
https://doi.org/10.31449/inf.v49i6.9170 Informatica 49 (2025) 391–404 391

Multi-Scale LBP and GMM-Based Texture Recognition and

Reproduction for Building Decoration Materials

Na Li1,2

1Henan Technical College of Construction, Zhengzhou 450064, China
2Kyrgyz National University Named After Jusup Balasagyn, Bishkek 720033, Kyrgyz RepublicEmail:

lina__edu@163.com

Keywords: texture recognition, multi-scale local binary mode, gaussian mixture model, texture reproduction, decorative

material

Received: May 9, 2025

With the increasing demand for material texture recognition and reproduction in the architectural

decoration industry, traditional methods relying on manual annotation are inefficient, and existing

technologies are difficult to meet the requirements of complex texture processing. To accurately identify

the texture and high-quality reproduction of building decoration materials, a texture recognition method

based on multi-scale Local Binary Pattern algorithm combined with Gaussian mixture model clustering

is proposed, and a complete model including image preprocessing, feature extraction, and texture

reproduction modules is constructed. The experimental results on the Dresden Texture Dataset dataset

show that the proposed method performs well in texture feature extraction, with a maximum accuracy of

96.84% for tile texture recognition and an average intersection to union ratio (MIoU) of 0.97. The

practical application results show that the proposed method has a fast texture recognition speed and less

memory consumption. The average time and size of the generated CSV files are 2.93 s and 8.75 KB,

respectively, while the average time and size of the CSV files generated by the 3D Gaussian speckle model

are 4.42 s and 21.41 KB, respectively. Meanwhile, the comprehensive score of texture reproduction

performance is 8.93 points, followed by 8.27 points for 3D Gaussian speckle. From this, the method

proposed by the research can quickly identify and reproduce the complex textures of building decoration

materials with high fidelity. This study provides a new technological solution for digital texture

recognition and production control of building decoration materials, promoting the intelligent and high-

quality development of the building decoration industry.

Povzetek: Za prepoznavanje tekstur gradbenih dekorativnih materialov je razvita večmerilna metoda

(MLBP) v kombinaciji z Gaussovim mešanim modelom (GMM), ki omogoča zajemanje večnivojskih

značilk in njihovo pretvorbo v strojno berljive datoteke (CSV) za proizvodnjo. Model združuje

predobdelavo slik, večmerilno ekstrakcijo in samodejno klastriranje, kar omogoča hitro, zanesljivo in

realistično reprodukcijo kompleksnih tekstur gradbenih materialov z majhno porabo virov.

1 Introduction
In recent times, the construction and decoration

industry has ushered in opportunities for rapid

advancement driven by both technological innovation and

market demand [1]. With people's pursuit of high-quality

architectural decoration, the recognition and reproduction

technology of material texture has become a key link in

the development of the industry [2]. Traditional texture

recognition methods rely on manual annotation, which is

difficult to meet the efficiency and accuracy requirements

of the modern architectural decoration industry.

Meanwhile, the texture reproduction technology for

building decoration materials has undergone a continuous

process of advancement. Transitioning from early

methods such as screen printing and rubber-roller printing

to modern techniques like inkjet printing and dry granule

technology, there has been a remarkable enhancement in

both the realism and diversity of texture reproduction [3].

However, in the face of complex and ever-changing

texture requirements, existing technologies still have

limitations [4]. Many scholars have conducted extensive

research to efficiently identify texture patterns. Liu et al.

proposed a new approach grounded on deep neural

network transfer learning to address the limitations of

traditional texture analysis methods in complex texture

recognition. The experiment outcomes indicated that the

performance of this method was superior to Gray-Level

Co-Occurrence Matrix (GLCM) and Local Binary Pattern

(LBP) [5]. Kamijyo et al. proposed a crystal texture

calculation method based on deep neural networks to

reduce the computational workload in numerical

crystallographic texture optimization. The experiment

outcomes indicated that this calculation method could

determine the optimal volume fraction for selecting

texture components [6]. Shukla et al. proposed a material

recognition method based on Convolutional Neural

Networks (CNN) to address the issue of insufficient

mailto:lina__edu@163.com

392 Informatica 49 (2025) 391–404 N. Li

accuracy in traditional methods for material quality

identification. The experiment outcomes indicated that the

CNN classifier outperformed other deep learning

classifiers in recognition accuracy [7]. Bai et al. proposed

a high-precision texture recognition real-time artificial

sensing system based on a single ion electron sliding

sensor to solve the problem of insufficient texture

recognition response in modern robots during interaction.

The experiment outcomes indicated that the system had an

accuracy of 98.9% at random sliding rates and could

accurately distinguish fine surface features [8].

In terms of texture generation, Siddiqui et al.

proposed a Texturify algorithm based on Generative

Adversarial Networks (GAN) to solve the problem of

texture prediction caused by the scarcity of 3D texture

data. The experiment outcomes indicated that the

Texturify algorithm could generate high-quality textures

directly on the surface of 3D objects through layered 4-

RoSy parameterization and facial convolution operators,

with excellent performance [9]. Cao et al. proposed

TexFusion, a new method for synthesizing textures for 3D

geometry using only large-scale text guided image

diffusion models, to address the inefficiency and

instability issues of traditional methods in 3D texture

synthesis. The experiment outcomes indicated that

TexFusion could generate diverse and globally coherent

textures [10]. Gao et al. proposed a Generations Explicit

Textured 3D (GET3D) model that could directly generate

rich geometric details and high fidelity textures to address

the shortcomings of traditional 3D generative models in

texture support. The experiment outcomes indicated that

the GET3D model could generate high-quality 3D texture

meshes [11]. The summary of related work is shown in

Table 1.

Table 1: Related work table

Texture

Recognition

Methods

Methodology

Dataset /

Evaluation

Context

Performance Metrics Key Findings

Liu et al. [5]
Deep Neural Network

Transfer Learning
Not Specified Accuracy (CA)

Superior to

GLCM & LBP

Kamijyo et al.

[6]

Deep Neural Network-

based Calculation

Numerical

crystal texture

data

Optimal volume fraction

Determines

optimal texture

component

fractions

Shukla et al. [7] CNN Classifier

Material-

specific

dataset

Recognition Accuracy (CA)

Outperformed

other DL

classifiers

Bai et al. [8]
Ion Electron Sliding

Sensor System

Surface

feature dataset

(random

sliding)

Accuracy (98.9%)

High-precision

distinction of fine

surface features

Siddiqui et al.

[9]

Texturify (GAN + 4-

RoSy

parameterization)

3D texture

datasets

Qualitative/Quantitative quality

metrics

Direct high-

quality 3D surface

texture generation

Cao et al. [10]

TexFusion (Text-

guided image

diffusion)

3D geometry

datasets
Diversity, global coherence

Generated diverse

& globally

coherent textures

Gao et al. [11]

GET3D (Explicit

Textured 3D

Generation)

3D shape

datasets
Fidelity, geometric detail

High-quality 3D

textured mesh

output

Proposed

Method

(MLBP)

MLBP + GMM

Clustering

Dresden

Texture

Dataset (100+

images per

type)

CA: 96.84% (Tile), MIoU: 0.97

Highest

CA/MIoU;

Minimal CSV size

(8.75KB); Repro.

Score: 8.93

However, existing methods have many shortcomings

in texture analysis and generation. Traditional texture

analysis methods, such as LBP algorithm, have

insufficient accuracy in complex texture recognition.

Although deep neural network-based methods have

superior performance, they rely on large-scale data and

computing resources. In terms of 3D texture generation,

existing methods either lack geometric details or are

limited in texture support. In addition, some methods are

sensitive to noise and the sampling method can easily lead

to aliasing effects. A GMM-MLBP model, which is based

on a multi-scale Local Binary Pattern (MLBP) algorithm,

is put forward with the aim of efficiently and precisely

capturing texture images and replicating them onto the

textures of building decoration materials. This research

makes an innovative move by integrating the Gaussian

Mixture Model (GMM) for texture recognition, thereby

enhancing the accuracy and generalization capability of

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 393

texture feature extraction. An image preprocessing

module is introduced to reduce the consumption of

computing resources. A texture reproduction module is

introduced to generate CSV files, and the precise control

of the production machine for building decoration

materials is achieved.

2 Method and materials

2.1 Improvement of LBP Algorithm and

Material Texture Recognition

Texture recognition is a crucial step in the production

process of building decoration materials, which helps in

the manufacturing of various materials such as imitation

natural stone and imitation natural wood [12]. Traditional

texture recognition methods rely on manual annotation,

which is not only time-consuming and labor-intensive, but

also susceptible to subjective factors, resulting in low

production efficiency and accuracy. As computer vision

technology advances, texture recognition algorithms

based on image processing have gradually become an

effective means to solve this problem [13]. Among them,

the LBP algorithm is widely used for texture feature

extraction due to its advantages of simple calculation,

insensitivity to lighting and rotation [14]. However,

traditional LBP algorithms have some limitations,

especially when dealing with complex textures. Due to

their fixed 3×3 neighborhood window, it is difficult to

capture large-scale texture features, resulting in

incomplete or discontinuous texture segmentation results

[15]. To overcome this deficiency, an MLBP algorithm is

proposed in the study. MLBP increases the receptive field

of feature extraction by introducing multiple sub-scale

operators, enabling the simultaneous capture of texture

features at different scales. The MLBP algorithm structure

is in Figure 1.

Original texture image

Feature
extraction Texture feature map

Characteristic
parameter

Generate

Cluster analysis Texture image Cluster results

Figure 1: MLBP structure diagram

As shown in Figure 1, MLBP captures texture

information by dividing the image into multiple local

regions of different scales and applying multiple sub-

operators within each region. These sub-operators are

distributed in different spatial positions and can

simultaneously extract large-scale textures and small-

scale details in the image. The calculation formula for each

sub-scale operator is in equation (1) [16].

1

1

() () 2
i

i

P

p

S c p c

p

MLBP x s I I -

=

= - ×å (1)

In equation (1),
iSMLBP represents the output of the

i th sub scale operator. cx represents the central pixel

point. ip represents the number of sampling points in the

i th sub-scale operator. pI is the grayscale value of the

p th sampling point. cI is the grayscale value of the

central pixel. ()s is the threshold function, as shown in

equation (2) [17].

1, 0

()
0, otherwise

x
s x

ì ³ïï= í
ïïî

 (2)

MLBP enhances feature extraction capability by

combining multiple sub scale operators. Each sub-scale

operator is responsible for processing specific texture

features, while operators of different scales generate more

comprehensive texture descriptions through fusion. The

fusion formula is in equation (3).

1 2

() [(), (), , ()],

1,2...

nc S c S c S cMLBP x MLBP x MLBP x MLBP x

i n

= ¼

=
 (3)

In equation (3), ()cMLBP x denotes the final multi-

scale texture feature vector. n represents the total number

of sub scale operators. The sub-scale sizes are 3×3, 5×5,

and 7×7, corresponding to neighborhood radii R of 2, 3,

and 5, respectively. The number of sampling points P is 8,

10, and 16, respectively. This allows for dynamic

adjustment of parameters based on texture complexity to

achieve effective feature extraction. This multi-scale

design enables MLBP to adapt to images with diverse

texture styles, significantly improving the generalization

ability of feature extraction. In texture segmentation, the

features extracted by MLBP are combined with GMM for

clustering. The structure of GMM is in Figure 2.

394 Informatica 49 (2025) 391–404 N. Li

Data

Mean vector

Covariance matrix

Blend weight

Data classification Cluster results

Iterative optimization

Figure 2: GMM structure diagram

As shown in Figure 2, the GMM structure is based on

a linear combination of multiple Gaussian distributions

(GDs), with each GD representing a cluster or category.

The core of GMM lies in approximating complex data

distributions through a mixture of multiple GDs, thereby

achieving flexible modeling and clustering of data. In

GMM, the probability of each data point (pixel) being

assigned to multiple clusters is determined by the

parameters of the GD, including the mean vector,

covariance matrix, and mixture weights. The formula for

calculating the probability density of pixels is in equation

(4).

1

() (),
K

GMM k k k

k

p x π x μ∣
=

= Så N (4)

In equation (4), ()GMMp x represents the probability

density of pixel x . kπ is the mixture weight of the k th

GD. (| ,)k kx μ SN is the probability density function

of GD, where kμ represents the mean and kS represents

the covariance matrix. The mixed weights represent the

relative importance of each GD, and the sum of all mixed

weights is 1. The parameters of each GD are iteratively

optimized using the Expectation Maximization (EM)

algorithm to maximize the likelihood function of the data.

The clustering formula of GMM is in equation (5).

1

(| ,)
()

(| ,)

k k k
k K

j j j

j

π x μ
γ x

π x μ
=

× S
=

× Så

N

N
 (5)

In equation (5), ()kγ x represents the probability that

pixel x belongs to the k th cluster. The calculation

method for updating mixed weights is in equation (6).

 ()
1

1 N

k x

n

π γ x
N =

= å (6)

In equation (6), N represents the image size. The

calculation method for updating the mean is in equation

(7).

()

()

1

1

N

k n

n
k N

k

n

γ x x

μ

γ x

=

=

=
å

å
 (7)

The calculation method for updating the covariance

matrix is in equation (8).

()()()

()

1

1

N
T

k n k n k

n
k N

k

n

γ x x μ x μ

γ x

=

=

- -

S =
å

å
 (8)

In equation (8), T represents the transpose matrix. In

texture description, MLBP features represent the texture

information of an image by calculating feature histograms.

The calculation process of feature histogram is in Figure

3.

Determine feature space

Grayscale value Gradient direction Texture features
Divide the interval

Traverse the
dataset

Record the number of
feature values

Statistical gradient
direction distribution

Normalization
Feature vector
concatenation Statistical characteristic values

Figure 3: Calculation process of feature histogram

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 395

In Figure 3, in the calculation process of the feature

histogram, the range of feature values needs to be

determined based on the feature type (such as grayscale

value, gradient direction, texture feature, etc.) first. Next,

the range of eigenvalues is divided into several equally

wide intervals, called "boxes". Taking the grayscale

histogram as an example, [0, 255] can be divided into 256

boxes, each with a width of 1. Then, the process traverses

the dataset (such as every pixel in the image or every point

in the point cloud), counts which box each feature value

falls into, and records the number of feature values in each

box. For example, when calculating a grayscale

histogram, it is necessary to count the number of times

each grayscale value appears. To eliminate the influence

of data size or lighting conditions, it is necessary to

normalize the histogram by dividing the number of feature

values in each box by the total number of feature values to

obtain the normalized histogram. The normalization

process is in equation (9).

()

()

()
1

norm N

j

H i
H i

H j
=

=

å
 (9)

In equation (9), ()H i and ()H j represent the i th

and j th components of the histogram, respectively.

Finally, if the feature histogram is locally computed, all

local histograms are concatenated into a high-dimensional

feature vector as the final feature description. For each

scale, the calculation formula for the feature histogram is

in equation (10).

 () (())
i iS t S t

x X

H k δ MLBP x k
Î

= =å (10)

In equation (10), ()
iSH k represents the feature

histogram. is represents different scales. X represents

the collection of all pixels in the image. ()δ represents

the indicator function, which takes a value of 1 when the

condition is met and 0 otherwise. tk represents the index

of feature values. In texture matching or classification

tasks, the study uses weighted chi square distance to

calculate the similarity between two feature histograms, as

shown in equation (11).

2

1, 2,

1 2

1 1, 2,

()
(,)

N
i i

i i i

H H
D H H

H H=

-
=

+
å (11)

In equation (11), 1 2(,)D H H represents the

weighted chi square distance between feature histograms

1H and 2H . Furthermore, the crux of the MLBP

algorithm resides in the methodology it employs to

generate feature vectors. MLBP concatenates texture

features extracted at varying scales, thereby constructing

a comprehensive feature vector. This all-encompassing

vector is more adept at encapsulating the texture

information inherent in the image, ultimately yielding

texture image data of the material.

2.2 Identification and reproduction model

of texture in building decoration

materials

The study effectively breaks through the limitations

of traditional LBP algorithm in extracting complex texture

features by introducing multi-scale sub operators,

enabling it to capture both large-scale textures and small-

scale details simultaneously. After feature extraction,

GMM is used for clustering, and EM algorithm is used to

optimize parameters, thereby achieving flexible modeling

and accurate classification of textures. Meanwhile, by

calculating feature histograms and using weighted chi

square distances, the performance of texture matching and

classification is further improved, providing a solid

technical foundation for efficient recognition and

reproduction of textures in building decoration materials.

This research aims to build a lightweight, interpretable

texture recognition and reproduction system for

architectural materials with minimal computational

overhead. To reproduce the texture of building decoration

materials, a GMM-MLBP model for recognizing and

reproducing the texture of building decoration materials is

constructed based on the above technology. To reduce

computational complexity and improve the functionality

of the GMM-MLBP model, an image preprocessing

module and a texture reproduction module are introduced

into the GMM-MLBP model. The structure of the GMM-

MLBP model is in Figure 4.

Texture image

Image preprocessing

MLBP algorithm

Grayscale Remove noiseContrast
enhancement

Feature extraction Cluster processing

Texture reproduction module

Texture data
conversion

Parameter
Production of building
decoration materials

Figure 4: Structure of GMM-MLBP model

As shown in Figure 4, the GMM-MLBP model

mainly consists of three major structures: image

preprocessing module, MLBP algorithm, and texture

reproduction module. The process of generating textures

using the GMM-MLBP model is shown in Figure 5.

396 Informatica 49 (2025) 391–404 N. Li

Start

Input the original image

Image preprocessing

CSV generation

Computer Numerical Control

Finished material

Feature extraction

MLBP algorithm

GMM

Cluster analysis

End

Figure 5: The process of generating textures using the GMM-MLBP model

The input texture image first goes through an image

preprocessing module, which is responsible for grayscale,

contrast enhancement, and denoising of the image,

reducing data dimensionality and preserving texture

information. The structure of the image preprocessing

module is in Figure 6.

Texture image Grayscale image

Red

Green

Blue

Grayscale

Normalization
Contrast

enhancement

High pass filteringStandardization
of scale

Remove noisePreprocessed image
Highlight high-

frequency textures
Unified image

resolution

Figure 6: Structure of image preprocessing module

As shown in Figure 6, the image preprocessing

module includes steps such as grayscale conversion,

normalization, contrast enhancement, and denoising.

Firstly, grayscale conversion converts color images into

grayscale images, reducing data dimensions through

weighted averaging while preserving the basic structural

information of the image, in order to simplify the

processing and reduce computational complexity. The

formula for calculating grayscale values is in equation

(12).

 gray 0.299 0.587 0.114h h hI R G B= × + × + × (12)

In equation (12), grayI represents the grayscale value

of the image. hR , hG , and hB represent the red, green,

and blue channel values of the image respectively. Next,

in order to eliminate the influence of lighting conditions

on texture, it is necessary to normalize the image. The

normalization formula is in equation (13).

gray gray

norm

gray gray

min()

max() min()

I I
I

I I

-
=

-
 (13)

In equation (13), normI represents the normalized

image. Normalization operation shrinks pixel values to a

uniform range of [0, 1]. Contrast enhancement can

highlight texture features, and histogram equalization is

used in research. Histogram equalization enhances the

contrast of an image by adjusting its grayscale distribution

to approach a uniform distribution. To highlight texture

details, it is necessary to remove low-frequency

background information from the image. The high pass

filtering method used in the study is Laplace filtering, and

the calculation formula for high pass filtering is in

equation (14).

 filtered norm *I HI = (14)

In equation (14), filteredI represents the image after

high pass filtering. * represents convolution operation. If

the scale of the texture image is inconsistent, scale

standardization is required. The research scales images to

a uniform resolution through interpolation methods. The

denoising step uses median filtering and Gaussian filtering

to remove noise from the image and improve image

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 397

quality. The median filtering denoising calculation is in

equation (14).

 denoised filtered()I median I= (15)

In equation (15), denoisedI represents the denoised

image. median represents median filtering. The

Gaussian filtering denoising calculation is in equation

(16).

 denoised filtered σI I G= * (16)

In equation (16), σG represents Gaussian kernel and

σ represents standard deviation. Finally, obtain the

preprocessed image. The preprocessed image enters the

MLBP algorithm module for extracting texture features.

The texture reproduction module converts the extracted

texture features into control files suitable for production.

This module adjusts the texture channel map based on the

parameters of the fabric machine, such as the number and

distribution of fabric ports, and generates a CSV format

control file. These files control the material production

machine to set corresponding textures during the

production process through a matrix composed of 0 and 1,

and finally generate building decoration materials with

texture features. The texture feature processing flow of the

texture reproduction module is in Figure 7.

Start

Input texture channel map

Adjust resolution

Generate CSV control file

Initialization Fill Save

Read CSV file

Map texture information

Decorative material

Adjust details Meet the requirements?

End

Yes

No

Figure 7: Texture feature processing flowchart of texture reproduction module

As shown in Figure 7, the texture reproduction

module remaps the extracted texture features to the image,

generating a texture distribution map or CSV control file

that meets production requirements. This process is based

on multiple texture channel maps output by the texture

segmentation module, each channel map representing a

specific texture type with binary information (1 represents

belonging, 0 represents not belonging). These channel

diagrams are converted into CSV files using a specific

algorithm, where 1 and 0 represent the opening and

closing of the pigment ports, respectively, to control the

production machine to reproduce the texture. When

converting, the system adjusts the resolution of the texture

channel map based on machine parameters such as the

number and distribution of pigment ports to ensure the

integrity of texture features. Subsequently, building

decoration materials with the corresponding textures are

generated based on the CSV file. In the event that the

generated results do not meet the specified requirements,

the system modifies the relevant parameters and creates a

new CSV file. This iterative process continues until the

desired outcome is achieved. The Pseudo Code of GMM-

MLBP model is in Figure 8.

398 Informatica 49 (2025) 391–404 N. Li

===== GMM-MLBP MODEL PSEUDOCODE =====

function GMM_MLBP_MODEL(input_image, machine_params):

 # --- Image Preprocessing ---

 preprocessed_img = PREPROCESS(input_image,

 target_size=(1024,1024),

 grayscale_weights=[0.299, 0.587, 0.114],

 denoise_methods=['median','gaussian'])

 # --- Multi-Scale LBP Feature Extraction ---

 mlbp_features = []

 for scale in SCALES: # SCALES = [(3×3, R=2, P=8), (5×5, R=3, P=10), (7×7, R=5, P=16)]

 scale_features = COMPUTE_MLBP(preprocessed_img,

 radius=scale.R,

 points=scale.P)

 hist = BUILD_HISTOGRAM(scale_features, bins=256)

 mlbp_features.append(hist)

 combined_features = CONCATENATE(mlbp_features)

 # --- GMM Clustering ---

 gmm = INIT_GMM(K=5) # K typically 3-10

 texture_maps = gmm.FIT_PREDICT(combined_features,

 max_iter=100,

 covariance_type='diag')

 # --- Texture Reproduction ---

 control_matrix = ADJUST_RESOLUTION(texture_maps,

 target_res=machine_params.resolution)

 csv_data = GENERATE_CSV(control_matrix,

 threshold=0.5,

 format='binary')

 return csv_data # Average size: 8.75KB

Key Parameters (from paper):

- SCALES: Multi-scale operators (3×3,5×5,7×7)

- RADIUS (R): [2, 3, 5]

- POINTS (P): [8, 10, 16]

- GMM CLUSTERS (K): 3-10 (dynamically adjusted)

- HISTOGRAM BINS: 256

- MAX EM ITERATIONS: 100

Figure 8: Pseudo code of GMM-MLBP model

3 Result

3.1 Performance analysis of MLBP

algorithm

To confirm the capability of the MLBP algorithm in

texture feature extraction, a high-performance

experimental platform was established, and the Multi-

Scale Feature Fusion CNN (MSFF) and the Spatial

Continuity and Gray Diversity (SCGD) algorithm

considering spatial continuity and grayscale diversity

were compared as comparative algorithms [18, 19]. The

parameters and algorithm parameters of the experimental

platform are shown in Table 2.

Table 2: Experimental platform parameters and

algorithm parameters table

Experimental platform parameters

CPU Intel Core i5 12400F

GPU NVIDIA RTX 3060 Ti

Storage 1TB SSD

Memory DDR4 3200MHz 32GB

Operating system Windows 10 Professional

Programming

language
Python 3.7

Algorithm parameters

Feature extraction

method
Based on MLBP

Feature vector

dimension
Dynamically adjusted

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 399

Sub-scale sizes 3×3, 5×5, 7×7

Neighborhood

radius (R)

2, 3, 5 (adjusted according to

texture complexity)

Number of

sampling points

(P)

8, 10, 16 (matched with

neighborhood radius)

Feature histogram

window (w)

10, 15, 30 pixels (adjusted

according to texture type)

Clustering method GMM

Number of clusters
Dynamically adjusted (typically

3-10)

The dataset used in the study was the publicly

available Dresden Texture Dataset, which includes

multiple texture types (such as marble, wood, tiles, etc.),

with approximately 100 images for each texture type, and

image resolutions ranging from 1024×1024 to

4096×4096. The ratio of training set to testing set was 8:2.

The performance indicators of the algorithm were

Classification Accuracy (CA) and Mean Intersection over

Union (MIoU). The range of CA values was from 0 to

100%, representing the proportion of correctly classified

samples to the total sample size. The MIoU value range

was from 0 to 1, used to evaluate the degree of overlap

between predicted results and real labels in segmentation

tasks. For different types of texture images, the average

test results of CA and MIoU for each algorithm in the

Dresden Texture Dataset are shown in Figure 9.

(a) CA

90

Texture type

80

70

60

100

Wood0
50

SCGDMSFFMLBP

0.9

0.8

0.7

0.6

1.0

C
A

(%
)

M
Io

U

Marble Ceramic tile

91.21
88.67

84.62

93.95
89.81

87.25

96.84

88.84
86.59

(b) MIoU

Texture type
Wood0

0.5

SCGDMSFFMLBP

Marble Ceramic tile

0.92

0.86
0.84

0.94

0.880.87

0.97

0.88
0.86

Figure 9: The average values of CA and MIoU for feature extraction of different types of texture images by various

algorithms

According to Figure 9 (a), in terms of wood texture,

the CA of MLBP algorithm, MSFF algorithm, and SCGD

algorithm were 91.21% (± 0.35%), 88.67% (± 0.42%), and

84.62% (± 0.51%), respectively, indicating that the MLBP

algorithm had a higher accuracy in texture recognition.

The CA of the MLBP algorithm for recognizing marble

and tile textures were 93.95% (± 0.28%) and 96.84% (±

0.19%), respectively. This was because tile images were

often more regular, resulting in higher recognition

accuracy. According to Figure 9 (b), the texture

segmentation performance of MLBP algorithm was also

superior to MSFF algorithm and SCGD algorithm. Taking

ceramic tile texture as an example, the MIoU of MLBP

algorithm, MSFF algorithm, and SCGD algorithm were

0.97 (± 0.001), 0.88 (± 0.03), and 0.86 (± 0.02%),

respectively. The MLBP algorithm could accurately

recognize and segment texture images. The algorithm was

tested 100 times on the Dresden Texture Dataset for image

texture recognition. During the testing process, the

computational resource consumption of each cycle is in

Figure 10.

(a) CPU Usage

40

30

20

10

50

R
A

M
 O

cc
u

p
an

cy
 (

%
)

200 40 8060 100
0

40

Number of cycles

30

20

10

50

C
P

U
 U

sa
g

e
(%

)

200 40 8060 100
0

(b) RAM Occupancy

SCGD

MSFF
MLBP

39.12

31.25

37.28

Number of cycles

29.81

25.05
22.57

Figure 10: Computing resource consumption during image texture recognition process

According to Figure 10 (a), during the entire cycle

testing process, the maximum CPU utilization of MLBP

algorithm, MSFF algorithm, and SCGD algorithm were

31.25%, 37.28%, and 39.12%, respectively, indicating

that MLBP algorithm had lower computational resource

requirements than other algorithms. According to Figure

10 (b), the maximum RAM occupancy rates of MLBP

algorithm, MSFF algorithm, and SCGD algorithm were

400 Informatica 49 (2025) 391–404 N. Li

22.57%, 25.05%, and 29.81%, respectively. Due to the

combination of MLBP algorithm and GMM for clustering

analysis, its computational resources and RAM usage

were lower.

3.2 Performance analysis of GMM-MLBP

model

In the previous section, a performance analysis was

conducted on the MLBP algorithm, which showed good

performance, accurate recognition and segmentation of

texture images, and low computational resource

consumption. To verify the performance of the GMM-

MLBP model, practical applications were conducted in a

building decoration material production company, using

3D Gaussian Speckle (3DGS) and Two Branch

Convolutional Network (TBCNN) as comparison models

[20, 21]. The CNC woodworking carving machine model

was STM6090, manufactured by STYLECNC. It supports

2D, 2.5D, and 3D processing and is suitable for various

materials such as hardwood, medium density fiberboard,

plywood, etc. It can achieve complex texture carving and

is suitable for customized texture processing of building

decoration materials. The input parameters of the machine

were controlled through CSV files generated by the

model. The actual performance of GMM-MLBP model,

MSFF algorithm, and SCGD algorithm in reproducing is

in Figure 11.

(a) Original image (b) GMM-MLBP (c) 3DGS (d) TBCNN

Marble

Wood

Figure 11: Reproduction of wood and marble texture actual effect

As illustrated in Figure 11, the GMM-MLBP model

demonstrated remarkable capability in precisely

extracting wood texture features. By enhancing the texture

details, it enabled high-fidelity reproduction of authentic

wood textures. This made the model highly applicable in

the production of building decoration materials. Although

the 3DGS model could accurately reproduce wood

texture, there were too many impurity points in the

generated texture. The wood texture generated by the

TBCNN model was of poor quality and blurry. Due to the

denoising optimization of the original image by the

GMM-MLBP model, it could reproduce better wood

texture. The reproduction effect of marble texture was

similar to that of wood texture. In practical applications,

the time and memory consumption (CSV file size) of each

model in generating textures are shown in Figure 12.

(a) Runtime

40

30

20

10

50

M
em

o
ry

 (
K

B
)

200 40 8060 100
0

8

Number of picture

6

4

2

10

T
im

e
(s

)

200 40 8060 100
0

(b) CSV file size

TBCNN

3DGS
GMM-MLBP

Number of picture

6.24

4.42

2.93

GMM-MLBP

8.75

21.41

28.07
TBCNN

3DGS

Figure 12: Time and memory consumption of texture generation by various models

As shown in Figure 12 (a), due to the preprocessing

module of the GMM-MLBP model, the time variation

during texture generation was stable, with an average time

of 2.93 s, which was 1.49 s faster than the 3DGS model

(4.42 s). This time advantage is crucial in actual

production, as it can significantly improve production

efficiency, reduce waiting time, and accelerate the entire

workflow. In Figure 12 (b), the average sizes of CSV files

generated by the GMM-MLBP model, 3DGS model, and

TBCNN model were 8.75 KB, 21.41 KB, and 28.07 KB,

respectively. Due to the removal of redundant data in

texture images by the GMM-MLBP model, the generated

CSV files were smaller and could occupy less memory. To

obtain a more comprehensive analysis of the texture

reproduction performance of the GMM-MLBP model, the

study also sought professional personnel from the

decoration material production company to score the

wood texture, marble texture, and tile texture reproduced

by different models. The scoring results were based on 10

professional evaluators in the field of building decoration

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 401

materials. The scoring criteria included Detail Realism,

Color Reproduction, and Overall Aesthetics, with a

maximum score of 10 points for each item. The agreement

between raters was evaluated by calculating the mean and

standard deviation, and the standard deviation of each

indicator was less than 0.6, indicating a high degree of

consistency among raters. The final rating results are

shown in Table 3.

Table 3: Texture reproduction performance evaluation

Texture type Evaluation indicator GMM-MLBP 3DGS TBCNN

Wood texture

Detail realism 9.20 8.50 7.80

Color reproduction 9.00 8.30 7.50

Overall aesthetics 9.10 8.40 7.70

Composite score 9.10 8.40 7.67

Ranking 1 2 3

Marble texture

Detail realism 8.90 8.20 7.60

Color reproduction 8.80 8.10 7.40

Overall aesthetics 8.70 8.10 7.50

Composite score 8.80 8.10 7.50

Ranking 1 2 3

Tile texture

Detail realism 9.00 8.40 7.90

Color reproduction 8.90 8.30 7.70

Overall aesthetics 8.80 8.20 7.80

Composite score 8.90 8.30 7.80

Ranking 1 2 3

Overall evaluation
Composite score 8.93 8.27 7.66

Ranking 1 2 3

Average value
SSIM 0.97 0.92 0.86

PSNR (dB) 32.75 28.40 25.18

According to Table 3, the GMM-MLBP model

performed the best in texture reproduction performance.

In the comprehensive evaluation of three texture types

(wood texture, marble texture, and tile texture), the GMM-

MLBP model achieved the highest scores of 9.10, 8.80,

and 8.90, respectively, with an overall comprehensive

score of 8.93, ranking first. This indicated that the GMM-

MLBP model performed well in the three evaluation

indicators of detail realism, color reproduction, and

overall aesthetics, and could highly restore the details and

colors of real textures. At the same time, it also had a more

natural and aesthetically pleasing visual effect. In contrast,

the second-ranked 3DGS model received comprehensive

scores of 8.40, 8.10, and 8.30 for wood texture, marble

texture, and tile texture, respectively, with an overall

comprehensive score of 8.27. Although 3DGS performed

well in terms of details and color expression, it was

slightly inferior to the GMM-MLBP model in terms of

overall aesthetics, especially in the reproduction of tile

textures, where there was a significant gap in color

reproduction and aesthetic ratings compared to the GMM-

MLBP model. In summary, the GMM-MLBP model

demonstrated excellent performance in texture

reproduction tasks, being able to more accurately restore

the details and colors of real textures, and also had

advantages in visual effects. This result indicated that the

GMM-MLBP model performed well in handling textures

of different complexity and types, providing a reliable

solution for texture recognition and reproduction in the

building decoration materials industry.

4 Discussion
The texture recognition and reproduction model based

on MLBP algorithm proposed in the study demonstrated

significant advantages in the application of building

decoration materials. Compared to deep learning methods

based on CNN and GAN, the MLBP algorithm performed

outstandingly in terms of efficiency and resource

consumption. Although existing CNN methods (such as

Liu and Aldrich [5] and Shukla et al. [7]) achieved high

accuracy in specific tasks (such as Bai et al. [8]'s 98.9%),

they relied on large-scale training data and GPU

computing power, which limited their deployment in

production environments. Similarly, GAN driven texture

generation techniques (such as Texturify [9] and GET3D

[11]) could synthesize high-quality visual output, but had

huge computational costs (such as generating 21.41 KB

CSV files compared to the 3DGS model). The MLBP

algorithm proposed in the study achieved a ceramic tile

texture classification accuracy (CA) of 96.84% and an

average intersection to union ratio (MIoU) of 0.97 on the

standard dataset Dresden Texture Dataset, while only

requiring up to 22.57% of RAM usage. This efficiency

stemmed from its manually designed feature extraction

mechanism, which avoided the dual dependence of deep

learning models on data and hardware.

402 Informatica 49 (2025) 391–404 N. Li

The excellent performance of the GMM-MLBP

model on regularized textures such as tiles was attributed

to its multi-scale operator architecture. Ceramic tile

textures typically exhibited significant spatial periodicity

and geometric regularity (such as grid like arrangement),

which was highly consistent with the multi-scale local

feature extraction of the GMM-MLBP model. By

integrating sub operators such as 3×3, 5×5, and 7×7, the

model synchronously captured micro details (such as brick

joints) and macro structures (such as repeating units),

while GMM clustering effectively segmented

homogeneous regions. In contrast, irregular textures such

as weathered wood or marble with veins posed a challenge

to fixed scale operators due to their strong randomness.

However, the GMM-MLBP model still outperformed the

comparison algorithms MSFF and SCGD on wood (CA

91.21%, MIoU 0.91) and marble (CA 93.95%, MIoU

0.93), verifying its generalization ability.

However, the GMM-MLBP model had limitations

when dealing with highly complex or irregular textures.

Its fixed scale sub-operators were difficult to adapt to

textures lacking dominant structural frequencies (such as

fractal granite or organic surfaces), resulting in a decrease

in feature discriminative power. The parameterization

assumption of GMM was difficult to accurately

characterize nonlinear mixed regions in texture

boundaries with gradient transitions (such as gradient

ceramics), which could lead to segmentation errors.

Although the preprocessing module had denoising

capabilities, extreme noise or occlusion was still more

likely to affect performance than CNN based methods due

to its lack of learning driven robustness. These limitations

point to the need to introduce adaptive scale selection

mechanisms or integrate lightweight CNN modules in the

future to enhance adaptability to chaotic textures.

In terms of real-time performance and production

scalability, the GMM-MLBP model demonstrated clear

advantages. The average processing speed of 2.93 seconds

per image and the pure CPU execution mode met the sub

5-second delay requirements of industrial online quality

inspection. The average CSV control file generated was

only 8.75 KB, significantly reducing storage and

transmission overhead (compared to 3DGS's 21.41 KB).

The GMM-MLBP model was implemented in Python,

making it easy to integrate into factory PLC and MES

systems without the need for dedicated GPU support,

which was significantly better than high computing power

generation models such as GET3D [11]. In the future, it

can be further optimized to adapt to ARM architecture

embedded devices and expand edge scene applications.

From an industrial practice perspective, the GMM-MLBP

model framework bridges the gap between academic

research and production demand. Its ability to directly

output machine-readable control files (CSV) enables

closed-loop control from texture design to production

parameters. This is in sharp contrast to existing GAN

methods [9-11] that only focus on visual synthesis and are

detached from the production chain.

The GMM-MLBP model has unique advantages in

texture feature extraction. Compared with deep learning

models such as ResNet and MobileNet, the GMM-MLBP

model has a relatively simple structure and low

computational resource requirements. ResNet relies on

deep residual learning and a large number of

convolutional layers to extract complex features, while

MobileNet achieves efficient computation through

depthwise separable convolution, making it suitable for

mobile devices. The GMM-MLBP model focuses on

texture details, extracts features using multi-scale local

binary patterns, and combines Gaussian mixture model

clustering to achieve texture recognition, which is more

suitable for scenes with obvious texture features. For

building decoration material manufacturers, the GMM-

MLBP model provides a practical solution that strikes a

balance between accuracy, cost, and practicality.

5 Conclusion
To precisely discern a diverse array of textures and

replicate building decoration materials with authentic-

looking textures, an efficient technology for the texture

recognition and reproduction of building decoration

materials, which is grounded in the MLBP algorithm, has

been successfully developed. A corresponding GMM-

MLBP model was proposed by introducing preprocessing

modules, multi-scale sub operators, GMM, and texture

reproduction modules. The MLBP algorithm performed

well in texture feature extraction, with a maximum CA of

96.84% and MIoU of 0.97. The highest CA and MIoU of

the MSFF algorithm were 89.81 and 0.88, respectively.

The MLBP algorithm performed significantly better than

other compared algorithms. In practical applications, the

GMM-MLBP model could generate high-quality texture

control files through image preprocessing and texture

feature optimization. The average size of the generated

CSV file was only 8.75 KB, which was significantly better

than the 21.41 KB of the 3DGS model, thus reducing

memory usage. In the comprehensive evaluation of texture

reproduction performance, the GMM-MLBP model

achieved the highest scores in detail realism, color

reproduction, and overall aesthetics for wood, marble, and

tile textures, with an overall comprehensive score of 8.93,

significantly better than the 3DGS model's 8.27. This

indicated that the GMM-MLBP model had significant

advantages in the field of texture reproduction for building

decoration materials and could provide efficient and high-

quality technical support for related industries. However,

changes in lighting conditions can affect the grayscale

value and contrast of the image, thereby affecting the

effectiveness of the GMM-MLBP model in extracting and

recognizing texture features; The parameters of the model

need to be manually adjusted and lack an adaptive

optimization mechanism. Future work will introduce

adaptive lighting compensation algorithms to reduce the

impact of lighting changes on images, combined with

adaptive optimization algorithms in deep learning to

automatically adjust model parameters and improve the

model's adaptability.

Multi-Scale LBP and GMM-Based Texture Recognition and… Informatica 49 (2025) 391–404 403

References
[1] Hwang S W, Lee T, Kim H, Chung H, Choi J G, Yeo

H. Classification of wood knots using artificial neural

networks with texture and local feature-based image

descriptors. Holzforschung, 2022, 76(1): 1-13.

https://doi.org/10.1515/hf-2021-0051

[2] Xu X. Multimedia VR image improvement and

simulation analysis based on visual VR restructuring

algorithm. Informatica, 2024, 48(1): 107-118.

https://doi.org/10.31449/inf.v48i1.5368

[3] Wimmer G, Schraml R, Hofbauer H, Petutschnigg A,

Uhl A. Robustness of texture-based roundwood

tracking. European Journal of Wood and Wood

Products, 2023, 81(3): 669-683.

https://doi.org/10.1007/s00107-022-01913-4

[4] Abdul Hamid L B, Mohd Khairuddin A S, Khairuddin

U, Rosli N R, Mokhtar N. Texture image

classification using improved image enhancement

and adaptive SVM. Signal, Image and Video

Processing, 2022, 16(6): 1587-1594.

https://doi.org/10.1007/s11760-021-02113-y

[5] Liu X, Aldrich C. Deep learning approaches to image

texture analysis in material processing. Metals, 2022,

12(2): 355-377.

https://doi.org/10.3390/met12020355

[6] Kamijyo R, Ishii A, Coppieters S, Yamanaka A.

Bayesian texture optimization using deep neural

network-based numerical material test. International

Journal of Mechanical Sciences, 2022, 223(1):

107285-107301.

https://doi.org/10.1016/j.ijmecsci.2022.107285

[7] Shukla A, Kalnoor G, Kumar A, Yuvaraj N,

Manikandan R, Ramkumar M. Improved recognition

rate of different material category using

convolutional neural networks. Materials Today:

Proceedings, 2023, 81(1): 947-950.

https://doi.org/10.1016/j.matpr.2021.04.307

[8] Bai N, Xue Y, Chen S, Shi L, Shi J, Zhang Y, Guo C

F. A robotic sensory system with high spatiotemporal

resolution for texture recognition. Nature

Communications, 2023, 14(1): 7121-7143.

https://doi.org/10.1038/s41467-023-42722-4

[9] Siddiqui Y, Thies J, Ma F, Shan Q, Nieß ner M, Dai A.

Texturify: Generating textures on 3d shape surfaces.

European Conference on Computer Vision. Cham:

Springer Nature Switzerland, 2022, 13663(1): 72-88.

https://doi.org/10.1007/978-3-031-20062-5_5

[10] Cao T, Kreis K, Fidler S, Sharp N, Yin K. Texfusion:

Synthesizing 3d textures with text-guided image

diffusion models. Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2023,

1(1): 4169-4181.

https://doi.org/10.1109/ICCV51070.2023.00385

[11] Gao J, Shen T, Wang Z, Chen W, Yin K, Li D, Fidler

S. Get3d: A generative model of high quality 3d

textured shapes learned from images. Advances in

Neural Information Processing Systems, 2022, 35(1):

31841-31854. https://doi.org/

10.48550/arXiv.2209.11163

[12] Li D, Li X, Wang B. Texture direction recognition of

wooden beams and columns based on improved

meta-learning. Signal, Image and Video Processing,

2023, 17(8): 4447-4454.

https://doi.org/10.1007/s11760-023-02678-w

[13] Chen Y. Indoor environment 3D space design based

on 3D modeling and image processing. Informatica,

2025, 49(9): 103-112.

https://doi.org/10.31449/inf.v49i9.5498

[14] Vu H N, Nguyen M H, Pham C. Masked face

recognition with convolutional neural networks and

local binary patterns. Applied Intelligence, 2022,

52(5): 5497-5512. https://doi.org/10.1007/s10489-

021-02728-1

[15] Prema C E, Suresh S, Krishnan M N, Leema N. A

novel efficient video smoke detection algorithm

using co-occurrence of local binary pattern variants.

Fire Technology, 2022, 58(5): 3139-3165.

https://doi.org/10.1007/s10694-022-01306-2

[16] Zhang Z, Wang M. Multi-feature fusion partitioned

local binary pattern method for finger vein

recognition. Signal, Image and Video Processing,

2022, 16(4): 1091-1099.

https://doi.org/10.1007/s11760-021-02058-2

[17] Angizi S, Morsali M, Tabrizchi S, Roohi A. A near-

sensor processing accelerator for approximate local

binary pattern networks. IEEE Transactions on

Emerging Topics in Computing, 2023, 12(1): 73-83.

https://doi.org/10.1109/TETC.2023.3285493

[18] Gong G, Wang X, Zhang J, Shang X, Pan Z, Li Z,

Zhang J. MSFF: A multi-scale feature fusion

convolutional neural network for hyperspectral

image classification. Electronics, 2025, 14(4): 797-

824. https://doi.org/10.3390/electronics14040797

[19] Wei H, Jia K, Wang Q, Ji F, Cao B, Qi J, Yan X. A

texture feature extraction method considering spatial

continuity and gray diversity. International Journal of

Applied Earth Observation and Geoinformation,

2024, 130(1): 103896-103922.

https://doi.org/10.1016/j.jag.2024.103896

[20] Ress V, Meyer J, Zhang W, Skuddis D, Soergel U,

Haala N. 3D Gaussian splatting aided localization for

large and complex indoor-environments. arXiv

preprint arXiv. 2025, 2502(1):13803-1311.

https://doi.org/10.48550/arXiv.2502.13803

[21] Pan X, Yu Z, Yang Z. A deep learning multimodal

fusion framework for wood species identification

using near-infrared spectroscopy GADF and RGB

image. Holzforschung, 2023, 77(11-12): 816-827.

https://doi.org/10.1515/hf-2023-0062

https://doi.org/10.1515/hf-2023-0062

404 Informatica 49 (2025) 391–404 N. Li

