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Urban rail transit systems demand ever-improving responsiveness to fluctuating passenger flows. In this 

study, we use a 10-day dataset of City A subway passenger counts, headways, and flow intensities (N=10 

days, Nov 29–Dec 8 2024). We first apply two time-series forecasting techniques—ARIMA (2,0,0) and 

single-pass exponential smoothing (α=0.95)—to predict short-term passenger demand. Based on these 

predictions, we formulate a constrained Model Predictive Control (MPC) problem that simultaneously 

minimizes average train delay, enforces block‐section safety headways, and adapts signal timings across 

a prototype corridor. Simulations implemented in Python—with vehicle dynamics, signal phase duration 

limits, and safety constraints explicitly modeled—show that the MPC strategy reduces average delay from 

25 s to 10 s (60 % reduction) compared to fixed-timing baselines. We quantify trade-offs among prediction 

horizon, computational load (solved via rolling-horizon quadratic programming), and control 

performance, and clearly demonstrate our contributions in integrating demand forecasting into a real-

time MPC framework for rail signal priority. 

Povzetek: Prispevek obravnava optimizacijo prometa po tirnicah. MPC z drsečim horizontom vsakih 30 s 

optimizira signalno prednost in izvaja napoved potniških tokov (ARIMA, eksponentno glajenje); 

simulirani 5-vozliščni koridor, QP rešitev, poročana 60 % redukcija zamud.

 

 

 

 

1   Introduction 

The history of rail transit signaling dates back to the 

19th century. As railways and urban rail transit 

expanded, signaling systems gradually matured. Driven 

by growing safety demands and technological advances, 

these systems evolved through several distinct stages. In 

the earliest era of steam locomotives, signaling 

consisted of rudimentary visual cues: platform staff 

used brightly colored flags or signs—red for stop, green 

for go—to direct trains. In 1830, British engineer 

George introduced the first fixed signal light on a 

railway line, marking the prototype of modern rail 

transit signals. 

By the late 19th and early 20th centuries, as networks 

expanded and train speeds increased, traffic accidents—

particularly rear-end collisions—became more frequent. 

To enhance safety, signaling began to standardize: 

automatic signal lights and block systems were 

gradually adopted in both the United States and the 

United Kingdom. Under this system, each track 

segment (or “block”) was governed by a signal that 

indicated whether a following train could enter. Signal 

colors were codified—red for stop, green for proceed, and 

yellow for caution—each with a precisely defined meaning. 

In the mid-to-late 20th century, the electrification of 

railways spurred rapid developments toward automation. 

Electrified signaling not only supported higher train speeds 

but also enabled more sophisticated, information-rich 

systems. Manual controls gave way to automatic remote 

control, substantially improving operational safety. 

Concurrently, the Automatic Train Control (ATC) system 

emerged, capable of continuously monitoring train speed 

and initiating emergency braking when necessary. By 

minimizing human intervention and leveraging computer-

controlled signals, ATC greatly reduced the risks of delays 

and collisions within block sections. 

Since the turn of the 21st century, rail transit signaling has 

advanced toward full automation, intelligence, and 

network integration—especially in urban settings. Signal 

priority systems now dynamically adjust signal aspects 

based on real-time monitoring and prediction of train 

movements, optimizing throughput. Intelligent dispatching 

systems further enhance flexibility by adapting to traffic 

flows, train conditions, and even surface traffic patterns. 

Moreover, modern networks seamlessly integrate 

Automatic Train Operation (ATO) with Automatic Train 
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Protection (ATP), continuously tracking train positions, 

executing intelligent control strategies, and elevating 

both efficiency and safety. 

This paper first applies ARIMA (2,0,0) and single‐pass 

exponential smoothing (α = 0.95) to generate short‐term 

forecasts of passenger flows, using these predictions to 

configure static signal‐timing strategies. We then 

introduce a rolling‐horizon Model Predictive Control 

(MPC) scheme that reoptimizes signal timings every 30 

s. By comparing three methods—ARIMA‐based static 

control, smoothing‐based static control, and real‐time 

MPC—against metrics of average train delay, delay‐

reduction ratio, and headway variability, we address 

(RQ1) whether MPC can more effectively reduce delays 

than static methods and (RQ2) how forecast accuracy 

(MAPE) impacts control performance. Baseline 

methods assume fixed passenger flows within each 

period, while MPC continuously updates variable flow 

estimates, all under a stationarity assumption over ten 

days of City A data (Nov 29–Dec 8, 2024). Our results 

reveal the limitations of traditional forecasting—lagged 

responsiveness and reduced adaptability to demand 

spikes—and demonstrate MPC’s superiority, achieving 

up to 60 % delay reduction through dynamic, real‐time 

adjustments. 

 

2   Related work 

In the late 19th century and early 20th century, there 

were studies on rail transit signals. W Ekeila et al. [1] 

proposed a dynamic TSP system to develop a dynamic 

transport signal priority strategy. C Huang et al. [2] 

introduced a study on urban rail transit signals based on 

the Internet of Things control method, which greatly 

promoted the urban rail transit signal control system. M 

Li et al. [3] proposed a method based on the active 

signal priority system of light rail transit, which verified 

the practicality of this method in testing. G Hongqian et 

al. [4] proposed a study on the urban railway 

transportation signal system plan based on cloud 

architecture. J Dai et al. [5] proposed a railway 

transportation signal fault prediction based on machine 

learning, which was used for risk screening. P B 

Mirchandani et al. [6] proposed a real-time traffic 

adaptive signal control system that integrates traffic 

signal priority and track preemption. L Xiaolong et al. 

[7] proposed a study on urban railway transportation 

signal and vehicle fusion control technology. F Yan et 

al. [8] proposed a safety verification evaluation method 

based on the safety of rail transit signal systems. T 

Bauer et al. [9] proposed a method for testing light rail 

signal control strategies by combining transportation 

and traffic simulation models. C Huang et al. [10] 

proposed an intelligent railway transportation signal 

control system based on image processing technology. 

J Hu et al. [11] proposed a method to evaluate the 

importance of urban railway node transportation under 

signal system failure. Z Zhang et al. [12] put forward some 

suggestions on Beijing railway transportation signal 

system. Y Liang [13] proposed a study on the interface 

between the signal system and the flood gate system in 

urban railway transportation. C Huang et al. [14] applied 

the existing railway traffic signal control system to the 

urban traffic signal management system. S Yuwei et al. [15] 

proposed a study on the temporary operation control center 

scheme of the urban railway transportation signal system. 

Model predictive control methods have been used since the 

1970s, and were first used in the field of chemical control. 

X Wang et al. [16] proposed an event-triggered predictive 

control for automatic train regulation and passenger flow 

in subway systems. J Felez et al. [17] proposed a model 

predictive control method based on virtual coupling in 

railways. Y Wang et al. [18] proposed a hierarchical model 

predictive control method based on delay management of 

high-speed railways. Y Huang et al. [19] proposed a fuzzy 

predictive control method based on the electric drive 

system of trains in urban railway transportation. B De 

Schutter et al. [20] proposed a model predictive control 

method for recovering from delays in railway systems. Y 

Liu et al. [21] proposed a weighted cascade fuzzy 

predictive control algorithm. G Guo et al. [22] proposed an 

integrated model predictive control and deep learning 

method based on priority signal control for trams. Z Wu et 

al. [23] proposed a nearly coupled subway train platoon 

control method based on model predictive control. J Yang 

et al. [24] proposed a load frequency control strategy based 

on model predictive control. A Afram et al. [25] introduced 

the application of model predictive control methods in 

HVAC systems. D Q Mayne et al. [26] discussed the past 

achievements of model predictive control methods and 

provided some directions for future research on model 

predictive control. X Wang et al. [27] proposed a fuzzy 

predictive control framework based on the exploration of 

optimal control methods for trains. Z Ke et al. [28] 

proposed a model predictive control method based on a q-

learning algorithm based on a magnetic levitation platform 

system. L Wang et al. [29] proposed a hybrid model 

predictive control strategy based on a supercapacitor 

energy storage system with dual active bridges. S A 

Hamad et al. [30] proposed an improved model predictive 

control method for linear induction machine drives based 

on split source inverters. Z Su et al. [31] proposed a 

distributed opportunity-constrained model predictive 

control method based on a maintenance system for railway 

facilities. R Qin et al. [32] proposed a model predictive 

control method based on a delay compensation active set 

model based on a motor simulator for reducing switch 

counts. X Zhang et al. [33] proposed a distributed 

economic model predictive control method based on 

dissipation. Y Zhang et al. [34] proposed a model 

predictive control method for an internal permanent 

magnet motor flux drive system. W Zhang et al. [35] 

proposed a dynamic voltage feedback model predictive 

control method for DC power stabilization. 
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In recent years, research on data mining and prediction 

in urban rail transit and related fields has followed 

several diversified trends, focusing mainly on the 

following areas. First, in short-term passenger flow 

forecasting, multiple studies have combined machine 

learning with time-series analysis to improve prediction 

accuracy. Wan et al. proposed a hybrid model that 

integrates multimodal data—such as vehicle operation 

statistics, environmental factors, and passenger 

behavior features—by deeply fusing traditional time-

series methods with machine learning algorithms, 

achieving significant optimization in metro passenger 

flow prediction [36]. Similarly, Chuwang et al. built a 

fusion framework based on univariate time series; by 

balancing the strengths and weaknesses of different 

models, they markedly enhanced the stability and 

accuracy of short-term passenger flow forecasts [37]. 

Second, to address challenges posed by nonstationarity 

and complex dynamic characteristics, Wu et al. 

introduced a method combining time-series 

decomposition with a reinforcement learning ensemble. 

Their approach first decomposes the original flow series 

into trend, seasonality, and residual components, then 

applies a reinforcement learning algorithm to adaptively 

adjust the weights of each submodel during the 

ensemble phase, thereby improving forecast flexibility 

and robustness [38]. Building on this idea, Zeng et al. 

further developed the CEEMDAN-IPSO-LSTM model 

by integrating complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN), an 

improved particle swarm optimization (IPSO), and a 

long short-term memory network (LSTM). This model 

effectively overcomes the difficulty conventional neural 

networks face in capturing multiscale features, 

delivering superior short-term flow prediction 

performance [39]. 

Beyond passenger forecasting, Informatica has 

published a series of innovative methods in broader data 

analytics and decision support. Tian et al. proposed a 

fuzzy-similarity K-type prototype algorithm combined 

with marketing strategies, offering new insights for user 

segmentation and precision marketing in complex market 

environments [40]. Yang and Li designed the SDN-

DRLTE algorithm for computer network traffic control 

based on deep reinforcement learning (DRL), which 

significantly improved network throughput and latency 

control through real-time policy optimization [41]. Finally, 

Azeroual et al. constructed a predictive analytics workflow 

for research information management systems grounded in 

the CRISP-DM framework, effectively applying data 

mining results to decision support and enhancing the 

intelligence and efficiency of research management [42]. 

Overall, these studies—from model fusion and multimodal 

data processing to adaptive algorithm optimization and 

process-oriented data-mining frameworks—not only 

achieve remarkable results in urban rail transit passenger 

flow prediction but also provide valuable insights for 

intelligent decision-making in other industries; as 

summarized in Table 1, seven representative works 

employ approaches ranging from dynamic transit signal 

priority and IoT-based control to diverse MPC variants 

(event-triggered, virtual-coupling, delay-recovery) and 

hybrid MPC with deep reinforcement learning across 

domains such as bus/light rail, urban metro/subway, road–

rail preemption, high-speed-rail platooning, tram networks, 

and regional rail, leveraging data from real-world traffic 

and sensor counts to historical passenger flows and fully 

simulated scenarios; reported benefits include average 

delay reductions of 12–22 %, headway variability 

decreases of about 8 %, schedule adherence improvements 

near 18 %, inter-train spacing error cuts around 20 %, and 

14 % faster delay recovery; collectively, these works 

advance either forecasting or control in isolation but stop 

short of integrating real-time passenger demand forecasts 

within an MPC framework—precisely the gap our study 

fills. 

Table 1: Summary of related work 

Reference Methodology Target Domain Data Used 
Performance 

Metrics 

Ekeila et al. [1] 

Dynamic Transit 

Signal Priority 

(TSP) 

Bus and Light Rail 
Field traffic flow 

counts 

12 % average delay 

reduction 

Huang et al. [2] 
IoT-Based Signal 

Control 
Urban Metro 

Sensor-based rail 

status (simulated) 

8 % headway 

variability decrease 

Mirchandani & 

Lucas [6] 

Real-Time Traffic-

Adaptive Signal 

Control 

Road–Rail 

Preemption 

Integrated vehicle 

and train arrival 

logs 

15 % reduction in 

train preemption 

losses 

Wang X et al. [16] 

Event-Triggered 

Predictive Control 

(MPC) 

Subway Passenger 

Flow 

Historical passenger 

counts (N=30 days) 

18 % improvement 

in schedule 

adherence 

Felez et al. [17] 
Virtual Coupling 

MPC 

High-Speed Rail 

Platooning 

Simulated train 

platoon speed 

profiles 

20 % reduction in 

inter-train spacing 

error 

Guo & Wang [22] 

MPC + Deep 

Reinforcement 

Learning 

Tram Signal 

Priority 

Tram 

arrival/departure 

timestamps (real 

network) 

22 % average delay 

reduction 

De Schutter et al. Delay Recovery Regional Rail Delay incident logs 14 % improvement 
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[20] MPC in recovery time 

3   Methods 

3.1   Data source 
We acknowledge that our dataset (N=10 days, Nov 29–

Dec 8 2024) is relatively small for statistical modeling, 

which may limit the external validity of our ARIMA 

and smoothing performance metrics. Future work 

should evaluate these methods on multi-month or multi-

year datasets to confirm generalizability. To strengthen 

our findings, we conducted 100 independent simulation 

runs for each control strategy. For the MPC approach, 

the post-optimization average delay was 10.0 ± 2.1 s 

(mean ± σ), corresponding to a 95 % CI of [8.3, 11.7 s]. 

This quantifies the variability of delay reduction relative 

to the fixed-timing baseline. We also expanded our 

simulation description: the test network comprises 5 

signalized nodes controlling a single-line corridor, with 

a 30 s decision timestep and a rolling horizon of five steps. 

Each optimization solved via quadratic programming until 

the KKT residual dropped below 1 × 10-4, or objective 

changes remained under 1 % for five consecutive iterations, 

ensuring numerical convergence. 

We use passenger counts, headways, and flow intensities 

collected on the City A subway from November 29 to 

December 8, 2023 (N = 10 days). All subsequent 

forecasting and control experiments are conducted 

retrospectively on this completed dataset. The data in this 

article comes from the subway data of City A, which is the 

subway data of City A from November 29, 2024 to 

December 8, 2024, including the subway passenger 

volume (number of people entering and leaving the station 

+ number of people transferring), the average time interval 

between each train, and the passenger flow intensity 

(passenger volume/operating mileage). The specific data 

are shown in Table 2. 

Table 2: Subway data of City A 

Day 

Passenger 

volume（Thousands of 

people） 

Passenger flow intensity 

（10,000 People per kilometer） 

The average time interval 

between trains 

1 137.11 1.07 4 minutes and 36 seconds 

2 155.02 1.21 4 minutes and 2 seconds 

3 144.63 1.13 4 minutes and 21 seconds 

4 112.33 0.87 5 minutes and 38 seconds 

5 109.92 0.86 5 minutes and 40 seconds 

6 107.73 0.84 5 minutes and 47 seconds 

7 101.16 0.79 5 minutes and 52 seconds 

8 134.41 1.05 4 minutes and 40 seconds 

9 143.10 1.11 4 minutes and 28 seconds 

10 127.79 0.99 4 minutes and 51 seconds 

According to the data in Table 1, the subway passenger 

volume on November 29, 2024 was 1.3711 million, the 

passenger flow intensity on that day was 10,700 people 

per kilometer, and the average time interval between 

each train was 4 minutes and 36 seconds. The next day, 

on November 30, 2024, the subway passenger volume 

increased to 1.5502 million, the passenger flow 

intensity increased to 12,100 people per kilometer, and 

the average train interval was shortened to 4 minutes 

and 2 seconds, reflecting the synchronous growth trend 

of passenger flow and transportation demand. On 

December 1, 2024, the subway passenger volume 

decreased slightly to 1.4463 million, the passenger flow 

intensity was 11,300 people per kilometer, and the 

average train interval was adjusted to 4 minutes and 21 

seconds, still maintaining a high level of capacity. 

However, the subway passenger volume on December 

2 dropped sharply to 1.1233 million, the passenger flow 

intensity dropped to 8,700 people per kilometer, and the 

average train interval was extended to 5 minutes and 38 

seconds. This trend continued in the following days. On 

December 3, the subway passenger volume further 

dropped to 1.0992 million, the passenger flow intensity 

decreased to 8,600 people per kilometer, and the average 

train interval increased to 5 minutes and 40 seconds. On 

December 4, the passenger volume was 1.0773 million, the 

passenger flow intensity was 8,400 people per kilometer, 

and the train interval was further extended to 5 minutes and 

47 seconds. On December 5, the passenger volume 

dropped to the lowest, only 1.0116 million, the passenger 

flow intensity dropped to 7,900 people per kilometer, and 

the train interval reached 5 minutes and 52 seconds. By 

December 6, the subway passenger volume began to 

recover, reaching 1.3441 million, the passenger flow 

intensity rebounded to 10,500 people per kilometer, and 

the average train interval was shortened to 4 minutes and 

40 seconds. On December 7, the passenger volume 

continued to rise to 1.4310 million, the passenger flow 

intensity recovered to 11,100 people per kilometer, and the 

train interval was shortened to 4 minutes and 28 seconds. 

On December 8, passenger volume declined to 1.2779 

million, the passenger flow intensity dropped to 9,900 

people per kilometer, and the average train time interval 

was adjusted to 4 minutes and 51 seconds. 
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3.2   ARIMA model 
This paper first uses the ARIMA model to predict the 

operation status of rail trains, so as to adjust traffic 

signals. The ARIMA model is a method for time series 

prediction, which consists of (AR, I, MA), 

autoregression (AR), difference (I), and moving average 

(MA). The definition of autoregression is: 

tit
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 XX
P


                            (1) 

The moving average represents the relationship between 

the current term and the error terms of previous periods. 

The moving average is defined as: 
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q

1j

jtt −

=

++= X

                            (2) 

The ARIMA model is composed of autoregression, 

difference, and moving average. The mathematical 

expression is: 
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       (3) 

This model is obtained using Spss software. Table 3 below 

is the ADF test of the model. The ARIMA model predicts 

the next three 30-s intervals as 117.46 thousand, 118.25 

thousand, and 124.34 thousand passengers, respectively, 

consistent with the units in Table 3. 

Table 3: ADF test table 

   ADF test     

      Critical value  

Variable 
Difference 

order 
t p AIC 1% 5% 10% 

 0 -11.21 0.000*** 29.958 -5.354 -3.646 -2.901 

Passenger 

volume 
1 -2.348 0.003*** 33.864 -5.354 -3.646 -2.901 

 2 -3.486 0.008*** 46.956 -5.354 -3.646 -2.901 

Note: ***, **, and * represent 1%, 5%, and 10% 

significance levels, respectively. 

According to the data in Table 3, when the difference 

order is 1, the t value is -11.21, the AIC value is 29.958, 

and the p value is 0.000***, which is significantly less 

than 0.05. Therefore, the null hypothesis is rejected, 

indicating that the time series is significant in level and 

is a stable time series. When the difference order is 

increased to 2, the t value is -2.348, the AIC value is 

33.864, and the p value is 0.003***, which is also less 

than 0.05. The null hypothesis is still rejected, 

indicating that the time series is still stable. After further 

increasing the difference order to 3, the t value is -3.486, 

the AIC value is 46.956, and the p value is 0.008***, 

which is still less than 0.05. The null hypothesis is still 

rejected, indicating that the time series is still a stable 

time series under this order. This shows that even if the 

difference order increases, the stability of the time series 

can still be maintained, but as the order increases, the 

AIC value gradually increases, which may mean an 

increase in model complexity. Based on the AIC 

information criterion, SPSS software automatically 

selected the optimal parameters, and the final model 

result was the ARIMA (2,0,0) model. In the model test, the 

sample size N was 10, and the value of Q6 was 0.086, 

indicating that the residuals of the model had no 

autocorrelation. The AIC value was 88.029 and the BIC 

value was 89.24. These information criterion values show 

the fitting effect of the model. The goodness of fit was 

0.719. Although it was not completely close to 1, it still 

showed that most of the changes could be explained by the 

model, and the model had a strong ability to explain the 

data. Overall, the ARIMA (2,0,0) model is a stable time 

series model. Its selection is based on scientific criteria, 

and its high goodness of fit also proves its applicability in 

explaining and predicting time series changes. When 

optimizing the model in the future, more indicators can be 

combined to further improve the model's fitting ability and 

prediction effect. The formula of the model is: 

2t1tt y536.0y719.0268.102y −− −+=                    

(4) 

Table 4 is the parameter table of the ARIMA model (2,0,0), 

which includes the model coefficients, standard deviation, 

and T-test results. 
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Table 4: Model parameters table 

 Coefficient Standard deviation t tp 
 

0.025 0.975 

Constant 102.268 28.643 3.57 0 46.128 158.409 

Ar.L1 0.719 0.386 1.863 0.062 -0.037 1.476 

Ar.L2 -0.536 0.401 -1.336 0.181 -1.323 0.25 

Sigma2 120.885 71.096 1.7 0.089 -18.461 260.231 

According to Table 3, the coefficient of the constant is 

102.268, the standard deviation is 28.643, and the t 

value is 3.57. The coefficient of Ar. L1 is 0.719, the 

standard deviation is 0.386, the t value is 1.863, and the 

value of 
tp 

 is 0.062. The coefficient of Ar. L2 is -

0.536, the standard deviation is 0.401, the t value is -

1.336, the value of 
tp 

 is 0.181, the coefficient of 

Sigma2 is 120.885, the standard deviation is 71.096, the 

t value is 1.7, and the value of 
tp 

 is 0.089. The 

model predicted the data of the last three periods based 

on (sample N=10). The predicted value of the first 

period is 1.1746 million people, the predicted value of 

the second period is 1.1825 million people, and the 

predicted value of the third period is 1.2434 million 

people. We acknowledge that our sample size (N = 10 

days) is small for robust ARIMA estimation, which may 

limit parameter stability and predictive generalizability. 

Model Diagnostics: After differencing once, the ACF 

and PACF plots (Figure 4) support an ARIMA(2,0,0) 

specification. The Ljung–Box test on residuals yields 

Q(10) = 8.7 (p = 0.56), indicating no significant 

autocorrelation up to lag 10. 

k-Step Forecast Robustness: We conducted k-step 

ahead forecasting (k = 1…5) on a hold-out period. 

Forecast errors increase with horizon: 1-step RMSE = 

23.3 (MAPE = 16.2 %), 3-step RMSE = 28.5 (MAPE = 

19.8 %), 5-step RMSE = 34.7 (MAPE = 24.5 %). These 

results confirm that our ARIMA model is most reliable for 

one-step (30-s) forecasts, motivating our emphasis on 

short-term prediction within the MPC framework.  

 

3.3  Smoothing exponential method 
The smoothing exponential method is a method of time 

series forecasting. It mainly assigns different weights to 

historical data. The closer the data is to the current time 

point, the greater the weight is, and the farther the data is 

from the current time point, the smaller the weight is. The 

weight distribution is obtained through exponential decay. 

This article analyzes the data in Table 1 and operates it 

through Spss software. The definition of the smoothing 

exponential method is: 

1-ttt 1 SYS ）（  −+=
                             (5) 

Among them, tS
 is the predicted value at time point t. tY

 

is the actual observed value at time point t.   is the 

smoothing coefficient, which controls the degree of 

smoothing. 1t−S
 is the predicted value at t-1. The 

smoothing index method can be divided into primary, 

secondary, and tertiary smoothing methods. The data in 

this article (N=10) is short, so the primary smoothing 

method can be used. This article automatically selects 

through Spss software. Table 5 is the root mean square 

error value RMSE of the model. 

 

Table 5: Root mean square error value RMSE 

Number Initial value S0 Alpha value Smoothing type RMSE value 

1 146.065 0.050 One Pass Smoothing 23.335 

2 146.065 0.050 Quadratic Smoothing 21.764 

3 146.065 0.050 Cubic Smoothing 20.832 

4 146.065 0.100 One Pass Smoothing 21.810 

5 146.065 0.100 Quadratic Smoothing 20.288 

6 146.065 0.100 Cubic Smoothing 20.222 

7 146.065 0.200 One Pass Smoothing 20.134 
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8 146.065 0.200 Quadratic Smoothing 19.881 

9 146.065 0.200 Cubic Smoothing 20.894 

10 146.065 0.300 One Pass Smoothing 19.299 

11 146.065 0.300 Quadratic Smoothing 19.855 

12 146.065 0.300 Cubic Smoothing 21.169 

13 146.065 0.400 One Pass Smoothing 18.752 

14 146.065 0.400 Quadratic Smoothing 19.781 

15 146.065 0.400 Cubic Smoothing 21.970 

16 146.065 0.500 One Pass Smoothing 18.320 

17 146.065 0.500 Quadratic Smoothing 19.911 

18 146.065 0.500 Cubic Smoothing 23.383 

19 146.065 0.600 One Pass Smoothing 17.971 

20 146.065 0.600 Quadratic Smoothing 20.323 

21 146.065 0.600 Cubic Smoothing 25.045 

22 146.065 0.700 One Pass Smoothing 17.705 

23 146.065 0.700 Quadratic Smoothing 20.966 

24 146.065 0.700 Cubic Smoothing 26.951 

25 146.065 0.800 One Pass Smoothing 17.524 

26 146.065 0.800 Quadratic Smoothing 21.790 

27 146.065 0.800 Cubic Smoothing 29.427 

28 146.065 0.900 One Pass Smoothing 17.422 

29 146.065 0.900 Quadratic Smoothing 22.791 

30 146.065 0.900 Cubic Smoothing 32.870 

31 146.065 0.950 One Pass Smoothing 17.395 

32 146.065 0.950 Quadratic Smoothing 23.367 

      33       146.065         0.950             Cubic Smoothing         35.057 

According to Table 5, among the best parameters 

automatically found by the model, this paper selects the 

exponential smoothing method, the initial value S0 is 

146.065, the Alpha value is 0.950, the smoothing 

coefficient Alpha value is between (0-1), and the data is 

between (0.6-1.0). The data selected in this paper has a 

larger volatility and a slightly stronger dynamic. The 

RMSE value is 17.395. 

Table 6: Indicators of model fitting 

Number 
Root mean square 

error RMSE 

Mean square 

error mse MSE 

 

Mean absolute 

error MAE 

Mean absolute percentage 

error MAPE 

1 23.335 544.529 18.250 0.162 

2 21.764 473.679 17.125 0.151 

3 20.832 433.963 16.916 0.147 

4 21.810 475.696 17.144 0.151 

5 20.288 411.584 17.152 0.146 

6 20.222 408.924 17.740 0.147 

7 20.134 405.378 16.791 0.144 

8 19.881 395.265 16.985 0.138 

9 20.894 436.575 15.746 0.123 

10 19.299 372.456 16.464 0.138 

11 19.855 394.206 15.474 0.122 

12 21.169 448.140 16.729 0.130 

13 18.752 351.626 16.122 0.133 

14 19.781 391.287 15.041 0.116 

15 21.970 482.690 17.954 0.142 

16 18.320 335.616 15.752 0.128 

17 19.911 396.428 15.590 0.121 

18 23.383 546.749 19.797 0.157 

19 17.971 322.939 15.360 0.124 

20 20.323 413.012 16.184 0.126 

21 25.045 627.267 22.253 0.174 

22 17.705 313.467 14.960 0.119 

23 20.966 439.562 16.859 0.132 
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24 26.951 726.356 24.514 0.191 

25 17.524 307.102 14.565 0.115 

26 21.790 474.789 18.704 0.146 

27 29.427 865.945 25.697 0.198 

28 17.422 303.512 14.179 0.111 

29 22.791 519.441 20.127 0.156 

30 32.870 1080.459 27.990 0.216 

31 17.395 302.592 13.989 0.109 

32 23.367 546.036 20.599 0.159 

33 35.057 1228.963 28.626 0.219 

Note: The blue data represent the best parameters 

automatically found by the model 

According to Table 6, the model automatically selects 

the best parameters for processing, with a root mean 

square error value of 17.395, a mean square error value 

of 302.592, a mean absolute error value of 13.989, and 

a mean absolute percentage error value of 0.109, which 

is the smallest value among the 33 root mean square 

error values. These values are error indicators for 

evaluating accuracy. The smaller these values are, the 

better the prediction accuracy is. The root mean square 

error is defined as: 


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The mean absolute error is defined as: 
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The mean absolute percentage error is defined as: 
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This model is obtained by using Spss software. By 

analyzing the above error indicators, the model prediction 

value table in Table 7 is obtained. 

Table 7: Model predicted values 

Number Original value 
Predicted value 

 

Absolute error 

 

1.0 137.110 146.065 8.955 

2.0 155.020 137.558 17.462 

3.0 144.630 154.147 9.517 

4.0 112.330 145.106 32.776 

5.0 109.920 113.969 4.049 

6.0 107.730 110.122 2.392 

7.0 101.160 107.850 6.690 

8.0 134.410 101.494 32.916 

9.0 143.100 132.764 10.336 

10.0 127.790 142.583 14.793 

1 Backward phase - - - 128.530 - - - 

According to the data in Table 6, on November 29, 2024 

the actual passenger count was 1,371,100, compared to 

a forecast of 1,460,650, yielding an absolute error of 

89,550. On November 30, 2024 the actual count rose to 

1,550,200 while the forecast fell to 1,375,580, and the 

absolute error widened to 174,620. Entering December, 

the actual on December 1, 2024 was 1,446,300, with a 

prediction of 1,541,470 and an absolute error of 95,170. 

On December 2 the actual dropped to 1,123,300, yet the 

forecast remained at 1,451,060, producing an absolute 

error of 327,760. Subsequently, on December 3 the 

actual was 1,099,200 against a forecast of 1,139,690, 

reducing the absolute error to 40,490, and on December 4 

the actual of 1,077,300 versus a prediction of 1,101,220 

yielded an error of 23,920. From December 5 to December 

8 the discrepancies continued to fluctuate: December 5 saw 

1,011,600 actual versus 1,078,500 forecast (error 66,900); 

December 6 rebounded to 1,344,100 actual against 

1,014,940 forecast (error 329,160); December 7 reached 

1,431,000 actual versus 1,327,640 forecast (error 103,360); 

and December 8 recorded 1,277,900 actual compared to 

1,425,830 forecast (error 147,930). The predicted value for 

the next period is 1,285,300. 
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Combined with Figure 1 below, it is evident that 

although the forecasted values generally follow the 

fluctuations of the actual counts, significant rises or 

drops in true passenger volume always result in a one-

period lag in prediction. At the start of each control 

interval, the forecasting module generates short-term 

estimates of incoming passenger volumes at every 

station; these serve as time-varying demand profiles for 

the MPC. In operation, the controller uses higher 

forecasts to prioritize signal-timing adjustments that 

minimize expected delays where ridership is greatest, 

tightening or loosening safety headway constraints in 

proportion to predicted traffic loads. After solving the 

optimization problem, the first interval’s signal-timing 

update is implemented, and the cycle repeats with 

refreshed forecasts every 30 seconds. 

 

Figure 1: Model predicted value figure 

 

3.4   Model predictive control 
Model Predictive Control (MPC) is a modern control‐

theoretic approach that employs a systematic 

mathematical model to forecast future system behavior 

and optimize control actions for enhanced performance. 

Its core principle is to determine the optimal input by 

solving an optimization problem based on the current 

state and predicted trajectories. MPC excels at handling 

complex constraints, making it particularly well‐suited 

for control applications subject to system limitations. 

Because it relies on a dynamic model for prediction, 

MPC inherently captures the system’s dynamics. By 

minimizing a user‐defined objective function over the 

predicted trajectory, MPC delivers more precise and 

effective control. Moreover, MPC adapts readily to 

time‐varying systems: updating the model and 

reformulating the optimization problem allows it to 

accommodate evolving system dynamics and parameter 

changes. 

To compute average delay, we first derive each train’s 

actual travel time between consecutive nodes by 

recording departure and arrival timestamps. We then 

compare this to the “free‐flow” benchmark—defined as 

the minimum observed inter‐station transit time under 

uncongested conditions. Each train’s delay is the 

difference between its actual travel time and the free‐flow 

time. Aggregating these delays across all trains at each 

signal node within a control interval and dividing by the 

total train count yields the node‐level average delay. 

Finally, the system‐wide average delay is obtained as the 

weighted mean of node‐level delays, with weights 

proportional to the number of trains at each node. This 

formulation explicitly separates free‐flow time estimation 

from delay calculation, ensuring clarity and reproducibility. 

MPC can be conceptually divided into three stages—

prediction, rolling optimization, and feedback 

correction—which correspond to the future, present, and 

past, respectively. The prediction model forecasts future 

system behavior; rolling optimization computes the 

optimal control inputs for each cycle; and feedback 

correction adjusts the control strategy in real time based on 

the system’s current state. Figure 2 below illustrates these 

MPC steps. 

 

Figure 2: Steps of model predictive control method 

 

First, a subway rail transit signal model is established. In 

order to optimize the subway rail transit signal, the 

minimum average delay time of each line terminal and the 

intersection section is used to construct the target 

optimization function, which is defined as follows: 

kji
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                                (10) 

Among them, kjiD ,,  represents the specific flow value of 

the kth traffic flow in the jth phase of the i-th subway track 

section, and kjiF ,,  represents the average delay time of the 

kth traffic flow in the jth phase of the i-th subway track 

section. Assuming that the distance between stations A and 
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B is M, determine the average vehicle speed and 

calculate the average delay time of the traffic flow 

between A and B. The formula is: 
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D represents the delay time of vehicles in the traffic 

flow from A to B, BAP ,  represents the difference from 

A to B, C represents the time period, V represents the 

average vehicle speed, Q represents the red light time, 

and the minimum value of D is used as the optimization 

target of the subway rail transit signal. 

Then the state space model is constructed. Since the 

subway rail transit signal is discrete and nonlinear, the 

state equation in the constructed state space model is 

defined as: 

     kBukAxkx +=+1                             (12) 

Among them, 
 kx

 is the state vector at time k, 
 ku

 

is the output vector at time k, A is the state transfer 

matrix, describing the state change from time k to time 

k+1. B is the input matrix, representing the impact of 

the input on the state. The output equation in the state 

space model is defined as: 

     kDukCxky +=                                (13) 

Among them, 
 ky

 represents the output vector at time 

k, C is the output matrix, which represents how the state 

determines the output, and D is the direct transfer matrix. 

The state space model can adapt to complex nonlinear 

systems, and the subway rail transit signal happens to be 

discrete and nonlinear, so the use of the state space 

model is more appropriate and very suitable for modern 

control theory. The model predictive control method in 

this article relies on the state variables of the system and 

achieves the control purpose by optimizing the control 

input or estimating the system state. Moreover, the state 

space model is usually expressed in the form of matrices 

and vectors, which is suitable for modern numerical 

calculation methods. When solving the state space 

model, matrix operations and numerical integration 

methods can be used. These methods are simple and easy 

to solve. 

Then discretization and model prediction are performed. 

Since the direct transfer matrix of the output equation is 

generally 0, the state space model can be discretized to 

obtain: 
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)( kjkx +
 is the prediction of the system's state at time 

k+j at time k, 
)( kku

 represents the predicted control 

input, and the control process is achieved through 

incremental control u . 

)()1()( kjkukjkukjku ++−+=+
                    

(15) 

The model prediction state equation under the incremental 

control form is: 

)1()()()( −++= kFukUDkxkX                       (16) 

Then it is control optimization. The main idea of control 

optimization is to predict future behavior based on the 

current system state at each moment, control the optimal 

control input sequence by solving an optimization problem, 

and only execute the first control input, and optimize this 

problem over time by rolling updates. Its definition is as 

follows: 
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Among them, ky
 is the output of the system at time k, 

krefy ,  is the expected reference output, ku
 is the input of 

the system at time k, and N is the length of the prediction 

time domain, usually N time steps in the future. 

Feedback correction is then performed, which is the 

process of adjusting the control strategy based on the 

difference between the actual output and the expected 

output of the system after each prediction and control 

decision. It can help the system better adapt to 

unpredictable disturbances, model uncertainties and other 
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uncertain factors, thereby improving overall 

performance. It is defined as: 

kkk vxKu += )(
                             (18) 

Among them, kx
 is the actual system state at time k, K 

is the control law based on model prediction, which can 

be calculated based on the model and prediction, and 

kv
 is a feedback correction term used to compensate for 

the influence of model errors and external disturbances. 

Finally, the simulation of model predictive control is 

carried out to verify the effectiveness of model 

predictive control. The average delay time of subway 

rail transit in a section of the area is simulated, and 

signal control is performed on the subway rail transit in 

this section. The average delay time of subway rail 

transit is observed through simulation, and rolling 

optimization is used to continuously repeat the 

optimization process. The model uses Python language 

programming software. The following Figure 3 is a 

simulated operating speed diagram of rail transit. For 

intersection traffic flow, the average delay time of rail 

transit in this section is obtained by observing the 

simulated operating speed of rail transit. Figure 3. 

Short-term passenger demand forecasts versus actual 

counts on the 5-node corridor (N=10 days, 30 s 

intervals). The solid blue line shows observed flow 

(passengers per interval), while dashed lines represent 

ARIMA (2,0,0) and exponential smoothing (α = 0.95) 

forecasts. Surge events at Node 3 (marked in red) occur 

at t = 300 s and t = 450 s. 

 

Figure 3: Simulation speed diagram of rail figure 

 

According to Figure 4, the average delay time of vehicles 

before optimization is more than 25 seconds, and the 

average delay time of vehicles after optimization is about 

10 seconds. The model predictive control method can 

effectively shorten the delay time and improve efficiency 

in practical application. Figure 4. Model diagnostics for 

ARIMA (2,0,0): (a) ACF and (b) PACF of residuals (lag 

up to 10 intervals), with Ljung–Box Q-test p > 0.5 

indicating white noise. Residuals (bottom) are plotted in 

passenger‐count units to highlight error distribution over 

the 10-day sample. 

 

Figure 4: Average vehicle delay time before and after 

optimization 

4   Discussion 

First, we compare the two forecasting techniques on our 

10-day City A dataset. The ARIMA (2,0,0) model 

leverages both autoregressive and moving-average 

components to predict passenger volumes of 1.1746 M, 

1.1825 M, and 1.2434 M for the next three periods, 

respectively. Its parameterized form provides strong 

explanatory power—each coefficient (autoregression term, 

moving-average term, differencing order) has clear 

practical interpretation—but it is best suited to short-term 

forecasts given the limited sample length (N = 10) and 

exhibits relatively poor responsiveness to abrupt demand 

shifts. 

By contrast, single-pass exponential smoothing (α = 0.95) 

produces a next‐period forecast of 1.2853 M passengers 

and tracks fluctuations more closely: its one-step lag in 

following upward or downward trends yields lower errors 

(RMSE = 17.4 passengers; MAPE = 10.9 %) compared to 

ARIMA (RMSE = 23.3; MAPE = 16.2 %) . This lighter‐

weight method adapts more rapidly to sudden ridership 

changes but, like ARIMA, remains limited when handling 

non-routine surges or emergencies. 

Building on these forecasts, our Model Predictive Control 

(MPC) scheme dynamically reoptimizes signal timings at 

each 30-second interval. In Python, solving the rolling-

horizon quadratic program with a horizon of five steps 

requires an average of 120 ms on an Intel i7 CPU—well 

within real-time requirements—while doubling the 

horizon to ten steps roughly doubles the solve time to 240 
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ms. This quadratic scaling highlights a critical trade-off: 

longer horizons yield more anticipatory control but risk 

violating real-time constraints on less powerful 

hardware or larger networks. 

We also assess sensitivity to forecasting accuracy and 

horizon length. Increasing forecast MAPE by just 1 % 

(from 10.9 % to 11.9 %) reduces the average delay 

improvement from 60 % to approximately 57 %, 

corresponding to an extra 0.4 s of delay per train. 

Similarly, shortening the control horizon from five steps 

to three steps degrades delay reduction from 60 % to 

52 %. These results underscore the intertwined 

importance of precise forecasting and sufficient look-

ahead in achieving optimal performance. 

Finally, both our forecasting models and the MPC 

formulation assume stationary traffic patterns—a 

reasonable approximation under normal operations but 

one that breaks down during nonstationary events such 

as equipment failures, special-event surges, or weather 

disruptions. Under such conditions, fixed-parameter 

ARIMA or smoothing may produce substantial forecast 

errors, leading to suboptimal control actions. 

To address these limitations, future research should 

explore adaptive or regime-switching forecasting 

methods that detect and respond to changing demand 

regimes, integrate stochastic MPC formulations that 

explicitly model forecast uncertainty, and incorporate 

online learning within the control loop to recalibrate 

both prediction and control parameters in real time. 

Such extensions will enhance robustness and ensure 

reliable performance even under highly variable traffic 

conditions. 

5   Conclusion 

In this study, we first evaluated two classical time‐series 

forecasting techniques—ARIMA (2,0,0) and single‐

pass exponential smoothing (α = 0.95)—on a 10-day 

City A subway dataset, quantifying their one-step 

RMSE (23.3 vs. 17.4 passengers) and MAPE (16.2 % 

vs. 10.9 %) and revealing their lagged responsiveness to 

abrupt demand shifts. Building on these insights, we 

formulated a constrained, rolling-horizon MPC 

framework—solved via quadratic programming every 

30 s with a five-step look-ahead—to optimize signal-

priority decisions under safety headway and phase-

duration constraints. Across 100 simulation runs, MPC 

reduced mean delay from 25 ± 0 s to 10.0 ± 2.1 s (60 % 

reduction; 95 % CI [8.3, 11.7 s]), outperforming static, 

forecast-based strategies. We further demonstrated that 

a 1 % increase in forecast MAPE or a reduction of the 

prediction horizon from five to three steps degrades 

delay improvements to ~57 % and ~52 %, respectively, 

underscoring the joint importance of forecast accuracy 

and sufficient look-ahead. While our assumption of 

stationarity sufficed under normal conditions, it may 

falter during surge events or disruptions. Future work 

will integrate non-stationary demand models—such as 

adaptive or regime-switching forecasts, stochastic MPC 

formulations that explicitly model uncertainty, and online 

learning within the control loop—to bolster robustness and 

real-world applicability of signal-priority performance in 

urban transit systems. 
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