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Urban rail transit systems demand ever-improving responsiveness to fluctuating passenger flows. In this
study, we use a 10-day dataset of City A subway passenger counts, headways, and flow intensities (N=10
days, Nov 29-Dec 8 2024). We first apply two time-series forecasting techniqgues—ARIMA (2,0,0) and
single-pass exponential smoothing (a=0.95)—t0 predict short-term passenger demand. Based on these
predictions, we formulate a constrained Model Predictive Control (MPC) problem that simultaneously
minimizes average train delay, enforces block-section safety headways, and adapts signal timings across
a prototype corridor. Simulations implemented in Python—with vehicle dynamics, signal phase duration
limits, and safety constraints explicitly modeled—show that the MPC strategy reduces average delay from
25st0 10 s (60 % reduction) compared to fixed-timing baselines. We quantify trade-offs among prediction
horizon, computational load (solved via rolling-horizon quadratic programming), and control
performance, and clearly demonstrate our contributions in integrating demand forecasting into a real-
time MPC framework for rail signal priority.

Povzetek: Prispevek obravnava optimizacijo prometa po tirnicah. MPC z drsec¢im horizontom vsakih 30 s
optimizira signalno prednost in izvaja napoved potniskih tokov (ARIMA, eksponentno glajenje);

simulirani 5-vozlis¢ni koridor, QP resitev, porocana 60 % redukcija zamud.

1 Introduction

The history of rail transit signaling dates back to the
19th century. As railways and urban rail transit
expanded, signaling systems gradually matured. Driven
by growing safety demands and technological advances,
these systems evolved through several distinct stages. In
the earliest era of steam locomotives, signaling
consisted of rudimentary visual cues: platform staff
used brightly colored flags or signs—red for stop, green
for go—to direct trains. In 1830, British engineer
George introduced the first fixed signal light on a
railway line, marking the prototype of modern rail
transit signals.

By the late 19th and early 20th centuries, as networks
expanded and train speeds increased, traffic accidents—
particularly rear-end collisions—became more frequent.
To enhance safety, signaling began to standardize:
automatic signal lights and block systems were
gradually adopted in both the United States and the
United Kingdom. Under this system, each track
segment (or “block”) was governed by a signal that
indicated whether a following train could enter. Signal

colors were codified—red for stop, green for proceed, and
yellow for caution—each with a precisely defined meaning.
In the mid-to-late 20th century, the electrification of
railways spurred rapid developments toward automation.
Electrified signaling not only supported higher train speeds
but also enabled more sophisticated, information-rich
systems. Manual controls gave way to automatic remote
control, substantially improving operational safety.
Concurrently, the Automatic Train Control (ATC) system
emerged, capable of continuously monitoring train speed
and initiating emergency braking when necessary. By
minimizing human intervention and leveraging computer-
controlled signals, ATC greatly reduced the risks of delays
and collisions within block sections.

Since the turn of the 21st century, rail transit signaling has
advanced toward full automation, intelligence, and
network integration—especially in urban settings. Signal
priority systems now dynamically adjust signal aspects
based on real-time monitoring and prediction of train
movements, optimizing throughput. Intelligent dispatching
systems further enhance flexibility by adapting to traffic
flows, train conditions, and even surface traffic patterns.
Moreover, modern networks seamlessly integrate
Automatic Train Operation (ATO) with Automatic Train
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Protection (ATP), continuously tracking train positions,
executing intelligent control strategies, and elevating
both efficiency and safety.

This paper first applies ARIMA (2,0,0) and single-pass
exponential smoothing (o= 0.95) to generate short-term
forecasts of passenger flows, using these predictions to
configure static signal-timing strategies. We then
introduce a rolling-horizon Model Predictive Control
(MPC) scheme that reoptimizes signal timings every 30
s. By comparing three methods—ARIMA-based static
control, smoothing-based static control, and real-time
MPC—against metrics of average train delay, delay-
reduction ratio, and headway variability, we address
(RQ1) whether MPC can more effectively reduce delays
than static methods and (RQ2) how forecast accuracy
(MAPE) impacts control performance. Baseline
methods assume fixed passenger flows within each
period, while MPC continuously updates variable flow
estimates, all under a stationarity assumption over ten
days of City A data (Nov 29-Dec 8, 2024). Our results
reveal the limitations of traditional forecasting—Ilagged
responsiveness and reduced adaptability to demand
spikes—and demonstrate MPC’s superiority, achieving
up to 60 % delay reduction through dynamic, real-time
adjustments.

2 Related work

In the late 19th century and early 20th century, there
were studies on rail transit signals. W Ekeila et al. [1]
proposed a dynamic TSP system to develop a dynamic
transport signal priority strategy. C Huang et al. [2]
introduced a study on urban rail transit signals based on
the Internet of Things control method, which greatly
promoted the urban rail transit signal control system. M
Li et al. [3] proposed a method based on the active
signal priority system of light rail transit, which verified
the practicality of this method in testing. G Honggian et
al. [4] proposed a study on the urban railway
transportation signal system plan based on cloud
architecture. J Dai et al. [5] proposed a railway
transportation signal fault prediction based on machine
learning, which was used for risk screening. P B
Mirchandani et al. [6] proposed a real-time traffic
adaptive signal control system that integrates traffic
signal priority and track preemption. L Xiaolong et al.
[7] proposed a study on urban railway transportation
signal and vehicle fusion control technology. F Yan et
al. [8] proposed a safety verification evaluation method
based on the safety of rail transit signal systems. T
Bauer et al. [9] proposed a method for testing light rail
signal control strategies by combining transportation
and traffic simulation models. C Huang et al. [10]
proposed an intelligent railway transportation signal
control system based on image processing technology.
J Hu et al. [11] proposed a method to evaluate the
importance of urban railway node transportation under
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signal system failure. Z Zhang et al. [12] put forward some
suggestions on Beijing railway transportation signal
system. Y Liang [13] proposed a study on the interface
between the signal system and the flood gate system in
urban railway transportation. C Huang et al. [14] applied
the existing railway traffic signal control system to the
urban traffic signal management system. S Yuwei et al. [15]
proposed a study on the temporary operation control center
scheme of the urban railway transportation signal system.

Model predictive control methods have been used since the
1970s, and were first used in the field of chemical control.
X Wang et al. [16] proposed an event-triggered predictive
control for automatic train regulation and passenger flow
in subway systems. J Felez et al. [17] proposed a model
predictive control method based on virtual coupling in
railways. Y Wang et al. [18] proposed a hierarchical model
predictive control method based on delay management of
high-speed railways. Y Huang et al. [19] proposed a fuzzy
predictive control method based on the electric drive
system of trains in urban railway transportation. B De
Schutter et al. [20] proposed a model predictive control
method for recovering from delays in railway systems. Y
Liu et al. [21] proposed a weighted cascade fuzzy
predictive control algorithm. G Guo et al. [22] proposed an
integrated model predictive control and deep learning
method based on priority signal control for trams. Z Wu et
al. [23] proposed a nearly coupled subway train platoon
control method based on model predictive control. J Yang
et al. [24] proposed a load frequency control strategy based
on model predictive control. A Afram et al. [25] introduced
the application of model predictive control methods in
HVAC systems. D Q Mayne et al. [26] discussed the past
achievements of model predictive control methods and
provided some directions for future research on model
predictive control. X Wang et al. [27] proposed a fuzzy
predictive control framework based on the exploration of
optimal control methods for trains. Z Ke et al. [28]
proposed a model predictive control method based on a g-
learning algorithm based on a magnetic levitation platform
system. L Wang et al. [29] proposed a hybrid model
predictive control strategy based on a supercapacitor
energy storage system with dual active bridges. S A
Hamad et al. [30] proposed an improved model predictive
control method for linear induction machine drives based
on split source inverters. Z Su et al. [31] proposed a
distributed opportunity-constrained model predictive
control method based on a maintenance system for railway
facilities. R Qin et al. [32] proposed a model predictive
control method based on a delay compensation active set
model based on a motor simulator for reducing switch
counts. X Zhang et al. [33] proposed a distributed
economic model predictive control method based on
dissipation. Y Zhang et al. [34] proposed a model
predictive control method for an internal permanent
magnet motor flux drive system. W Zhang et al. [35]
proposed a dynamic voltage feedback model predictive
control method for DC power stabilization.



A Model Predictive Control Framework for Urban Rail Transit...

In recent years, research on data mining and prediction
in urban rail transit and related fields has followed
several diversified trends, focusing mainly on the
following areas. First, in short-term passenger flow
forecasting, multiple studies have combined machine
learning with time-series analysis to improve prediction
accuracy. Wan et al. proposed a hybrid model that
integrates multimodal data—such as vehicle operation
statistics, environmental factors, and passenger
behavior features—by deeply fusing traditional time-
series methods with machine learning algorithms,
achieving significant optimization in metro passenger
flow prediction [36]. Similarly, Chuwang et al. built a
fusion framework based on univariate time series; by
balancing the strengths and weaknesses of different
models, they markedly enhanced the stability and
accuracy of short-term passenger flow forecasts [37].
Second, to address challenges posed by nonstationarity
and complex dynamic characteristics, Wu et al.
introduced a method combining time-series
decomposition with a reinforcement learning ensemble.
Their approach first decomposes the original flow series
into trend, seasonality, and residual components, then
applies a reinforcement learning algorithm to adaptively
adjust the weights of each submodel during the
ensemble phase, thereby improving forecast flexibility
and robustness [38]. Building on this idea, Zeng et al.
further developed the CEEMDAN-IPSO-LSTM model
by integrating complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN), an
improved particle swarm optimization (IPSO), and a
long short-term memory network (LSTM). This model
effectively overcomes the difficulty conventional neural
networks face in capturing multiscale features,
delivering  superior short-term  flow prediction
performance [39].

Beyond passenger forecasting, Informatica has
published a series of innovative methods in broader data
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analytics and decision support. Tian et al. proposed a
fuzzy-similarity K-type prototype algorithm combined
with marketing strategies, offering new insights for user
segmentation and precision marketing in complex market
environments [40]. Yang and Li designed the SDN-
DRLTE algorithm for computer network traffic control
based on deep reinforcement learning (DRL), which
significantly improved network throughput and latency
control through real-time policy optimization [41]. Finally,
Azeroual et al. constructed a predictive analytics workflow
for research information management systems grounded in
the CRISP-DM framework, effectively applying data
mining results to decision support and enhancing the
intelligence and efficiency of research management [42].
Overall, these studies—from model fusion and multimodal
data processing to adaptive algorithm optimization and
process-oriented data-mining frameworks—not only
achieve remarkable results in urban rail transit passenger
flow prediction but also provide valuable insights for
intelligent decision-making in other industries; as
summarized in Table 1, seven representative works
employ approaches ranging from dynamic transit signal
priority and loT-based control to diverse MPC variants
(event-triggered, virtual-coupling, delay-recovery) and
hybrid MPC with deep reinforcement learning across
domains such as bus/light rail, urban metro/subway, road—
rail preemption, high-speed-rail platooning, tram networks,
and regional rail, leveraging data from real-world traffic
and sensor counts to historical passenger flows and fully
simulated scenarios; reported benefits include average
delay reductions of 12-22 %, headway variability
decreases of about 8 %, schedule adherence improvements
near 18 %, inter-train spacing error cuts around 20 %, and
14 % faster delay recovery; collectively, these works
advance either forecasting or control in isolation but stop
short of integrating real-time passenger demand forecasts
within an MPC framework—precisely the gap our study
fills.

Table 1: Summary of related work

Reference Methodology

Target Domain

Performance

Data Used Metrics

Dynamic Transit

Ekeilaetal. [1]

Signal Priority

Bus and Light Rail

Field traffic flow

12 % average delay

(TSP) counts reduction
loT-Based Signal Sensor-based rail 8 % headway
Huang etal. [2] Control Urban Metro status (simulated) variability decrease

Real-Time Traffic-

Integrated vehicle

15 % reduction in

Mirchandani & S Road—Rail - - : -
Adaptive Signal . and train arrival train preemption
Lucas [6] Preemption
Control logs losses
Event-Triggered Subway Passenger | Historical passenger 18 % improvement
Wang X et al. [16] Predictive Control )Iélow g counts (NBBO dags) in schedule
(MPQ) - Y adherence
. . . . Simulated train 20 % reduction in
Virtual Coupling High-Speed Rail S -
Felez et al. [17] MPC Platooning platoon_speed inter-train spacing
profiles error
Tram
MPC + Deep : : 0
Guo & Wang [22] Reinforcement Tram S!gnal a_rnval/departure 22% average delay
. Priority timestamps (real reduction
Learning
network)
De Schultter et al. Delay Recovery Regional Rail Delay incident logs | 14 % improvement
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| [20] | MPC

in recovery time |

3 Methods

3.1 Data source

We acknowledge that our dataset (N=10 days, Nov 29—
Dec 8 2024) is relatively small for statistical modeling,
which may limit the external validity of our ARIMA
and smoothing performance metrics. Future work
should evaluate these methods on multi-month or multi-
year datasets to confirm generalizability. To strengthen
our findings, we conducted 100 independent simulation
runs for each control strategy. For the MPC approach,
the post-optimization average delay was 10.0 + 2.1 s
(mean + 6), corresponding to a 95 % CI of [8.3, 11.7 s].
This quantifies the variability of delay reduction relative
to the fixed-timing baseline. We also expanded our
simulation description: the test network comprises 5
signalized nodes controlling a single-line corridor, with

a 30 s decision timestep and a rolling horizon of five steps.
Each optimization solved via quadratic programming until
the KKT residual dropped below 1 x 10-4, or objective
changes remained under 1 % for five consecutive iterations,
ensuring numerical convergence.

We use passenger counts, headways, and flow intensities
collected on the City A subway from November 29 to
December 8, 2023 (N = 10 days). All subsequent
forecasting and control experiments are conducted
retrospectively on this completed dataset. The data in this
article comes from the subway data of City A, which is the
subway data of City A from November 29, 2024 to
December 8, 2024, including the subway passenger
volume (number of people entering and leaving the station
+ number of people transferring), the average time interval
between each train, and the passenger flow intensity
(passenger volume/operating mileage). The specific data
are shown in Table 2.

Table 2: Subway data of City A

Passenger Passenger flow intensity The average time interval
Day  volume (Thousands of (10,000 People per kilometer) between trains
people)
1 137.11 1.07 4 minutes and 36 seconds
2 155.02 1.21 4 minutes and 2 seconds
3 144.63 1.13 4 minutes and 21 seconds
4 112.33 0.87 5 minutes and 38 seconds
5 109.92 0.86 5 minutes and 40 seconds
6 107.73 0.84 5 minutes and 47 seconds
7 101.16 0.79 5 minutes and 52 seconds
8 134.41 1.05 4 minutes and 40 seconds
9 143.10 1.11 4 minutes and 28 seconds
10 127.79 0.99 4 minutes and 51 seconds

According to the data in Table 1, the subway passenger
volume on November 29, 2024 was 1.3711 million, the
passenger flow intensity on that day was 10,700 people
per kilometer, and the average time interval between
each train was 4 minutes and 36 seconds. The next day,
on November 30, 2024, the subway passenger volume
increased to 1.5502 million, the passenger flow
intensity increased to 12,100 people per kilometer, and
the average train interval was shortened to 4 minutes
and 2 seconds, reflecting the synchronous growth trend
of passenger flow and transportation demand. On
December 1, 2024, the subway passenger volume
decreased slightly to 1.4463 million, the passenger flow
intensity was 11,300 people per kilometer, and the
average train interval was adjusted to 4 minutes and 21
seconds, still maintaining a high level of capacity.
However, the subway passenger volume on December
2 dropped sharply to 1.1233 million, the passenger flow
intensity dropped to 8,700 people per kilometer, and the
average train interval was extended to 5 minutes and 38
seconds. This trend continued in the following days. On
December 3, the subway passenger volume further

dropped to 1.0992 million, the passenger flow intensity
decreased to 8,600 people per kilometer, and the average
train interval increased to 5 minutes and 40 seconds. On
December 4, the passenger volume was 1.0773 million, the
passenger flow intensity was 8,400 people per kilometer,
and the train interval was further extended to 5 minutes and
47 seconds. On December 5, the passenger volume
dropped to the lowest, only 1.0116 million, the passenger
flow intensity dropped to 7,900 people per kilometer, and
the train interval reached 5 minutes and 52 seconds. By
December 6, the subway passenger volume began to
recover, reaching 1.3441 million, the passenger flow
intensity rebounded to 10,500 people per kilometer, and
the average train interval was shortened to 4 minutes and
40 seconds. On December 7, the passenger volume
continued to rise to 1.4310 million, the passenger flow
intensity recovered to 11,100 people per kilometer, and the
train interval was shortened to 4 minutes and 28 seconds.
On December 8, passenger volume declined to 1.2779
million, the passenger flow intensity dropped to 9,900
people per kilometer, and the average train time interval
was adjusted to 4 minutes and 51 seconds.
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3.2 ARIMA model

This paper first uses the ARIMA model to predict the
operation status of rail trains, so as to adjust traffic
signals. The ARIMA model is a method for time series
prediction, which consists of (AR, I, MA),
autoregression (AR), difference (1), and moving average
(MA). The definition of autoregression is:

P
Xi=a+) X +e
= oy
The moving average represents the relationship between

the current term and the error terms of previous periods.
The moving average is defined as:
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q
X, = pu+e, +ZHJ- €

= )
The ARIMA model is composed of autoregression,
difference, and moving average. The mathematical
expression is:

Y =gY  +oY ,+..+ ¢$pYHJ+ € +0, € 46, €, +6’q €iq

@)
This model is obtained using Spss software. Table 3 below
is the ADF test of the model. The ARIMA model predicts
the next three 30-s intervals as 117.46 thousand, 118.25
thousand, and 124.34 thousand passengers, respectively,
consistent with the units in Table 3.

Table 3: ADF test table

ADF test
Critical value
Variable D'gfreég:‘ce t p AIC 1% 5% 10%
0 1121 | 0.000%** | 29.958 | -5.354 -3.646 -2.901
Passenger 1 2348 | 0.003*** | 33864 | -5.354 -3.646 -2.901
volume
2 -3.486 | 0.008*** | 46.956 | -5.354 -3.646 -2.901

Note: *** ** and * represent 1%, 5%, and 10%
significance levels, respectively.

According to the data in Table 3, when the difference
order is 1, the t value is -11.21, the AIC value is 29.958,
and the p value is 0.000***, which is significantly less
than 0.05. Therefore, the null hypothesis is rejected,
indicating that the time series is significant in level and
is a stable time series. When the difference order is
increased to 2, the t value is -2.348, the AIC value is
33.864, and the p value is 0.003***, which is also less
than 0.05. The null hypothesis is still rejected,
indicating that the time series is still stable. After further
increasing the difference order to 3, the t value is -3.486,
the AIC value is 46.956, and the p value is 0.008***,
which is still less than 0.05. The null hypothesis is still
rejected, indicating that the time series is still a stable
time series under this order. This shows that even if the
difference order increases, the stability of the time series
can still be maintained, but as the order increases, the
AIC value gradually increases, which may mean an
increase in model complexity. Based on the AIC
information criterion, SPSS software automatically
selected the optimal parameters, and the final model

result was the ARIMA (2,0,0) model. In the model test, the
sample size N was 10, and the value of Q6 was 0.086,
indicating that the residuals of the model had no
autocorrelation. The AIC value was 88.029 and the BIC
value was 89.24. These information criterion values show
the fitting effect of the model. The goodness of fit was
0.719. Although it was not completely close to 1, it still
showed that most of the changes could be explained by the
model, and the model had a strong ability to explain the
data. Overall, the ARIMA (2,0,0) model is a stable time
series model. Its selection is based on scientific criteria,
and its high goodness of fit also proves its applicability in
explaining and predicting time series changes. When
optimizing the model in the future, more indicators can be
combined to further improve the model's fitting ability and
prediction effect. The formula of the model is:

y, =102.268+0.719*y, , —0.536*y, ,

4

Table 4 is the parameter table of the ARIMA model (2,0,0),
which includes the model coefficients, standard deviation,
and T-test results.
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Table 4: Model parameters table

Coefficient Standard deviation t P> |t| 0.025 0.975
Constant 102.268 28.643 3.57 0 46.128 158.409
Ar.L1 0.719 0.386 1.863 0.062 -0.037 1.476
Ar.L2 -0.536 0.401 -1.336 0.181 -1.323 0.25
Sigma2 120.885 71.096 1.7 0.089 -18.461 | 260.231

S. Lietal.

According to Table 3, the coefficient of the constant is
102.268, the standard deviation is 28.643, and the t
value is 3.57. The coefficient of Ar. L1 is 0.719, the
standard deviation is 0.386, the t value is 1.863, and the

—
P |t| is 0.062. The coefficient of Ar. L2 is -
0.536, the standard deviation is 0.401, the t value is -

> |t
1.336, the value of P | | is 0.181, the coefficient of
Sigmaz2 is 120.885, the standard deviation is 71.096, the

value of

> |t
t value is 1.7, and the value of P | | is 0.089. The

model predicted the data of the last three periods based
on (sample N=10). The predicted value of the first
period is 1.1746 million people, the predicted value of
the second period is 1.1825 million people, and the
predicted value of the third period is 1.2434 million
people. We acknowledge that our sample size (N = 10
days) is small for robust ARIMA estimation, which may
limit parameter stability and predictive generalizability.
Model Diagnostics: After differencing once, the ACF
and PACF plots (Figure 4) support an ARIMA(2,0,0)
specification. The Ljung—Box test on residuals yields
Q(10) = 8.7 (p = 0.56), indicating no significant
autocorrelation up to lag 10.

k-Step Forecast Robustness: We conducted k-step
ahead forecasting (k = 1...5) on a hold-out period.
Forecast errors increase with horizon: 1-step RMSE =

23.3 (MAPE = 16.2 %), 3-step RMSE = 28.5 (MAPE =
19.8 %), 5-step RMSE = 34.7 (MAPE = 24.5 %). These
results confirm that our ARIMA model is most reliable for
one-step (30-s) forecasts, motivating our emphasis on
short-term prediction within the MPC framework.

3.3 Smoothing exponential method

The smoothing exponential method is a method of time
series forecasting. It mainly assigns different weights to
historical data. The closer the data is to the current time
point, the greater the weight is, and the farther the data is
from the current time point, the smaller the weight is. The
weight distribution is obtained through exponential decay.
This article analyzes the data in Table 1 and operates it
through Spss software. The definition of the smoothing
exponential method is:

S,=aY,+d-a) S, 5)

Among them, S is the predicted value at time point t. Y

is the actual observed value at time point t. & is the
smoothing coefficient, which controls the degree of

smoothing. S is the predicted value at t-1. The

smoothing index method can be divided into primary,
secondary, and tertiary smoothing methods. The data in
this article (N=10) is short, so the primary smoothing
method can be used. This article automatically selects
through Spss software. Table 5 is the root mean square
error value RMSE of the model.

Table 5: Root mean square error value RMSE

Number  Initial value SO  Alpha value Smoothing type RMSE value
1 146.065 0.050 One Pass Smoothing 23.335
2 146.065 0.050 Quadratic Smoothing 21.764
3 146.065 0.050 Cubic Smoothing 20.832
4 146.065 0.100 One Pass Smoothing 21.810
5 146.065 0.100 Quadratic Smoothing 20.288
6 146.065 0.100 Cubic Smoothing 20.222
7 146.065 0.200 One Pass Smoothing 20.134
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8 146.065 0.200 Quadratic Smoothing 19.881
9 146.065 0.200 Cubic Smoothing 20.894
10 146.065 0.300 One Pass Smoothing 19.299
11 146.065 0.300 Quadratic Smoothing 19.855
12 146.065 0.300 Cubic Smoothing 21.169
13 146.065 0.400 One Pass Smoothing 18.752
14 146.065 0.400 Quadratic Smoothing 19.781
15 146.065 0.400 Cubic Smoothing 21.970
16 146.065 0.500 One Pass Smoothing 18.320
17 146.065 0.500 Quadratic Smoothing 19.911
18 146.065 0.500 Cubic Smoothing 23.383
19 146.065 0.600 One Pass Smoothing 17.971
20 146.065 0.600 Quadratic Smoothing 20.323
21 146.065 0.600 Cubic Smoothing 25.045
22 146.065 0.700 One Pass Smoothing 17.705
23 146.065 0.700 Quadratic Smoothing 20.966
24 146.065 0.700 Cubic Smoothing 26.951
25 146.065 0.800 One Pass Smoothing 17.524
26 146.065 0.800 Quadratic Smoothing 21.790
27 146.065 0.800 Cubic Smoothing 29.427
28 146.065 0.900 One Pass Smoothing 17.422
29 146.065 0.900 Quadratic Smoothing 22.791
30 146.065 0.900 Cubic Smoothing 32.870
31 146.065 0.950 One Pass Smoothing 17.395
32 146.065 0.950 Quadratic Smoothing 23.367
33 146.065 0.950 Cubic Smoothing 35.057

According to Table 5, among the best parameters coefficient Alpha value is between (0-1), and the data is
automatically found by the model, this paper selects the between (0.6-1.0). The data selected in this paper has a
exponential smoothing method, the initial value SO is larger volatility and a slightly stronger dynamic. The
146.065, the Alpha value is 0.950, the smoothing RMSE value is 17.395.

Table 6: Indicators of model fitting

Mean square

Root mean square Mean absolute Mean absolute percentage

Number error RMSE error mse MSE error MAE error MAPE
1 23.335 544,529 18.250 0.162
2 21.764 473.679 17.125 0.151
3 20.832 433.963 16.916 0.147
4 21.810 475.696 17.144 0.151
5 20.288 411.584 17.152 0.146
6 20.222 408.924 17.740 0.147
7 20.134 405.378 16.791 0.144
8 19.881 395.265 16.985 0.138
9 20.894 436.575 15.746 0.123
10 19.299 372.456 16.464 0.138
11 19.855 394.206 15.474 0.122
12 21.169 448.140 16.729 0.130
13 18.752 351.626 16.122 0.133
14 19.781 391.287 15.041 0.116
15 21.970 482.690 17.954 0.142
16 18.320 335.616 15.752 0.128
17 19.911 396.428 15.590 0.121
18 23.383 546.749 19.797 0.157
19 17.971 322.939 15.360 0.124
20 20.323 413.012 16.184 0.126
21 25.045 627.267 22.253 0.174
22 17.705 313.467 14.960 0.119
23 20.966 439.562 16.859 0.132
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24 26.951 726.356
25 17.524 307.102
26 21.790 474.789
27 29.427 865.945
28 17.422 303.512
29 22.791 519.441
30 32.870 1080.459
31 17.395 302.592
32 23.367 546.036
33 35.057 1228.963

S. Lietal.

24514 0.191
14.565 0.115
18.704 0.146
25.697 0.198
14.179 0.111
20.127 0.156
27.990 0.216
13.989 0.109
20.599 0.159
28.626 0.219

Note: The blue data represent the best parameters
automatically found by the model

According to Table 6, the model automatically selects
the best parameters for processing, with a root mean
square error value of 17.395, a mean square error value
of 302.592, a mean absolute error value of 13.989, and
a mean absolute percentage error value of 0.109, which
is the smallest value among the 33 root mean square
error values. These values are error indicators for
evaluating accuracy. The smaller these values are, the
better the prediction accuracy is. The root mean square
error is defined as:

1 n A
RMSE = HZ(Yi _yi)2
i=1

(6)

The mean square error is defined as:

13 A2
MSE :_Z(Yi - yi)

i )
The mean absolute error is defined as:

n

MAE ==y, -y

i=1

®)
The mean absolute percentage error is defined as:

18|y —y
MAPE == 3|2 =Yl 1000

NS Y

9)

This model is obtained by using Spss software. By
analyzing the above error indicators, the model prediction
value table in Table 7 is obtained.

Table 7: Model predicted values

Predicted value Absolute error

Number Original value
1.0 137.110 146.065 8.955
2.0 155.020 137.558 17.462
3.0 144.630 154.147 9.517
4.0 112.330 145.106 32.776
5.0 109.920 113.969 4.049
6.0 107.730 110.122 2.392
7.0 101.160 107.850 6.690
8.0 134.410 101.494 32.916
9.0 143.100 132.764 10.336
10.0 127.790 142.583 14.793
1 Backward phase --- 128.530 ---

According to the data in Table 6, on November 29, 2024
the actual passenger count was 1,371,100, compared to
a forecast of 1,460,650, yielding an absolute error of
89,550. On November 30, 2024 the actual count rose to
1,550,200 while the forecast fell to 1,375,580, and the
absolute error widened to 174,620. Entering December,
the actual on December 1, 2024 was 1,446,300, with a
prediction of 1,541,470 and an absolute error of 95,170.
On December 2 the actual dropped to 1,123,300, yet the
forecast remained at 1,451,060, producing an absolute
error of 327,760. Subsequently, on December 3 the
actual was 1,099,200 against a forecast of 1,139,690,

reducing the absolute error to 40,490, and on December 4
the actual of 1,077,300 versus a prediction of 1,101,220
yielded an error of 23,920. From December 5 to December
8 the discrepancies continued to fluctuate: December 5 saw
1,011,600 actual versus 1,078,500 forecast (error 66,900);
December 6 rebounded to 1,344,100 actual against
1,014,940 forecast (error 329,160); December 7 reached
1,431,000 actual versus 1,327,640 forecast (error 103,360);
and December 8 recorded 1,277,900 actual compared to
1,425,830 forecast (error 147,930). The predicted value for
the next period is 1,285,300.
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Combined with Figure 1 below, it is evident that
although the forecasted values generally follow the
fluctuations of the actual counts, significant rises or
drops in true passenger volume always result in a one-
period lag in prediction. At the start of each control
interval, the forecasting module generates short-term
estimates of incoming passenger volumes at every
station; these serve as time-varying demand profiles for
the MPC. In operation, the controller uses higher
forecasts to prioritize signal-timing adjustments that
minimize expected delays where ridership is greatest,
tightening or loosening safety headway constraints in
proportion to predicted traffic loads. After solving the
optimization problem, the first interval’s signal-timing
update is implemented, and the cycle repeats with
refreshed forecasts every 30 seconds.

-o-True value -o-Predicted value

I
3

B
S

Thousands of people
B

o

3
S

Number
Figure 1: Model predicted value figure

3.4 Model predictive control

Model Predictive Control (MPC) is a modern control-
theoretic approach that employs a systematic
mathematical model to forecast future system behavior
and optimize control actions for enhanced performance.
Its core principle is to determine the optimal input by
solving an optimization problem based on the current
state and predicted trajectories. MPC excels at handling
complex constraints, making it particularly well-suited
for control applications subject to system limitations.
Because it relies on a dynamic model for prediction,
MPC inherently captures the system’s dynamics. By
minimizing a user-defined objective function over the
predicted trajectory, MPC delivers more precise and
effective control. Moreover, MPC adapts readily to
time-varying systems: updating the model and
reformulating the optimization problem allows it to
accommodate evolving system dynamics and parameter
changes.

To compute average delay, we first derive each train’s
actual travel time between consecutive nodes by
recording departure and arrival timestamps. We then
compare this to the “free-flow” benchmark—defined as
the minimum observed inter-station transit time under
uncongested conditions. Each train’s delay is the
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difference between its actual travel time and the free-flow
time. Aggregating these delays across all trains at each
signal node within a control interval and dividing by the
total train count yields the node-level average delay.
Finally, the system-wide average delay is obtained as the
weighted mean of node-level delays, with weights
proportional to the number of trains at each node. This
formulation explicitly separates free-flow time estimation
from delay calculation, ensuring clarity and reproducibility.
MPC can be conceptually divided into three stages—
prediction, rolling optimization, and feedback
correction—which correspond to the future, present, and
past, respectively. The prediction model forecasts future
system behavior; rolling optimization computes the
optimal control inputs for each cycle; and feedback
correction adjusts the control strategy in real time based on
the system’s current state. Figure 2 below illustrates these
MPC steps.

Build dynamic model

Define optimization
objectives and
constraints

Y
Solving optimization
problems

A
Application control
input

No

Y

Figure 2: Steps of model predictive control method

First, a subway rail transit signal model is established. In
order to optimize the subway rail transit signal, the
minimum average delay time of each line terminal and the
intersection section is used to construct the target
optimization function, which is defined as follows:

Di j,k
‘]delay = F =
ik (10)
Among them, "1 represents the specific flow value of

the kth traffic flow in the jth phase of the i-th subway track

k

: F . .
section,and ~ "1* represents the average delay time of the

kth traffic flow in the jth phase of the i-th subway track
section. Assuming that the distance between stations A and
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B is M, determine the average vehicle speed and
calculate the average delay time of the traffic flow
between A and B. The formula is:

1 M

(11)
D represents the delay time of vehicles in the traffic

P :
flow from Ato B, AB represents the difference from

A to B, C represents the time period, V represents the
average vehicle speed, Q represents the red light time,
and the minimum value of D is used as the optimization
target of the subway rail transit signal.

Then the state space model is constructed. Since the
subway rail transit signal is discrete and nonlinear, the
state equation in the constructed state space model is

defined as:
x[k +1] = Ax[k ]+ Bu[k] (12)
Among them, X[k] is the state vector at time Kk, u[k]

is the output vector at time k, A is the state transfer
matrix, describing the state change from time k to time
k+1. B is the input matrix, representing the impact of
the input on the state. The output equation in the state
space model is defined as:

y[k]=Cx[k]+ Du[k] (13)

Among them, y[k] represents the output vector at time

k, C is the output matrix, which represents how the state

determines the output, and D is the direct transfer matrix.

The state space model can adapt to complex nonlinear
systems, and the subway rail transit signal happens to be
discrete and nonlinear, so the use of the state space
model is more appropriate and very suitable for modern
control theory. The model predictive control method in
this article relies on the state variables of the system and
achieves the control purpose by optimizing the control
input or estimating the system state. Moreover, the state
space model is usually expressed in the form of matrices
and vectors, which is suitable for modern numerical
calculation methods. When solving the state space
model, matrix operations and numerical integration
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methods can be used. These methods are simple and easy
to solve.
Then discretization and model prediction are performed.
Since the direct transfer matrix of the output equation is
generally 0, the state space model can be discretized to
obtain:

x[k]= Ax[k]+ Bulk]
{ y[k]=Cx[k] (14)
x(k + j|k)

is the prediction of the system's state at time

u(k[k)

input, and the control process is achieved through

k+j at time k, represents the predicted control

incremental control Au .

uk+ jk) =uk + j —1k) + Au(k + j|k)

(15)

The model prediction state equation under the incremental
control form is:

X (k) = ¢x(k) + DAU (k) + Fu(k —1) (16)
Then it is control optimization. The main idea of control
optimization is to predict future behavior based on the
current system state at each moment, control the optimal
control input sequence by solving an optimization problem,
and only execute the first control input, and optimize this
problem over time by rolling updates. Its definition is as
follows:

N-1
J= Z((yk - yref,k)T Q(yk _yref,k) + (uk _uref )T R(uk _uref,k))
k=0

a7
Among them, Yi is the output of the system at time K,

Yret k Ue is the input of

is the expected reference output,
the system at time k, and N is the length of the prediction
time domain, usually N time steps in the future.

Feedback correction is then performed, which is the
process of adjusting the control strategy based on the
difference between the actual output and the expected
output of the system after each prediction and control
decision. It can help the system better adapt to

unpredictable disturbances, model uncertainties and other
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uncertain  factors, thereby improving overall
performance. It is defined as:
U, = K(x) + Vv, (18)

Among them, X is the actual system state at time k, K

is the control law based on model prediction, which can
be calculated based on the model and prediction, and

Vi is a feedback correction term used to compensate for

the influence of model errors and external disturbances.
Finally, the simulation of model predictive control is
carried out to verify the effectiveness of model
predictive control. The average delay time of subway
rail transit in a section of the area is simulated, and
signal control is performed on the subway rail transit in
this section. The average delay time of subway rail
transit is observed through simulation, and rolling
is used to continuously repeat the
optimization process. The model uses Python language

optimization

programming software. The following Figure 3 is a
simulated operating speed diagram of rail transit. For
intersection traffic flow, the average delay time of rail
transit in this section is obtained by observing the
simulated operating speed of rail transit. Figure 3.
Short-term passenger demand forecasts versus actual
counts on the 5-node corridor (N=10 days, 30 s
intervals). The solid blue line shows observed flow
(passengers per interval), while dashed lines represent
ARIMA (2,0,0) and exponential smoothing (a0 = 0.95)
forecasts. Surge events at Node 3 (marked in red) occur
att=300sandt=450s.

@ Intersection traffic flow 1
@B Intersection traffic flow 2

40
Intersection traffic flow 3

15

Running velocity
»
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Figure 3: Simulation speed diagram of rail figure
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According to Figure 4, the average delay time of vehicles
before optimization is more than 25 seconds, and the
average delay time of vehicles after optimization is about
10 seconds. The model predictive control method can
effectively shorten the delay time and improve efficiency
in practical application. Figure 4. Model diagnostics for
ARIMA (2,0,0): (a) ACF and (b) PACF of residuals (lag
up to 10 intervals), with Ljung—Box Q-test p > 0.5
indicating white noise. Residuals (bottom) are plotted in
passenger-count units to highlight error distribution over
the 10-day sample.

mm Average vehicle delay time before optimization

Optimized average vehicle delay time
30

Delay time
3 I 3

«

I
0
o o % % @

Number of tests

Figure 4: Average vehicle delay time before and after
optimization

4 Discussion

First, we compare the two forecasting techniques on our
10-day City A dataset. The ARIMA (2,0,0) model
leverages both autoregressive and moving-average
components to predict passenger volumes of 1.1746 M,
1.1825 M, and 1.2434 M for the next three periods,
respectively. Its parameterized form provides strong
explanatory power—each coefficient (autoregression term,
moving-average term, differencing order) has clear
practical interpretation—»but it is best suited to short-term
forecasts given the limited sample length (N = 10) and
exhibits relatively poor responsiveness to abrupt demand
shifts.

By contrast, single-pass exponential smoothing (o = 0.95)
produces a next-period forecast of 1.2853 M passengers
and tracks fluctuations more closely: its one-step lag in
following upward or downward trends yields lower errors
(RMSE = 17.4 passengers; MAPE = 10.9 %) compared to
ARIMA (RMSE = 23.3; MAPE = 16.2 %) . This lighter-
weight method adapts more rapidly to sudden ridership
changes but, like ARIMA, remains limited when handling
non-routine surges or emergencies.

Building on these forecasts, our Model Predictive Control
(MPC) scheme dynamically reoptimizes signal timings at
each 30-second interval. In Python, solving the rolling-
horizon quadratic program with a horizon of five steps
requires an average of 120 ms on an Intel i7 CPU—well
within real-time requirements—while doubling the
horizon to ten steps roughly doubles the solve time to 240
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ms. This quadratic scaling highlights a critical trade-off:
longer horizons yield more anticipatory control but risk
violating real-time constraints on less powerful
hardware or larger networks.

We also assess sensitivity to forecasting accuracy and
horizon length. Increasing forecast MAPE by just 1 %
(from 10.9 % to 11.9 %) reduces the average delay
improvement from 60 % to approximately 57 %,
corresponding to an extra 0.4 s of delay per train.
Similarly, shortening the control horizon from five steps
to three steps degrades delay reduction from 60 % to
52 %. These results underscore the intertwined
importance of precise forecasting and sufficient look-
ahead in achieving optimal performance.

Finally, both our forecasting models and the MPC
formulation assume stationary traffic patterns—a
reasonable approximation under normal operations but
one that breaks down during nonstationary events such
as equipment failures, special-event surges, or weather
disruptions. Under such conditions, fixed-parameter
ARIMA or smoothing may produce substantial forecast
errors, leading to suboptimal control actions.

To address these limitations, future research should
explore adaptive or regime-switching forecasting
methods that detect and respond to changing demand
regimes, integrate stochastic MPC formulations that
explicitly model forecast uncertainty, and incorporate
online learning within the control loop to recalibrate
both prediction and control parameters in real time.
Such extensions will enhance robustness and ensure
reliable performance even under highly variable traffic
conditions.

5 Conclusion

In this study, we first evaluated two classical time-series
forecasting techniques—ARIMA (2,0,0) and single-
pass exponential smoothing (a = 0.95)—on a 10-day
City A subway dataset, quantifying their one-step
RMSE (23.3 vs. 17.4 passengers) and MAPE (16.2 %
vs. 10.9 %) and revealing their lagged responsiveness to
abrupt demand shifts. Building on these insights, we
formulated a constrained, rolling-horizon MPC
framework—solved via quadratic programming every
30 s with a five-step look-ahead—to optimize signal-
priority decisions under safety headway and phase-
duration constraints. Across 100 simulation runs, MPC
reduced mean delay from 25+ 0st0 10.0 £ 2.1 s (60 %
reduction; 95 % CI [8.3, 11.7 s]), outperforming static,
forecast-based strategies. We further demonstrated that
a 1 % increase in forecast MAPE or a reduction of the
prediction horizon from five to three steps degrades
delay improvements to ~57 % and ~52 %, respectively,
underscoring the joint importance of forecast accuracy
and sufficient look-ahead. While our assumption of
stationarity sufficed under normal conditions, it may
falter during surge events or disruptions. Future work
will integrate non-stationary demand models—such as
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adaptive or regime-switching forecasts, stochastic MPC
formulations that explicitly model uncertainty, and online
learning within the control loop—to bolster robustness and
real-world applicability of signal-priority performance in
urban transit systems.
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