes. 

The standard deviation of accuracy (±1.73%) indicates 

that performance is stable across diverse actions. 

From a biomechanical perspective, the model obtains 

the highest ICC value (0.962), confirming consistent 

torque estimation across joints. Its AUC of 0.981 
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highlights excellent class discrimination. The 

improvement is statistically significant (p < 0.05), 

validating the effectiveness of multimodal data integration 

and biomechanical modeling. This confirms the system’s 

practical viability for both action recognition and real-time 

biomechanical assessment in training environments. 

4.4.2 Analysis of consistency of torque 

calculation 

In the torque calculation consistency analysis, the 

intraclass correlation coefficient (ICC) evaluation shows 

that the CNN predicted the peak torque of the hip joint to 

achieve a consistency of 0.92 (95% confidence interval 

[0.88, 0.95]), the knee joint to 0.89 ([0.84, 0.93]), and the 

ankle joint to 0.85 ([0.79, 0.90]), and all joints met the 

"excellent" consistency standard of the Cicchetti criterion. 

The deviation of the knee joint torque is small (4.1Nm) 

during the cushioning period (flexion phase), but increases 

to 14.6Nm during the extension phase (extension phase), 

which is closely related to the temporal transmission of the 

ground reaction force (GRF) measurement error. 

Experiments have found that the zero drift of the IMU 

accelerometer will increase the torque prediction 

deviation in the initial contact period (0-50ms) by 15%, 

and the LSTM network's ability to capture the torque 

change rate directly affects the timing positioning of the 

peak torque, resulting in delays. By introducing the force 

platform GRF data as a boundary condition, the ICC of the 

knee torque can be further improved by 0.04 to 0.93. At 

the same time, adding a dynamic constraint loss function 

based on the Newton-Euler equation to CNN training can 

effectively suppress unreasonable biomechanical 

prediction outputs such as knee hyperextension torque. 

4.4.3 Ablation study 

To further investigate the contribution of individual 

modules in our proposed architecture, we performed an 

ablation study by selectively disabling key components: 

(1) w/o Biomechanical Module: Removes the joint 

torque estimation branch based on inverse dynamics. 

(2) w/o Attention Mechanism: Replaces the channel-

wise attention fusion with uniform weighting across 

modalities. 

(3) Basic CNN: Substitutes the multimodal-temporal 

backbone with a plain 5-layer CNN without temporal or 

attention modules. 

Each variant was evaluated in terms of motion 

classification accuracy and peak knee joint torque 

estimation error. 

Table 6: Ablation study results on classification accuracy 

and knee joint torque estimation across different model 

configurations. 

Configuration 
Accuracy 

(%) 

Knee Torque 

RMSE (Nm) 

ICC 

(knee) 

Full Model  97.8 4.1 0.93 

w/o Biomech 

Module 
96.2 — — 

w/o Attention 

Module 
94.7 6.5 0.86 

Basic CNN 91.3 7.9 0.82 

 

The results indicate that the biomechanical module is 

essential for torque estimation and also improves 

recognition performance by modeling domain-specific 

constraints. The attention mechanism enhances both 

classification and regression accuracy by weighting 

reliable sensor channels. Without these modules, the 

model's performance degrades substantially, confirming 

their critical roles. All other training parameters and 

dataset configurations were kept constant across model 

variants to ensure a fair comparison. 

4.5 Discussion on the actual application 

scenarios of the system 

In the real-time training feedback scenario, the CNN-

based motion recognition system achieves low end-to-end 

processing delay through multimodal data 

synchronization technology to meet millisecond-level 

feedback requirements. In terms of hardware 

configuration, the professional-level solution requires a 

1000fps high-speed camera, a force platform, and an IMU 

sensor, with an estimated cost ranging from 100,000 to 

500,000 yuan. Such high-end configurations are typically 

accessible only to elite sports institutions or research 

laboratories, posing a significant barrier to wider adoption 

in grassroots teams, rehabilitation centers, and school-

level sports programs. In contrast, the consumer-level 

alternative (smartphone + MobilePoser application) 

leverages transfer learning to adapt the CNN model, 

reducing the system cost to under 10,000 yuan. Although 

this setup introduces moderate increases in joint angle 

error, it maintains acceptable performance in real-world 

conditions. Therefore, reducing dependence on high-end 

hardware will be a key direction for improving the 

scalability and accessibility of the system in future 

iterations. 

For coaches to develop personalized training plans, 

the system generates a deviation score by comparing the 

dynamic time warping (DTW) of the quantified 

biomechanical parameters (peak knee flexion angle, GRF 

curve) with the standard action template (golf swing 

golden sequence), and monitors injury risk indicators such 

as knee valgus torque >40Nm in real time. In terms of 

data-driven optimization, the system combines historical 

action data with the performance association model to 

dynamically recommend load adjustments. At the same 

time, it uses 3D skeletal animation playback to visualize 

technical defects and recommend targeted training plans. 

In the long-term plan, the LSTM timing model analyzes 

the evolution characteristics of the action to generate 

periodized training suggestions, while cross-modal 

analysis identifies muscle activation abnormalities and 

optimizes neuromuscular control training. 

While the proposed CNN-based multimodal system 

demonstrates high accuracy and practical relevance, 

several key challenges remain. Compared to other state-
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of-the-art (SOTA) methods such as YOLO combined with 

fuzzy LSTM, our method achieves superior performance 

(97.8% vs. 89.2%) on complex multimodal datasets, 

highlighting the benefit of fusing visual and 

biomechanical signals. To further contextualize this 

advantage, we conducted a supplementary comparison 

with a conventional rule-based recognition system. Using 

the same multimodal dataset subsets, the rule-based 

method— based solely on handcrafted thresholds and 

kinematic heuristics—achieved an average recognition 

accuracy of 74.6%, with notable degradation under 

occlusion. In contrast, our CNN-based system consistently 

reached 97.8% accuracy, showing a 23.2% improvement 

and greater robustness in dynamic conditions. These 

results further validate the limitations of traditional 

methods and reinforce the necessity of deep learning-

based multimodal fusion. However, this improvement 

comes with notable overhead in terms of data acquisition 

complexity and hardware requirements (e.g., high-speed 

cameras, force platforms), which may hinder large-scale 

or grassroots deployment. Although a consumer-level 

variant using transfer learning can reduce cost, it 

introduces accuracy trade-offs, particularly in scenarios 

involving extreme occlusion or rapid movement. In such 

cases, the RMSE of joint angles can exceed 6°, and torque 

estimation delay may increase due to IMU drift. These 

observations underline the system’s current limitations in 

generalization, especially for dynamic, uncontrolled 

environments. To quantify the impact of hardware 

simplification on system performance, we conducted a 

comparative analysis between the professional setup and a 

consumer-level configuration using smartphone video and 

IMU input. The action classification accuracy decreased 

from 97.8% to 93.4%, the RMSE of joint angle estimation 

increased from 3.2°  to 6.3° , and the torque estimation 

latency rose from 288.7 ms to 392.4 ms. These 

degradations are mainly attributed to lower frame rates, 

motion blur, and IMU drift. Nonetheless, the system 

maintained acceptable real-time performance and 

biomechanical accuracy for field training scenarios 

without access to laboratory-grade equipment. To further 

assess the system’s robustness under real-world 

conditions, we conducted controlled experiments 

involving partial occlusion and background complexity. In 

scenarios where upper-body joints were intermittently 

obscured by objects or overlapping athletes, recognition 

accuracy declined by an average of 4.9%, and joint torque 

estimation error increased by 1.7 Nm. Despite these 

challenges, the system maintained a minimum 

classification accuracy of 89.1%, demonstrating resilience 

in unstructured environments. These results underscore 

the benefit of multimodal fusion and attention 

mechanisms in mitigating the adverse effects of visual 

obstructions. Future work will focus on incorporating 

occlusion-aware training data and spatial priors to enhance 

system robustness. 

4.6 Training effect improvement 

verification 

In the training effect improvement verification phase, 

the experiment adopted a randomized controlled trial 

design and randomly divided 30 athletes of the same level 

into two groups for comparative research. The 

experimental results are shown in Table 7: 

 

 

 

Table 7: Training effect comparison data 

Comparis

on 

Dimensio

n 

Traditio

nal 

Video 

Playback 

Group 

Real-

Time 

Feedba

ck 

Group 

Significance/Impro

vement 

Technical 

Improve

ment 

Cycle 

(weeks) 

6.2 3.8 
Reduced by 2.4 

weeks (p=0.008) 

Training 

Efficienc

y 

Improve

ment (%) 

- 38.7 

Direct calculation 

from cycle 

reduction 

Action 

Recogniti

on Error 

Rate (%) 

5.0 3.2 

1.8 percentage 

points lower 

(↓36%) 

Sample 

Size 

(subjects) 

15 15 
30 total subjects, 

randomized evenly 

Data 

Update 

Frequenc

y 

Offline 

analysis 

(once/we

ek) 

Real-

time 

feedba

ck (30 

times/s

ec) 

>99% timeliness 

improvement 

 

The traditional video playback group relies on manual 

video annotation and offline analysis, and the technical 

improvement cycle takes an average of 6.2 weeks. The 

real-time feedback group using this system shortens the 

technical improvement cycle to 3.8 weeks (p=0.008) and 

improves the training efficiency by 38.7% by combining 

the spatiotemporal features extracted by CNN with the 

biomechanical parameters collected by the IMU sensor. 

Shortening the training cycle can enable athletes to 

discover and correct technical defects more quickly, adapt 

to the rhythm of the game and changes in rules in a timely 

manner, thereby improving their competitive level and 

results; at the same time, it can optimize the utilization of 

training resources, improve the efficiency of coaching, 

save training time and costs, and enhance athletes' training 

enthusiasm and confidence; in addition, it provides strong 

support for the scientific development of sports training, 

drives training decisions with data and promotes 

innovative iterations of training methods. This 
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performance improvement is mainly due to the improved 

residual network structure in the system architecture, 

which controls the average error rate of action recognition 

below 3.2% by introducing cross-layer connections and 

batch normalization technology, which is 1.8 percentage 

points lower than the traditional method. 

In a typical application case, the system monitors the 

angle and speed parameters of the shot putter in real time 

and finds that the original angle of the shot putter has a 

deviation of 2.3°. After three weeks of systematic 

adjustment, the shot putter's angle is optimized, and the 

throwing distance increases from 18.7 meters to 19.7 

meters, an increase of 5.3%. This improvement not only 

verifies the accuracy of the system in sports parameter 

detection but also reflects its actual value in improving 

sports performance. 

From the analysis of biomechanical mechanism, the 

optimized shooting angle reduces the interference of air 

resistance on the flight trajectory of the shot put and 

improves the efficiency of kinetic energy transfer, which 

is consistent with the research conclusions on the optimal 

shooting angle in classical ballistics theory. The technical 

advantages of the system are mainly reflected in the 

multimodal data fusion processing capability. By 

synchronously integrating the visual data collected by the 

high-speed camera and the mechanical parameters 

obtained by the inertial measurement unit (IMU), a motion 

analysis model with more complete spatiotemporal 

characteristics is constructed. 

In the extended verification of the high jump event, 

the system successfully helps athletes improve their 

landing stability by 22.5% (p=0.003) by real-time 

monitoring of the knee abduction torque (KAM) 

parameters during the landing phase. However, it should 

be pointed out that the current system is highly dependent 

on high-precision sensors, especially the use of 

professional equipment such as three-dimensional force 

platforms, which to a certain extent limits the 

popularization and application of the system. 

4.7 Ablation study of KL divergence time 

smoothing term 

Two versions of the model are constructed: one is a 

model that only uses the baseline cross entropy (CE) loss 

(hereinafter referred to as the "baseline model"), and the 

other is a model that adds the KL divergence time 

smoothing term to the baseline model (hereinafter referred 

to as the "full model"). The two models use the same 

training strategy and hyperparameter settings, including 

initial learning rate, learning rate adjustment strategy, 

batch size, etc. to ensure the fairness of the experiment. 

After training, the evaluation is performed on the same test 

set. The results are shown in Table 8: 

Table 8: Ablation experiment results 

Evaluation 

Metric 

Baseline 

Model 

(CE) 

Complete 

Model 

(CE+KL) 

Improvement 

Test 

Accuracy (%) 
95.7 97.3 +1.6 

Recall (%) 94.2 96.5 +2.3 

F1-score 0.949 0.968 +0.019 

Class 

Variance 

(×10⁻²) 

3.8 2.1 -44.7% 

Inference 

Latency (ms) 
18.3 19.5 +6.6% 

 

This table compares the performance difference 

between using only cross entropy loss (95.7% accuracy) 

and the complete model combined with KL divergence 

(97.3% accuracy). The data shows that KL divergence 

improves accuracy by 1.6% and reduces category variance 

by 44.7%, verifying its enhanced effect on the stability of 

action recognition. Although the inference latency 

increases by 6.6% to 19.5ms, it is still within the range 

allowed by real-time processing. These results confirm the 

effectiveness of KL divergence in improving the 

performance of temporal action recognition and provide a 

quantitative basis for model optimization. 

4.8 Data privacy 

In terms of data privacy protection, the study adopts a 

multi-level protection system: the facial features of 

athletes in the video are desensitized by Gaussian blur 

technology, and direct identification information such as 

names and team uniform numbers are removed to achieve 

data anonymization; all raw data are stored in an encrypted 

server with two-factor authentication, and a role-based 

access control mechanism is established to ensure that 

only authorized researchers can access the experimental 

data; the scope of data use is strictly limited to the scope 

of motion recognition and biomechanical analysis of this 

study, and third-party data sharing or commercial use 

without written permission is prohibited. The entire data 

processing process complies with the requirements of the 

"Personal Information Protection Law of the People's 

Republic of China" and the "Information Security 

Technology Personal Information Security Specification" 

(GB/T 35273-2020), and a compliance framework that 

takes into account scientific research innovation and 

privacy rights and interests has been established. This 

ethical governance system implements closed-loop 

control from collection, storage, processing to destruction 

through cross-modal data lifecycle management, laying a 

reliable technical ethical foundation for the deep 

integration of sports biomechanics and artificial 

intelligence. 

5 Conclusion 
This paper proposes an athlete action recognition 

system based on a convolutional neural network (CNN), 

integrated with biomechanical analysis to provide a novel 

and effective approach for motion recognition in athletic 

settings. By leveraging multimodal data sources—

including high-speed cameras, inertial measurement units 

(IMUs), and force platforms—the system enables 

comprehensive capture and in-depth analysis of athlete 

movements. The introduction of a biomechanical analysis 
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module allows for quantitative evaluation of movement 

quality, offering practical support for sports training 

optimization and performance assessment. 

Despite achieving promising results, the current system 

still faces certain limitations. First, the acquisition and 

synchronization of multimodal data require high-

performance hardware and incur considerable cost, 

potentially restricting large-scale deployment. Second, the 

robustness and accuracy of recognition under complex 

scenarios and extreme sports conditions need further 

enhancement. Third, while the biomechanical module 

provides a rich set of dynamic indicators, their direct 

linkage to athletic performance and personalized training 

guidance remains an open research question. 

Looking ahead, we aim to address these challenges 

through three key directions: (1) optimizing the data 

acquisition and preprocessing pipeline to lower hardware 

costs and enhance system scalability; (2) developing more 

efficient and robust deep learning architectures that can 

better accommodate complex motion patterns and 

environmental variability; and (3) advancing 

biomechanical modeling to establish a more 

comprehensive framework for motion quality evaluation, 

thereby enabling precise and personalized training 

recommendations for individual athletes. 

Moreover, although the proposed system has shown 

strong performance on common sports actions such as 

sprinting, tennis serves, and swimming strokes, its 

generalizability to more complex and less structured 

movements (e.g., gymnastics, martial arts, and acrobatics) 

remains to be explored. These activities typically involve 

rapid three-dimensional rotations, frequent self-occlusion, 

and significant inter-individual variability, which pose 

additional challenges for visual perception and 

biomechanical estimation. Future research will focus on 

improving generalization by expanding the dataset and 

integrating adaptive kinematic priors to better model these 

non-standard motion patterns in diverse real-world 

contexts. 

 

Appendix A: Dataset structure and 

access 
The dataset consists of 10,200 multimodal samples 

collected from 50 athletes. Each sample includes 

synchronized data from three primary sources: 

(1) High-speed video: Captured at 1000 fps using a 

NAC Memrecam HX-6E camera with 2560×1920 

resolution. 

(2) Inertial data (IMU): Collected using six TDK 

ICM-42688 sensors mounted on lower limbs and torso, 

sampled at 2000 Hz, capturing 3-axis acceleration and 

gyroscope signals. 

(3) Force platform data: Acquired using an AMTI 3D 

force platform, recording vertical and horizontal ground 

reaction force (GRF) components at 1000 Hz. 

Each motion clip is annotated with: 

(1)A predefined motion class (12 categories); 

(2) Biomechanical indicators such as peak knee 

flexion angle, GRF extrema, and joint torque estimations 

(hip, knee, ankle). 

To ensure consistency and ease of access, the dataset is 

organized using a unified directory structure as shown in 

Figure 5. 

 

Figure 5. Standardized file structure diagram of a 

multimodal motion sample. 

Due to ethical and institutional constraints, the dataset 

is not publicly available. However, it may be shared with 

verified academic researchers upon reasonable request. 

Interested parties may contact the corresponding author to 

initiate a data use agreement. This appendix is provided to 

assist reproducibility and to enable implementation of the 

proposed model architecture using comparable datasets. 

Appendix B: Pseudocode for 

multimodal action recognition and 

biomechanical analysis pipeline 
To enhance the reproducibility of this study, we 

provide a structured pseudocode that outlines the full 

pipeline from multimodal data preprocessing to action 

recognition and joint torque estimation. This pseudocode 

corresponds directly to Sections 3.1 through 3.3 and is 

consistent with the system architecture shown in Figure 1. 

It describes the data flow and key components, including 

temporal synchronization, multimodal feature encoding, 

CNN-based classification, and OpenSim-based 

biomechanical modeling. Researchers may refer to this 

high-level implementation logic for system reconstruction 

or further development. 

 

Input: Video frames V, IMU data I, GRF data G 

Output: Action class C, Joint angles Q, Joint torques T 

1. // Step 1: Data Preprocessing 

2. Align timestamps across V, I, G using DTW and VINS 

calibration 

3. Extract 2D/3D keypoints from video using OpenPose 

4. Filter IMU signals with Butterworth filter + Kalman 

smoothing 

5. Normalize video and force data (e.g., min-max scaling) 

6. // Step 2: Multimodal Feature Fusion 

7. Encode each modality into feature tensors: FV, FI, FG 

8. Concatenate features into 4D tensor: X = [FV, FI, FG] 

9. Apply spatial 2D and temporal 3D convolutions on X 

10. Fuse features with attention module 

11. // Step 3: Action Recognition via CNN 
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12. Feed fused tensor X into CNN (ResNet-50 + SE + 

spatiotemporal layers) 

 

 

 

 

 

13. Predict action class: C = argmax (CNN(X)) 

14. // Step 4: Biomechanical Analysis 

15. Map CNN keypoints to OpenSim musculoskeletal 

model 

16. Compute joint angles Q using inverse kinematics 

optimization (LM algorithm) 

17. Predict segment dynamics via LSTM: (a, ω) 

18. Compute joint torques T using Newton-Euler method 

with GRF 

19. Return: C, Q, T 
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