A Model Predictive Control Framework for Urban Rail Transit Signal Optimization with Time-Series Passenger Flow Forecasting

Shujuan Li 1,2 , Shiwei Wang 1,2* , Gang Xu 1,2 , Long Wu 1,2

¹School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan 232038, Anhui, China ²Human-Computer Collaborative Robot Joint Laboratory of Anhui Province, Huainan Normal University, Huainan 232038, Anhui, China

E-mail: lw_summer_2024@126.com

*Corresponding author

Keywords: model predictive control, rail transit signal priority, urban informatics, ARIMA forecasting, real-time optimization, safety-critical systems, human–machine collaboration

Received: May 6, 2025

Urban rail transit systems demand ever-improving responsiveness to fluctuating passenger flows. In this study, we use a 10-day dataset of City A subway passenger counts, headways, and flow intensities (N=10 days, Nov 29–Dec 8 2024). We first apply two time-series forecasting techniques—ARIMA (2,0,0) and single-pass exponential smoothing (α =0.95)—to predict short-term passenger demand. Based on these predictions, we formulate a constrained Model Predictive Control (MPC) problem that simultaneously minimizes average train delay, enforces block-section safety headways, and adapts signal timings across a prototype corridor. Simulations implemented in Python—with vehicle dynamics, signal phase duration limits, and safety constraints explicitly modeled—show that the MPC strategy reduces average delay from 25 s to 10 s (60 % reduction) compared to fixed-timing baselines. We quantify trade-offs among prediction horizon, computational load (solved via rolling-horizon quadratic programming), and control performance, and clearly demonstrate our contributions in integrating demand forecasting into a real-time MPC framework for rail signal priority.

Povzetek: Prispevek obravnava optimizacijo prometa po tirnicah. MPC z drsečim horizontom vsakih 30 s optimizira signalno prednost in izvaja napoved potniških tokov (ARIMA, eksponentno glajenje); simulirani 5-vozliščni koridor, QP rešitev, poročana 60 % redukcija zamud.

1 Introduction

The history of rail transit signaling dates back to the 19th century. As railways and urban rail transit expanded, signaling systems gradually matured. Driven by growing safety demands and technological advances, these systems evolved through several distinct stages. In the earliest era of steam locomotives, signaling consisted of rudimentary visual cues: platform staff used brightly colored flags or signs—red for stop, green for go—to direct trains. In 1830, British engineer George introduced the first fixed signal light on a railway line, marking the prototype of modern rail transit signals.

By the late 19th and early 20th centuries, as networks expanded and train speeds increased, traffic accidents—particularly rear-end collisions—became more frequent. To enhance safety, signaling began to standardize: automatic signal lights and block systems were gradually adopted in both the United States and the United Kingdom. Under this system, each track segment (or "block") was governed by a signal that indicated whether a following train could enter. Signal

colors were codified—red for stop, green for proceed, and yellow for caution—each with a precisely defined meaning. In the mid-to-late 20th century, the electrification of railways spurred rapid developments toward automation. Electrified signaling not only supported higher train speeds but also enabled more sophisticated, information-rich systems. Manual controls gave way to automatic remote control, substantially improving operational safety. Concurrently, the Automatic Train Control (ATC) system emerged, capable of continuously monitoring train speed and initiating emergency braking when necessary. By minimizing human intervention and leveraging computer-controlled signals, ATC greatly reduced the risks of delays and collisions within block sections.

Since the turn of the 21st century, rail transit signaling has advanced toward full automation, intelligence, and network integration—especially in urban settings. Signal priority systems now dynamically adjust signal aspects based on real-time monitoring and prediction of train movements, optimizing throughput. Intelligent dispatching systems further enhance flexibility by adapting to traffic flows, train conditions, and even surface traffic patterns. Moreover, modern networks seamlessly integrate Automatic Train Operation (ATO) with Automatic Train

Protection (ATP), continuously tracking train positions, executing intelligent control strategies, and elevating both efficiency and safety.

This paper first applies ARIMA (2,0,0) and single-pass exponential smoothing ($\alpha = 0.95$) to generate short-term forecasts of passenger flows, using these predictions to configure static signal-timing strategies. We then introduce a rolling-horizon Model Predictive Control (MPC) scheme that reoptimizes signal timings every 30 s. By comparing three methods—ARIMA-based static control, smoothing-based static control, and real-time MPC—against metrics of average train delay, delayreduction ratio, and headway variability, we address (RQ1) whether MPC can more effectively reduce delays than static methods and (RQ2) how forecast accuracy (MAPE) impacts control performance. Baseline methods assume fixed passenger flows within each period, while MPC continuously updates variable flow estimates, all under a stationarity assumption over ten days of City A data (Nov 29-Dec 8, 2024). Our results reveal the limitations of traditional forecasting—lagged responsiveness and reduced adaptability to demand spikes—and demonstrate MPC's superiority, achieving up to 60 % delay reduction through dynamic, real-time adjustments.

2 Related work

In the late 19th century and early 20th century, there were studies on rail transit signals. W Ekeila et al. [1] proposed a dynamic TSP system to develop a dynamic transport signal priority strategy. C Huang et al. [2] introduced a study on urban rail transit signals based on the Internet of Things control method, which greatly promoted the urban rail transit signal control system. M Li et al. [3] proposed a method based on the active signal priority system of light rail transit, which verified the practicality of this method in testing. G Honggian et al. [4] proposed a study on the urban railway transportation signal system plan based on cloud architecture. J Dai et al. [5] proposed a railway transportation signal fault prediction based on machine learning, which was used for risk screening. P B Mirchandani et al. [6] proposed a real-time traffic adaptive signal control system that integrates traffic signal priority and track preemption. L Xiaolong et al. [7] proposed a study on urban railway transportation signal and vehicle fusion control technology. F Yan et al. [8] proposed a safety verification evaluation method based on the safety of rail transit signal systems. T Bauer et al. [9] proposed a method for testing light rail signal control strategies by combining transportation and traffic simulation models. C Huang et al. [10] proposed an intelligent railway transportation signal control system based on image processing technology. J Hu et al. [11] proposed a method to evaluate the importance of urban railway node transportation under

signal system failure. Z Zhang et al. [12] put forward some suggestions on Beijing railway transportation signal system. Y Liang [13] proposed a study on the interface between the signal system and the flood gate system in urban railway transportation. C Huang et al. [14] applied the existing railway traffic signal control system to the urban traffic signal management system. S Yuwei et al. [15] proposed a study on the temporary operation control center scheme of the urban railway transportation signal system. Model predictive control methods have been used since the 1970s, and were first used in the field of chemical control. X Wang et al. [16] proposed an event-triggered predictive control for automatic train regulation and passenger flow in subway systems. J Felez et al. [17] proposed a model predictive control method based on virtual coupling in railways. Y Wang et al. [18] proposed a hierarchical model predictive control method based on delay management of high-speed railways. Y Huang et al. [19] proposed a fuzzy predictive control method based on the electric drive system of trains in urban railway transportation. B De Schutter et al. [20] proposed a model predictive control method for recovering from delays in railway systems. Y Liu et al. [21] proposed a weighted cascade fuzzy predictive control algorithm. G Guo et al. [22] proposed an integrated model predictive control and deep learning method based on priority signal control for trams. Z Wu et al. [23] proposed a nearly coupled subway train platoon control method based on model predictive control. J Yang et al. [24] proposed a load frequency control strategy based on model predictive control. A Afram et al. [25] introduced the application of model predictive control methods in HVAC systems. D Q Mayne et al. [26] discussed the past achievements of model predictive control methods and provided some directions for future research on model predictive control. X Wang et al. [27] proposed a fuzzy predictive control framework based on the exploration of optimal control methods for trains. Z Ke et al. [28] proposed a model predictive control method based on a qlearning algorithm based on a magnetic levitation platform system. L Wang et al. [29] proposed a hybrid model predictive control strategy based on a supercapacitor energy storage system with dual active bridges. S A Hamad et al. [30] proposed an improved model predictive control method for linear induction machine drives based on split source inverters. Z Su et al. [31] proposed a distributed opportunity-constrained model predictive control method based on a maintenance system for railway facilities. R Qin et al. [32] proposed a model predictive control method based on a delay compensation active set model based on a motor simulator for reducing switch counts. X Zhang et al. [33] proposed a distributed economic model predictive control method based on dissipation. Y Zhang et al. [34] proposed a model predictive control method for an internal permanent magnet motor flux drive system. W Zhang et al. [35] proposed a dynamic voltage feedback model predictive control method for DC power stabilization.

In recent years, research on data mining and prediction in urban rail transit and related fields has followed several diversified trends, focusing mainly on the following areas. First, in short-term passenger flow forecasting, multiple studies have combined machine learning with time-series analysis to improve prediction accuracy. Wan et al. proposed a hybrid model that integrates multimodal data—such as vehicle operation statistics, environmental factors, and passenger behavior features—by deeply fusing traditional timeseries methods with machine learning algorithms, achieving significant optimization in metro passenger flow prediction [36]. Similarly, Chuwang et al. built a fusion framework based on univariate time series; by balancing the strengths and weaknesses of different models, they markedly enhanced the stability and accuracy of short-term passenger flow forecasts [37]. Second, to address challenges posed by nonstationarity and complex dynamic characteristics, Wu et al. introduced a method combining time-series decomposition with a reinforcement learning ensemble. Their approach first decomposes the original flow series into trend, seasonality, and residual components, then applies a reinforcement learning algorithm to adaptively adjust the weights of each submodel during the ensemble phase, thereby improving forecast flexibility and robustness [38]. Building on this idea, Zeng et al. further developed the CEEMDAN-IPSO-LSTM model by integrating complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), an improved particle swarm optimization (IPSO), and a long short-term memory network (LSTM). This model effectively overcomes the difficulty conventional neural networks face in capturing multiscale features, delivering superior short-term flow prediction performance [39].

Beyond passenger forecasting, Informatica has published a series of innovative methods in broader data

analytics and decision support. Tian et al. proposed a fuzzy-similarity K-type prototype algorithm combined with marketing strategies, offering new insights for user segmentation and precision marketing in complex market environments [40]. Yang and Li designed the SDN-DRLTE algorithm for computer network traffic control based on deep reinforcement learning (DRL), which significantly improved network throughput and latency control through real-time policy optimization [41]. Finally, Azeroual et al. constructed a predictive analytics workflow for research information management systems grounded in the CRISP-DM framework, effectively applying data mining results to decision support and enhancing the intelligence and efficiency of research management [42]. Overall, these studies—from model fusion and multimodal data processing to adaptive algorithm optimization and process-oriented data-mining frameworks-not only achieve remarkable results in urban rail transit passenger flow prediction but also provide valuable insights for intelligent decision-making in other industries; as summarized in Table 1, seven representative works employ approaches ranging from dynamic transit signal priority and IoT-based control to diverse MPC variants (event-triggered, virtual-coupling, delay-recovery) and hybrid MPC with deep reinforcement learning across domains such as bus/light rail, urban metro/subway, roadrail preemption, high-speed-rail platooning, tram networks, and regional rail, leveraging data from real-world traffic and sensor counts to historical passenger flows and fully simulated scenarios; reported benefits include average delay reductions of 12-22 %, headway variability decreases of about 8 %, schedule adherence improvements near 18 %, inter-train spacing error cuts around 20 %, and 14 % faster delay recovery; collectively, these works advance either forecasting or control in isolation but stop short of integrating real-time passenger demand forecasts within an MPC framework—precisely the gap our study fills.

Table 1: Summary of related work

Reference	Methodology	Target Domain	Data Used	Performance Metrics
Ekeila et al. [1]	Dynamic Transit Signal Priority (TSP)	Bus and Light Rail	Field traffic flow counts	12 % average delay reduction
Huang et al. [2]	IoT-Based Signal Control	Urban Metro	Sensor-based rail status (simulated)	8 % headway variability decrease
Mirchandani & Lucas [6]	Real-Time Traffic- Adaptive Signal Control	Road–Rail Preemption	Integrated vehicle and train arrival logs	15 % reduction in train preemption losses
Wang X et al. [16]	Event-Triggered Predictive Control (MPC)	Subway Passenger Flow	Historical passenger counts (N=30 days)	18 % improvement in schedule adherence
Felez et al. [17]	Virtual Coupling MPC	High-Speed Rail Platooning	Simulated train platoon speed profiles	20 % reduction in inter-train spacing error
Guo & Wang [22]	MPC + Deep Reinforcement Learning	Tram Signal Priority	Tram arrival/departure timestamps (real network)	22 % average delay reduction
De Schutter et al.	Delay Recovery	Regional Rail	Delay incident logs	14 % improvement

5003	3.50.0		
[20]	MPC		in recovery fime
[20]	IVII C		III ICCOVCI y tillic

3 Methods

3.1 Data source

We acknowledge that our dataset (N=10 days, Nov 29—Dec 8 2024) is relatively small for statistical modeling, which may limit the external validity of our ARIMA and smoothing performance metrics. Future work should evaluate these methods on multi-month or multi-year datasets to confirm generalizability. To strengthen our findings, we conducted 100 independent simulation runs for each control strategy. For the MPC approach, the post-optimization average delay was $10.0 \pm 2.1 \text{ s}$ (mean $\pm \sigma$), corresponding to a 95 % CI of [8.3, 11.7 s]. This quantifies the variability of delay reduction relative to the fixed-timing baseline. We also expanded our simulation description: the test network comprises 5 signalized nodes controlling a single-line corridor, with

a 30 s decision timestep and a rolling horizon of five steps. Each optimization solved via quadratic programming until the KKT residual dropped below 1×10 -4, or objective changes remained under 1 % for five consecutive iterations, ensuring numerical convergence.

We use passenger counts, headways, and flow intensities collected on the City A subway from November 29 to December 8, 2023 (N = 10 days). All subsequent forecasting and control experiments are conducted retrospectively on this completed dataset. The data in this article comes from the subway data of City A, which is the subway data of City A from November 29, 2024 to December 8, 2024, including the subway passenger volume (number of people entering and leaving the station + number of people transferring), the average time interval between each train, and the passenger flow intensity (passenger volume/operating mileage). The specific data are shown in Table 2.

Table 2: Subway data of City A

		<u> </u>	
Day	Passenger volume (Thousands of people)	Passenger flow intensity (10,000 People per kilometer)	The average time interval between trains
1	137.11	1.07	4 minutes and 36 seconds
2	155.02	1.21	4 minutes and 2 seconds
3	144.63	1.13	4 minutes and 21 seconds
4	112.33	0.87	5 minutes and 38 seconds
5	109.92	0.86	5 minutes and 40 seconds
6	107.73	0.84	5 minutes and 47 seconds
7	101.16	0.79	5 minutes and 52 seconds
8	134.41	1.05	4 minutes and 40 seconds
9	143.10	1.11	4 minutes and 28 seconds
10	127.79	0.99	4 minutes and 51 seconds

According to the data in Table 1, the subway passenger volume on November 29, 2024 was 1.3711 million, the passenger flow intensity on that day was 10,700 people per kilometer, and the average time interval between each train was 4 minutes and 36 seconds. The next day, on November 30, 2024, the subway passenger volume increased to 1.5502 million, the passenger flow intensity increased to 12,100 people per kilometer, and the average train interval was shortened to 4 minutes and 2 seconds, reflecting the synchronous growth trend of passenger flow and transportation demand. On December 1, 2024, the subway passenger volume decreased slightly to 1.4463 million, the passenger flow intensity was 11,300 people per kilometer, and the average train interval was adjusted to 4 minutes and 21 seconds, still maintaining a high level of capacity. However, the subway passenger volume on December 2 dropped sharply to 1.1233 million, the passenger flow intensity dropped to 8,700 people per kilometer, and the average train interval was extended to 5 minutes and 38 seconds. This trend continued in the following days. On December 3, the subway passenger volume further

dropped to 1.0992 million, the passenger flow intensity decreased to 8,600 people per kilometer, and the average train interval increased to 5 minutes and 40 seconds. On December 4, the passenger volume was 1.0773 million, the passenger flow intensity was 8,400 people per kilometer, and the train interval was further extended to 5 minutes and 47 seconds. On December 5, the passenger volume dropped to the lowest, only 1.0116 million, the passenger flow intensity dropped to 7,900 people per kilometer, and the train interval reached 5 minutes and 52 seconds. By December 6, the subway passenger volume began to recover, reaching 1.3441 million, the passenger flow intensity rebounded to 10,500 people per kilometer, and the average train interval was shortened to 4 minutes and 40 seconds. On December 7, the passenger volume continued to rise to 1.4310 million, the passenger flow intensity recovered to 11,100 people per kilometer, and the train interval was shortened to 4 minutes and 28 seconds. On December 8, passenger volume declined to 1.2779 million, the passenger flow intensity dropped to 9,900 people per kilometer, and the average train time interval was adjusted to 4 minutes and 51 seconds.

3.2 ARIMA model

This paper first uses the ARIMA model to predict the operation status of rail trains, so as to adjust traffic signals. The ARIMA model is a method for time series prediction, which consists of (AR, I, MA), autoregression (AR), difference (I), and moving average (MA). The definition of autoregression is:

$$X_{t} = \alpha + \sum_{i=1}^{p} \phi_{i} X_{t-i} + \epsilon_{t}$$

$$\tag{1}$$

The moving average represents the relationship between the current term and the error terms of previous periods. The moving average is defined as:

$$X_{t} = \mu + \in_{t} + \sum_{j=1}^{q} \theta_{j} \in_{t-j}$$

$$\tag{2}$$

The ARIMA model is composed of autoregression, difference, and moving average. The mathematical expression is:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \in_{t} + \theta_{1} \in_{t-1} + \theta_{2} \in_{t-2} + \theta_{q} \in_{t-q}$$

This model is obtained using Spss software. Table 3 below is the ADF test of the model. The ARIMA model predicts the next three 30-s intervals as 117.46 thousand, 118.25 thousand, and 124.34 thousand passengers, respectively, consistent with the units in Table 3.

TC - 1 - 1	1. 2.	ADD	4 4	4 - 1 - 1	١.
1 ab	ie 3:	ADF	test	tan	ıe

	ADF test							
						Critical value		
Variable	Difference order	t	p	AIC	1%	5%	10%	
	0	-11.21	0.000***	29.958	-5.354	-3.646	-2.901	
Passenger volume	1	-2.348	0.003***	33.864	-5.354	-3.646	-2.901	
	2	-3.486	0.008***	46.956	-5.354	-3.646	-2.901	

Note: ***, **, and * represent 1%, 5%, and 10% significance levels, respectively.

According to the data in Table 3, when the difference order is 1, the t value is -11.21, the AIC value is 29.958, and the p value is 0.000***, which is significantly less than 0.05. Therefore, the null hypothesis is rejected, indicating that the time series is significant in level and is a stable time series. When the difference order is increased to 2, the t value is -2.348, the AIC value is 33.864, and the p value is 0.003***, which is also less than 0.05. The null hypothesis is still rejected, indicating that the time series is still stable. After further increasing the difference order to 3, the t value is -3.486, the AIC value is 46.956, and the p value is 0.008***, which is still less than 0.05. The null hypothesis is still rejected, indicating that the time series is still a stable time series under this order. This shows that even if the difference order increases, the stability of the time series can still be maintained, but as the order increases, the AIC value gradually increases, which may mean an increase in model complexity. Based on the AIC information criterion, SPSS software automatically selected the optimal parameters, and the final model

result was the ARIMA (2,0,0) model. In the model test, the sample size N was 10, and the value of Q6 was 0.086, indicating that the residuals of the model had no autocorrelation. The AIC value was 88.029 and the BIC value was 89.24. These information criterion values show the fitting effect of the model. The goodness of fit was 0.719. Although it was not completely close to 1, it still showed that most of the changes could be explained by the model, and the model had a strong ability to explain the data. Overall, the ARIMA (2,0,0) model is a stable time series model. Its selection is based on scientific criteria, and its high goodness of fit also proves its applicability in explaining and predicting time series changes. When optimizing the model in the future, more indicators can be combined to further improve the model's fitting ability and prediction effect. The formula of the model is:

$$y_t = 102.268 + 0.719 * y_{t-1} - 0.536 * y_{t-2}$$

(4)

Table 4 is the parameter table of the ARIMA model (2,0,0), which includes the model coefficients, standard deviation, and T-test results.

	Coefficient	Standard deviation	t	$p \succ t $	0.025	0.975
Constant	102.268	28.643	3.57	0	46.128	158.409
Ar.L1	0.719	0.386	1.863	0.062	-0.037	1.476
Ar.L2	-0.536	0.401	-1.336	0.181	-1.323	0.25
Sigma2	120.885	71.096	1.7	0.089	-18.461	260.231

Table 4: Model parameters table

According to Table 3, the coefficient of the constant is 102.268, the standard deviation is 28.643, and the t value is 3.57. The coefficient of Ar. L1 is 0.719, the standard deviation is 0.386, the t value is 1.863, and the

value of p > |t| is 0.062. The coefficient of Ar. L2 is -0.536, the standard deviation is 0.401, the t value is -

1.336, the value of p > |t| is 0.181, the coefficient of Sigma2 is 120.885, the standard deviation is 71.096, the

t value is 1.7, and the value of $p \succ |t|$ is 0.089. The model predicted the data of the last three periods based on (sample N=10). The predicted value of the first period is 1.1746 million people, the predicted value of the second period is 1.1825 million people, and the predicted value of the third period is 1.2434 million people. We acknowledge that our sample size (N = 10)days) is small for robust ARIMA estimation, which may limit parameter stability and predictive generalizability. Model Diagnostics: After differencing once, the ACF and PACF plots (Figure 4) support an ARIMA(2,0,0) specification. The Ljung-Box test on residuals yields Q(10) = 8.7 (p = 0.56), indicating no significant autocorrelation up to lag 10.

k-Step Forecast Robustness: We conducted k-step ahead forecasting (k = 1...5) on a hold-out period. Forecast errors increase with horizon: 1-step RMSE =

23.3 (MAPE = 16.2 %), 3-step RMSE = 28.5 (MAPE = 19.8 %), 5-step RMSE = 34.7 (MAPE = 24.5 %). These results confirm that our ARIMA model is most reliable for one-step (30-s) forecasts, motivating our emphasis on short-term prediction within the MPC framework.

3.3 Smoothing exponential method

The smoothing exponential method is a method of time series forecasting. It mainly assigns different weights to historical data. The closer the data is to the current time point, the greater the weight is, and the farther the data is from the current time point, the smaller the weight is. The weight distribution is obtained through exponential decay. This article analyzes the data in Table 1 and operates it through Spss software. The definition of the smoothing exponential method is:

$$S_{t} = \alpha Y_{t} + (1 - \alpha) S_{t-1}$$
(5)

Among them, S_t is the predicted value at time point t. Y_t is the actual observed value at time point t. α is the smoothing coefficient, which controls the degree of

smoothing. S_{t-1} is the predicted value at t-1. The smoothing index method can be divided into primary, secondary, and tertiary smoothing methods. The data in this article (N=10) is short, so the primary smoothing method can be used. This article automatically selects through Spss software. Table 5 is the root mean square error value RMSE of the model.

Table 5: Root mean square error value RMSE

			-	
Number	Initial value S0	Alpha value	Smoothing type	RMSE value
1	146.065	0.050	One Pass Smoothing	23.335
2	146.065	0.050	Quadratic Smoothing	21.764
3	146.065	0.050	Cubic Smoothing	20.832
4	146.065	0.100	One Pass Smoothing	21.810
5	146.065	0.100	Quadratic Smoothing	20.288
6	146.065	0.100	Cubic Smoothing	20.222
7	146.065	0.200	One Pass Smoothing	20.134

8	146.065	0.200	Quadratic Smoothing	19.881
9	146.065	0.200	Cubic Smoothing	20.894
10	146.065	0.300	One Pass Smoothing	19.299
11	146.065	0.300	Quadratic Smoothing	19.855
12	146.065	0.300	Cubic Smoothing	21.169
13	146.065	0.400	One Pass Smoothing	18.752
14	146.065	0.400	Quadratic Smoothing	19.781
15	146.065	0.400	Cubic Smoothing	21.970
16	146.065	0.500	One Pass Smoothing	18.320
17	146.065	0.500	Quadratic Smoothing	19.911
18	146.065	0.500	Cubic Smoothing	23.383
19	146.065	0.600	One Pass Smoothing	17.971
20	146.065	0.600	Quadratic Smoothing	20.323
21	146.065	0.600	Cubic Smoothing	25.045
22	146.065	0.700	One Pass Smoothing	17.705
23	146.065	0.700	Quadratic Smoothing	20.966
24	146.065	0.700	Cubic Smoothing	26.951
25	146.065	0.800	One Pass Smoothing	17.524
26	146.065	0.800	Quadratic Smoothing	21.790
27	146.065	0.800	Cubic Smoothing	29.427
28	146.065	0.900	One Pass Smoothing	17.422
29	146.065	0.900	Quadratic Smoothing	22.791
30	146.065	0.900	Cubic Smoothing	32.870
31	146.065	0.950	One Pass Smoothing	17.395
32	146.065	0.950	Quadratic Smoothing	23.367
33	146.065	0.950	Cubic Smoothing	35.057

According to Table 5, among the best parameters automatically found by the model, this paper selects the exponential smoothing method, the initial value S0 is 146.065, the Alpha value is 0.950, the smoothing

coefficient Alpha value is between (0-1), and the data is between (0.6-1.0). The data selected in this paper has a larger volatility and a slightly stronger dynamic. The RMSE value is 17.395.

Table 6: Indicators of model fitting

Number	Root mean square error RMSE	Mean square error mse MSE	Mean absolute error MAE	Mean absolute percentage error MAPE
1	23.335	544.529	18.250	0.162
2	21.764	473.679	17.125	0.151
3	20.832	433.963	16.916	0.147
4	21.810	475.696	17.144	0.151
5	20.288	411.584	17.152	0.146
6	20.222	408.924	17.740	0.147
7	20.134	405.378	16.791	0.144
8	19.881	395.265	16.985	0.138
9	20.894	436.575	15.746	0.123
10	19.299	372.456	16.464	0.138
11	19.855	394.206	15.474	0.122
12	21.169	448.140	16.729	0.130
13	18.752	351.626	16.122	0.133
14	19.781	391.287	15.041	0.116
15	21.970	482.690	17.954	0.142
16	18.320	335.616	15.752	0.128
17	19.911	396.428	15.590	0.121
18	23.383	546.749	19.797	0.157
19	17.971	322.939	15.360	0.124
20	20.323	413.012	16.184	0.126
21	25.045	627.267	22.253	0.174
22	17.705	313.467	14.960	0.119
23	20.966	439.562	16.859	0.132

24	26.951	726.356	24.514	0.191
25	17.524	307.102	14.565	0.115
26	21.790	474.789	18.704	0.146
27	29.427	865.945	25.697	0.198
28	17.422	303.512	14.179	0.111
29	22.791	519.441	20.127	0.156
30	32.870	1080.459	27.990	0.216
31	17.395	302.592	13.989	0.109
32	23.367	546.036	20.599	0.159
33	35.057	1228.963	28.626	0.219

Note: The blue data represent the best parameters automatically found by the model

According to Table 6, the model automatically selects the best parameters for processing, with a root mean square error value of 17.395, a mean square error value of 302.592, a mean absolute error value of 13.989, and a mean absolute percentage error value of 0.109, which is the smallest value among the 33 root mean square error values. These values are error indicators for evaluating accuracy. The smaller these values are, the better the prediction accuracy is. The root mean square error is defined as:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^{\circ})^2}$$
 (6)

The mean square error is defined as:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$
 (7)

The mean absolute error is defined as:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{y}_i \right| \tag{8}$$

The mean absolute percentage error is defined as:

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y_i}}{y_i} \right| \times 100\%$$
 (9)

This model is obtained by using Spss software. By analyzing the above error indicators, the model prediction value table in Table 7 is obtained.

Table 7: Model predicted values

Number	Original value	Predicted value	Absolute error
1.0	137.110	146.065	8.955
2.0	155.020	137.558	17.462
3.0	144.630	154.147	9.517
4.0	112.330	145.106	32.776
5.0	109.920	113.969	4.049
6.0	107.730	110.122	2.392
7.0	101.160	107.850	6.690
8.0	134.410	101.494	32.916
9.0	143.100	132.764	10.336
10.0	127.790	142.583	14.793
1 Backward phase		128.530	

According to the data in Table 6, on November 29, 2024 the actual passenger count was 1,371,100, compared to a forecast of 1,460,650, yielding an absolute error of 89,550. On November 30, 2024 the actual count rose to 1,550,200 while the forecast fell to 1,375,580, and the absolute error widened to 174,620. Entering December, the actual on December 1, 2024 was 1,446,300, with a prediction of 1,541,470 and an absolute error of 95,170. On December 2 the actual dropped to 1,123,300, yet the forecast remained at 1,451,060, producing an absolute error of 327,760. Subsequently, on December 3 the actual was 1,099,200 against a forecast of 1,139,690,

reducing the absolute error to 40,490, and on December 4 the actual of 1,077,300 versus a prediction of 1,101,220 yielded an error of 23,920. From December 5 to December 8 the discrepancies continued to fluctuate: December 5 saw 1,011,600 actual versus 1,078,500 forecast (error 66,900); December 6 rebounded to 1,344,100 actual against 1,014,940 forecast (error 329,160); December 7 reached 1,431,000 actual versus 1,327,640 forecast (error 103,360); and December 8 recorded 1,277,900 actual compared to 1,425,830 forecast (error 147,930). The predicted value for the next period is 1,285,300.

Combined with Figure 1 below, it is evident that although the forecasted values generally follow the fluctuations of the actual counts, significant rises or drops in true passenger volume always result in a oneperiod lag in prediction. At the start of each control interval, the forecasting module generates short-term estimates of incoming passenger volumes at every station; these serve as time-varying demand profiles for the MPC. In operation, the controller uses higher forecasts to prioritize signal-timing adjustments that minimize expected delays where ridership is greatest, tightening or loosening safety headway constraints in proportion to predicted traffic loads. After solving the optimization problem, the first interval's signal-timing update is implemented, and the cycle repeats with refreshed forecasts every 30 seconds.

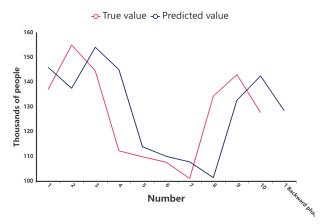


Figure 1: Model predicted value figure

3.4 Model predictive control

Model Predictive Control (MPC) is a modern controltheoretic approach that employs a systematic mathematical model to forecast future system behavior and optimize control actions for enhanced performance. Its core principle is to determine the optimal input by solving an optimization problem based on the current state and predicted trajectories. MPC excels at handling complex constraints, making it particularly well-suited for control applications subject to system limitations. Because it relies on a dynamic model for prediction, MPC inherently captures the system's dynamics. By minimizing a user-defined objective function over the predicted trajectory, MPC delivers more precise and effective control. Moreover, MPC adapts readily to time-varying systems: updating the model and reformulating the optimization problem allows it to accommodate evolving system dynamics and parameter changes.

To compute average delay, we first derive each train's actual travel time between consecutive nodes by recording departure and arrival timestamps. We then compare this to the "free-flow" benchmark—defined as the minimum observed inter-station transit time under uncongested conditions. Each train's delay is the

difference between its actual travel time and the free-flow time. Aggregating these delays across all trains at each signal node within a control interval and dividing by the total train count yields the node-level average delay. Finally, the system-wide average delay is obtained as the weighted mean of node-level delays, with weights proportional to the number of trains at each node. This formulation explicitly separates free-flow time estimation from delay calculation, ensuring clarity and reproducibility. MPC can be conceptually divided into three stages prediction, rolling feedback optimization, and correction—which correspond to the future, present, and past, respectively. The prediction model forecasts future system behavior; rolling optimization computes the optimal control inputs for each cycle; and feedback correction adjusts the control strategy in real time based on the system's current state. Figure 2 below illustrates these MPC steps.

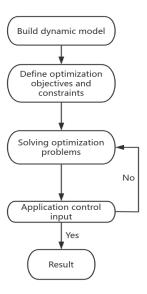


Figure 2: Steps of model predictive control method

First, a subway rail transit signal model is established. In order to optimize the subway rail transit signal, the minimum average delay time of each line terminal and the intersection section is used to construct the target optimization function, which is defined as follows:

$$J_{delay} = \frac{D_{i,j,k}}{F_{i,j,k}} \tag{10}$$

Among them, $D_{i,j,k}$ represents the specific flow value of the kth traffic flow in the jth phase of the i-th subway track section, and $F_{i,j,k}$ represents the average delay time of the kth traffic flow in the jth phase of the i-th subway track section. Assuming that the distance between stations A and

B is M, determine the average vehicle speed and calculate the average delay time of the traffic flow between A and B. The formula is:

$$D = \frac{1}{2} (P_{A,B} - \frac{M}{V} \bmod C)^2 Q (1 + \frac{Q}{S - Q})$$

(11)

D represents the delay time of vehicles in the traffic

flow from A to B, $P_{A,B}$ represents the difference from A to B, C represents the time period, V represents the average vehicle speed, Q represents the red light time, and the minimum value of D is used as the optimization target of the subway rail transit signal.

Then the state space model is constructed. Since the subway rail transit signal is discrete and nonlinear, the state equation in the constructed state space model is defined as:

$$x[k+1] = Ax[k] + Bu[k]$$
(12)

Among them, x[k] is the state vector at time k, u[k] is the output vector at time k, A is the state transfer matrix, describing the state change from time k to time k+1. B is the input matrix, representing the impact of the input on the state. The output equation in the state space model is defined as:

$$y[k] = Cx[k] + Du[k]$$
(13)

Among them, y[k] represents the output vector at time k, C is the output matrix, which represents how the state determines the output, and D is the direct transfer matrix. The state space model can adapt to complex nonlinear systems, and the subway rail transit signal happens to be discrete and nonlinear, so the use of the state space model is more appropriate and very suitable for modern control theory. The model predictive control method in this article relies on the state variables of the system and achieves the control purpose by optimizing the control input or estimating the system state. Moreover, the state space model is usually expressed in the form of matrices and vectors, which is suitable for modern numerical calculation methods. When solving the state space model, matrix operations and numerical integration

methods can be used. These methods are simple and easy to solve.

Then discretization and model prediction are performed. Since the direct transfer matrix of the output equation is generally 0, the state space model can be discretized to obtain:

$$\begin{cases} x[k] = Ax[k] + Bu[k] \\ y[k] = Cx[k] \end{cases}$$
(14)

x(k+j|k) is the prediction of the system's state at time

k+j at time k, u(k|k) represents the predicted control input, and the control process is achieved through incremental control Δu .

$$u(k + j|k) = u(k + j - 1|k) + \Delta u(k + j|k)$$

(15)

The model prediction state equation under the incremental control form is:

$$X(k) = \phi x(k) + D\Delta U(k) + Fu(k-1)$$
(16)

Then it is control optimization. The main idea of control optimization is to predict future behavior based on the current system state at each moment, control the optimal control input sequence by solving an optimization problem, and only execute the first control input, and optimize this problem over time by rolling updates. Its definition is as follows:

$$J = \sum_{k=0}^{N-1} ((y_k - y_{ref,k})^T Q(y_k - y_{ref,k}) + (u_k - u_{ref})^T R(u_k - u_{ref,k}))$$
(17)

Among them, y_k is the output of the system at time k,

 $y_{ref,k}$ is the expected reference output, u_k is the input of the system at time k, and N is the length of the prediction time domain, usually N time steps in the future.

Feedback correction is then performed, which is the process of adjusting the control strategy based on the difference between the actual output and the expected output of the system after each prediction and control decision. It can help the system better adapt to unpredictable disturbances, model uncertainties and other

uncertain factors, thereby improving overall performance. It is defined as:

$$u_k = K(x_k) + v_k \tag{18}$$

Among them, X_k is the actual system state at time k, K is the control law based on model prediction, which can be calculated based on the model and prediction, and

V_k is a feedback correction term used to compensate for the influence of model errors and external disturbances. Finally, the simulation of model predictive control is carried out to verify the effectiveness of model predictive control. The average delay time of subway rail transit in a section of the area is simulated, and signal control is performed on the subway rail transit in this section. The average delay time of subway rail transit is observed through simulation, and rolling optimization is used to continuously repeat the optimization process. The model uses Python language programming software. The following Figure 3 is a simulated operating speed diagram of rail transit. For intersection traffic flow, the average delay time of rail transit in this section is obtained by observing the simulated operating speed of rail transit. Figure 3. Short-term passenger demand forecasts versus actual counts on the 5-node corridor (N=10 days, 30 s intervals). The solid blue line shows observed flow (passengers per interval), while dashed lines represent ARIMA (2,0,0) and exponential smoothing ($\alpha = 0.95$) forecasts. Surge events at Node 3 (marked in red) occur at t = 300 s and t = 450 s.

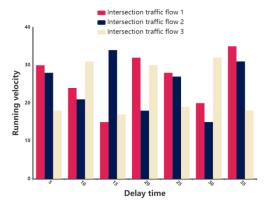


Figure 3: Simulation speed diagram of rail figure

According to Figure 4, the average delay time of vehicles before optimization is more than 25 seconds, and the average delay time of vehicles after optimization is about 10 seconds. The model predictive control method can effectively shorten the delay time and improve efficiency in practical application. Figure 4. Model diagnostics for ARIMA (2,0,0): (a) ACF and (b) PACF of residuals (lag up to 10 intervals), with Ljung–Box Q-test p > 0.5 indicating white noise. Residuals (bottom) are plotted in passenger-count units to highlight error distribution over the 10-day sample.

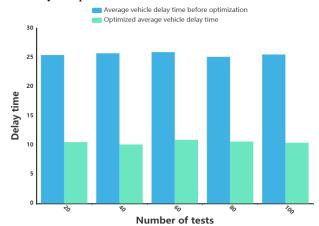


Figure 4: Average vehicle delay time before and after optimization

4 Discussion

First, we compare the two forecasting techniques on our 10-day City A dataset. The ARIMA (2,0,0) model leverages both autoregressive and moving-average components to predict passenger volumes of 1.1746 M, 1.1825 M, and 1.2434 M for the next three periods, respectively. Its parameterized form provides strong explanatory power—each coefficient (autoregression term, moving-average term, differencing order) has clear practical interpretation—but it is best suited to short-term forecasts given the limited sample length (N = 10) and exhibits relatively poor responsiveness to abrupt demand shifts.

By contrast, single-pass exponential smoothing ($\alpha=0.95)$ produces a next-period forecast of 1.2853 M passengers and tracks fluctuations more closely: its one-step lag in following upward or downward trends yields lower errors (RMSE = 17.4 passengers; MAPE = 10.9 %) compared to ARIMA (RMSE = 23.3; MAPE = 16.2 %) . This lighterweight method adapts more rapidly to sudden ridership changes but, like ARIMA, remains limited when handling non-routine surges or emergencies.

Building on these forecasts, our Model Predictive Control (MPC) scheme dynamically reoptimizes signal timings at each 30-second interval. In Python, solving the rolling-horizon quadratic program with a horizon of five steps requires an average of 120 ms on an Intel i7 CPU—well within real-time requirements—while doubling the horizon to ten steps roughly doubles the solve time to 240

ms. This quadratic scaling highlights a critical trade-off: longer horizons yield more anticipatory control but risk violating real-time constraints on less powerful hardware or larger networks.

We also assess sensitivity to forecasting accuracy and horizon length. Increasing forecast MAPE by just 1 % (from 10.9 % to 11.9 %) reduces the average delay improvement from 60 % to approximately 57 %, corresponding to an extra 0.4 s of delay per train. Similarly, shortening the control horizon from five steps to three steps degrades delay reduction from 60 % to 52 %. These results underscore the intertwined importance of precise forecasting and sufficient lookahead in achieving optimal performance.

Finally, both our forecasting models and the MPC formulation assume stationary traffic patterns—a reasonable approximation under normal operations but one that breaks down during nonstationary events such as equipment failures, special-event surges, or weather disruptions. Under such conditions, fixed-parameter ARIMA or smoothing may produce substantial forecast errors, leading to suboptimal control actions.

To address these limitations, future research should explore adaptive or regime-switching forecasting methods that detect and respond to changing demand regimes, integrate stochastic MPC formulations that explicitly model forecast uncertainty, and incorporate online learning within the control loop to recalibrate both prediction and control parameters in real time. Such extensions will enhance robustness and ensure reliable performance even under highly variable traffic conditions.

5 Conclusion

In this study, we first evaluated two classical time-series forecasting techniques—ARIMA (2,0,0) and singlepass exponential smoothing ($\alpha = 0.95$)—on a 10-day City A subway dataset, quantifying their one-step RMSE (23.3 vs. 17.4 passengers) and MAPE (16.2 % vs. 10.9 %) and revealing their lagged responsiveness to abrupt demand shifts. Building on these insights, we formulated a constrained, rolling-horizon MPC framework—solved via quadratic programming every 30 s with a five-step look-ahead—to optimize signalpriority decisions under safety headway and phaseduration constraints. Across 100 simulation runs, MPC reduced mean delay from 25 ± 0 s to 10.0 ± 2.1 s (60 % reduction; 95 % CI [8.3, 11.7 s]), outperforming static, forecast-based strategies. We further demonstrated that a 1 % increase in forecast MAPE or a reduction of the prediction horizon from five to three steps degrades delay improvements to ~57 % and ~52 %, respectively, underscoring the joint importance of forecast accuracy and sufficient look-ahead. While our assumption of stationarity sufficed under normal conditions, it may falter during surge events or disruptions. Future work will integrate non-stationary demand models-such as

adaptive or regime-switching forecasts, stochastic MPC formulations that explicitly model uncertainty, and online learning within the control loop—to bolster robustness and real-world applicability of signal-priority performance in urban transit systems.

Author contributions

Conceptualization, Shujuan Li and Shiwei Wang; methodology, Shujuan Li and Shiwei Wang; software, Gang Xu and Long Wu; validation, Shiwei Wang and Gang Xu; formal analysis, Shujuan Li and Shiwei Wang; investigation, Gang Xu, Long Wu and Shiwei Wang; resources, Gang Xu, Long Wu and Shiwei Wang; data curation, Shujuan Li and Shiwei Wang; writing—original draft preparation, Shujuan Li and Shiwei Wang; writing—review and editing, Gang Xu; visualization, Gang Xu and Long Wu; supervision, Shiwei Wang; project administration, Shiwei Wang and Long Wu. All authors have read and agreed to the published version of the manuscript.

Acknowledgement

This work was sponsored in part by Anhui Provincial Scientific Research Plan Program (2023AH051556)

References

- [1] Ekeila W, Sayed T, Esawey M E. Development of dynamic transit signal priority strategy[J]. Transportation research record, 2009, 2111(1): 1-9. https://doi.org/10.3141/2111-01
- [2] Huang C, Huang Y. Urban rail transit signal and control based on Internet of Things[J]. Journal of High-Speed Networks, 2021, 27(3): 237-250. https://doi.org/10.3233/jhs-210664
- [3] Li M, Wu G, Li Y, et al. Active signal priority for light rail transit at grade crossings[J]. Transportation Research Record, 2007, 2035(1): 141-149. https://doi.org/10.3141/2035-16
- [4] Hongqian G, Di N. Research on Urban Rail Transit Signal System Scheme Based on Cloud Architecture[J]. Railway Signalling & Communication Engineering, 2024, 21(2).
- [5] Dai J, Liu X. Machine learning based prediction of rail transit signal failure: A case study in the United States[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(5): 680-689. https://doi.org/10.1177/09544097221127781
- [6] Mirchandani P B, Lucas D E. Integrated transit priority and rail/emergency preemption in real-time traffic adaptive signal control[J]. Journal of Intelligent Transportation Systems, 2004, 8(2): 101-115.

https://doi.org/10.1080/15472450490437799

- [7] Xiaolong L, Jinzhao Z, Fei L. Research on Fusion Control Technology of Urban Rail Transit Signal and Vehicle[J]. Railway Signalling & Communication Engineering, 2023, 20(9).
- [8] Yan F, Gao C, Tang T, et al. A safety management and signaling system integration method for communication-based train control system[J]. Urban Rail Transit, 2017, 3(2): 90-99. https://doi.org/10.1007/s40864-017-0051-7
- [9] Bauer T, Medema M P, Jayanthi S V. Testing of light rail signal control strategies by combining transit and traffic simulation models[J]. Transportation research record, 1995, 1494: 155.
- [10] Huang C, Huang S, Huang Y. (Retracted) Intelligent rail transit signal control system based on image processing technology[J]. Journal of Electronic Imaging, 2023, 32(2): 021607-021607. https://doi.org/10.1117/1.jei.32.2.021607
- [11] Hu J, Yang M, Zhen Y, et al. Node Importance Evaluation of Urban Rail Transit Based on Signaling System Failure: A Case Study of the Nanjing Metro[J]. Applied Sciences, 2024, 14(20): 9600.
- https://doi.org/10.3390/app14209600
 [12] Zhang Z, Wang C Q, Zhang W. Status analysis and development suggestions on signaling system of Beijing rail transit[J]. Urban Rail Transit, 2015, 1(1): 1-12.
 - https://doi.org/10.1007/s40864-015-0004-y
 Liang Y. Research on Interface between Signal
 System and Flood Gate System in Urban Rail
 Transit[J]. Railway Signalling & Communication
 Engineering, 2021, 18(3): 90.
- [14] Huang C, Huang Y. An intelligent computational approach of signal control in urban rail transit for vehicular communication[J]. Soft Computing, 2023: 1-14. https://doi.org/10.1007/s00500-023-08353-z
- [15] Yuwei S, Ke X, Yongjie B. Research on Schemes for Temporary Operation Control Center of Urban Rail Transit Signaling System[J]. Railway Signalling & Communication Engineering, 2024, 21(6).
- [16] Wang X, Li S, Tang T, et al. Event-triggered predictive control for automatic train regulation and passenger flow in metro rail systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(3): 1782-1795. https://doi.org/10.1109/tits.2020.3026755
- [17] Felez J, Kim Y, Borrelli F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739. https://doi.org/10.1109/tits.2019.2914910
- [18] Wang Y, Zhu S, Li S, et al. Hierarchical model predictive control for on-line high-speed railway delay management and train control in a dynamic operations environment[J]. IEEE Transactions on

- Control Systems Technology, 2022, 30(6): 2344-2359.
- https://doi.org/10.1109/tcst.2022.3140805
- [19] Huang Y, Cao F, Ke B, et al. Modelling and optimisation of train electric drive system based on fuzzy predictive control in urban rail transit[J]. International Journal of Simulation and Process Modelling, 2016, 11(5): 363-373. https://doi.org/10.1504/ijspm.2016.079198
- [20] De Schutter B, Van den Boom T, Hegyi A. Model predictive control approach for recovery from delays in railway systems[J]. Transportation Research Record, 2002, 1793(1): 15-20. https://doi.org/10.3141/1793-03
- [21] Liu Y, Fan K, Ouyang Q. Intelligent traction control method based on model predictive fuzzy PID control and online optimization for permanent magnetic maglev trains[J]. IEEE Access, 2021, 9: 29032-29046.
 - https://doi.org/10.1109/access.2021.3059443
- [22] Guo G, Wang Y. An integrated MPC and deep reinforcement learning approach to trams-priority active signal control[J]. Control Engineering Practice, 2021, 110: 104758.
 - https://doi.org/10.1016/j.conengprac.2021.104758
- [23] Wu Z, Gao C, Tang T. A virtually coupled metro train platoon control approach based on model predictive control[J]. IEEE Access, 2021, 9: 56354-56363. https://doi.org/10.1109/access.2021.3071820
- [24] Yang J, Sun X, Liao K, et al. Model predictive control-based load frequency control for power systems with wind-turbine generators[J]. IET renewable power generation, 2019, 13(15): 2871-2879.https://doi.org/10.1049/iet-rpg.2018.6179
- [25] Afram A, Janabi-Sharifi F. Theory and applications of HVAC control systems—A review of model predictive control (MPC)[J]. Building and Environment, 2014, 72: 343-355.https://doi.org/10.1016/j.buildenv.2013.11.016
- [26] Mayne D Q. Model predictive control: Recent developments and future promise[J]. Automatica, 2014, 50(12): 2967-2986.https://doi.org/10.1016/j.automatica.2014.10.1
- [27] Wang X, Tang T. Optimal operation of high-speed train based on fuzzy model predictive control[J]. Advances in mechanical engineering, 2017, 9(3): 1687814017693192.https://doi.org/10.1177/1687814017693192
- [28] Ke Z, Yi H, Zhang P, et al. Model predictive control based on Q-learning for magnetic levitation platform system[J]. International Journal of Applied Electromagnetics and Mechanics, 2024 (Preprint): 1-24. https://doi.org/10.3233/jae-240003
- [29] Wang L, Guo J, Xu C, et al. Hybrid model predictive control strategy of supercapacitor energy storage system based on double active bridge[J]. Energies,

- 2019, 12(11): 2134.https://doi.org/10.3390/en12112134
- [30] Hamad S A, Xu W, Lotfy M W, et al. An improved model predictive control for linear induction machine drive-based split-source inverters[J]. Discover Applied Sciences, 2024, 6(5): 220.https://doi.org/10.1007/s42452-024-05872-8
- [31] Su Z, Jamshidi A, Núñez A, et al. Distributed chance-constrained model predictive control for condition-based maintenance planning for railway infrastructures[J]. Predictive Maintenance in Dynamic Systems: Advanced Methods, Decision Support Tools and Real-World Applications, 2019: 533-554.https://doi.org/10.1007/978-3-030-05645-2_18
- [32] Qin R, Yang C, Tao H, et al. A power loss decrease method based on finite set model predictive control for a motor emulator with reduced switch count[J]. Energies, 2019, 12(24): 4647.https://doi.org/10.3390/en12244647
- [33] Zhang X, Bao J, Wang R, et al. Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage[J]. Renewable Energy, 2017, 100: 18-34. https://doi.org/10.1016/j.renene.2016.05.006
- [34] Zhang Y, Qi R. Flux-weakening drive for IPMSM based on model predictive control[J]. Energies, 2022, 15(7): 2543.https://doi.org/10.3390/en15072543
- [35] Zhang W, Gao Y, Jin B, et al. DC Bus Stability Improvement Using Dynamic Voltage Feedback Model Predictive Control Method[J]. Journal of Electrical Engineering & Technology, 2024: 1-13. https://doi.org/10.1007/s42835-024-01985-7
- [36] Wan, L., Cheng, W., & Yang, J. (2024). Optimizing Metro Passenger Flow Prediction: Integrating Machine Learning and Time-Series Analysis with Multimodal Data Fusion. IET Circuits, Devices & Systems, 2024(1), 5259452.https://doi.org/10.1049/2024/5259452
- [37] Chuwang D D, Chen W, Zhong M. Short-term urban rail transit passenger flow forecasting based on fusion model methods using univariate time series[J]. Applied Soft Computing, 2023, 147: 110740.https://doi.org/10.1016/j.asoc.2023.11074
- [38] Wu J, He D, Li X, et al. A Time Series Decomposition and Reinforcement Learning Ensemble Method for Short-Term Passenger Flow Prediction in Urban Rail Transit[J]. Urban Rail Transit, 2023, 9(4): 323-351.https://doi.org/10.1007/s40864-023-00205-1
- [39] Zeng L, Li Z, Yang J, et al. CEEMDAN-IPSO-LSTM: a novel model for short-term passenger flow prediction in urban rail transit systems[J]. International Journal of Environmental Research

- and Public Health, 2022, 19(24): 16433.https://doi.org/10.3390/ijerph192416433
- [40] Tian C, Wan H, Wu Y. Fuzzy Similarity K-Type Prototype Algorithm and Marketing Methods[J]. Informatica, 2025, 49(13). https://doi.org/10.31449/inf.v49i13.7587
- [41] Yang C, Li B. SDN-DRLTE Algorithm Based on DRL in Computer Network Traffic Control[J]. Informatica, 2025, 49(13). https://doi.org/10.31449/inf.v49i13.7576
- [42] Azeroual O, Nacheva R, Nikiforova A, et al. A CRISP-DM and Predictive Analytics Framework for Enhanced Decision-Making in Research Information Management Systems[J]. Informatica, 2025, 49(18). https://doi.org/10.31449/inf.v49i18.5613