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With the increasing demand for material texture recognition and reproduction in the architectural 

decoration industry, traditional methods relying on manual annotation are inefficient, and existing 

technologies are difficult to meet the requirements of complex texture processing. To accurately identify 

the texture and high-quality reproduction of building decoration materials, a texture recognition method 

based on multi-scale Local Binary Pattern algorithm combined with Gaussian mixture model clustering 

is proposed, and a complete model including image preprocessing, feature extraction, and texture 

reproduction modules is constructed. The experimental results on the Dresden Texture Dataset dataset 

show that the proposed method performs well in texture feature extraction, with a maximum accuracy of 

96.84% for tile texture recognition and an average intersection to union ratio (MIoU) of 0.97. The 

practical application results show that the proposed method has a fast texture recognition speed and less 

memory consumption. The average time and size of the generated CSV files are 2.93 s and 8.75 KB, 

respectively, while the average time and size of the CSV files generated by the 3D Gaussian speckle model 

are 4.42 s and 21.41 KB, respectively. Meanwhile, the comprehensive score of texture reproduction 

performance is 8.93 points, followed by 8.27 points for 3D Gaussian speckle. From this, the method 

proposed by the research can quickly identify and reproduce the complex textures of building decoration 

materials with high fidelity. This study provides a new technological solution for digital texture 

recognition and production control of building decoration materials, promoting the intelligent and high-

quality development of the building decoration industry. 

Povzetek: Za prepoznavanje tekstur gradbenih dekorativnih materialov je razvita večmerilna metoda 

(MLBP) v kombinaciji z Gaussovim mešanim modelom (GMM), ki omogoča zajemanje večnivojskih 

značilk in njihovo pretvorbo v strojno berljive datoteke (CSV) za proizvodnjo. Model združuje 

predobdelavo slik, večmerilno ekstrakcijo in samodejno klastriranje, kar omogoča hitro, zanesljivo in 

realistično reprodukcijo kompleksnih tekstur gradbenih materialov z majhno porabo virov. 

 

1 Introduction 
In recent times, the construction and decoration 

industry has ushered in opportunities for rapid 

advancement driven by both technological innovation and 

market demand [1]. With people's pursuit of high-quality 

architectural decoration, the recognition and reproduction 

technology of material texture has become a key link in 

the development of the industry [2]. Traditional texture 

recognition methods rely on manual annotation, which is 

difficult to meet the efficiency and accuracy requirements 

of the modern architectural decoration industry. 

Meanwhile, the texture reproduction technology for 

building decoration materials has undergone a continuous 

process of advancement. Transitioning from early 

methods such as screen printing and rubber-roller printing 

to modern techniques like inkjet printing and dry granule 

technology, there has been a remarkable enhancement in 

both the realism and diversity of texture reproduction [3].  

 

However, in the face of complex and ever-changing 

texture requirements, existing technologies still have 

limitations [4]. Many scholars have conducted extensive 

research to efficiently identify texture patterns. Liu et al.  

proposed a new approach grounded on deep neural 

network transfer learning to address the limitations of 

traditional texture analysis methods in complex texture 

recognition. The experiment outcomes indicated that the 

performance of this method was superior to Gray-Level 

Co-Occurrence Matrix (GLCM) and Local Binary Pattern 

(LBP) [5]. Kamijyo et al. proposed a crystal texture 

calculation method based on deep neural networks to 

reduce the computational workload in numerical 

crystallographic texture optimization. The experiment 

outcomes indicated that this calculation method could 

determine the optimal volume fraction for selecting 

texture components [6]. Shukla et al. proposed a material 

recognition method based on Convolutional Neural 

Networks (CNN) to address the issue of insufficient 
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accuracy in traditional methods for material quality 

identification. The experiment outcomes indicated that the 

CNN classifier outperformed other deep learning 

classifiers in recognition accuracy [7]. Bai et al. proposed 

a high-precision texture recognition real-time artificial 

sensing system based on a single ion electron sliding 

sensor to solve the problem of insufficient texture 

recognition response in modern robots during interaction. 

The experiment outcomes indicated that the system had an 

accuracy of 98.9% at random sliding rates and could 

accurately distinguish fine surface features [8]. 

In terms of texture generation, Siddiqui et al. 

proposed a Texturify algorithm based on Generative 

Adversarial Networks (GAN) to solve the problem of 

texture prediction caused by the scarcity of 3D texture 

data. The experiment outcomes indicated that the 

Texturify algorithm could generate high-quality textures 

directly on the surface of 3D objects through layered 4-

RoSy parameterization and facial convolution operators, 

with excellent performance [9]. Cao et al. proposed 

TexFusion, a new method for synthesizing textures for 3D 

geometry using only large-scale text guided image 

diffusion models, to address the inefficiency and 

instability issues of traditional methods in 3D texture 

synthesis. The experiment outcomes indicated that 

TexFusion could generate diverse and globally coherent 

textures [10]. Gao et al. proposed a Generations Explicit 

Textured 3D (GET3D) model that could directly generate 

rich geometric details and high fidelity textures to address 

the shortcomings of traditional 3D generative models in 

texture support. The experiment outcomes indicated that 

the GET3D model could generate high-quality 3D texture 

meshes [11]. The summary of related work is shown in 

Table 1.

Table 1: Related work table 

Texture 

Recognition 

Methods 

Methodology 

Dataset / 

Evaluation 

Context 

Performance Metrics Key Findings 

Liu et al. [5] 
Deep Neural Network 

Transfer Learning 
Not Specified Accuracy (CA) 

Superior to 

GLCM & LBP 

Kamijyo et al. 

[6] 

Deep Neural Network-

based Calculation 

Numerical 

crystal texture 

data 

Optimal volume fraction 

Determines 

optimal texture 

component 

fractions 

Shukla et al. [7] CNN Classifier 

Material-

specific 

dataset 

Recognition Accuracy (CA) 

Outperformed 

other DL 

classifiers 

Bai et al. [8] 
Ion Electron Sliding 

Sensor System 

Surface 

feature dataset 

(random 

sliding) 

Accuracy (98.9%) 

High-precision 

distinction of fine 

surface features 

Siddiqui et al. 

[9] 

Texturify (GAN + 4-

RoSy 

parameterization) 

3D texture 

datasets 

Qualitative/Quantitative quality 

metrics 

Direct high-

quality 3D surface 

texture generation 

Cao et al. [10] 

TexFusion (Text-

guided image 

diffusion) 

3D geometry 

datasets 
Diversity, global coherence 

Generated diverse 

& globally 

coherent textures 

Gao et al. [11] 

GET3D (Explicit 

Textured 3D 

Generation) 

3D shape 

datasets 
Fidelity, geometric detail 

High-quality 3D 

textured mesh 

output 

Proposed 

Method 

(MLBP) 

MLBP + GMM 

Clustering 

Dresden 

Texture 

Dataset (100+ 

images per 

type) 

CA: 96.84% (Tile), MIoU: 0.97 

Highest 

CA/MIoU; 

Minimal CSV size 

(8.75KB); Repro. 

Score: 8.93 

However, existing methods have many shortcomings 

in texture analysis and generation. Traditional texture 

analysis methods, such as LBP algorithm, have 

insufficient accuracy in complex texture recognition. 

Although deep neural network-based methods have 

superior performance, they rely on large-scale data and 

computing resources. In terms of 3D texture generation, 

existing methods either lack geometric details or are 

limited in texture support. In addition, some methods are 

sensitive to noise and the sampling method can easily lead 

to aliasing effects. A GMM-MLBP model, which is based 

on a multi-scale Local Binary Pattern (MLBP) algorithm, 

is put forward with the aim of efficiently and precisely 

capturing texture images and replicating them onto the 

textures of building decoration materials. This research 

makes an innovative move by integrating the Gaussian 

Mixture Model (GMM) for texture recognition, thereby 

enhancing the accuracy and generalization capability of 
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texture feature extraction. An image preprocessing 

module is introduced to reduce the consumption of 

computing resources. A texture reproduction module is 

introduced to generate CSV files, and the precise control 

of the production machine for building decoration 

materials is achieved. 

2 Method and materials 

2.1 Improvement of LBP Algorithm and 

Material Texture Recognition 

Texture recognition is a crucial step in the production 

process of building decoration materials, which helps in 

the manufacturing of various materials such as imitation 

natural stone and imitation natural wood [12]. Traditional 

texture recognition methods rely on manual annotation, 

which is not only time-consuming and labor-intensive, but 

also susceptible to subjective factors, resulting in low 

production efficiency and accuracy. As computer vision 

technology advances, texture recognition algorithms 

based on image processing have gradually become an 

effective means to solve this problem [13]. Among them, 

the LBP algorithm is widely used for texture feature 

extraction due to its advantages of simple calculation, 

insensitivity to lighting and rotation [14]. However, 

traditional LBP algorithms have some limitations, 

especially when dealing with complex textures. Due to 

their fixed 3×3 neighborhood window, it is difficult to 

capture large-scale texture features, resulting in 

incomplete or discontinuous texture segmentation results 

[15]. To overcome this deficiency, an MLBP algorithm is 

proposed in the study. MLBP increases the receptive field 

of feature extraction by introducing multiple sub-scale 

operators, enabling the simultaneous capture of texture 

features at different scales. The MLBP algorithm structure 

is in Figure 1.

Original texture image

Feature 
extraction Texture feature map

Characteristic 
parameter 

Generate

Cluster analysis Texture image Cluster results

 

Figure 1: MLBP structure diagram

As shown in Figure 1, MLBP captures texture 

information by dividing the image into multiple local 

regions of different scales and applying multiple sub-

operators within each region. These sub-operators are 

distributed in different spatial positions and can 

simultaneously extract large-scale textures and small-

scale details in the image. The calculation formula for each 

sub-scale operator is in equation (1) [16]. 
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In equation (1), 
iSMLBP  represents the output of the 

i th sub scale operator. cx  represents the central pixel 

point. ip  represents the number of sampling points in the 

i th sub-scale operator. pI  is the grayscale value of the 

p th sampling point. cI  is the grayscale value of the 

central pixel. ()s  is the threshold function, as shown in 

equation (2) [17]. 
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MLBP enhances feature extraction capability by 

combining multiple sub scale operators. Each sub-scale 

operator is responsible for processing specific texture 

features, while operators of different scales generate more 

comprehensive texture descriptions through fusion. The 

fusion formula is in equation (3). 
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In equation (3), ( )cMLBP x  denotes the final multi-

scale texture feature vector. n  represents the total number 

of sub scale operators. The sub-scale sizes are 3×3, 5×5, 

and 7×7, corresponding to neighborhood radii R of 2, 3, 

and 5, respectively. The number of sampling points P is 8, 

10, and 16, respectively. This allows for dynamic 

adjustment of parameters based on texture complexity to 

achieve effective feature extraction. This multi-scale 

design enables MLBP to adapt to images with diverse 

texture styles, significantly improving the generalization 

ability of feature extraction. In texture segmentation, the 

features extracted by MLBP are combined with GMM for 

clustering. The structure of GMM is in Figure 2.
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Figure 2: GMM structure diagram

As shown in Figure 2, the GMM structure is based on 

a linear combination of multiple Gaussian distributions 

(GDs), with each GD representing a cluster or category. 

The core of GMM lies in approximating complex data 

distributions through a mixture of multiple GDs, thereby 

achieving flexible modeling and clustering of data. In 

GMM, the probability of each data point (pixel) being 

assigned to multiple clusters is determined by the 

parameters of the GD, including the mean vector, 

covariance matrix, and mixture weights. The formula for 

calculating the probability density of pixels is in equation 

(4). 

 
1

( ) ( ),
K

GMM k k k

k

p x π x μ∣
=

= Så N   (4) 

In equation (4), ( )GMMp x  represents the probability 

density of pixel x . kπ  is the mixture weight of the k th 

GD. ( | , )k kx μ SN  is the probability density function 

of GD, where kμ  represents the mean and kS  represents 

the covariance matrix. The mixed weights represent the 

relative importance of each GD, and the sum of all mixed 

weights is 1. The parameters of each GD are iteratively 

optimized using the Expectation Maximization (EM) 

algorithm to maximize the likelihood function of the data. 

The clustering formula of GMM is in equation (5). 
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In equation (5), ( )kγ x  represents the probability that 

pixel x  belongs to the k th cluster. The calculation 

method for updating mixed weights is in equation (6). 
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In equation (6), N  represents the image size. The 

calculation method for updating the mean is in equation 

(7). 
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The calculation method for updating the covariance 

matrix is in equation (8). 
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In equation (8), T  represents the transpose matrix. In 

texture description, MLBP features represent the texture 

information of an image by calculating feature histograms. 

The calculation process of feature histogram is in Figure 

3.

Determine feature space
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direction distribution
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concatenation Statistical characteristic values

 

Figure 3: Calculation process of feature histogram
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In Figure 3, in the calculation process of the feature 

histogram, the range of feature values needs to be 

determined based on the feature type (such as grayscale 

value, gradient direction, texture feature, etc.) first. Next, 

the range of eigenvalues is divided into several equally 

wide intervals, called "boxes". Taking the grayscale 

histogram as an example, [0, 255] can be divided into 256 

boxes, each with a width of 1. Then, the process traverses 

the dataset (such as every pixel in the image or every point 

in the point cloud), counts which box each feature value 

falls into, and records the number of feature values in each 

box. For example, when calculating a grayscale 

histogram, it is necessary to count the number of times 

each grayscale value appears. To eliminate the influence 

of data size or lighting conditions, it is necessary to 

normalize the histogram by dividing the number of feature 

values in each box by the total number of feature values to 

obtain the normalized histogram. The normalization 

process is in equation (9). 

 
( )

( )

( )
1

norm N

j

H i
H i

H j
=

=

å
 (9) 

In equation (9), ( )H i  and ( )H j  represent the i th 

and j th components of the histogram, respectively. 

Finally, if the feature histogram is locally computed, all 

local histograms are concatenated into a high-dimensional 

feature vector as the final feature description. For each 

scale, the calculation formula for the feature histogram is 

in equation (10). 
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In equation (10), ( )
iSH k  represents the feature 

histogram. is  represents different scales. X  represents 

the collection of all pixels in the image. ()δ  represents 

the indicator function, which takes a value of 1 when the 

condition is met and 0 otherwise. tk  represents the index 

of feature values. In texture matching or classification 

tasks, the study uses weighted chi square distance to 

calculate the similarity between two feature histograms, as 

shown in equation (11). 
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In equation (11), 1 2( , )D H H  represents the 

weighted chi square distance between feature histograms 

1H  and 2H . Furthermore, the crux of the MLBP 

algorithm resides in the methodology it employs to 

generate feature vectors. MLBP concatenates texture 

features extracted at varying scales, thereby constructing 

a comprehensive feature vector. This all-encompassing 

vector is more adept at encapsulating the texture 

information inherent in the image, ultimately yielding 

texture image data of the material. 

2.2 Identification and reproduction model 

of texture in building decoration 

materials 

The study effectively breaks through the limitations 

of traditional LBP algorithm in extracting complex texture 

features by introducing multi-scale sub operators, 

enabling it to capture both large-scale textures and small-

scale details simultaneously. After feature extraction, 

GMM is used for clustering, and EM algorithm is used to 

optimize parameters, thereby achieving flexible modeling 

and accurate classification of textures. Meanwhile, by 

calculating feature histograms and using weighted chi 

square distances, the performance of texture matching and 

classification is further improved, providing a solid 

technical foundation for efficient recognition and 

reproduction of textures in building decoration materials. 

This research aims to build a lightweight, interpretable 

texture recognition and reproduction system for 

architectural materials with minimal computational 

overhead. To reproduce the texture of building decoration 

materials, a GMM-MLBP model for recognizing and 

reproducing the texture of building decoration materials is 

constructed based on the above technology. To reduce 

computational complexity and improve the functionality 

of the GMM-MLBP model, an image preprocessing 

module and a texture reproduction module are introduced 

into the GMM-MLBP model. The structure of the GMM-

MLBP model is in Figure 4. 
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Image preprocessing
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enhancement

Feature extraction Cluster processing
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Texture data 
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Parameter
Production of building 
decoration materials

 

Figure 4: Structure of GMM-MLBP model 

As shown in Figure 4, the GMM-MLBP model 

mainly consists of three major structures: image 

preprocessing module, MLBP algorithm, and texture 

reproduction module. The process of generating textures 

using the GMM-MLBP model is shown in Figure 5.
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Figure 5: The process of generating textures using the GMM-MLBP model

The input texture image first goes through an image 

preprocessing module, which is responsible for grayscale, 

contrast enhancement, and denoising of the image, 

reducing data dimensionality and preserving texture 

information. The structure of the image preprocessing 

module is in Figure 6.
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Figure 6: Structure of image preprocessing module

As shown in Figure 6, the image preprocessing 

module includes steps such as grayscale conversion, 

normalization, contrast enhancement, and denoising. 

Firstly, grayscale conversion converts color images into 

grayscale images, reducing data dimensions through 

weighted averaging while preserving the basic structural 

information of the image, in order to simplify the 

processing and reduce computational complexity. The 

formula for calculating grayscale values is in equation 

(12). 

 gray 0.299 0.587 0.114h h hI R G B= × + × + ×  (12) 

In equation (12), grayI  represents the grayscale value 

of the image. hR , hG , and hB  represent the red, green, 

and blue channel values of the image respectively. Next, 

in order to eliminate the influence of lighting conditions 

on texture, it is necessary to normalize the image. The 

normalization formula is in equation (13). 
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In equation (13), normI  represents the normalized 

image. Normalization operation shrinks pixel values to a 

uniform range of [0, 1]. Contrast enhancement can 

highlight texture features, and histogram equalization is 

used in research. Histogram equalization enhances the 

contrast of an image by adjusting its grayscale distribution 

to approach a uniform distribution. To highlight texture 

details, it is necessary to remove low-frequency 

background information from the image. The high pass 

filtering method used in the study is Laplace filtering, and 

the calculation formula for high pass filtering is in 

equation (14). 

 filtered norm *I HI =   (14) 

In equation (14), filteredI  represents the image after 

high pass filtering. *  represents convolution operation. If 

the scale of the texture image is inconsistent, scale 

standardization is required. The research scales images to 

a uniform resolution through interpolation methods. The 

denoising step uses median filtering and Gaussian filtering 

to remove noise from the image and improve image 
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quality. The median filtering denoising calculation is in 

equation (14). 

 denoised filtered( )I median I=   (15) 

In equation (15), denoisedI  represents the denoised 

image. median  represents median filtering. The 

Gaussian filtering denoising calculation is in equation 

(16). 

 denoised filtered σI I G= *   (16) 

In equation (16), σG  represents Gaussian kernel and 

σ  represents standard deviation. Finally, obtain the 

preprocessed image. The preprocessed image enters the 

MLBP algorithm module for extracting texture features. 

The texture reproduction module converts the extracted 

texture features into control files suitable for production. 

This module adjusts the texture channel map based on the 

parameters of the fabric machine, such as the number and 

distribution of fabric ports, and generates a CSV format 

control file. These files control the material production 

machine to set corresponding textures during the 

production process through a matrix composed of 0 and 1, 

and finally generate building decoration materials with 

texture features. The texture feature processing flow of the 

texture reproduction module is in Figure 7.
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Figure 7: Texture feature processing flowchart of texture reproduction module

As shown in Figure 7, the texture reproduction 

module remaps the extracted texture features to the image, 

generating a texture distribution map or CSV control file 

that meets production requirements. This process is based 

on multiple texture channel maps output by the texture 

segmentation module, each channel map representing a 

specific texture type with binary information (1 represents 

belonging, 0 represents not belonging). These channel 

diagrams are converted into CSV files using a specific 

algorithm, where 1 and 0 represent the opening and 

closing of the pigment ports, respectively, to control the 

production machine to reproduce the texture. When 

converting, the system adjusts the resolution of the texture 

channel map based on machine parameters such as the 

number and distribution of pigment ports to ensure the 

integrity of texture features. Subsequently, building 

decoration materials with the corresponding textures are 

generated based on the CSV file. In the event that the 

generated results do not meet the specified requirements, 

the system modifies the relevant parameters and creates a 

new CSV file. This iterative process continues until the 

desired outcome is achieved. The Pseudo Code of GMM-

MLBP model is in Figure 8.
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# ===== GMM-MLBP MODEL PSEUDOCODE =====

function GMM_MLBP_MODEL(input_image, machine_params):

    # --- Image Preprocessing ---

    preprocessed_img = PREPROCESS(input_image,

                                  target_size=(1024,1024),

                                  grayscale_weights=[0.299, 0.587, 0.114],

                                  denoise_methods=['median','gaussian'])

    # --- Multi-Scale LBP Feature Extraction ---

    mlbp_features = []

    for scale in SCALES:  # SCALES = [(3×3, R=2, P=8), (5×5, R=3, P=10), (7×7, R=5, P=16)]

        scale_features = COMPUTE_MLBP(preprocessed_img, 

                                     radius=scale.R, 

                                     points=scale.P)

        hist = BUILD_HISTOGRAM(scale_features, bins=256)

        mlbp_features.append(hist)

    

    combined_features = CONCATENATE(mlbp_features)

    # --- GMM Clustering ---

    gmm = INIT_GMM(K=5)  # K typically 3-10

    texture_maps = gmm.FIT_PREDICT(combined_features, 

                                   max_iter=100, 

                                   covariance_type='diag')

    # --- Texture Reproduction ---

    control_matrix = ADJUST_RESOLUTION(texture_maps, 

                                      target_res=machine_params.resolution)

    

    csv_data = GENERATE_CSV(control_matrix, 

                            threshold=0.5, 

                            format='binary')

    

    return csv_data  # Average size: 8.75KB

# Key Parameters (from paper):

# - SCALES: Multi-scale operators (3×3,5×5,7×7)

# - RADIUS (R): [2, 3, 5] 

# - POINTS (P): [8, 10, 16]

# - GMM CLUSTERS (K): 3-10 (dynamically adjusted)

# - HISTOGRAM BINS: 256

# - MAX EM ITERATIONS: 100

 

Figure 8: Pseudo code of GMM-MLBP model

3 Result 

3.1 Performance analysis of MLBP 

algorithm 

To confirm the capability of the MLBP algorithm in 

texture feature extraction, a high-performance 

experimental platform was established, and the Multi-

Scale Feature Fusion CNN (MSFF) and the Spatial 

Continuity and Gray Diversity (SCGD) algorithm 

considering spatial continuity and grayscale diversity 

were compared as comparative algorithms [18, 19]. The 

parameters and algorithm parameters of the experimental 

platform are shown in Table 2. 

 

Table 2: Experimental platform parameters and 

algorithm parameters table 

Experimental platform parameters 

CPU Intel Core i5 12400F 

GPU NVIDIA RTX 3060 Ti 

Storage 1TB SSD 

Memory DDR4 3200MHz 32GB 

Operating system Windows 10 Professional 

Programming 

language 
Python 3.7 

Algorithm parameters 

Feature extraction 

method 
Based on MLBP 

Feature vector 

dimension 
Dynamically adjusted 
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Sub-scale sizes 3×3, 5×5, 7×7 

Neighborhood 

radius (R) 

2, 3, 5 (adjusted according to 

texture complexity) 

Number of 

sampling points 

(P) 

8, 10, 16 (matched with 

neighborhood radius) 

Feature histogram 

window (w) 

10, 15, 30 pixels (adjusted 

according to texture type) 

Clustering method GMM 

Number of clusters 
Dynamically adjusted (typically 

3-10) 

The dataset used in the study was the publicly 

available Dresden Texture Dataset, which includes 

multiple texture types (such as marble, wood, tiles, etc.), 

with approximately 100 images for each texture type, and 

image resolutions ranging from 1024×1024 to 

4096×4096. The ratio of training set to testing set was 8:2. 

The performance indicators of the algorithm were 

Classification Accuracy (CA) and Mean Intersection over 

Union (MIoU). The range of CA values was from 0 to 

100%, representing the proportion of correctly classified 

samples to the total sample size. The MIoU value range 

was from 0 to 1, used to evaluate the degree of overlap 

between predicted results and real labels in segmentation 

tasks. For different types of texture images, the average 

test results of CA and MIoU for each algorithm in the 

Dresden Texture Dataset are shown in Figure 9.
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Figure 9: The average values of CA and MIoU for feature extraction of different types of texture images by various 

algorithms

According to Figure 9 (a), in terms of wood texture, 

the CA of MLBP algorithm, MSFF algorithm, and SCGD 

algorithm were 91.21% (± 0.35%), 88.67% (± 0.42%), and 

84.62% (± 0.51%), respectively, indicating that the MLBP 

algorithm had a higher accuracy in texture recognition. 

The CA of the MLBP algorithm for recognizing marble 

and tile textures were 93.95% (± 0.28%) and 96.84% (± 

0.19%), respectively. This was because tile images were 

often more regular, resulting in higher recognition 

accuracy. According to Figure 9 (b), the texture 

segmentation performance of MLBP algorithm was also 

superior to MSFF algorithm and SCGD algorithm. Taking 

ceramic tile texture as an example, the MIoU of MLBP 

algorithm, MSFF algorithm, and SCGD algorithm were 

0.97 (± 0.001), 0.88 (± 0.03), and 0.86 (± 0.02%), 

respectively. The MLBP algorithm could accurately 

recognize and segment texture images. The algorithm was 

tested 100 times on the Dresden Texture Dataset for image 

texture recognition. During the testing process, the 

computational resource consumption of each cycle is in 

Figure 10.
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Figure 10: Computing resource consumption during image texture recognition process

According to Figure 10 (a), during the entire cycle 

testing process, the maximum CPU utilization of MLBP 

algorithm, MSFF algorithm, and SCGD algorithm were 

31.25%, 37.28%, and 39.12%, respectively, indicating 

that MLBP algorithm had lower computational resource 

requirements than other algorithms. According to Figure 

10 (b), the maximum RAM occupancy rates of MLBP 

algorithm, MSFF algorithm, and SCGD algorithm were 
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22.57%, 25.05%, and 29.81%, respectively. Due to the 

combination of MLBP algorithm and GMM for clustering 

analysis, its computational resources and RAM usage 

were lower. 

3.2 Performance analysis of GMM-MLBP 

model 

In the previous section, a performance analysis was 

conducted on the MLBP algorithm, which showed good 

performance, accurate recognition and segmentation of 

texture images, and low computational resource 

consumption. To verify the performance of the GMM-

MLBP model, practical applications were conducted in a 

building decoration material production company, using 

3D Gaussian Speckle (3DGS) and Two Branch 

Convolutional Network (TBCNN) as comparison models 

[20, 21]. The CNC woodworking carving machine model 

was STM6090, manufactured by STYLECNC. It supports 

2D, 2.5D, and 3D processing and is suitable for various 

materials such as hardwood, medium density fiberboard, 

plywood, etc. It can achieve complex texture carving and 

is suitable for customized texture processing of building 

decoration materials. The input parameters of the machine 

were controlled through CSV files generated by the 

model. The actual performance of GMM-MLBP model, 

MSFF algorithm, and SCGD algorithm in reproducing is 

in Figure 11.

(a) Original image (b) GMM-MLBP (c) 3DGS (d) TBCNN 

Marble

Wood

 

Figure 11: Reproduction of wood and marble texture actual effect

As illustrated in Figure 11, the GMM-MLBP model 

demonstrated remarkable capability in precisely 

extracting wood texture features. By enhancing the texture 

details, it enabled high-fidelity reproduction of authentic 

wood textures. This made the model highly applicable in 

the production of building decoration materials. Although 

the 3DGS model could accurately reproduce wood 

texture, there were too many impurity points in the 

generated texture. The wood texture generated by the 

TBCNN model was of poor quality and blurry. Due to the 

denoising optimization of the original image by the 

GMM-MLBP model, it could reproduce better wood 

texture. The reproduction effect of marble texture was 

similar to that of wood texture. In practical applications, 

the time and memory consumption (CSV file size) of each 

model in generating textures are shown in Figure 12.
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Figure 12: Time and memory consumption of texture generation by various models

As shown in Figure 12 (a), due to the preprocessing 

module of the GMM-MLBP model, the time variation 

during texture generation was stable, with an average time 

of 2.93 s, which was 1.49 s faster than the 3DGS model 

(4.42 s). This time advantage is crucial in actual 

production, as it can significantly improve production 

efficiency, reduce waiting time, and accelerate the entire 

workflow. In Figure 12 (b), the average sizes of CSV files 

generated by the GMM-MLBP model, 3DGS model, and 

TBCNN model were 8.75 KB, 21.41 KB, and 28.07 KB, 

respectively. Due to the removal of redundant data in 

texture images by the GMM-MLBP model, the generated 

CSV files were smaller and could occupy less memory. To 

obtain a more comprehensive analysis of the texture 

reproduction performance of the GMM-MLBP model, the 

study also sought professional personnel from the 

decoration material production company to score the 

wood texture, marble texture, and tile texture reproduced 

by different models. The scoring results were based on 10 

professional evaluators in the field of building decoration 
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materials. The scoring criteria included Detail Realism, 

Color Reproduction, and Overall Aesthetics, with a 

maximum score of 10 points for each item. The agreement 

between raters was evaluated by calculating the mean and 

standard deviation, and the standard deviation of each 

indicator was less than 0.6, indicating a high degree of 

consistency among raters. The final rating results are 

shown in Table 3.

Table 3: Texture reproduction performance evaluation 

Texture type Evaluation indicator GMM-MLBP 3DGS TBCNN 

Wood texture 

Detail realism 9.20 8.50 7.80 

Color reproduction 9.00 8.30 7.50 

Overall aesthetics 9.10 8.40 7.70 

Composite score 9.10 8.40 7.67 

Ranking 1 2 3 

Marble texture 

Detail realism 8.90 8.20 7.60 

Color reproduction 8.80 8.10 7.40 

Overall aesthetics 8.70 8.10 7.50 

Composite score 8.80 8.10 7.50 

Ranking 1 2 3 

Tile texture 

Detail realism 9.00 8.40 7.90 

Color reproduction 8.90 8.30 7.70 

Overall aesthetics 8.80 8.20 7.80 

Composite score 8.90 8.30 7.80 

Ranking 1 2 3 

Overall evaluation 
Composite score 8.93 8.27 7.66 

Ranking 1 2 3 

Average value 
SSIM 0.97 0.92 0.86 

PSNR (dB) 32.75 28.40 25.18 

According to Table 3, the GMM-MLBP model 

performed the best in texture reproduction performance. 

In the comprehensive evaluation of three texture types 

(wood texture, marble texture, and tile texture), the GMM-

MLBP model achieved the highest scores of 9.10, 8.80, 

and 8.90, respectively, with an overall comprehensive 

score of 8.93, ranking first. This indicated that the GMM-

MLBP model performed well in the three evaluation 

indicators of detail realism, color reproduction, and 

overall aesthetics, and could highly restore the details and 

colors of real textures. At the same time, it also had a more 

natural and aesthetically pleasing visual effect. In contrast, 

the second-ranked 3DGS model received comprehensive 

scores of 8.40, 8.10, and 8.30 for wood texture, marble 

texture, and tile texture, respectively, with an overall 

comprehensive score of 8.27. Although 3DGS performed 

well in terms of details and color expression, it was 

slightly inferior to the GMM-MLBP model in terms of 

overall aesthetics, especially in the reproduction of tile 

textures, where there was a significant gap in color 

reproduction and aesthetic ratings compared to the GMM-

MLBP model. In summary, the GMM-MLBP model 

demonstrated excellent performance in texture 

reproduction tasks, being able to more accurately restore 

the details and colors of real textures, and also had 

advantages in visual effects. This result indicated that the 

GMM-MLBP model performed well in handling textures 

of different complexity and types, providing a reliable 

solution for texture recognition and reproduction in the 

building decoration materials industry. 

4 Discussion 
The texture recognition and reproduction model based 

on MLBP algorithm proposed in the study demonstrated 

significant advantages in the application of building 

decoration materials. Compared to deep learning methods 

based on CNN and GAN, the MLBP algorithm performed 

outstandingly in terms of efficiency and resource 

consumption. Although existing CNN methods (such as 

Liu and Aldrich [5] and Shukla et al. [7]) achieved high 

accuracy in specific tasks (such as Bai et al. [8]'s 98.9%), 

they relied on large-scale training data and GPU 

computing power, which limited their deployment in 

production environments. Similarly, GAN driven texture 

generation techniques (such as Texturify [9] and GET3D 

[11]) could synthesize high-quality visual output, but had 

huge computational costs (such as generating 21.41 KB 

CSV files compared to the 3DGS model). The MLBP 

algorithm proposed in the study achieved a ceramic tile 

texture classification accuracy (CA) of 96.84% and an 

average intersection to union ratio (MIoU) of 0.97 on the 

standard dataset Dresden Texture Dataset, while only 

requiring up to 22.57% of RAM usage. This efficiency 

stemmed from its manually designed feature extraction 

mechanism, which avoided the dual dependence of deep 

learning models on data and hardware. 
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The excellent performance of the GMM-MLBP 

model on regularized textures such as tiles was attributed 

to its multi-scale operator architecture. Ceramic tile 

textures typically exhibited significant spatial periodicity 

and geometric regularity (such as grid like arrangement), 

which was highly consistent with the multi-scale local 

feature extraction of the GMM-MLBP model. By 

integrating sub operators such as 3×3, 5×5, and 7×7, the 

model synchronously captured micro details (such as brick 

joints) and macro structures (such as repeating units), 

while GMM clustering effectively segmented 

homogeneous regions. In contrast, irregular textures such 

as weathered wood or marble with veins posed a challenge 

to fixed scale operators due to their strong randomness. 

However, the GMM-MLBP model still outperformed the 

comparison algorithms MSFF and SCGD on wood (CA 

91.21%, MIoU 0.91) and marble (CA 93.95%, MIoU 

0.93), verifying its generalization ability. 

However, the GMM-MLBP model had limitations 

when dealing with highly complex or irregular textures. 

Its fixed scale sub-operators were difficult to adapt to 

textures lacking dominant structural frequencies (such as 

fractal granite or organic surfaces), resulting in a decrease 

in feature discriminative power. The parameterization 

assumption of GMM was difficult to accurately 

characterize nonlinear mixed regions in texture 

boundaries with gradient transitions (such as gradient 

ceramics), which could lead to segmentation errors. 

Although the preprocessing module had denoising 

capabilities, extreme noise or occlusion was still more 

likely to affect performance than CNN based methods due 

to its lack of learning driven robustness. These limitations 

point to the need to introduce adaptive scale selection 

mechanisms or integrate lightweight CNN modules in the 

future to enhance adaptability to chaotic textures. 

In terms of real-time performance and production 

scalability, the GMM-MLBP model demonstrated clear 

advantages. The average processing speed of 2.93 seconds 

per image and the pure CPU execution mode met the sub 

5-second delay requirements of industrial online quality 

inspection. The average CSV control file generated was 

only 8.75 KB, significantly reducing storage and 

transmission overhead (compared to 3DGS's 21.41 KB). 

The GMM-MLBP model was implemented in Python, 

making it easy to integrate into factory PLC and MES 

systems without the need for dedicated GPU support, 

which was significantly better than high computing power 

generation models such as GET3D [11]. In the future, it 

can be further optimized to adapt to ARM architecture 

embedded devices and expand edge scene applications. 

From an industrial practice perspective, the GMM-MLBP 

model framework bridges the gap between academic 

research and production demand. Its ability to directly 

output machine-readable control files (CSV) enables 

closed-loop control from texture design to production 

parameters. This is in sharp contrast to existing GAN 

methods [9-11] that only focus on visual synthesis and are 

detached from the production chain.  

The GMM-MLBP model has unique advantages in 

texture feature extraction. Compared with deep learning 

models such as ResNet and MobileNet, the GMM-MLBP 

model has a relatively simple structure and low 

computational resource requirements. ResNet relies on 

deep residual learning and a large number of 

convolutional layers to extract complex features, while 

MobileNet achieves efficient computation through 

depthwise separable convolution, making it suitable for 

mobile devices. The GMM-MLBP model focuses on 

texture details, extracts features using multi-scale local 

binary patterns, and combines Gaussian mixture model 

clustering to achieve texture recognition, which is more 

suitable for scenes with obvious texture features. For 

building decoration material manufacturers, the GMM-

MLBP model provides a practical solution that strikes a 

balance between accuracy, cost, and practicality. 

5 Conclusion 
To precisely discern a diverse array of textures and 

replicate building decoration materials with authentic-

looking textures, an efficient technology for the texture 

recognition and reproduction of building decoration 

materials, which is grounded in the MLBP algorithm, has 

been successfully developed. A corresponding GMM-

MLBP model was proposed by introducing preprocessing 

modules, multi-scale sub operators, GMM, and texture 

reproduction modules. The MLBP algorithm performed 

well in texture feature extraction, with a maximum CA of 

96.84% and MIoU of 0.97. The highest CA and MIoU of 

the MSFF algorithm were 89.81 and 0.88, respectively. 

The MLBP algorithm performed significantly better than 

other compared algorithms. In practical applications, the 

GMM-MLBP model could generate high-quality texture 

control files through image preprocessing and texture 

feature optimization. The average size of the generated 

CSV file was only 8.75 KB, which was significantly better 

than the 21.41 KB of the 3DGS model, thus reducing 

memory usage. In the comprehensive evaluation of texture 

reproduction performance, the GMM-MLBP model 

achieved the highest scores in detail realism, color 

reproduction, and overall aesthetics for wood, marble, and 

tile textures, with an overall comprehensive score of 8.93, 

significantly better than the 3DGS model's 8.27. This 

indicated that the GMM-MLBP model had significant 

advantages in the field of texture reproduction for building 

decoration materials and could provide efficient and high-

quality technical support for related industries. However, 

changes in lighting conditions can affect the grayscale 

value and contrast of the image, thereby affecting the 

effectiveness of the GMM-MLBP model in extracting and 

recognizing texture features; The parameters of the model 

need to be manually adjusted and lack an adaptive 

optimization mechanism. Future work will introduce 

adaptive lighting compensation algorithms to reduce the 

impact of lighting changes on images, combined with 

adaptive optimization algorithms in deep learning to 

automatically adjust model parameters and improve the 

model's adaptability. 
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