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With the increasing demand for material texture recognition and reproduction in the architectural
decoration industry, traditional methods relying on manual annotation are inefficient, and existing
technologies are difficult to meet the requirements of complex texture processing. To accurately identify
the texture and high-quality reproduction of building decoration materials, a texture recognition method
based on multi-scale Local Binary Pattern algorithm combined with Gaussian mixture model clustering
is proposed, and a complete model including image preprocessing, feature extraction, and texture
reproduction modules is constructed. The experimental results on the Dresden Texture Dataset dataset
show that the proposed method performs well in texture feature extraction, with a maximum accuracy of
96.84% for tile texture recognition and an average intersection to union ratio (MloU) of 0.97. The
practical application results show that the proposed method has a fast texture recognition speed and less
memory consumption. The average time and size of the generated CSV files are 2.93 s and 8.75 KB,
respectively, while the average time and size of the CSV files generated by the 3D Gaussian speckle model
are 4.42 s and 21.41 KB, respectively. Meanwhile, the comprehensive score of texture reproduction
performance is 8.93 points, followed by 8.27 points for 3D Gaussian speckle. From this, the method
proposed by the research can quickly identify and reproduce the complex textures of building decoration
materials with high fidelity. This study provides a new technological solution for digital texture
recognition and production control of building decoration materials, promoting the intelligent and high-
quality development of the building decoration industry.

Povzetek: Za prepoznavanje tekstur gradbenih dekorativnih materialov je razvita vecmerilna metoda
(MLBP) v kombinaciji z Gaussovim mesanim modelom (GMM), ki omogoca zajemanje vecnivojskih
znacilk in njihovo pretvorbo v strojno berljive datoteke (CSV) za proizvodnjo. Model zdruzuje
predobdelavo slik, vecmerilno ekstrakcijo in samodejno klastriranje, kar omogoca hitro, zanesljivo in
realisticno reprodukcijo kompleksnih tekstur gradbenih materialov z majhno porabo virov.

Introduction

However, in the face of complex and ever-changing

In recent times, the construction and decoration
industry has wushered in opportunities for rapid
advancement driven by both technological innovation and
market demand [1]. With people's pursuit of high-quality
architectural decoration, the recognition and reproduction
technology of material texture has become a key link in
the development of the industry [2]. Traditional texture
recognition methods rely on manual annotation, which is
difficult to meet the efficiency and accuracy requirements
of the modern architectural decoration industry.
Meanwhile, the texture reproduction technology for
building decoration materials has undergone a continuous
process of advancement. Transitioning from early
methods such as screen printing and rubber-roller printing
to modern techniques like inkjet printing and dry granule
technology, there has been a remarkable enhancement in
both the realism and diversity of texture reproduction [3].

texture requirements, existing technologies still have
limitations [4]. Many scholars have conducted extensive
research to efficiently identify texture patterns. Liu et al.
proposed a new approach grounded on deep neural
network transfer learning to address the limitations of
traditional texture analysis methods in complex texture
recognition. The experiment outcomes indicated that the
performance of this method was superior to Gray-Level
Co-Occurrence Matrix (GLCM) and Local Binary Pattern
(LBP) [5]. Kamijyo et al. proposed a crystal texture
calculation method based on deep neural networks to
reduce the computational workload in numerical
crystallographic texture optimization. The experiment
outcomes indicated that this calculation method could
determine the optimal volume fraction for selecting
texture components [6]. Shukla et al. proposed a material
recognition method based on Convolutional Neural
Networks (CNN) to address the issue of insufficient
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accuracy in traditional methods for material quality
identification. The experiment outcomes indicated that the
CNN classifier outperformed other deep learning
classifiers in recognition accuracy [7]. Bai et al. proposed
a high-precision texture recognition real-time artificial
sensing system based on a single ion electron sliding
sensor to solve the problem of insufficient texture
recognition response in modern robots during interaction.
The experiment outcomes indicated that the system had an
accuracy of 98.9% at random sliding rates and could
accurately distinguish fine surface features [8].

In terms of texture generation, Siddiqui et al.
proposed a Texturify algorithm based on Generative
Adversarial Networks (GAN) to solve the problem of
texture prediction caused by the scarcity of 3D texture
data. The experiment outcomes indicated that the
Texturify algorithm could generate high-quality textures

N. Li

directly on the surface of 3D objects through layered 4-
RoSy parameterization and facial convolution operators,
with excellent performance [9]. Cao et al. proposed
TexFusion, a new method for synthesizing textures for 3D
geometry using only large-scale text guided image
diffusion models, to address the inefficiency and
instability issues of traditional methods in 3D texture
synthesis. The experiment outcomes indicated that
TexFusion could generate diverse and globally coherent
textures [10]. Gao et al. proposed a Generations Explicit
Textured 3D (GET3D) model that could directly generate
rich geometric details and high fidelity textures to address
the shortcomings of traditional 3D generative models in
texture support. The experiment outcomes indicated that
the GET3D model could generate high-quality 3D texture
meshes [11]. The summary of related work is shown in
Table 1.

Table 1: Related work table

Texture Dataset /
Recognition Methodology Evaluation Performance Metrics Key Findings
Methods Context
. Deep Neural Network - Superior to
Liu etal. [5] Transfer Learning Not Specified Accuracy (CA) GLCM & LBP
Numerical Determines
Kamijyoetal.  Deep Neural Network- . . optimal texture
- crystal texture Optimal volume fraction
[6] based Calculation component
data fracti
ractions
Material- Outperformed
Shuklaetal. [7] CNN Classifier specific Recognition Accuracy (CA) other DL
dataset classifiers
Surface High-precision
Bai et al. [8] lon Electron Sliding feature dataset Accuracy (98.9%) distinction of fine
Sensor System (random
- surface features
sliding)
Siddiqui et al. Texturify (GAN + 4- 3D texture Qualitative/Quantitative quality D_|rect high-
RoSy . quality 3D surface
[9] datasets metrics

parameterization)
TexFusion (Text-

3D geometry

texture generation
Generated diverse

Caoetal. [10] guided image datasets Diversity, global coherence & globally
diffusion) coherent textures
GET3D (Explicit 3D shape High-quality 3D
Gao et al. [11] Textured 3D datasets Fidelity, geometric detail textured mesh
Generation) output
Dresden Highest
Proposed Texture CA/MloU;
Method MIE:IIBES; rci;n'\g;lM Dataset (100+ CA: 96.84% (Tile), MloU: 0.97 Minimal CSV size
(MLBP) images per (8.75KB); Repro.
type) Score: 8.93

However, existing methods have many shortcomings

in texture analysis and generation. Traditional texture
analysis methods, such as LBP algorithm, have
insufficient accuracy in complex texture recognition.
Although deep neural network-based methods have
superior performance, they rely on large-scale data and
computing resources. In terms of 3D texture generation,
existing methods either lack geometric details or are
limited in texture support. In addition, some methods are

sensitive to noise and the sampling method can easily lead
to aliasing effects. A GMM-MLBP model, which is based
on a multi-scale Local Binary Pattern (MLBP) algorithm,
is put forward with the aim of efficiently and precisely
capturing texture images and replicating them onto the
textures of building decoration materials. This research
makes an innovative move by integrating the Gaussian
Mixture Model (GMM) for texture recognition, thereby
enhancing the accuracy and generalization capability of
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texture feature extraction. An image preprocessing
module is introduced to reduce the consumption of
computing resources. A texture reproduction module is
introduced to generate CSV files, and the precise control
of the production machine for building decoration
materials is achieved.

2 Method and materials

2.1 Improvement of LBP Algorithm and
Material Texture Recognition

Texture recognition is a crucial step in the production
process of building decoration materials, which helps in
the manufacturing of various materials such as imitation
natural stone and imitation natural wood [12]. Traditional
texture recognition methods rely on manual annotation,
which is not only time-consuming and labor-intensive, but
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also susceptible to subjective factors, resulting in low
production efficiency and accuracy. As computer vision
technology advances, texture recognition algorithms
based on image processing have gradually become an
effective means to solve this problem [13]. Among them,
the LBP algorithm is widely used for texture feature
extraction due to its advantages of simple calculation,
insensitivity to lighting and rotation [14]. However,
traditional LBP algorithms have some limitations,
especially when dealing with complex textures. Due to
their fixed 3x3 neighborhood window, it is difficult to
capture large-scale texture features, resulting in
incomplete or discontinuous texture segmentation results
[15]. To overcome this deficiency, an MLBP algorithm is
proposed in the study. MLBP increases the receptive field
of feature extraction by introducing multiple sub-scale
operators, enabling the simultaneous capture of texture
features at different scales. The MLBP algorithm structure
is in Figure 1.
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Figure 1: MLBP structure diagram

As shown in Figure 1, MLBP captures texture
information by dividing the image into multiple local
regions of different scales and applying multiple sub-
operators within each region. These sub-operators are
distributed in different spatial positions and can
simultaneously extract large-scale textures and small-
scale details in the image. The calculation formula for each

sub-scale operator is in equation (1) [16].
P

MLBP, (x,) = é{ s(l,- 1,)R™* 1)

p=1

In equation (1), MLBF; represents the output of the

i th sub scale operator. X, represents the central pixel
point. P; represents the number of sampling points in the
i th sub-scale operator. |p is the grayscale value of the
P th sampling point. |, is the grayscale value of the

central pixel. S() is the threshold function, as shown in
equation (2) [17].
X3 0

L
= 2
() iO, otherwise @

MLBP enhances feature extraction capability by
combining multiple sub scale operators. Each sub-scale
operator is responsible for processing specific texture
features, while operators of different scales generate more
comprehensive texture descriptions through fusion. The
fusion formula is in equation (3).

MLBP(x,) = [MLBP; (x.), MLBP; (x.),% ,MLBP; (x.)], @)
i=12.n

In equation (3), MLBP(X.) denotes the final multi-

scale texture feature vector. N represents the total number
of sub scale operators. The sub-scale sizes are 3x3, 5x5,
and 7x7, corresponding to neighborhood radii R of 2, 3,
and 5, respectively. The number of sampling points P is 8,
10, and 16, respectively. This allows for dynamic
adjustment of parameters based on texture complexity to
achieve effective feature extraction. This multi-scale
design enables MLBP to adapt to images with diverse
texture styles, significantly improving the generalization
ability of feature extraction. In texture segmentation, the
features extracted by MLBP are combined with GMM for
clustering. The structure of GMM is in Figure 2.
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Figure 2: GMM structure diagram

As shown in Figure 2, the GMM structure is based on
a linear combination of multiple Gaussian distributions
(GDs), with each GD representing a cluster or category.
The core of GMM lies in approximating complex data
distributions through a mixture of multiple GDs, thereby
achieving flexible modeling and clustering of data. In
GMM, the probability of each data point (pixel) being
assigned to multiple clusters is determined by the
parameters of the GD, including the mean vector,
covariance matrix, and mixture weights. The formula for
calculating the probability density of pixels is in equation

4. .
Pom (X) = é N (i S i)

k=1
In equation (4), Pgum (X) represents the probability

(4)

density of pixel X. 7, is the mixture weight of the k th
GD. N (X]| .S ) is the probability density function

of GD, where £, represents the mean and S, represents

the covariance matrix. The mixed weights represent the
relative importance of each GD, and the sum of all mixed
weights is 1. The parameters of each GD are iteratively
optimized using the Expectation Maximization (EM)
algorithm to maximize the likelihood function of the data.
The clustering formula of GMM is in equation (5).

m N (X[ 4,8 )

In equation (5), 7, (X) represents the probability that
pixel X belongs to the k th cluster. The calculation
method for updating mixed weights is in equation (6).

10
T =& n(x) (6)
N n=1

In equation (6), N represents the image size. The
calculation method for updating the mean is in equation
().

N

a yk (X)Xn
n=1
N
a

Yk (X)

n=1
The calculation method for updating the covariance
matrix is in equation (8).
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In equation (8), T represents the transpose matrix. In
texture description, MLBP features represent the texture
information of an image by calculating feature histograms.
The calculation process of feature histogram is in Figure
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Figure 3: Calculation process of feature histogram
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In Figure 3, in the calculation process of the feature
histogram, the range of feature values needs to be
determined based on the feature type (such as grayscale
value, gradient direction, texture feature, etc.) first. Next,
the range of eigenvalues is divided into several equally
wide intervals, called "boxes". Taking the grayscale
histogram as an example, [0, 255] can be divided into 256
boxes, each with a width of 1. Then, the process traverses
the dataset (such as every pixel in the image or every point
in the point cloud), counts which box each feature value
falls into, and records the number of feature values in each
box. For example, when calculating a grayscale
histogram, it is necessary to count the number of times
each grayscale value appears. To eliminate the influence
of data size or lighting conditions, it is necessary to
normalize the histogram by dividing the number of feature
values in each box by the total number of feature values to
obtain the normalized histogram. The normalization
process is in equation (9).

H (i)

Hoom ()= —"—
a H()
j=1
In equation (9), H (i) and H (j) represent the i th

and ] th components of the histogram, respectively.
Finally, if the feature histogram is locally computed, all
local histograms are concatenated into a high-dimensional
feature vector as the final feature description. For each
scale, the calculation formula for the feature histogram is

in equation (10).
Hs (k)= a J(MLBP; (x) = k)

xi X

In equation (10), Hg (K) represents the feature

©)

(10)

histogram. S; represents different scales. X represents

the collection of all pixels in the image. () represents
the indicator function, which takes a value of 1 when the
condition is met and 0 otherwise. K, represents the index
of feature values. In texture matching or classification

tasks, the study uses weighted chi square distance to
calculate the similarity between two feature histograms, as
N
(Hl,i B

shown in equation (11).
D(H,, H,)= § Hay)
v ?;1 Hl,i + H2,i

In equation (11), D(H,,H,) represents the
weighted chi square distance between feature histograms
H, and H, . Furthermore, the crux of the MLBP

algorithm resides in the methodology it employs to
generate feature vectors. MLBP concatenates texture
features extracted at varying scales, thereby constructing
a comprehensive feature vector. This all-encompassing
vector is more adept at encapsulating the texture
information inherent in the image, ultimately yielding
texture image data of the material.

11)
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2.2 ldentification and reproduction model
of texture in building decoration
materials

The study effectively breaks through the limitations
of traditional LBP algorithm in extracting complex texture
features by introducing multi-scale sub operators,
enabling it to capture both large-scale textures and small-
scale details simultaneously. After feature extraction,
GMM is used for clustering, and EM algorithm is used to
optimize parameters, thereby achieving flexible modeling
and accurate classification of textures. Meanwhile, by
calculating feature histograms and using weighted chi
square distances, the performance of texture matching and
classification is further improved, providing a solid
technical foundation for efficient recognition and
reproduction of textures in building decoration materials.
This research aims to build a lightweight, interpretable
texture recognition and reproduction system for
architectural materials with minimal computational
overhead. To reproduce the texture of building decoration
materials, a GMM-MLBP model for recognizing and
reproducing the texture of building decoration materials is
constructed based on the above technology. To reduce
computational complexity and improve the functionality
of the GMM-MLBP model, an image preprocessing
module and a texture reproduction module are introduced
into the GMM-MLBP model. The structure of the GMM-
MLBP model is in Figure 4.

Texture ige

i}
o

Es

Contrast
enhancement

Image preprocessing

L1

Feature extraction Cluster processing
MLBP algorithm

a
Yy
R N L
Texture data

Grayscale Remove noise

I-_-?E.Iﬁ

Production of building
decoration materials
Texture reproduction module

Figure 4: Structure of GMM-MLBP model

Parameter

As shown in Figure 4, the GMM-MLBP model
mainly consists of three major structures: image
preprocessing module, MLBP algorithm, and texture
reproduction module. The process of generating textures
using the GMM-MLBP model is shown in Figure 5.
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Figure 5: The process of generating textures using the GMM-MLBP model

The input texture image first goes through an image
preprocessing module, which is responsible for grayscale,
contrast enhancement, and denoising of the image,
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reducing data dimensionality and preserving texture
information. The structure of the image preprocessing
module is in Figure 6.
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Figure 6: Structure of image preprocessing module

As shown in Figure 6, the image preprocessing
module includes steps such as grayscale conversion,
normalization, contrast enhancement, and denoising.
Firstly, grayscale conversion converts color images into
grayscale images, reducing data dimensions through
weighted averaging while preserving the basic structural
information of the image, in order to simplify the
processing and reduce computational complexity. The
formula for calculating grayscale values is in equation
(12)
= 0.299R, + 0.587>G, + 0.114>B, (12)

gray FePresents the grayscale value

gray
In equation (12), |

of the image. R,, G, , and B, represent the red, green,

and blue channel values of the image respectively. Next,
in order to eliminate the influence of lighting conditions
on texture, it is necessary to normalize the image. The
normalization formula is in equation (13).

ey - Min(l

max(|

gray )
)- min(l

(13)

norm —

gray gray)

In equation (13), |, represents the normalized

image. Normalization operation shrinks pixel values to a
uniform range of [0, 1]. Contrast enhancement can
highlight texture features, and histogram equalization is
used in research. Histogram equalization enhances the
contrast of an image by adjusting its grayscale distribution
to approach a uniform distribution. To highlight texture
details, it is necessary to remove low-frequency
background information from the image. The high pass
filtering method used in the study is Laplace filtering, and
the calculation formula for high pass filtering is in
equation (14).

*H

Liiereq represents the image after

(14)

Ifiltered = Inorm
In equation (14),

high pass filtering. * represents convolution operation. If
the scale of the texture image is inconsistent, scale
standardization is required. The research scales images to
a uniform resolution through interpolation methods. The
denoising step uses median filtering and Gaussian filtering
to remove noise from the image and improve image
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quality. The median filtering denoising calculation is in
equation (14).
I = medlan(lfiltered)

denoised

(15)

In equation (15), | 4 represents the denoised

image. median represents median filtering. The

Gaussian filtering denoising calculation is in equation
(16).

denoise

In equation (16), G, represents Gaussian kernel and
o represents standard deviation. Finally, obtain the

- *
denoised ~ " filtered Go— (16)
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preprocessed image. The preprocessed image enters the
MLBP algorithm module for extracting texture features.
The texture reproduction module converts the extracted
texture features into control files suitable for production.
This module adjusts the texture channel map based on the
parameters of the fabric machine, such as the number and
distribution of fabric ports, and generates a CSV format
control file. These files control the material production
machine to set corresponding textures during the
production process through a matrix composed of 0 and 1,
and finally generate building decoration materials with
texture features. The texture feature processing flow of the
texture reproduction module is in Figure 7.

Figure 7: Texture feature processing flowchart of texture reproduction module

As shown in Figure 7, the texture reproduction
module remaps the extracted texture features to the image,
generating a texture distribution map or CSV control file
that meets production requirements. This process is based
on multiple texture channel maps output by the texture
segmentation module, each channel map representing a
specific texture type with binary information (1 represents
belonging, O represents not belonging). These channel
diagrams are converted into CSV files using a specific
algorithm, where 1 and O represent the opening and
closing of the pigment ports, respectively, to control the
production machine to reproduce the texture. When

converting, the system adjusts the resolution of the texture
channel map based on machine parameters such as the
number and distribution of pigment ports to ensure the
integrity of texture features. Subsequently, building
decoration materials with the corresponding textures are
generated based on the CSV file. In the event that the
generated results do not meet the specified requirements,
the system modifies the relevant parameters and creates a
new CSV file. This iterative process continues until the
desired outcome is achieved. The Pseudo Code of GMM-
MLBP model is in Figure 8.
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GMM-MLBP MODEL PSEUDOCODE

# --- Image Preprocessing ---
preprocessed_img = PREPROCESS(input_image,
target_size=(1024,1024),

# --- Multi-Scale LBP Feature Extraction ---
mlbp_features =[]

radius=scale.R,
points=scale.P)

mlbp_features.append(hist)

# --- GMM Clustering ---
gmm = INIT_GMM(K=5) # K typically 3-10

max_iter=100,
covariance_type='diag')

# --- Texture Reproduction ---

csv_data = GENERATE_CSV/(control_matrix,
threshold=0.5,
format="binary")

return csv_data # Average size: 8.75KB

# Key Parameters (from paper):

# - SCALES: Multi-scale operators (3%3,5%5,7x7)
# - RADIUS (R): [2, 3, 5]

# - POINTS (P): [8, 10, 16]

# - HISTOGRAM BINS: 256
#- MAX EM ITERATIONS: 100

function GMM_MLBP_MODEL (input_image, machine_params):

grayscale_weights=[0.299, 0.587, 0.114],
denoise_methods=['median’,'gaussian'])

for scale in SCALES: # SCALES = [(3x3, R=2, P=8), (5x5, R=3, P=10), (7x7, R=5, P=16)]

scale_features = COMPUTE_MLBP(preprocessed_img,

hist = BUILD_HISTOGRAM(scale_features, bins=256)

combined_features = CONCATENATE(mIbp_features)

texture_maps = gmm.FIT_PREDICT(combined_features,

control_matrix = ADJUST_RESOLUTION(texture_maps,
target_res=machine_params.resolution)

# - GMM CLUSTERS (K): 3-10 (dynamically adjusted)

Figure 8: Pseudo code of GMM-MLBP model

3 Result

3.1 Performance analysis of MLBP
algorithm

To confirm the capability of the MLBP algorithm in
texture feature extraction, a high-performance
experimental platform was established, and the Multi-
Scale Feature Fusion CNN (MSFF) and the Spatial
Continuity and Gray Diversity (SCGD) algorithm
considering spatial continuity and grayscale diversity
were compared as comparative algorithms [18, 19]. The
parameters and algorithm parameters of the experimental
platform are shown in Table 2.

Table 2: Experimental platform parameters and
algorithm parameters table

N. Li

Experimental platform parameters

CPU Intel Core i5 12400F
GPU NVIDIA RTX 3060 Ti
Storage 1TB SSD
Memory DDR4 3200MHz 32GB
Operating system Windows 10 Professional
Programming Python 3.7

language
Algorithm parameters
Feature extraction Based on MLBP
method
Feature vector

dimension Dynamically adjusted
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3x3, 5x5, 7x7
2, 3, 5 (adjusted according to

Sub-scale sizes
Neighborhood

radius (R) texture complexity)
Sarﬁ'ulri':]bergfnts 8, 10, 16 (matched with
P (Pg)p neighborhood radius)
Feature histogram 10, 15, 30 pixels (adjusted
window (w) according to texture type)
Clustering method GMM
Number of clusters Dynamically gﬁj{gited (typically

The dataset used in the study was the publicly
available Dresden Texture Dataset, which includes

EE MLBP MSFF EHSCGD
100 96.84

9

CA®%)

Texture type
(@) CA
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multiple texture types (such as marble, wood, tiles, etc.),
with approximately 100 images for each texture type, and
image resolutions ranging from 1024x1024 to
4096x4096. The ratio of training set to testing set was 8:2.
The performance indicators of the algorithm were
Classification Accuracy (CA) and Mean Intersection over
Union (MloU). The range of CA values was from 0 to
100%, representing the proportion of correctly classified
samples to the total sample size. The MloU value range
was from 0 to 1, used to evaluate the degree of overlap
between predicted results and real labels in segmentation
tasks. For different types of texture images, the average
test results of CA and MloU for each algorithm in the
Dresden Texture Dataset are shown in Figure 9.

EE MLBP EZIMSFF E(I)EI9

SCGD
7

ood

Texture type
(b) MIoU

Figure 9: The average values of CA and MloU for feature extraction of different types of texture images by various
algorithms

According to Figure 9 (a), in terms of wood texture,
the CA of MLBP algorithm, MSFF algorithm, and SCGD
algorithm were 91.21% (+ 0.35%), 88.67% (£ 0.42%), and
84.62% (+ 0.51%), respectively, indicating that the MLBP
algorithm had a higher accuracy in texture recognition.
The CA of the MLBP algorithm for recognizing marble
and tile textures were 93.95% (+ 0.28%) and 96.84% (+
0.19%), respectively. This was because tile images were
often more regular, resulting in higher recognition
accuracy. According to Figure 9 (b), the texture
segmentation performance of MLBP algorithm was also
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superior to MSFF algorithm and SCGD algorithm. Taking
ceramic tile texture as an example, the MloU of MLBP
algorithm, MSFF algorithm, and SCGD algorithm were
0.97 (= 0.001), 0.88 (x 0.03), and 0.86 (+ 0.02%),
respectively. The MLBP algorithm could accurately
recognize and segment texture images. The algorithm was
tested 100 times on the Dresden Texture Dataset for image
texture recognition. During the testing process, the
computational resource consumption of each cycle is in
Figure 10.
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Figure 10: Computing resource consumption during image texture recognition process

According to Figure 10 (a), during the entire cycle
testing process, the maximum CPU utilization of MLBP
algorithm, MSFF algorithm, and SCGD algorithm were
31.25%, 37.28%, and 39.12%, respectively, indicating

that MLBP algorithm had lower computational resource
requirements than other algorithms. According to Figure
10 (b), the maximum RAM occupancy rates of MLBP
algorithm, MSFF algorithm, and SCGD algorithm were



400 Informatica 49 (2025) 391-404

22.57%, 25.05%, and 29.81%, respectively. Due to the
combination of MLBP algorithm and GMM for clustering
analysis, its computational resources and RAM usage
were lower.

3.2 Performance analysis of GMM-MLBP

model
In the previous section, a performance analysis was
conducted on the MLBP algorithm, which showed good
performance, accurate recognition and segmentation of
texture images, and low computational resource
consumption. To verify the performance of the GMM-
MLBP model, practical applications were conducted in a

Marble T N >

Wood

(a) Original image

(b) GMM-MLBP

N. Li

building decoration material production company, using
3D Gaussian Speckle (3DGS) and Two Branch
Convolutional Network (TBCNN) as comparison models
[20, 21]. The CNC woodworking carving machine model
was STM6090, manufactured by STYLECNC. It supports
2D, 2.5D, and 3D processing and is suitable for various
materials such as hardwood, medium density fiberboard,
plywood, etc. It can achieve complex texture carving and
is suitable for customized texture processing of building
decoration materials. The input parameters of the machine
were controlled through CSV files generated by the
model. The actual performance of GMM-MLBP model,
MSFF algorithm, and SCGD algorithm in reproducing is
in Figure 11.

' © 3DGS (d) TBCNN

Figure 11: Reproduction of wood and marble texture actual effect

As illustrated in Figure 11, the GMM-MLBP model
demonstrated remarkable capability in precisely
extracting wood texture features. By enhancing the texture
details, it enabled high-fidelity reproduction of authentic
wood textures. This made the model highly applicable in
the production of building decoration materials. Although
the 3DGS model could accurately reproduce wood
texture, there were too many impurity points in the

10 —— GMM-MLBP
— — 3DGS
8r TBCNN

generated texture. The wood texture generated by the
TBCNN model was of poor quality and blurry. Due to the
denoising optimization of the original image by the
GMM-MLBP model, it could reproduce better wood
texture. The reproduction effect of marble texture was
similar to that of wood texture. In practical applications,
the time and memory consumption (CSV file size) of each
model in generating textures are shown in Figure 12.

50 — GMM-MLBP
— — 3DGS
401 TBCNN
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Figure 12: Time and memory consumption of texture generation by various models

As shown in Figure 12 (a), due to the preprocessing
module of the GMM-MLBP model, the time variation
during texture generation was stable, with an average time
of 2.93 s, which was 1.49 s faster than the 3DGS model
(4.42 s). This time advantage is crucial in actual
production, as it can significantly improve production
efficiency, reduce waiting time, and accelerate the entire
workflow. In Figure 12 (b), the average sizes of CSV files
generated by the GMM-MLBP model, 3DGS model, and
TBCNN model were 8.75 KB, 21.41 KB, and 28.07 KB,

respectively. Due to the removal of redundant data in
texture images by the GMM-MLBP model, the generated
CSV files were smaller and could occupy less memory. To
obtain a more comprehensive analysis of the texture
reproduction performance of the GMM-MLBP model, the
study also sought professional personnel from the
decoration material production company to score the
wood texture, marble texture, and tile texture reproduced
by different models. The scoring results were based on 10
professional evaluators in the field of building decoration



Multi-Scale LBP and GMM-Based Texture Recognition and...

materials. The scoring criteria included Detail Realism,
Color Reproduction, and Overall Aesthetics, with a
maximum score of 10 points for each item. The agreement
between raters was evaluated by calculating the mean and
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standard deviation, and the standard deviation of each
indicator was less than 0.6, indicating a high degree of
consistency among raters. The final rating results are
shown in Table 3.

Table 3: Texture reproduction performance evaluation

Texture type Evaluation indicator GMM-MLBP 3DGS TBCNN
Detail realism 9.20 8.50 7.80
Color reproduction 9.00 8.30 7.50
Wood texture Overall aesthetics 9.10 8.40 7.70
Composite score 9.10 8.40 7.67
Ranking 1 2 3
Detail realism 8.90 8.20 7.60
Color reproduction 8.80 8.10 7.40
Marble texture Overall aesthetics 8.70 8.10 7.50
Composite score 8.80 8.10 7.50
Ranking 1 2 3
Detail realism 9.00 8.40 7.90
Color reproduction 8.90 8.30 7.70
Tile texture Overall aesthetics 8.80 8.20 7.80
Composite score 8.90 8.30 7.80
Ranking 1 2 3
Overall evaluation Composite score 8.93 8.27 7.66
Ranking 1 2 3
SSIM 0.97 0.92 0.86
Average value
PSNR (dB) 32.75 28.40 25.18

According to Table 3, the GMM-MLBP model
performed the best in texture reproduction performance.
In the comprehensive evaluation of three texture types
(wood texture, marble texture, and tile texture), the GMM-
MLBP model achieved the highest scores of 9.10, 8.80,
and 8.90, respectively, with an overall comprehensive
score of 8.93, ranking first. This indicated that the GMM-
MLBP model performed well in the three evaluation
indicators of detail realism, color reproduction, and
overall aesthetics, and could highly restore the details and
colors of real textures. At the same time, it also had a more
natural and aesthetically pleasing visual effect. In contrast,
the second-ranked 3DGS model received comprehensive
scores of 8.40, 8.10, and 8.30 for wood texture, marble
texture, and tile texture, respectively, with an overall
comprehensive score of 8.27. Although 3DGS performed
well in terms of details and color expression, it was
slightly inferior to the GMM-MLBP model in terms of
overall aesthetics, especially in the reproduction of tile
textures, where there was a significant gap in color
reproduction and aesthetic ratings compared to the GMM-
MLBP model. In summary, the GMM-MLBP model
demonstrated  excellent  performance in texture
reproduction tasks, being able to more accurately restore
the details and colors of real textures, and also had
advantages in visual effects. This result indicated that the
GMM-MLBP model performed well in handling textures
of different complexity and types, providing a reliable

solution for texture recognition and reproduction in the
building decoration materials industry.

4 Discussion

The texture recognition and reproduction model based
on MLBP algorithm proposed in the study demonstrated
significant advantages in the application of building
decoration materials. Compared to deep learning methods
based on CNN and GAN, the MLBP algorithm performed
outstandingly in terms of efficiency and resource
consumption. Although existing CNN methods (such as
Liu and Aldrich [5] and Shukla et al. [7]) achieved high
accuracy in specific tasks (such as Bai et al. [8]'s 98.9%),
they relied on large-scale training data and GPU
computing power, which limited their deployment in
production environments. Similarly, GAN driven texture
generation techniques (such as Texturify [9] and GET3D
[11]) could synthesize high-quality visual output, but had
huge computational costs (such as generating 21.41 KB
CSV files compared to the 3DGS model). The MLBP
algorithm proposed in the study achieved a ceramic tile
texture classification accuracy (CA) of 96.84% and an
average intersection to union ratio (MloU) of 0.97 on the
standard dataset Dresden Texture Dataset, while only
requiring up to 22.57% of RAM usage. This efficiency
stemmed from its manually designed feature extraction
mechanism, which avoided the dual dependence of deep
learning models on data and hardware.
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The excellent performance of the GMM-MLBP
model on regularized textures such as tiles was attributed
to its multi-scale operator architecture. Ceramic tile
textures typically exhibited significant spatial periodicity
and geometric regularity (such as grid like arrangement),
which was highly consistent with the multi-scale local
feature extraction of the GMM-MLBP model. By
integrating sub operators such as 3x3, 5x5, and 7x7, the
model synchronously captured micro details (such as brick
joints) and macro structures (such as repeating units),
while  GMM  clustering effectively  segmented
homogeneous regions. In contrast, irregular textures such
as weathered wood or marble with veins posed a challenge
to fixed scale operators due to their strong randomness.
However, the GMM-MLBP model still outperformed the
comparison algorithms MSFF and SCGD on wood (CA
91.21%, MloU 0.91) and marble (CA 93.95%, MioU
0.93), verifying its generalization ability.

However, the GMM-MLBP model had limitations
when dealing with highly complex or irregular textures.
Its fixed scale sub-operators were difficult to adapt to
textures lacking dominant structural frequencies (such as
fractal granite or organic surfaces), resulting in a decrease
in feature discriminative power. The parameterization
assumption of GMM was difficult to accurately
characterize nonlinear mixed regions in texture
boundaries with gradient transitions (such as gradient
ceramics), which could lead to segmentation errors.
Although the preprocessing module had denoising
capabilities, extreme noise or occlusion was still more
likely to affect performance than CNN based methods due
to its lack of learning driven robustness. These limitations
point to the need to introduce adaptive scale selection
mechanisms or integrate lightweight CNN modules in the
future to enhance adaptability to chaotic textures.

In terms of real-time performance and production
scalability, the GMM-MLBP model demonstrated clear
advantages. The average processing speed of 2.93 seconds
per image and the pure CPU execution mode met the sub
5-second delay requirements of industrial online quality
inspection. The average CSV control file generated was
only 8.75 KB, significantly reducing storage and
transmission overhead (compared to 3DGS's 21.41 KB).
The GMM-MLBP model was implemented in Python,
making it easy to integrate into factory PLC and MES
systems without the need for dedicated GPU support,
which was significantly better than high computing power
generation models such as GET3D [11]. In the future, it
can be further optimized to adapt to ARM architecture
embedded devices and expand edge scene applications.
From an industrial practice perspective, the GMM-MLBP
model framework bridges the gap between academic
research and production demand. Its ability to directly
output machine-readable control files (CSV) enables
closed-loop control from texture design to production
parameters. This is in sharp contrast to existing GAN
methods [9-11] that only focus on visual synthesis and are
detached from the production chain.

The GMM-MLBP model has unique advantages in
texture feature extraction. Compared with deep learning
models such as ResNet and MobileNet, the GMM-MLBP
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model has a relatively simple structure and low
computational resource requirements. ResNet relies on
deep residual learning and a large number of
convolutional layers to extract complex features, while
MobileNet achieves efficient computation through
depthwise separable convolution, making it suitable for
mobile devices. The GMM-MLBP model focuses on
texture details, extracts features using multi-scale local
binary patterns, and combines Gaussian mixture model
clustering to achieve texture recognition, which is more
suitable for scenes with obvious texture features. For
building decoration material manufacturers, the GMM-
MLBP model provides a practical solution that strikes a
balance between accuracy, cost, and practicality.

5 Conclusion

To precisely discern a diverse array of textures and
replicate building decoration materials with authentic-
looking textures, an efficient technology for the texture
recognition and reproduction of building decoration
materials, which is grounded in the MLBP algorithm, has
been successfully developed. A corresponding GMM-
MLBP model was proposed by introducing preprocessing
modules, multi-scale sub operators, GMM, and texture
reproduction modules. The MLBP algorithm performed
well in texture feature extraction, with a maximum CA of
96.84% and MloU of 0.97. The highest CA and MloU of
the MSFF algorithm were 89.81 and 0.88, respectively.
The MLBP algorithm performed significantly better than
other compared algorithms. In practical applications, the
GMM-MLBP model could generate high-quality texture
control files through image preprocessing and texture
feature optimization. The average size of the generated
CSV file was only 8.75 KB, which was significantly better
than the 21.41 KB of the 3DGS model, thus reducing
memory usage. In the comprehensive evaluation of texture
reproduction performance, the GMM-MLBP model
achieved the highest scores in detail realism, color
reproduction, and overall aesthetics for wood, marble, and
tile textures, with an overall comprehensive score of 8.93,
significantly better than the 3DGS model's 8.27. This
indicated that the GMM-MLBP model had significant
advantages in the field of texture reproduction for building
decoration materials and could provide efficient and high-
quality technical support for related industries. However,
changes in lighting conditions can affect the grayscale
value and contrast of the image, thereby affecting the
effectiveness of the GMM-MLBP model in extracting and
recognizing texture features; The parameters of the model
need to be manually adjusted and lack an adaptive
optimization mechanism. Future work will introduce
adaptive lighting compensation algorithms to reduce the
impact of lighting changes on images, combined with
adaptive optimization algorithms in deep learning to
automatically adjust model parameters and improve the
model's adaptability.
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