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Autonomous drone navigation in rural landscapes presents challenges due to irregular terrains and lim-
ited infrastructure, necessitating both robust control and reliable environmental perception. This study
proposes an integrated framework that combines a proportional-integral-derived-accelerated (PIDA) con-
troller, optimized using the stochastic dual-simplex Algorithm (SDSA), with deep learning-based image un-
derstanding techniques for enhanced autonomy. Specifically, PSMNet is used estimate depth from stereo
image pairs captured by the drone’s dual cameras, achieving a mean absolute error (MAE) of 0.32 m,
while RetinaNet enhanced with Ant Colony Optimization (ACO) is applied for object detection, producing
a mean average precision (mAP) of 53. 4%. The SDSA optimized PIDA controller significantly improves
control precision, reducing overshoot by 48% and achieving a 35% faster convergence time compared to
traditional PID controllers. Stability metrics show an improvement 42% in disturbance rejection under
varying payloads. Experimental validation using simulations and real-time tests confirms the approach’s
practicality, with a 27% lower computational cost compared to Sliding Mode Control (SMC). These results
affirm the proposed system s effectiveness for real-world rural landscape planning and autonomous UAV
navigation

Povzetek: Predstavijena je avtonomna navigacija drona kot integracija PIDA krmilnika z derivativnim fil-
trom, optimiziran s SDSA, z globinsko oceno PSMNet in detekcijo RetinaNet-ACO za avtonomno navigacijo

UAV v GPS-odtegnjenih okoljih; validacija zgolj v simulacijah.

1 Introduction

Unmanned aerial vehicles (UAVs) have attracted signifi-
cant interest in various domains, including search and res-
cue operations, package delivery, and crowd-sourcing ini-
tiatives [1], [2]. UAVs, commonly known as drones, have
seen advancements in areas such as robotics, control sys-
tems, path optimization, and communication technologies
[3], [4], [5]- The increasing adoption of these technolo-
gies in commercial and civilian applications has driven re-
search efforts to enhance their controllability and overall
performance. Among UAV types, quadcopters are par-
ticularly popular due to their vertical take-off and land-
ing capabilities and relatively simple design. However,
quadcopters exhibit inherent instability, complex dynam-
ics, non-linear behavior, and strong coupling between dif-
ferent movements, making control a significant challenge.
Managing their non-linear dynamics is crucial for achiev-
ing stable and reliable flight performance.

Several control methodologies have been proposed to ad-
dress quadcopter nonlinearity. These include command-
filtered proportional derivative (PD) and proportional in-
tegral derivative (PID) controllers [6], integral predictive

control [7], and optimal control strategies [8], [9]. Slid-
ing Mode Control (SMC) is another widely used approach
known for its robustness against modeling inaccuracies and
external disturbances [5], [10], [11]. However, a major
drawback of SMC is the chattering phenomenon, which in-
troduces high-frequency unmodeled system dynamics, af-
fecting stability and control performance.

Among these controllers, the PID controller remains a
popular choice due to its simplicity and widespread adop-
tion. However, it suffers from limitations such as signifi-
cant overshoot and prolonged settling times [12]. To mit-
igate these issues, this study introduces an enhanced PID
controller with a derivative filter (PIDA), aimed at improv-
ing stability, reducing overshoot, and achieving faster re-
sponse times. The proposed system integrates deep learn-
ing techniques for real-time image processing, allowing au-
tonomous navigation without reliance on GPS. [13]The ob-
jective is to enhance the capability of the UAV in object
recognition and depth estimation, allowing precise tracking
of targets. Specifically, human face detection is performed
using a hybrid RetinaNet and ant colony optimization ap-
proach [14], [15]. Specifically, PSMNet is used to estimate
depth from stereo image pairs captured by the drone’s dual
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cameras [16].

To optimize control performance, the Stochastic Dual
Simplex Algorithm (SDSA) [17] is used to fine-tune the
controller parameters. SDSA balances exploration and ex-
ploitation to identify optimal settings, ensuring robust and
adaptive control under varying conditions. Based on these
advancements, we hypothesize that the SDSA-optimized
PIDA controller will outperform traditional PID controllers
in terms of overshoot and settling time under noisy con-
ditions. Although the main focus of this work is on au-
tonomous UAV navigation for rural landscape planning,
where irregular terrain, limited infrastructure, and GPS-
denied zones present key challenges, we begin with con-
trolled indoor simulations to validate the core control and
perception modules. These indoor scenarios, such as track-
ing a building mock-up or stationary object, are representa-
tive of structural elements that may also appear in rural en-
vironments (e.g., barns or utility sheds) and allow for safe
and reproducible testing of UAV autonomy in GPS-denied
conditions.

1.1 Research objective

The objective of this research is to develop an autonomous
UAV navigation system using a PIDA controller optimized
with a stochastic dual simplex algorithm (SDSA). This sys-
tem aims to improve stability, reduce overshoot, and en-
hance robustness in challenging rural landscape environ-
ments.

1.2 Research hypotheses

This study investigates the performance of an SDSA-
optimized PIDA controller compared to traditional con-
trollers. The following hypotheses are formulated:

— H1: The SDSA-optimized PIDA controller achieves a
lower overshoot and faster convergence than conven-
tional PID controllers.

— H2: The proposed approach improves the stability of
the system under external disturbances.

— H3: The computational efficiency of the proposed
method remains suitable for real-time UAV applica-
tions.

1.3 Method overview

To evaluate the proposed controller, we conducted a series
of computational experiments under varying conditions.
The methodology includes:

1. Designing a PIDA controller optimized with SDSA.

2. Implementing the controller in a UAV simulation en-
vironment.
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3. Evaluating the system using performance metrics such
as overshoot, settling time, and stability under noisy
conditions.

4. Comparing results with baseline controllers, including
traditional PID and SMC.

2 Related works

Unmanned aerial vehicles (UAVs) have emerged as trans-
formative tools in various domains, including search and
rescue operations, delivery services, and crowdsourcing
platforms [18] [19]. Their ability to perform tasks au-
tonomously and navigate through complex environments
has made UAVs an essential part of modern technologi-
cal advancements. For example, in crowdsourcing appli-
cations, UAVs have been utilized to collect real-time data,
which aids in large-scale data aggregation for applications
like environmental monitoring and urban planning [20].
However, the adoption of UAVs for such tasks requires
robust and efficient control systems to address challenges
such as stability, navigation in uncertain environments, and
non-linearity in dynamics.

Quadcopters, a popular type of UAV, are favored for their
vertical take-off and landing (VTOL) capabilities, compact
structure, and ease of maneuverability. Despite these ad-
vantages, quadcopters are inherently unstable systems char-
acterized by cross-coupling between rotational and transla-
tional motions and nonlinear dynamic behaviors. To sta-
bilize these systems, researchers have explored numerous
control strategies.

The Proportional-Integral-Derivative (PID) controller is
among the most widely used techniques due to its simplic-
ity and ease of implementation. However, traditional PID
controllers often result in high overshoot, prolonged set-
tling times, and poor performance in non-linear systems
[21][22]. To overcome these limitations, advanced variants
such as PID controllers with derivative filters have been in-
troduced to enhance response smoothness and reduce over-
shoot [23]. Sliding Mode Control (SMC) has also gained
popularity for its robustness against external disturbances
and modeling errors [24][25]. However, the chattering ef-
fect associated with SMC in steady-state operations can
lead to unmodeled frequency oscillations, which degrade
performance [26].

Recent advancements in artificial intelligence, particu-
larly deep learning, have opened new frontiers in UAV con-
trol. Object detection algorithms such as hybrid RetinaNet
combined with ant colony optimization [27][28] and depth
estimation techniques like PSMNet [29] have been em-
ployed to enable UAVs to navigate autonomously in GPS-
denied environments. These methods provide reliable real-
time information, allowing UAVs to detect targets and esti-
mate their relative distance, thus improving their ability to
operate in complex indoor and outdoor environments.

Optimization algorithms, such as the Stochastic Dual
Simplex Algorithm (SDSA), have been adopted to fine-tune



Autonomous UAV Navigation for Rural Landscapes...

Informatica 49 (2025) 437-454 439

Table 1: Comparative summary of UAV control strategies based on stability, robustness, and computational complexity

Control Strategy Stability | Robustness

Computational Complexity | Key Shortcomings

PID Controller Moderate Low

Low Struggles with nonlinear dy-
namics and external distur-

bances.

Sliding Mode Control (SMC) High High

Moderate Chattering effect; requires

precise system modeling.

Optimal Control High Moderate

High Computationally expensive;
difficult to implement in

real-time applications.

Deep Reinforcement Learning | Adaptive High

Very High Requires large training
datasets; slow adaptation in

dynamic environments.

PIDA + SDSA (Proposed) Very High High

Moderate Balances stability, robust-
ness, and efficiency; op-
timizes control parameters

dynamically.

controller parameters, balancing the trade-off between ex-
ploration and exploitation. SDSA has proven effective in
optimizing non-linear systems and improving control per-
formance under dynamic conditions [30].

2.1 Justification for proposed approach

While PID controllers are simple and computationally effi-
cient, they lack robustness in uncertain environments. SMC
improves robustness but suffers from chattering, making
it less suitable for smooth UAV control. Optimal con-
trol strategies provide high precision but are computation-
ally expensive, making real-time deployment challenging.
Deep reinforcement learning offers adaptability but de-
mands extensive training and is computationally intensive.

The proposed PIDA controller optimized with Stochastic
Dual Simplex offers a balanced trade-off between stability,
robustness, and computational complexity. It dynamically
tunes control parameters, ensuring faster convergence, re-
duced overshoot, and improved disturbance rejection while
maintaining moderate computational cost suitable for real-
time drone navigation. The comparison of different con-
trol strategies is summarized in Table 1, which presents a
comparative analysis of popular control strategies includ-
ing PID, Sliding Mode Control (SMC), Optimal Control,
and Deep Reinforcement Learning (DRL). As shown, PID
controllers offer moderate stability and low computational
complexity, making them suitable for simple environments
but limited in robustness. SMC is known for high robust-
ness and stability, but suffers from the chattering effect and
requires accurate system modeling. Optimal control strate-
gies deliver high precision but come at a significant com-
putational cost, limiting real-time feasibility. DRL methods
are adaptive and robust but require extensive training data
and high computational power. Our proposed method—
PIDA with SDSA optimization—strikes a balance across
all metrics, achieving very high stability and robustness

with moderate complexity, making it practical for real-time
UAV navigation in challenging rural environments. This
work builds upon the foundation laid by previous research
by introducing an enhanced PID controller with a derivative
filter, optimized using SDSA, and integrating deep learning
techniques for autonomous navigation and target detection
in challenging indoor environments.

3 Methodology

The mathematical model of the system serves as the ini-
tial step in analyzing its performance. In this research,
the quadcopter is modeled as depicted, considering both
Earth-centered inertia (ECI) and body frames. The posi-
tion vectors in the ECI and body frames are defined as
Xr = [xg,vE,z£|" and Xp = [xp,yp,28]T, respectively, rep-
resenting the transformation between the inertia frame and
the body frame due to the accurate dynamic model.

Euler angles—roll, pitch, and yaw—are defined with re-
spect to the x, y, and z axes, respectively. Thus, the Euler
angles are ® = [¢,0, w]”, and the corresponding angular
velocities in the body frame are ® = [¢,8,y]”. The an-
gular velocity in the inertia frame, ® = [p,q,r]”, can be
expressed as follows:

1 0 —sin(0)
o= |0 cos(¢) sin(¢)sin(0) | -© (1)
0 —sin(¢) cos(¢)cos(0)

The total torques acting on the quadcopter are due
to three components: thrust forces (7), body gyroscopic
torque (7), and aerodynamic friction (7,). The torque vec-
tor T = [y, To, TW}T corresponds to rotations about the roll,
pitch, and yaw axes, and is given by the following equa-
tions:

Ty =1(F2 — Fa) (2)
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Figure 1: Proposed workflow of the autonomous drone sys-
tem, integrating advanced control mechanisms, deep learn-
ing for real-time object detection and depth estimation, and
optimization through the Stochastic Dual Simplex Algo-
rithm for enhanced performance in diverse environments.

T9 =I(F3—F) (3)
Ty=c(l,—F+F—-F) 4)

where [ is the distance between the motor center and the
center of mass, and c is the force-to-torque coefficient. As-
suming that the quadcopter is a rigid body with symmetrical
dynamics, the total torque can be expressed as:

t=I0+Q(o) (5)

where Q represents the skew-symmetric matrix of the an-
gular velocity:

0 —r g¢g
Q=|r 0 —p (6)
-4 p 0

The main control inputs of the system are related to the
torques T = [T¢7T6,Tw]T, which are influenced by thrust
forces, body gyroscopic effects, propeller gyroscopic ef-
fects, and aerodynamic friction. These gyroscopic effects
and aerodynamic friction are considered as external distur-
bances. The control inputs can be determined using the fol-
lowing equation:
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Uy Tp o [ 0 -k
A 4 e I R A B
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ur Tr 1 1 1 1 Fy

where 77 represents the lift force, and ur corresponds to
the total thrust generated by the four propellers. The alti-
tude of the drone is controlled by the lift force ur, which is
assumed to be equal to the quadcopter’s weight. The dy-
namic equations of the quadcopter are derived using the
Newton-Euler method [31] [32] [33]. The six degrees of
freedom (6-DOF) motion equations are given as follows:

i=rv—qw—gsin(0) ®)
v=pw—ru+gsin(¢)cos(0) 9
w:qu—pv—l—gcos(e)cos(q))—%uT (10)

1
p=1- [(Ly — Lz)qr+ug +dy| (11)
i= (e Lprugtdy)  (12)

vy

1

F=— [(La—Ly)pg+uy +dy| (13)

I~

Z

where d = [dy,dg,dy]" represents the angular accelera-
tion disturbances corresponding to propeller angular speed.
These disturbances are modeled as:

qln Q2
—pln &2y
0

d= (14)

where Q, = Y} | (—1)iQ; is the overall residual propeller
angular speed, €; is the angular velocity of each rotor, and
I, 1s the rotor moment of inertia around the axis of rota-
tion. Thus, the system’s dynamics can be summarized in
the above equations.

x(t) =A(x) +B(x)u(t)+d (15)

where x = [d)aeav/apaq’r?W]T and y = [y17y27y37y4]T
are the states and measurable outputs, respectively. u =
[u1,uz,u3,u4)" is the control and d is the disturbance. A, B,
C, and D are the nonlinear functions corresponding to the
dynamic equations of the system.

The control design is considered to minimize the error
for tracking the desired command (see Eq. (16)):

lim le(r)| = €

(16)

where e(r) = r(t) — y(¢) is the difference between reference
inputs and the system’s measurable outputs, and € is a small
positive value.
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Figure 2: The proposed hybrid detection model combines RetinaNet for object detection with optimized pathways to
enhance performance. It incorporates classification, regression, data-anchor sampling, multiscale testing, and a focal loss
function to address class imbalance, ensuring high accuracy and efficiency in complex environments.

3.1 Proposed PIDA controller

The PID controller is widely used in many engineering ap-
plications due to its simplicity.[34] [35] However, PID may
not function well when wide overshoot and large settling
time occur in the system. This issue can be addressed by
modifying the PID controller by adding an additional zero,
known as PIDA.[36] The PIDA controller is employed to
achieve a faster and smoother response for higher-order sys-
tems while retaining both overshoot and settling time within
an acceptable limit. Additionally, the proposed linear con-
trol can manage the non-linear system.

u(t) = ky - et) + ki / e(t)dt +kg-é(t) +ka-(r)  (17)

The acceleration term &, - (¢) enhances the controller’s re-
sponsiveness to rapid variations in error. While the deriva-
tive term ¢é(r) provides a damping effect by reacting to the
rate of change of the error, the acceleration term introduces
a predictive element. This enables the system to proac-
tively respond to dynamic changes, enhancing transient
performance and mitigating oscillations caused by high-
frequency noise or sudden disturbances. As a result, it con-
tributes to faster stabilization and more robust control, par-
ticularly in nonlinear or noisy environments.

In this approach, the dynamic airframe is linearized
around the equilibrium point. The linearization of the
model is given by Eq. (18):

AX = JxAX +JyAU (18)

where Jx and Jy are the Jacobian matrices of the
nonlinear model around the equilibrium point X,, =
[00, 60, Vo, P0,q0,70,wo]T. The equilibrium point can be
calculated by solving X = AX = 0, where any solution
can be considered the equilibrium point, given that the null
space exists when det(A) = 0.

In this regard, a Multi-Input Multi-Output (MIMO) con-
trol system design follows the desired command in altitude
and attitude channels.[37][38] A MIMO tracking controller
not only stabilizes the system but also ensures it follows a
reference input. Thus, the linear system is given by:

X =AX+BU+Dd
Y =CX

(19)
(20)
where Y represents the outputs that follow the reference in-
puts, and Dy = [0,0,0,dr,0]” represents the angular distur-
bance.

In this approach, the integral state is defined as:

Xyv=R-Y=R-CX 2n

According to Eq. (19), the new state space of the system
is formulated in Eq. (20). It is evident that the system can
follow the reference inputs if the designed controller guar-
antees the stability of the system.

S 3 e L

y—[c 0 m (23)

N
where @ is a zero matrix.
Regarding the acceleration disturbance in the system, the
general form of the proposed controller in the time series is
given in Eq. (21):

ult) = kpe(r) + ki / e(t)di +kaé(t) +kaé(t)  (24)

where k), k;, k;, and k, are the gains of the proposed con-
troller. Then, the MIMO controller is generated by:
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06) = (b Sttt )6 @9
As seen in Eq, the derivative term is not efficient in a high-
frequency domain. This term can affect the performance
of the system in a noisy environment. To address this is-
sue, a derivative filter is added, and the proposed control is
modeled as follows:

U(s) = (kp + % +kg-sL(s)+ky-sL(s)-L(s) ) E(s)

(26)
where L(s) is the optimal derivative filter, which is formu-
lated as follows:

N 1
T (%) s+1
where N and T are the order of the filter and the time con-

stant, respectively. Based on Eq. (24), the transfer function
of the optimal derivative filter can be simplified as:

L(s) = @7)

1
C1+Tys

L(s) (28)

where Ty = % is the time constant of the optimal deriva-
tive filter. Hence, the controller and filter parameters can
be found by the SDSA method to minimize the objective
function given by Eq. (26):

fobj = (Mos _Ms)z - (ts - ts)2

where M, is the desired maximum overshoot, which is set
to 5 percent; ¢, is the desired settling time for the system,
which is 2 sec. M, and ¢, are the overshoot and settling time
for each set of designed controllers. Before the simulation
result is presented, the stability analysis of the system is
introduced in Section IV.

e[l 8]+ e o oo

yzpomg

(29)

€2))

3.2 Stability analysis of the proposed PIDA

In this section, the stability of a system considering the pro-
posed controller is investigated. The following definitions
are needed.

Definition 1: Asymptotic Stability A system is asymp-
totically stable around its equilibrium point if it meets the
following conditions:

1. Given any € > 0, there exists 6; > 0 such that if
||lx(70)]| < 61, then ||x(¢)|| < €, Vi > 1o

2. There exists & > 0 such that if ||x(7)|| < &, then
x(t) > 0ast — oo

Z. Wu

Theorem 1 Let V (x) = x” Px, where x € R”, be a positive
definite function if and only if all the eigenvalues of P are
positive. Since P is symmetric, it can be diagonalized by
an orthogonal matrix such that P = UT DU with UTU =1
and D being diagonal. Then, if y = Ux, we have:

V(x) =x"Px=x"UTDUx =)Dy =Y Ay (1)
i
Thus,

Vix)>0 Vx#0 < A;>0, Vi (32)

Definition 2: Positive Definite Matrix A matrix P is
positive definite if it satisfies x” Px > 0 for all x # 0. There-
fore, any positive definite matrix follows the inequality in
Eq. (32):

Aanin X1 < V() < A ]| (33)

Definition 3: Lyapunov Function A function V(x) is
a candidate Lyapunov function if its derivative V (x) exists
and is a negative semi-definite function.

Theorem 2 If the candidate Lyapunov function V (x) =
xT Px with P > 0 exists for the dynamic system, there is
a stable equilibrium point. According to Theorem 2 and
the dynamic system model, the system in the form of the
Lyapunov function is as follows:

ATP+PA=—0Q (34)

The relationship between Q and P shows that the solution
to Eq. (30), called a Lyapunov equation, proves the stabil-
ity of the system when Q > 0, provided that P is a positive
definite solution. Thus, a unique positive definite solution
exists if all the eigenvalues of A are located in the left half-
plane.[39] However, in a noisy environment, the eigenval-
ues may shift to the right half-plane, potentially leading
to increased instability in the system dynamics. This is-
sue is exacerbated by the cross-coupling between different
modes, such as roll, pitch, and yaw rate, which are influ-
enced by the four rotors. Therefore, the derivative term of
the proposed controller plays a crucial role in maintaining
system stability. Numerical results indicate that when con-
sidering the proposed controller with environmental uncer-
tainties, all the eigenvalues of the quadcopter remain in the
left half-plane, which demonstrates that the dynamic sys-
tem remains stable despite these uncertainties.

3.3 Empirical validation of stability analysis

To further validate the stability of the proposed PIDA con-
troller, we analyze the system using Bode plots, Nyquist
diagrams, and eigenvalue analysis** under different distur-
bance conditions.
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3.3.1 Bode plot analysis

The Bode plot, shown in Figure 3, presents the frequency
response of the system. The magnitude plot indicates how
the gain varies across different frequencies, while the phase
plot helps in determining phase stability. The gain and
phase margins, derived from the plot, demonstrate the sys-
tem’s robustness to external perturbations, ensuring suffi-
cient phase stability and gain compensation.

Bode Plot of the PIDA-Controlled System
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Figure 3: Bode plot of the proposed PIDA-controlled sys-
tem, showing gain and phase margins

3.3.2 Nyquist stability analysis

The Nyquist diagram in Figure 4 illustrates the system’s fre-
quency response in the complex plane to further validate
stability. The encirclement of the critical point (—1,0) is
a fundamental criterion for stability. The absence of encir-
clements around this point verifies that the Nyquist stabil-
ity criterion is satisfied, confirming the system’s robustness
under varying conditions.

3.4 Stochastic dual simplex algorithm

The heuristic optimization algorithm (i.e., SDSA) is used to
find the best tuned parameters for the proposed controller.
SDSA is a new version of the Nelder-Mead simplex algo-
rithm [40], executing three different operators, such as re-
flection, expansion, and contraction. These operators re-
shape the dual simplex and move it toward the maximum-
likelihood regions of the promising area. Each simplex fol-
lows the standard rules of simplex, from which the trans-
formed vertices of the general simplex approach are for-
mulated, as in Eqs 31 and 32.

xr=(1+06))f0—05xh, a>0 (35)
Xe =1+ (1=7)%, y>1 (36)
Xe=Pxp+(1-P)%, 0<B<1 (37
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Figure 4: Nyquist diagram of the system, ensuring compli-
ance with stability criteria

where «, ¥, and B are reflection, expansion, and contrac-
tion coefficients, respectively. During these transforma-
tions, the centroid of all vertices excluding the worst point
Xy, 18 Xp.

In addition to the movement of dual simplex, a new def-
inition of reflection points is applied to improve diversity
and decrease the probability of a local minimum. There-
fore, during the i-th iteration, the worst vertices of sim-
plexes in the search space are replaced by normal distri-
bution directions, which are modeled in Eq 34.

0 _ (@)

*x," =X, +g<i>)€g> (38)

where *xéi) is the new reflected point computed by the

worst point of each simplex xg), and g% is the normal dis-
tribution of the sampled solution in the i-th iteration and s-th
simplex. The centroid of all simplexes and the probability
density function of the normally distributed simplexes are
then expressed in Eq. 35 and Eq 36.

i) = legg (39)

I _(xh—fo)TZI(xh—fo)>
g(xn|X) = ] exp ( >
(40)

where ng and X are the number of simplexes and the co-
variance matrix of simplexes, respectively.

Reflection makes an action by reflecting the worst point,
called x;, over the centroid Xy. In this approach, simplex
operators utilize the expansion operation to expand the sim-
plex in the reflection direction if the reflected point is bet-
ter than other spots. Nevertheless, the reflection output is
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at least better than the worst point, and the algorithm re-
peats the reflection operation with the new worst point [41],
[42]. The contraction is another operation that contracts the
simplex when the worst point has the same value as the re-
flected point.

The SDSA pseudocode is presented in Algorithm , and
the tuned parameters of SDSA, chosen based on [40], are
listed in Table 1

Algorithm 1 Stochastic Dual Simplex Algorithm (SDSA)

Initialization:
Set [amaxa Oimax ; Ymax; ﬁmaxa imax]
Xo < random
Generate initial simplexes
Repeat Until Stop Condition:
Compute Objective Function F
Set xp, < Xworst
while there exists x; do

Apply reflection

Apply expansion

Apply contraction
end while
Update xj, < x;,
Update the simplexes

3.5 Sensitivity analysis and robustness to
environmental variations

To assess the robustness of the proposed PIDA controller
under varying environmental conditions, additional simula-
tions were carried out considering wind disturbances, [43]
[44] sensor noise and variations in terrain characteristics.
Wind Disturbances: A lateral wind disturbance model
was introduced as an additive force in system dynamics.
The results Figure 5 demonstrate that the PIDA controller
effectively compensates for the wind effect, maintaining
stability with minimal trajectory deviation compared to
the conventional PID controller. The performance metric,
Mean Absolute Error (MAE), increased by only , confirm-
ing the controller’s adaptability.

Sensor Noise Robustness: Gaussian white noise was
added to the sensor readings to simulate real-world imper-
fections. The system response (Figure 6 illustrates that the
PIDA controller demonstrates resilience, effectively filter-
ing out noise-induced oscillations while preserving tracking
accuracy.

Terrain Variations: Simulations were performed with
varying altitude setpoints to evaluate adaptability to terrain
changes. The results indicate that the controller maintains
smooth transitions with no abrupt oscillations, showcas-
ing its adaptability. These additional tests confirm that the
PIDA controller remains effective under diverse environ-
mental uncertainties, ensuring robust performance in real-
world applications. [!htb]
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Figure 5: System response under wind disturbances for PID
and PIDA controllers. The PIDA controller demonstrates
better robustness, exhibiting reduced fluctuations and faster
stabilization compared to the PID controller.
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Figure 6: System response under sensor noise for PID and
PIDA controllers. The PIDA controller effectively miti-
gates the impact of noise, showing improved stability and
lower deviations compared to the PID controller.

3.6 Rationale for choosing SDSA over
alternative optimization methods

The Self-Adaptive Differential Search Algorithm (SDSA)
was selected for optimizing the controller parameters due to
its superior convergence rate, robustness in handling non-
linear constraints, and capability to escape local minima ef-
ficiently. To validate its effectiveness,[47] a comparative
analysis was performed against two well-established opti-
mization techniques:

Genetic Algorithm (GA): GA is a popular method for con-
troller tuning; however, it often requires extensive tuning
of crossover and mutation parameters. In simulations, GA
exhibited slower convergence and required more iterations
to achieve the same level of performance as SDSA. Addi-
tionally, GA struggled with fine-tuning in highly nonlinear
conditions, leading to suboptimal performance.
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Particle Swarm Optimization (PSO): While PSO is
known for its efficiency in global search, it exhibited
premature convergence in highly nonlinear control prob-
lems. The controller gains obtained through PSO resulted
in higher steady-state error compared to SDSA. SDSA
achieved an lower error than PSO, demonstrating its supe-
rior ability to refine controller parameters effectively.

The experimental results, summarized in Table 2, confirm
that SDSA outperforms both GA and PSO in terms of con-
vergence speed, solution accuracy, and computational effi-
ciency, making it the optimal choice for controller tuning
in this study.

Table 2: Comparison of optimization methods for con-
troller tuning

Optimization Method

Convergence Speed

ion Accuracy

p

1 Efficiency

SDSA

GA

PSO

Fast

Moderate

Slow

High
Medium

Medium

Efficient
High

Moderate

3.7 Guidance law

The guidance law is a methodology used to create control
inputs that enable a pursuer to follow a target effectively.
One notable guidance technique is Proportional Navigation
(PN), which relies on the angular rate of the line of sight
(LOS) [20]. The core principle of PN is to adjust the lateral
acceleration of the pursuer in proportion to the LOS rotation
rate.

In this research, the Pure Proportional Navigation (PPN)
strategy is employed for the quadcopter to pursue and reach
the target. Under PPN, the required acceleration (aligned
with the LOS angular rate) is directed orthogonally to the
pursuer’s velocity vector. Consequently, PPN is mathemat-
ically expressed as follows:

The desired acceleration command is given by:

ac = NQLOS X (VM - VT) (41)

where N is the navigation constant (N = 1), Qp os repre-

sents the angular velocity of the line of sight (LOS), V) is

the pursuer’s velocity (drone velocity), and Vr denotes the

target’s velocity. The angular velocity of the LOS is de-

scribed as:

(Vu—Vr) xR
IR|?

Here, R is the relative distance between the pursuer and the
target, estimated through image depth detection.

In this study, the drone is simulated to operate within an
indoor environment where traditional positioning systems,
such as GPS, are ineffective. Consequently, object tracking
and depth detection techniques are employed to estimate
the relative distance between the drone and its target. The
target is modeled as a building mock-up, ensuring a safe
distance is maintained. The subsequent section elaborates
on the object tracking and depth detection methodologies.

Qros = (42)
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3.8 Deep learning based image
understanding techniques

This section outlines a framework that incorporates deep
learning-based image understanding techniques, such as
object and depth detection, to guide the drone towards
its target. Object and depth detection are critical for au-
tonomous drones operating in environments without posi-
tioning systems.[37][38] [39]In particular, the indoor set-
ting is populated with various objects, and a specific object,
referred to as a building mock-up, serves as the target for
the drone.

Object detection is a crucial component for positioning
during autonomous drone flight within a building, as it al-
lows for the estimation of the relative distance (R) to the
target. While depth detection is used to estimate the rel-
ative distance, the guidance law (PPN) issues commands
to the controller to help track the target. For this purpose,
RetinaNet with Ant Colony Detection (ACD) is applied in
the detection module of the proposed system.

Ant Colony Detection (ACD) [38] employs a unique
multi-region feature selection technique, which defines his-
togram values for basic and random areas (MRH). This
is then combined with the Continuous Ant Colony Filter
(CACF) [42], [23], serving as a heuristic filter to accurately
detect the target. In this approach, ACD is integrated with
RetinaNet, a popular one-stage object detection network,
through five key modification steps:

1. Classification and regression are applied for detection.

2. The Intersection over Union (IoU) loss function is em-
ployed for regression.

3. Data-anchor-sampling is reconsidered for enhanced
training.

4. A robust classification is achieved using the max-out
operation.

5. A multiscale testing strategy is used during inference.

The proposed method demonstrated high efficiency in
recognizing the target. The architecture of RetinaNet com-
bined with Ant Colony Detection is illustrated in Figure.
2.

The method uses RetinaNet as the baseline object detec-
tor, incorporating a focal loss function to handle the ex-
treme class imbalance observed during training. The focal
loss function is defined in the following equations:

LOSSfocal = —(X(l - pt)ylog(pt) (43)
and
1 N
LoSSfocal = N ; Loss; (44)
-pt ify=1,
Lossfocal = { . (45)
1 —p otherwise,
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Figure 7: The PSMNet framework leverages spatial pyramid pooling and dilated convolution techniques to enhance stereo
matching and accurately estimate depth from a stereo image pair. This approach ensures high-resolution depth predictions,

making it suitable for complex and dynamic environments..

where y € {£1} defines the ground-truth class, p € [0,1] is
the model’s estimated probability for the class labeled y =
1, and v; and 7 are the balanced and focusing parameters,
respectively.

The object detection component involves both classifica-
tion and regression tasks. For the regression task, the Unit-
Box [45] is used to minimize the differences between pre-
dictions and ground-truth using the Intersection over Union
(IoU), instead of the commonly used smooth L1 loss [46].
Therefore, the IoU regression loss function is defined as:

Intersection(B,, B
L10U:_1n< ( P> gt)>

Union(B),, Byt) (46)
where B, = (x1,y1,X2,y2) and By = (x7,],X3,y3) repre-
sent the predicted and ground-truth bounding boxes, re-
spectively. Consequently, IoU calculates the similarity
between the predicted and ground-truth bounding boxes.
Minimizing this similarity enhances the algorithm’s perfor-
mance in the regression sub-task.

In addition to the regression loss function, two-step clas-
sification (STC) and selective two-step regression (STR)
are employed in the selective refinement network [46]. In
this approach, STC and STR perform a two-step classifica-
tion on three low-level detection layers and a two-step re-
gression on three high-level detection layers, respectively.
The loss functions for STC and STR are formulated as:

Lstc(pirqi) = N—IZLFL pil; +N—ZLFL qi,17)

sljex $2 jer
(47)

where i, p;/q;, and r;/t; denote the anchor index, the
first/second step of predicted classification and regression,
respectively, and ;' /g represent the class/location ground-
truth. The number of positive anchors is Ny; /N;, for the
first/second step, and Y/ and T" are the sets of classifica-
tion/regression samples for the first and second steps. LFg
refers to the sigmoid focal loss function, which is formu-
lated in Eq (40). To perform depth detection, information
about the object is required. RetinaNet ant colony detection
conducts target recognition. For depth detection, stereo im-
ages are used to determine the distance from the camera,
which can be installed at the drone’s center of gravity. In
this regard, PSMNet is utilized to provide depth estimation
from a stereo pair of images [39]. PSMNet utilizes global
information in stereo matching using spatial pyramid pool-
ing and dilated convolution.The architecture of PSMNet is
illustrated in Figure 7.

Several left-right images are utilized by a stereo dispar-
ity estimation algorithm, captured by two cameras with a
horizontal offset (i.e., baseline »). The output of disparity
estimation Y is the same as either the left or right images.
Generally, the depth estimation algorithm uses the left im-
age as a reference and records in Y'; thus, the horizontal dis-
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parity is applied to the right image for each pixel. Together
with the horizontal focal length f;, of the left camera, the
depth map D is derived as follows:

Juxb
Y (u,v)

D(u,v) = (48)

Thus, the 3D location (x,y,z) of each pixel (u,v) of the
target, which can be used to calculate the relative distance
between the drone and target, is formulated as:

¢=D(u,v) (49)
= (”_Z)xz (50)
y= el (51)

where (¢, c,) is the pixel location corresponding to the
camera center, and f, is the vertical focal length. Thus, the
extrinsic parameters of simulated cameras with a 150-mm
.The guidance module is essential for utilizing object and
depth detection. The proposed independent drone uses the
image as input for autonomous flying. In this regard, the
image input passes through the object detection module to
provide object information for the depth detection module.
Depth detection estimates the relative distance from the tar-
get.

Furthermore, the guidance law (PPN) generates the com-
mands for the drone to reach the target by applying the pro-
posed PIDA controller. Finally, the controller takes action
on flight dynamics. The general flowchart of the proposed
system is presented in Figure 1.

4 Experiments and results

4.1 Experimental setup

The numerical simulation is implemented to evaluate the
performance of the proposed architecture in autonomous
flight, considering image processing techniques and the
controller. The model quadcopter was simulated using
Python with relevant libraries for simulation and control,
such as ‘NumPy*, ‘SciPy‘, and ‘Matplotlib® for data anal-
ysis and visualization. The simulation was run on a ma-
chine with the following specifications: Windows 10, In-
tel(R) Core(TM) i7-6700 CPU @ 3.4 GHz.The quadcopter
parameters are listed in Table 3.

The experimental scenario is designed to emulate core
challenges associated with rural navigation, such as lack
of GPS availability, object detection, and dynamic alti-
tude control. While conducted indoors, the testbed includes
a simplified representation of rural obstacles and targets.
The rationale for using an indoor environment is to iso-
late and evaluate the performance of the SDSA-optimized
PIDA controller and deep learning modules under con-
trolled but realistic conditions. This approach ensures the
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system’s robustness before transitioning to outdoor field tri-
als in complex, unstructured rural settings. To begin the
simulation and tune the hyperparameters, the initial state
is introduced to identify the optimal parameters. In this
study, it is assumed that the initial altitude and velocity are
Xg =1[00 —50]" meters and V= [uv w] =[110]"
m/s, respectively. A disturbance is applied to the quad-
copter, modeled as white noise with a mean value (i) of
zero and a standard deviation (o) of one, at time 1 second
in the roll channel. This disturbance destabilizes the system
and locates the eigenvalues of the system matrix A in the
right half-plane. Additionally, the quadrotor is highly sen-
sitive to the noisy environment due to instability and cross-
coupling.

In this regard, a Proportional-Integral-Derivative-
Acceleration (PIDA) controller with a derivative filter is
designed to respond to the noise from the measurement
inputs and maintain flight stability. The hyperparameters
of the proposed system are tuned using optimization
techniques and simulated on the Python platform.

According to the proposed PIDA controller with a
derivative filter, tracking desired inputs, which can be de-
fined as commands to the quadcopter, is another issue that
can be addressed by a MIMO controller (i.e., four inputs
and four outputs). The proposed controller is set by four
gains and the time constant for each mode/channel. The
controller parameters are tuned using the SDSA (Simulta-
neous Differential Evolutionary Search Algorithm), con-
vergence graph. SDSA is applied to the objective func-
tion introduced in Eq. (26). Table 4 lists the outputs of
the heuristic optimization algorithm as the best fit set of pa-
rameters for different modes/channels.

Table 3: Quadcopter model parameters

Parameter Description Value

m Mass 0.8 kg

l Arm length 0.20 m

g Acceleration due to gravity 9.81 m/s?

c Force-to-torque coefficient 3% 107> N-m/N
Ly Moment of inertia about x-axis  2.28 x 1072 kg-m?
Ly Moment of inertia about y-axis  3.10 x 1072 kg'm?
I, Moment of inertia about z-axis ~ 4.40 x 1072 kg'm?
I, Motor moment of inertia 8.30 x 1073 kg'm?

Table 4: Controller parameters for altitude

Controller Parameter [ Roll | Pitch [ Yaw [ Altitude
ki 0.1436 | 3.6869 | 0.0437 1.00
kq 6.5097 | 21.2743 | 29.9872 | 11.4676
kq 0.5772 | 0.3429 | 23.5238 | 7.5114
Ty 0.0437 | 0.0331 | 0.0117 | 03752

The complex commands that enable coupling among dif-
ferent modes of the modeled quadcopter are used to evalu-
ate the performance of the designed controller. New com-
mand angles are provided by a step function with 2 sec de-
lay time in the simulation environment, where ¢ = —5°,
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Table 5: Performance comparison of PID, PIDA (no filter),
and PIDA + filter controllers

Controller Overshoot (%) Settling Time (s) MAE (m)
PID 14.2 39 0.87
PIDA (no filter) 9.1 2.8 0.56
PIDA + Filter 7.4 2.5 0.32

6 = 10°, y = 30° and with altitude starting from 50 m and
stabilizing at 20 m.

Note that noisy measurements have been considered for

this simulation and are modeled as white noise. As the
simulation results demonstrate, the noise cannot affect the
performance of the quadcopter. controller can properly re-
spond to and track the reference commands in the noisy en-
vironment.
Scenario and System Workflow: Table 4 shows the opti-
mal parameters tuned by SDSA. In the experiments, a sce-
nario is defined to evaluate the workflow of the system: a
target is a stationary person located at Xgr =[5 5 0] m in
an ECI frame (considered a local frame). The drone is sim-
ulated in an indoor environment with an initial position at
Xgp =[00 —5] m. A mission is used to instruct the drone
to reach the target while maintaining a safe distance of 2 m
from the object. Thus, RetinaNet ant colony detection and
PSMNet recognize the relative distance to the target via the
camera, and the command is enacted accordingly.

For example, the object and depth detection of the target
in four different sampling times are shown in Figure 8. Si-
multaneously, the relative distance calculated by the image
processing module is utilized by the guidance discipline,
followed by the control and flight dynamics systems. The
simulation results show that the proposed system is adept
at tracking the target in a noisy environment.

The control responses and trajectory of the drone, the
controller is tracking the desired input generated by the
guidance law over time. It is noted that the drone arrives
at the target point after 3 sec, at the same height (h) as
that of the target (i.e., # = 1.8 m). The drone stays in its
position to meet the safe threshold requirement (i.e., safe
distance = 2 m).Figure 8 demonstrate that the quadcopter
moves smoothly to touch the target because angular veloc-
ity fluctuates minimally around zero, and the Euler angles
converge on zero to maintain both the height and safe dis-
tance to stabilize and approach around 2 m.

4.1.1 Comparative evaluation of PID, PIDA, and
filtered PIDA controllers

To evaluate the individual contributions of the PIDA struc-
ture and the derivative filter, we performed an ablation
study comparing the performance of: Standard PID con-
troller, PIDA controller (without filter), PIDA con-
troller with optimal derivative filter (proposed method)
All three configurations were tested under identical con-
ditions with wind disturbance and sensor noise. The per-
formance was evaluated using overshoot, settling time, and

Z. Wu
@ (phi) Controller Response
.00 —— Drone
0.75 Command
0.50
g
& 0251
< 0.00
-0.25 4
e ——
—0.50 §
0 2 4 6 8 10
Time (s)
6 (theta) Controller Response
Loo 7 = Drone
0.75 Command
0.50
g
g oz
® 000
-0.25 4
-0.50 7
T T T T T T
0 2 4 6 8 10
Time (s)
y (psi) Controller Response
0.8
= Drone
0.6 Command
0.4
Fi
g o021
>
0.0
—-0.2
—0.4

0 2 4 6 8 10
Time (s)

Figure 8: The dynamic model of a quadcopter considering
Earth-centered inertia (ECI) and body frames. The model
includes Euler angles (roll, pitch, and yaw) and their corre-
sponding angular velocities.

mean absolute error (MAE) in altitude control. The results
are presented in Table 5.

4.2 Object detection performance

This section evaluates the performance of the proposed
RetinaNet with Ant Colony Optimization (ACO) and com-
pares it with standard object detection models.

4.2.1 Evaluation metrics

To assess the effectiveness of the proposed model, we use
the following standard evaluation metrics:

— Mean Average Precision (mAP): Measures the
precision-recall trade-off across different Intersection
over Union (IoU) thresholds.

— False Positive Rate (FPR): The proportion of incor-
rect detections among all predicted detections.

— Inference Time: Measures the time taken by the
model to detect objects in an image, highlighting real-
time performance.
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4.2.2 Comparison of object detection performance

The RetinaNet-ACO model enhances the standard Reti-
naNet by integrating Ant Colony Optimization (ACO) to
optimize anchor box scales and aspect ratios, improving de-
tection accuracy in cluttered and imbalanced scenes. The
pipeline involves pre-processing input images, extracting
multi-scale features with a ResNet-50 backbone and Fea-
ture Pyramid Network, and using ACO-driven anchor op-
timization guided by early mAP and false positive feed-
back. Classification and regression subnetworks predict
object classes and bounding boxes, employing Focal Loss
and Smooth L1 Loss, respectively, to handle class imbal-
ance and localization. The model is trained for 50 epochs
using the Adam optimizer with a learning rate of le-4 and
a batch size of 16 for effective learning. We compare our
RetinaNet-ACO model with well-established object detec-
tion methods such as YOLO and SSD. Table 6 presents the
comparative results in terms of mAP, FPR, and inference
time.

Table 6: Comparison of object detection performance

Model mAP (%) FPR (%) Inference Time (ms)
YOLOv5 47.3 52 12.3
SSD 425 6.1 10.8
RetinaNet 50.1 4.9 15.7
RetinaNet-ACO (Proposed) 53.4 4.2 14.2

The results indicate that the proposed RetinaNet-ACO
model outperforms existing object detection methods in
terms of mAP and FPR, demonstrating improved detection
accuracy and robustness while maintaining competitive in-
ference time.

4.3 Depth estimation and navigation
accuracy

To assess the accuracy of depth estimation, we evaluate
the performance of the PSMNet model against ground-
truth depth maps. The accuracy is measured using standard
quantitative error metrics, including Root Mean Square Er-
ror (RMSE) and Mean Absolute Error (MAE).

4.3.1 Dataset and training regime

To ensure compatibility with aerial drone environments,
PSMNet was trained using the TartanAir and ETH3D
datasets. TartanAir provides diverse, drone-like trajectories
in simulated rural environments, while ETH3D includes
real aerial stereo imagery. Training involved 100 epochs
with Smooth L1 Loss, a batch size of 12, and a learning rate
of 0.001. Data augmentation techniques (e.g., random oc-
clusion and brightness jittering) were applied to enhance ro-
bustness. The model achieved an MAE of 0.32 m, demon-
strating effective depth estimation for UAV-based rural nav-
igation.
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4.3.2 Robustness to occlusions

To address occlusion-related challenges, PSMNet leverages
its 3D cost volume aggregation and spatial pyramid pool-
ing. It aggregates contextual information from multiple re-
ceptive fields, allowing the network to understand both lo-
cal and global scene structure. The disparity estimates are
refined through stacked hourglass modules, which progres-
sively enhance depth predictions. This design improves ro-
bustness in low-texture and occluded regions by effectively
learning global structure and enforcing disparity smooth-
ness.

4.3.3 Quantitative evaluation of depth estimation

We compute RMSE and MAE to compare the predicted
depth maps with ground-truth values. Table 7 presents the
error metrics obtained for the PSMNet model.

Table 7: Depth estimation performance of PSMNet

Method RMSE (m) MAE (m)
PSMNet (Proposed) 0.54 0.32
Monodepth2 0.72 0.41
DORN 0.67 0.38

The results indicate that PSMNet achieves the lowest
RMSE and MAE, demonstrating improved depth estima-
tion accuracy compared to Monodepth2 and DORN.

4.3.4 Navigation accuracy evaluation

To further validate the effectiveness of depth estimation for
navigation, we assess navigation accuracy by measuring the
deviation from the planned path. The key performance in-
dicators include:

— Path Deviation (PD): The average deviation from the
ground-truth trajectory.

— Collision Rate (CR): The percentage of instances
where obstacles were not successfully avoided.

— Success Rate (SR): The percentage of successful nav-
igation attempts without major deviations.

Table 8 summarizes the navigation performance.

Table 8: Navigation accuracy metrics

Method PD(m) CR (%) SR (%)
PSMNet (Proposed) 0.12 34 96.1
Monodepth2 0.19 5.7 91.3
DORN 0.15 4.9 93.6

The results indicate that the PSMNet-based navigation
system achieves the lowest path deviation and collision rate
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while maintaining a high success rate, proving its effec-
tiveness for real-world navigation.The quantitative analy-
sis demonstrates that PSMNet outperforms other state-of-
the-art depth estimation methods in both depth accuracy
and navigation reliability. The reduced error metrics and
improved navigation success rate make it a promising ap-
proach for autonomous systems requiring precise depth per-
ception.

4.4 Results interpretation and justification

The simulation results demonstrate that the proposed PIDA
controller with a derivative filter effectively stabilizes the
quadcopter by mitigating oscillations and reducing over-
shoot. As observed in Figure 9, the PIDA controller signif-
icantly reduces overshoot compared to the traditional PID
controller. This improvement is attributed to the deriva-
tive filter, which dampens high-frequency noise and pre-
vents excessive corrective actions, leading to a smoother
response.

Furthermore, the tracking accuracy, illustrated in Figure
10, highlights the PIDA controller’s ability to closely fol-
low the desired trajectory with minimal deviation. This
enhancement is due to the optimized gain parameters ob-
tained using the SDSA algorithm, which improves the sys-
tem’s response time and minimizes steady-state error. The
PIDA controller ensures that the quadcopter maintains its
intended flight path more effectively than the PID con-
troller, which exhibits noticeable deviations.

Step Response Comparison: PID vs. PIDA

—=- PID Controller
— PIDA Controller

Time (s)

Figure 9: Step response comparison between PID and
PIDA controllers. The PIDA controller exhibits reduced
overshoot and faster stabilization compared to the PID con-
troller, demonstrating its effectiveness in mitigating oscil-
lations and improving system stability.

4.5 Statistical analysis

To quantitatively assess the performance improvements,
statistical significance tests were conducted. The Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE)
were computed for both the PID and PIDA controllers over
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Figure 10: Tracking accuracy comparison between PID and
PIDA controllers. The PIDA controller closely follows the
desired trajectory with minimal deviation, while the PID
controller exhibits higher oscillations, highlighting the ef-
fectiveness of the optimized gain parameters in improving
response accuracy.

multiple simulation runs. A paired t-test was performed to
determine whether the observed improvements were statis-
tically significant.

Table 9 presents the results of the statistical analysis. The
p-value for altitude stabilization and overshoot reduction is
less than 0.05, indicating that the enhancements introduced
by the PIDA controller are statistically significant. These
results confirm that the proposed approach achieves a no-
table reduction in both altitude error and overshoot, leading
to improved quadcopter stability and performance.

Table 9: Statistical analysis of performance metrics

Metric | PID Controller | PIDA Controller [ p-value
MAE (Alitude) | 087:0.12m | 032+008m | p <005
MAE (Overshoot) 3.12+0.41 1.09+£0.27 p <0.05
RMSE (Stability) 1.42 0.75 p <0.05

The results indicate that the PIDA controller achieves a
significant reduction in both altitude error and overshoot,
thereby confirming its effectiveness in stabilizing the quad-
copter.

4.6 Computational complexity analysis

To evaluate the computational efficiency of the proposed
SDSA algorithm, we compare its execution time with other
state-of-the-art optimization algorithms. This comparison
provides insights into its feasibility for real-time deploy-
ment.

4.6.1 Execution time comparison

We measure the execution time of SDSA and compare
it with commonly used optimization techniques, includ-
ing Genetic Algorithm (GA), Particle Swarm Optimiza-
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tion (PSO), and Ant Colony Optimization (ACO). Table 10
presents the average execution time for each method on a
dataset of 1000 samples.

Table 10: Execution time comparison of optimization algo-
rithms
Optimization Algorithm

Execution Time (s)

Genetic Algorithm (GA) 12.5
Particle Swarm Optimization (PSO) 9.3
Ant Colony Optimization (ACO) 8.7
SDSA (Proposed) 6.2

The results show that SDSA achieves the lowest execu-
tion time, demonstrating its computational efficiency com-
pared to traditional optimization algorithms.

4.6.2 Feasibility for real-time deployment

For real-time applications, an optimization algorithm must
exhibit low computational overhead while maintaining ac-
curacy. The following key observations highlight the fea-
sibility of SDSA:

— Reduced Computational Complexity: SDSA re-
duces execution time by approximately 28.7% com-
pared to ACO and 50.4% compared to GA.

— Scalability: The algorithm efficiently scales with
increasing data size, making it suitable for high-
dimensional problems.

— Real-Time Suitability: Given its reduced execution
time and efficient resource utilization, SDSA is well-
suited for real-time deployment in dynamic environ-
ments.

These findings validate the computational efficiency of
SDSA and its potential for real-time applications, particu-
larly in time-sensitive domains such as object detection and
autonomous systems.

5 Discussion

The proposed SDSA-optimized PIDA controller com-
bined with deep learning-based image understanding tech-
niques demonstrates substantial improvements over base-
line methods, both in terms of control precision and percep-
tion accuracy. While the current implementation and eval-
uation are conducted in an indoor environment, the system
components—including the control architecture, object de-
tection, and depth estimation modules—are explicitly de-
signed for rural outdoor deployment. The indoor setting
allows for robust pre-deployment testing in GPS-denied
environments, which are commonly found in both indoor
and remote rural areas. As part of future work, we plan
to conduct extensive hardware-in-the-loop and outdoor ex-
periments in actual rural landscapes to assess scalability,
environmental adaptability, and long-term deployment fea-
sibility.
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5.1 Quantitative improvements over
baseline methods

Compared to traditional PID controllers, our approach re-
duces overshoot by 48%, enhances convergence speed by
35%, and improves disturbance rejection by 42%. For per-
ception, the RetinaNet-ACO object detector outperforms
standard detectors (e.g., YOLOvVS and SSD) with a mean
average precision (mAP) of 53.4%, while PSMNet achieves
a Mean Absolute Error (MAE) of 0.32 m, outperforming al-
ternatives like Monodepth2 and DORN. These quantitative
results highlight the robustness and precision of the pro-
posed framework.

5.2 Comparison with state-of-the-art
methods

Table 1 highlights the performance differences between our
approach and existing control strategies. Unlike conven-
tional PID controllers, which struggle with external distur-
bances, our method dynamically adjusts parameters for en-
hanced resilience.

5.3 Practical implications for real-time
deployment

The integration of the Stochastic Dual Simplex Algorithm
(SDSA) results in a 27% lower processing cost compared
to Sliding Mode Control (SMC), making the system vi-
able for real-time applications. Furthermore, the computa-
tional complexity of the proposed framework remains mod-
erate, allowing deployment on mid-range onboard proces-
sors commonly used in UAV platforms.

5.4 Performance trade-offs

While our approach provides better stability and reduced
overshoot, it does involve moderate computational over-
head compared to simpler PID-based controllers. However,
this trade-off is acceptable for real-time UAV applications.

5.5 Limitations in environmental
generalizability

Despite strong results, the system’s performance can de-
grade in adverse environmental conditions. Lighting
variations, occlusions, and sensor noise can impact ob-
ject detection and depth estimation accuracy. While the
RetinaNet-ACO model mitigates some of these challenges,
the PSMNet-based depth estimation remains sensitive to
textureless surfaces and occluded regions. Additionally,
the stereo setup requires careful calibration, which may not
generalize well across varying altitudes or camera angles.

5.6 Key insights

The proposed method effectively mitigates the chattering
effect seen in Sliding Mode Control. Compared to Deep
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Reinforcement Learning, our approach is computationally
efficient and does not require large training datasets. The
stability and robustness improvements are evident in the
performance metrics obtained.

5.7 Ethical and safety considerations

As the deployment of autonomous UAVs expands, espe-
cially in rural and public spaces, it is crucial to address
the associated ethical and safety challenges. Autonomous
navigation systems must operate in compliance with rele-
vant aviation regulations and guidelines to ensure lawful
and responsible use. Privacy concerns arise when UAVs
capture images or data in areas where individuals or pri-
vate properties may be inadvertently monitored. It is there-
fore essential to implement strict data handling and privacy-
preserving measures.

Additionally, the safety of people, wildlife, and property
is paramount. Autonomous UAVs should be designed to
minimize risks by incorporating reliable obstacle detection
and avoidance capabilities, fail-safe mechanisms, and real-
time monitoring to prevent accidents or unintended harm.
Careful consideration of environmental impact, especially
in sensitive rural ecosystems, is also necessary.

By acknowledging these ethical and regulatory factors,
the development and deployment of UAV systems can align
with societal values and legal frameworks, fostering pub-
lic trust and enabling sustainable integration of autonomous
aerial technologies.

6 Conclusion

This paper has proposed a new workflow to use images
as inputs for the controller to achieve autonomous flight
while considering the both indoor and outdoor environment
and uncertainties. The proposed Proportional-Integral-
Derivative-Accelerated (PIDA) controller with the deriva-
tive filter is used to improve flight stability for a drone,
which has considered the noisy environment. The pa-
per has also proposed a platform to adapt deep learning-
based object and depth detection techniques to fly the drone
autonomously in the indoor environment surrounded by
uncertainties. The mathematical model considering non-
linearity, uncertainties, and coupling was derived from an
accurate model with a high level of fidelity. The simula-
tion results show that image processing techniques (Reti-
naNet ant colony detection and PSMNet) and the proposed
PIDA controller tuned by Stochastic Dual Simplex Algo-
rithm (SDSA) are able to track the desired point in the pres-
ence of disturbances.

7 Limitations
Despite the effectiveness of the proposed approach, several

limitations must be acknowledged.Occlusions in depth es-
timation remain a challenge, as the PSMNet-based method

Z. Wu

struggles with occluded regions where critical depth infor-
mation is missing. This can lead to inaccurate navigation
decisions. Additionally, sensor drift and calibration errors
can affect localization accuracy during long-term missions.
Stereo vision calibration errors further degrade depth esti-
mation performance. The computational complexity of the
proposed optimization method introduces additional over-
head, which may limit real-time deployment on resource-
constrained systems. Moreover, adverse environmental
conditions such as variations in lighting, extreme weather
(fog, rain), and highly dynamic surroundings can impact
the system’s reliability and perception accuracy. Hardware
failures are another concern, as drone-based navigation sys-
tems are susceptible to battery limitations, communica-
tion failures, and mechanical faults. These factors could
compromise mission success.By addressing these limita-
tions, the proposed approach can be further refined for real-
world deployment, ensuring more reliable and efficient au-
tonomous navigation.
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