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Cancer is a leading cause of global mortality, underscoring the need for advanced diagnostic tools to enable
early and accurate detection. Microarray technology allows for the simultaneous analysis of thousands of
genes, offering valuable insights into cancer biology. However, the high dimensionality of microarray
data presents significant challenges for classification tasks. In this study, we propose a novel approach
that integrates the Social Spider Optimization (SSO) algorithm with mutual information-based feature se-
lection to identify the most discriminative genes for cancer classification. We evaluate the performance
of four machine learning classifiers—Decision Tree (DT), K-Nearest Neighbors (K-NN), Neural Networks
(NN), and Support Vector Machines (SVM)—with and without feature selection. Our results demonstrate
that the SSO algorithm significantly enhances classification accuracy, with SVM achieving near-perfect
performance on leukemia and lymphoma datasets when combined with Max-Relevance Min-Redundancy
(MRMR) feature selection. This hybrid approach provides a robust solution for cancer diagnosis by ad-
dressing key challenges such as data redundancy and computational complexity.

Povzetek: Za klasifikacijo raka so uporabili optimizacijo (SSO), zdruzeno z merili vzajemne informacije
(MIM, JMI, MRMR), za izbiro najbolj diskriminativnih genov in zmanjsanje redundance. Na zbirkah Colon,
Prostate, Leukemia, Lymphoma z DT, K-NN, NN, SVM kombinacija SSO+MRMR doseze odlicne rezultate

(levkemija/limfom) ter zniza racunsko zahtevnost.

1 Introduction

Cancer is a complex and heterogeneous disease character-
ized by uncontrolled cell growth and proliferation. Early
and accurate diagnosis is critical for effective treatment and
improved patient outcomes. Recent advances in molecu-
lar biology, particularly microarray technology, have rev-
olutionized cancer research by enabling the simultaneous
measurement of gene expression levels across thousands of
genes [[I]]. These high-throughput datasets provide unprece-
dented opportunities to identify molecular signatures asso-
ciated with specific cancer types [2]. However, the high
dimensionality of microarray data—where the number of
features (genes) far exceeds the number of samples—poses
significant challenges for classification tasks. This “curse
of dimensionality” can lead to overfitting, increased com-
putational complexity, and reduced model interpretability
[B].

Feature selection is a crucial step in microarray data anal-
ysis, as it helps identify biologically relevant genes while
minimizing noise and redundancy. Conventional feature

selection approaches are typically classified into three main
categories: filter, wrapper, and embedded methods [4]. Fil-
ter techniques, such as mutual information-based selection,
rank genes based on statistical criteria without involving
a predictive model. Wrapper methods employ a specific
machine learning algorithm to evaluate the performance
of different feature subsets. Embedded approaches inte-
grate feature selection directly into the classifier’s training
process, optimizing both model accuracy and feature rel-
evance. Despite their effectiveness, these methods often
suffer from limitations such as local optima convergence
and high computational complexity, particularly in high-
dimensional spaces [5].

Metaheuristic optimization algorithms, inspired by natu-
ral phenomena, have emerged as powerful tools for address-
ing complex feature selection problems. Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), and Ant
Colony Optimization (ACO) are among the most widely
used metaheuristics in this context [0, 7, §]. However, these
methods may still struggle with premature convergence or
parameter sensitivity, limiting their applicability to ultra-



538 Informatica 49 (2025) 537-550

high-dimensional datasets.

To overcome these limitations, we propose the Social
Spider Optimization (SSO) algorithm, a novel metaheuris-
tic inspired by the cooperative foraging behavior of so-
cial spiders. SSO leverages vibration-based communica-
tion among spiders to dynamically adjust search intensity,
balancing exploration and exploitation in the feature space.
This unique mechanism allows SSO to efficiently navigate
high-dimensional datasets and identify optimal gene sub-
sets without extensive parameter tuning [8].

In this study, we integrate SSO with mutual information-
based feature selection criteria—Mutual Information Maxi-
mization (MIM), Joint Mutual Information (JMI), and Max-
Relevance Min-Redundancy (MRMR)—to enhance cancer
classification accuracy [9]. We evaluate the performance
of four classifiers (DT, K-NN, NN, SVM) on four cancer
datasets (Colon Cancer, Prostate Tumor, Leukemia, and
Lymphoma). The microarray datasets were subjected to
rigorous preprocessing to ensure data quality. Our results
demonstrate that the SSO algorithm significantly outper-
forms traditional feature selection methods, achieving su-
perior classification accuracy and computational efficiency
[1La].

The remainder of this paper is structured as follows:
First, we present the methodology, detailing the SSO algo-
rithm, feature selection approaches, and classification mod-
els. Next, we discuss the experimental results and compar-
ative analysis. Then, we examine the advantages and limi-
tations of the proposed approach. Finally, we conclude the
paper and outline future research directions.

2 The social spider optimization
(SSO)

The Social Spider Optimization (SSO) algorithm is a
nature-inspired metaheuristic that mimics the cooperative
foraging behavior of social spiders to solve complex opti-
mization problems. In cancer genomics, SSO excels at se-
lecting highly discriminative genes for classification tasks
[L1]. The algorithm evaluates candidate gene subsets using
a fitness function, where a high score indicates an optimal
subset that maximizes classification accuracy while mini-
mizing redundant features [[12, 13].
This fitness function is defined as :

Fitness(S) = a.- Accuracy(S) + (1 —a) - ( |S|) (1)

Where:
— S represents a candidate gene subset.

— Accuracy(S) denotes the classification performance
using features in .S.

— |S| is the cardinality of the selected subset.

— N is the total number of available genes.
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— « € [0, 1] controls the trade-off between accuracy and
feature reduction.

The search process in SSO is guided by vibrations, which
simulate the collective behavior of a spider colony. Each
spider (representing a candidate solution) updates its posi-
tion based on vibrations from fitter neighbors. This mech-
anism balances exploitation (moving toward high-quality
solutions) and exploration (maintaining population diver-
sity to avoid premature convergence) [[14]. The result is
an adaptive search strategy that efficiently navigates high-
dimensional genomic data.

The position update for each spider ¢ at iteration ¢ is cal-
culated as :

IB—:I:

R Z 2t~

Where

tH (bj + € (2)

— ! represents the current position of spider .
— N is the set of neighboring spiders.

— ¢; is the vibration intensity from spider j (proportional
to its fitness).

— € is a small random perturbation that encourages ex-
ploration.

Finally, the selected genes are fed into machine learning
classifiers to predict cancer types.

The optimization for a DT classifier focuses on finding
the best splits at each node to minimize a loss function, of-
ten based on Information Gain or Gini impurity (Minimize
the impurity measure at each split):

. N,
min | 7(D) — XJ: ~ (D) 3)

Where:

I(D): Impurity of the parent node.

N': Total number of samples in the parent node.
— N;: Number of samples in child node j.
— I(D;): Impurity of child node j.

The optimization for K-NN is expressed as:

Ypred = argmaxyk Z I(yia yk) (4)
=1

Where:
— Ypred: Predicted class label for the new point .

— argmax, : The class label y; that maximizes the sum
across the classes.
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— K: Number of closest neighbors considered for the
classification.

— I(y;,yx): Indicator function that equals 1 if the class
label of the i-th neighbor y; matches the predicted
class label y;, and 0 otherwise.

The optimization for NN involves minimizing a loss
function that quantifies the difference between the pre-
dicted outputs of the network and the actual target values.
Here’s a detailed formulation:

N
L) = 5 3 £l ) )
=1

Where:

— L(0): The overall loss of the neural network, depen-
dent on parameters 6.

— N: The total number of samples in the dataset.

— L(y;,9;): The loss for the i-th sample, measuring how
well the predicted output ¢; aligns with the true target

Yi.

The SVM optimization problem is formulated as :

1 2 - T
rqnvliliﬂwH +C;max(0,1—yi(w x;+b) (6)

Where

— w is the weight vector.

— ('is a regularization parameter.
— y; are the class labels.

We evaluated the pipeline using mean + standard devia-
tion (SD) and 95% confidence intervals (CI) for F1-score,
precision, recall, and accuracy over 10 randomized runs. To
ensure robustness, we combined 10-fold cross-validation
with a 70-30 train-test split, mitigating overfitting risks.
The results, averaged across folds, demonstrate that SSO’s
biologically inspired optimization enhances both accuracy
and interpretability in cancer classification [[19, 20].

2.1 Runtime analysis

The runtime of the SSO algorithm depends on several fac-
tors:

— Population Size (P): The number of spiders (candi-
date solutions) in the population. A larger population
increases diversity but also computational overhead.

— Number of Iterations (T): The maximum number of
iterations the algorithm runs before convergence.

— Feature Dimensionality (N): The total number of
genes (features) in the dataset. High-dimensional data
require more computations per spider.
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— Fitness Evaluation Cost (FEC): The cost of evaluat-
ing the fitness function for each spider, which involves
training and testing a classifier on the selected gene
subset.

The overall runtime can be approximated as :

Runtime = O(T x P x (N + FEC)) (7)

2.2 Computational complexity

The computational complexity of SSO is primarily deter-
mined by :

— Position Update : For each spider, the position up-
date involves calculating vibrations from neighboring
spiders. If each spider interacts with k& neighbors, the
complexity per spider per iteration is : O(k x N),
where NV is the dimensionality of the feature space.
For the entire population, this becomes O(P x k x N).

— Fitness Calculation : The fitness function involves
training a classifier on the selected gene subset. As-
suming the worst case where all features are selected,
the complexity is dominated by the classifier’s training
time.

However, in practice, SSO selects a small subset of
genes d < N, reducing this to O(n? x d).

— Total Complexity : Combining the above, the per-
iteration complexity is :

O(P x kx N)+ O(P x n* x d) ®)

Over T iterations, The total complexity becomes:

O(T x Px (kxN+n*xd)) 9)

3 Gene subset selection

To enhance the relevance and informativeness of the ge-
netic data, we focused on a streamlined subset of features.
This selective approach facilitates the development of ac-
curate and robust classification models while mitigating
challenges associated with high-dimensional genomic data.
Gene expression datasets typically encompass thousands of
features (genes), which can introduce computational ineffi-
ciencies, increased resource demands, and a heightened risk
of overfitting. Thus, feature selection is essential to reduce
data complexity and improve model interpretability [21].

Our goal is to retain only the most discriminative and bi-
ologically significant genes for cancer classification. By
identifying and preserving genes that maximize inter-class
distinction while eliminating redundant or non-informative
features, we enhance model performance—boosting accu-
racy, recall, and generalizability [22].

In this work, we evaluate feature importance using mu-
tual information as a key relevance metric [23, 24], ensuring
that selected genes contribute meaningfully to classification
while maintaining biological interpretability.
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4 Mutual information

We employ mutual information (MI) to assess the statisti-
cal dependence between gene expression features and can-
cer class labels [25]. MI provides a robust measure of how
much knowledge of a particular gene’s expression reduces
uncertainty about the cancer classification [26, 27]. For our
high-dimensional genomic data, we implement empirical
estimation methods specifically adapted to maintain accu-
racy in this challenging context.

We estimate MI empirically using methods adapted for
high-dimensional data.

(z,y)

VY T b,y
I(XJ)—XI:%jp( Wleg rres 10

p
Where:
— p(z, y) is the joint probability distribution of X and Y.

— p(z) and p(y) are the marginal probability distribu-
tions of X and Y, respectively.

This equation quantifies the shared information between
variables X and Y, measuring their mutual dependence.
MI equals zero when X and Y are statistically independent,
indicating no shared information between them [28].

I(X;Y) =0 if p(z,y) =p(x)-ply) (AD
This means that if the joint probability distribution of X
and Y equals the product of their marginal distributions,
then the MI is zero, indicating no dependency between the
two variables.
Mutual information is linearly related to the entropies of
the variables according to the following equations:

I(X;Y)=HX)+ HY)-H(X,Y)
Where:

(12)

— H(X) is the entropy of variable X.
— H(Y) is the entropy of variable Y.
— H(X,Y) is the joint entropy of variables X and Y.

This relationship demonstrates that MI can be understood
as the reduction in uncertainty about one variable given
knowledge of the other.

5 Mutual information for feature
selection

Mutual information (MI) is a robust statistical measure for
quantifying dependency between random variables. In fea-
ture selection, MI assesses the mutual dependence between
candidate features (explanatory variables) and the target
variable (predicted outcome). Features with higher MI val-
ues are prioritized, as they provide more predictive infor-
mation about the target.

C. Cherif et al.

The scientific community has developed multiple MI-
based selection criteria. In this study, we focus on three
prominent methods proven effective in prior research.
Their advantages and implementation details are discussed
in subsequent sections.

5.1 Mutual information maximization

(MIM)

MIM is a principled feature selection method that maxi-
mizes the mutual information (MI) between input features
and the target variable. Grounded in information theory,
MIM selects features that provide the highest information
gain about the target, thereby improving predictive model
performance [29].

By retaining only the most informative features and dis-
carding non-informative ones, MIM enhances model effi-
ciency and generalization, particularly in high-dimensional
datasets where feature relevance varies significantly. The
formulation for MIM can be expressed as:

max [(X;Y)
FICF

(13)

Where:

— F’ is the subset of features selected from the original
feature set F'.

— I(X;Y) is the MI between the selected features X and
the target variable Y.

5.2 Joint mutual information (JMI)

JMI extends traditional MI-based feature selection by eval-
uating the joint predictive power of feature subsets. Rather
than assessing features individually, JMI maximizes their
combined MI with the target, capturing synergistic interac-
tions while minimizing redundancy [B0]. This approach is
especially effective for high-dimensional data, where fea-
tures often exhibit complex dependencies. The formulation
for JMI can be expressed as:

max I(F';Y)
FICF

(14)

Where:

— I(F';Y) is the MI between the selected features F’
and the target variable Y.

5.3 Max relevance min redundancy
(MRMR)

MRMR selects features that are maximally relevant to
the target variable while minimizing redundancy among
them. This criterion is particularly advantageous in high-
dimensional settings, where reducing feature correlations
improves model efficiency without compromising accuracy
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[B1]]. MRMR achieves this balance by maximizing rele-
vance (MI with the target) and penalizing redundant (inter-
correlated) features, ensuring a diverse and informative fea-
ture set. The complete optimization problem is expressed
as:

/. . f.
max (1Y) = e D, IUsf) | 09
fi,f;€F’
where:

[’ is the subset of features selected from the original
feature set F'.

I(F')Y) is the MI between the selected features F”
and the target variable Y.

I(fi; f;) is the MI between the features f; and f;.

— | F” |is the number of features in the subset F”.

6 Feature selection with SSO

After completing feature extraction and Ml-based feature
selection, the final stage involves building and evaluating
classification models. In machine learning, classification
follows a standard two-phase process: training and test-
ing. During the training phase, the algorithm learns patterns
from labeled training data to construct a predictive model
[32]. The testing phase evaluates the model’s performance
on unseen data to assess its generalization capability and
determine its readiness for real-world deployment. During
this stage, the trained model undergoes rigorous evaluation
to measure its predictive accuracy and overall effectiveness.
This critical step ensures that the model meets the required
performance thresholds before deployment.

For the classification task, we employed four well-
established supervised learning algorithms: DT, K-NN,
NN, and SVM. These methods were selected for their com-
plementary strengths in handling diverse data characteris-
tics and their proven effectiveness in similar classification
tasks.

The Social Spider Optimization (SSO) algorithm was im-
plemented to optimize gene selection by simulating the col-
lective foraging behavior of social spiders, which dynam-
ically adjust their search patterns based on vibratory com-
munication within their colony.

In this approach, each spider in the population repre-
sents a candidate subset of genes, initialized randomly to
ensure diversity in the search space. The fitness of each
spider, corresponding to the quality of the gene subset, was
evaluated using MI as the objective function, quantifying
the statistical dependence between the selected genes and
the target class labels. The algorithm leverages a unique
vibration-based communication mechanism, where spiders
share information about promising regions of the feature
space through simulated vibrations, allowing the popula-
tion to collectively balance exploration (global search for
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diverse gene combinations) and exploitation (local refine-
ment of high-fitness subsets).

This adaptive behavior enables SSO to efficiently navi-
gate the high-dimensional microarray data, avoiding local
optima while converging toward highly discriminative gene
subsets. The iterative process continues until convergence
criteria are met, yielding an optimal set of genes that max-
imizes classification performance.

Compared to traditional metaheuristics like Genetic Al-
gorithms or Particle Swarm Optimization, SSO demon-
strates superior efficiency in feature selection due to its self-
organizing nature, reduced parameter sensitivity, and abil-
ity to maintain population diversity throughout the search
process.

The integration of SSO with MI criteria further en-
hances its biological relevance, as it prioritizes genes with
strong functional associations to cancer phenotypes while
minimizing redundancy. This hybrid approach addresses
key limitations of conventional methods, such as prema-
ture convergence and computational inefficiency, making
it particularly suited for high-dimensional genomic datasets
where traditional techniques often struggle.

7 Proposed approach for cancer
classification

The global healthcare community faces a critical challenge
in addressing cancer, necessitating cutting-edge methods
for precise diagnosis and classification. The proposed ap-
proach leverages SSO to enhance cancer classification ac-
curacy through optimized gene selection.

The workflow begins with collecting a gene expression
dataset categorized by cancer type, followed by preprocess-
ing steps such as normalization and missing value imputa-
tion to ensure data quality. Next, the SSO algorithm iden-
tifies the most discriminative genes, mimicking the col-
laborative behavior of social spiders to efficiently explore
the high-dimensional gene space. This step reduces redun-
dancy and improves computational efficiency.

The selected gene subset is then analyzed using de-
tection algorithms to identify cancer-specific patterns or
anomalies. Finally, classification algorithms predict cancer
types, with SSO-optimized features ensuring higher accu-
racy compared to traditional methods.

By integrating SSO-based gene selection with detection
and classification algorithms, this approach provides a ro-
bust and scalable solution for precise cancer classification.
The proposed framework is illustrated in Figure [Il.

The proposed framework introduces a structured ap-
proach to enhance cancer classification accuracy using ad-
vanced computational techniques. The process begins with
a cancer-labeled gene expression dataset containing ge-
nomic profiles of various tumor types. This raw biological
data undergoes preprocessing to normalize values, handle
missing data, and ensure quality for downstream analysis.
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Gene Expression
Dataset =
(Cancer-labeled)

SSO with MI-Based Criteria
(MIM, JMI, MRMR for Gene Selection) >

Anomaly Detection
(Pattern/Outlier Identification)

v

Classification
(DT /K-NN/NN/ SVM)

N

Optimized Gene Subset

Figure 1: Proposed cancer classification framework

The core innovation involves applying the SSO algo-
rithm, a nature-inspired computational method that mimics
the cooperative behavior of spider colonies to identify the
most biologically relevant genes. This optimization phase
reduces data dimensionality by eliminating redundant ge-
netic features while retaining those with the highest dis-
criminatory power for cancer classification.

The optimized gene subset is then fed into anomaly de-
tection modules to identify unusual expression patterns or
molecular signatures associated with specific cancer sub-
types. Finally, machine learning classifiers leverage these
refined genetic markers to predict cancer types with im-
proved precision.

Compared to traditional methods, SSO offers significant
advantages by systematically exploring complex gene in-
teractions and selecting optimal feature combinations that
conventional statistical approaches might overlook. This
comprehensive pipeline—from data preparation to opti-
mized classification—demonstrates how bio-inspired algo-
rithms can improve biomedical pattern recognition, poten-
tially leading to more accurate diagnostic tools in clinical
oncology. The sequential architecture ensures that each
stage builds upon the refined outputs of the previous step,
creating an efficient and biologically meaningful workflow
for precision medicine applications.

8 Results and discussion

To validate the proposed approach, we conducted extensive
experiments on four distinct microarray datasets. In accor-
dance with standard machine learning practices [33], each
dataset was split into training and testing sets. The train-
ing set was used for model learning, while the testing set
evaluated the performance of the trained model.

— Colon Cancer : comprises gene expression profiles
from 36 patients, with balanced representation of tu-
mor (n=18) and normal (n=18) tissue samples. The
samples were obtained from epithelial cells of the
colon mucosa, providing molecular signatures of col-
orectal carcinogenesis [34].

— Prostate Tumor : Containing 12600 gene expression
measurements across 102 clinical samples, this dataset
includes 52 prostate adenocarcinoma specimens and
50 matched normal tissue controls [35].

— Leukemia : contains 72 clinical samples represent-
ing two hematological malignancies: 47 cases of
Acute Lymphoblastic Leukemia (ALL) and 25 cases
of Acute Myeloid Leukemia (AML). The dataset has
been widely used for evaluating molecular classifica-
tion methods [3€].

— Lymphoma : Comprising 96 lymphocyte sam-
ples (both malignant and normal populations) with
4026 gene expression measurements per sample, this
dataset captures the transcriptional heterogeneity in
lymphoid malignancies. The balanced design facili-
tates robust classifier development [37].

Key characteristics are systematically summarized in Table
1.

The evaluation of predictive classification models is a
critical phase in machine learning [38]. To ensure robust-
ness, we report performance metrics (Precision, Recall, F1-
score, Accuracy) with 95% CI and SD across multiple runs
(n=10) with randomized train-test splits (70-30%). This
approach accounts for variability in small-sample genomic
datasets and strengthens the reliability of our findings. Cen-
tral to this evaluation is the confusion matrix (see Table [),
which provides a comprehensive visualization of a model’s
performance by comparing predicted classifications against
actual ground truth labels. Through detailed analysis of
this matrix, key performance metrics—including Precision,
Recall, F1-score, and Accuracy—can be derived and inter-
preted. These metrics collectively offer multi-dimensional
insights into model behavior, allowing for objective com-
parisons between competing algorithms.

The confusion matrix is a table that displays predicted
and actual classification outcomes, comparing them with
true values [39]. It consists of :

— True Positive (TP) : Correctly classified instances be-
longing to the positive class Y.

— False Positive (FP) : Instances incorrectly predicted
as positive class Y when they actually belong to the
negative class Y

— False Negative (FN) : Instances of the positive class
Y incorrectly classified as negative Y.

— True Negative (TN) : Correctly identified instances of
the negative class Y.
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Table 1: Brief description of the datasets

Dataset Genes | Training data | Testing data | Observations +1/-1
Colon Cancer | 2000 62 - 22/40
Prostate Tumor | 12600 102 - 52/50
Leukemia 7129 38 34 27/11 - 20/14
Lymphoma 4026 60 36 45/15 -27/9

Table 2: Confusion matrix
Class | Y | ¥
Y TP | FP
Y | FN | TN

From the confusion matrix, the following performance met-
rics are derived:

— Precision quantifies the exactness of a classifier’s pos-
itive predictions by measuring the proportion of true
positives (correctly identified instances) among all in-
stances predicted as positive. Mathematically, it is de-

fined as:
TP

P .. _
recision TP + FP

(16)

— Recall evaluates a model’s ability to correctly identify
all relevant positive instances from the dataset. It is
calculated as:

TP

Recall = —
A= TP EN

A7)

— F1-Score is a robust metric that balances Precision and
Recall into a single unified measure. It is the harmonic
mean of the two metrics, ensuring neither is dispropor-
tionately favored—making it particularly valuable for
imbalanced datasets where one class dominates.

Fl-score — 2 x Precision x Recall

(18)

Precision + Recall

— Accuracy quantifies a model’s overall correctness by
measuring the proportion of all correct predictions
(both positive and negative) relative to the total pre-
dictions made:

TP + TN
TP + TN + FP + FN

Accuracy =

(19)

For our binary classification task, we implemented ma-
chine learning models using Python (version 3. 10.9)m,
leveraging its ecosystem of scientific libraries for state-of-
the-art algorithms. To rigorously evaluate performance,
we employed a classification report—a detailed analytical

Thttps://anaconda.org/anaconda/python

tool that computes key metrics, including Precision (pos-
itive predictive value), Recall (sensitivity), F1-score (har-
monic mean of precision and recall), and Support (class
distribution) for each target class. As shown in Table J,
the report reveals that the Cancer class (Class 1: F1-score
=0.53 £0.02) slightly outperforms the Normal class (Class
0: Fl-score = 0.50 + 0.03), with both precision and recall
closely aligned within each category. The overall accuracy
0f 0.52 £ 0.02 (95% CI: 0.49-0.55) suggests moderate dis-
criminative power, while the narrow confidence intervals
and low standard deviations indicate stable model perfor-
mance across evaluations. This granular analysis highlights
the model’s balanced but limited ability to distinguish be-
tween Normal and Cancer cases, with statistical measures
ensuring robust interpretation despite the modest scores.

Figure [ displays the classification outcomes achieved
by applying four machine learning algorithms directly to
raw cancer genomic datasets. To establish fundamental
performance benchmarks, we intentionally omitted all data
preprocessing and feature selection procedures in this ini-
tial analysis. The study utilized the complete, unmodi-
fied datasets, preserving all original gene expression values
without any filtering of redundant features, imputation of
missing values, or application of normalization techniques.
Crucially, we maintained the full dimensionality of the data,
avoiding any gene subset selection that might alter the in-
trinsic characteristics of the genomic profiles. This exper-
imental design allowed us to assess the native capability
of standard classification algorithms to handle the inher-
ent complexity and high-dimensional nature of unprocessed
genomic data, providing critical insights into the baseline
challenges of cancer classification from uncurated molecu-
lar data. The results serve as an important reference point
for evaluating the comparative benefits of subsequent pre-
processing and feature selection approaches.

Figure P presents the classification results obtained after
applying standard preprocessing techniques to the raw ge-
nomic datasets while retaining all original features. Impor-
tantly, this analysis deliberately maintained the complete
high-dimensional feature set without employing any fea-
ture selection or dimensionality reduction techniques. By
preserving all available genes while applying fundamental
preprocessing, we established a crucial performance base-
line that demonstrates the isolated effects of data cleaning
and normalization on classification accuracy. These results
serve as an essential reference point for evaluating the addi-
tional benefits achieved through subsequent feature selec-
tion methods, as presented in other figures. The maintained
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Table 3: Classification report with SD

Precision (Mean 4+ SD) | Recall (Mean 4+ SD) F1-score (Mean + SD) Support
0 0.50 + 0.03 0.50 + 0.04 0.50 +0.03 294
1 0.53 +£0.02 0.53 + 0.03 0.53 +£0.02 315
Accuracy - - 0.52 4+ 0.02 (95% CI: 0.49-0.55) 609

Accuracy Score

Prostate Tumor Leukemia
Dataset

Colon Cancer Lymphoma

Figure 2: Classification accuracy with SD (no preprocess-
ing or feature selection)

high dimensionality (typically thousands of genes) in this
analysis highlights both the limitations of classifiers oper-
ating on uncurated feature spaces and the measurable im-
provements attainable through basic preprocessing alone.
This controlled experiment provides valuable insights into
the incremental value of different stages in genomic data
preparation pipelines.

Accuracy Score

Prostate Tumor Leukemia
Dataset

Colon Cancer Lymphoma

Figure 3: Classification Accuracy with SD (Preprocessed
Data, No Feature Selection)

Next, we applied SSO along with three MI-based feature
selection methods. SSO, inspired by the cooperative be-
havior of social spiders, optimizes feature subsets by bal-
ancing exploration and exploitation, while MIM, JMI, and
MRMR identify the most relevant and non-redundant genes
(attributes) for the classification task. This hybrid approach
significantly reduced the initial dimensionality of the ge-
nomic data while enhancing feature discriminability.

For each dataset and feature selection method, we trained

and evaluated multiple classification algorithms. The pa-

rameters used in the SSO algorithm are presented in Table
7

Table 4: SSO Hyperparameters

Parameter Value
Population size 50
Vibration decay (¢) 0.9

Convergence threshold | 10~*
Max iterations 200

Our experimental findings highlight the effectiveness of
the classification algorithms, as evidenced by the evalua-
tion metrics (Precision, Recall, and F1-score) obtained with
feature selection (see Figures H,B, 8, and fi).

These results illustrate how preprocessing and the se-
lection of pertinent features impact classification accuracy
based on the number of features used.

Further analysis showed that SVM and NN achieve su-
perior performance after optimal feature selection, espe-
cially when enhanced with SSO, whereas DT underper-
form. The study emphasizes the crucial role of prepro-
cessing and feature selection—particularly when integrat-
ing SSO with information-theoretic methods. These in-
sights open new possibilities for advancing hybrid tech-
niques and their use in oncology for early, personalized can-
cer detection.

To further validate our findings, we compared the pro-
posed method with established techniques, including Parti-
cle Swarm Optimization (PSO), Genetic Algorithms (GA),
and a deep learning-based autoencoder (AE) for feature se-
lection.

The SSO+MRMR result in Table B reflects the optimal
combination of the best classifier (SVM) and the most ef-
fective feature selection method (MRMR) guided by SSO,
as empirically validated in the study.

As demonstrated in Table B, the results clearly show that
SSO achieves superior performance, surpassing these alter-
natives in both classification accuracy and computational
efficiency. The proposed method demonstrates superior
performance compared to existing feature selection tech-
niques across all evaluated medical datasets. As shown in
Table f, SSO-MRMR achieves the highest mean classifica-
tion accuracy with the lowest standard deviation, indicat-
ing both high effectiveness and robustness. For instance,
in the Leukemia dataset, SSO-MRMR attains an accuracy
of 0.94 + 0.01, outperforming PSO (0.90 + 0.02), GA
(0.88+0.03), and AE (0.91£0.02). Similarly, in the Colon
Cancer dataset, the proposed method reaches 0.91 + 0.02,
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whereas PSO, GA, and AE achieve 0.87, 0.85, and 0.88,
respectively. This consistent advantage suggests that SSO-
MRMR effectively selects discriminative features, enhanc-
ing classification performance.

Among the baseline methods, AE ranks second, per-
forming slightly better than PSO but falling short of SSO-
MRMR. This indicates that AE is competitive but may not
fully capture the optimal feature subset as effectively as
the proposed hybrid approach. Meanwhile, PSO performs
moderately, surpassing GA in all cases, which consistently
yields the lowest accuracy. The higher standard deviations
observed in GA (e.g., 0.82 £ 0.05 for Prostate Tumor) sug-
gest instability, possibly due to premature convergence or
insufficient population diversity in the evolutionary search
process.

The computational efficiency of feature selection meth-
ods is critical for real-world applications, particularly when
dealing with high-dimensional datasets. Table f§ com-
pares the time complexity and empirical runtime of the
proposed SSO-MRMR method against established tech-
niques, including PSO, GA, and AE. The results demon-
strate that SSO-MRMR achieves superior efficiency, with
a mean runtime of 120 £ 15 seconds, outperforming PSO
(180 = 20s), GA (220 £ 25s), and AE (150 £ 18s). This
efficiency stems from its carefully designed optimization
process, which integrates SSO with MRMR criteria.

The time complexity of SSO-MRMR is given as O(P x
(kN + n%d)). This formulation ensures scalability, as the
dominant term n%d remains manageable when d is small. In
contrast, PSO and GA exhibit quadratic complexity (O(P x
N?)and O(T x P x N?), respectively), making them com-
putationally expensive for large feature spaces. Meanwhile,
AE’s complexity (O(N x L)) scales linearly with features
and layers, but its runtime is still higher than SSO-MRMR,
likely due to deep learning overhead.

Empirical evaluations conducted on an Intel(R)
Core(TM) i15-8265U CPU @ 1.60GHz 1.80 GHz with
16GB RAM (using 10-fold cross-validation) confirm that
SSO-MRMR is the fastest among the compared methods.
Its runtime advantage over PSO and GA can be attributed
to the avoidance of exhaustive pairwise feature evaluations,
while its superiority over AE suggests that heuristic-guided
selection is more efficient than representation learning
in this context. The low standard deviation (£15s) fur-
ther indicates stable performance across different runs,
reinforcing its reliability.

9 Conclusion and future work

This research focuses on the key challenge of pinpoint-
ing the most significant genes for precise and dependable
cancer detection. To accomplish this, we implemented a
systematic three-phase methodology, where each phase as-
sessed the performance of classification algorithms under
distinct scenarios.

First, we applied the classification models directly to the
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raw, unprocessed data. Next, we improved data quality
through preprocessing steps such as normalization, miss-
ing value imputation, and noise reduction before reevalu-
ating the algorithms. Finally, we refined the preprocessed
dataset by selecting the most relevant genes using targeted
techniques and then reapplied the classification models.

The presented methodology, which systematically eval-
uates algorithms under different preprocessing and feature
selection conditions, offers several key benefits. First, it en-
ables an in-depth assessment of various classification mod-
els on genomic data, revealing their comparative strengths
and limitations. Moreover, by integrating preprocessing
and feature selection, the approach improves data quality
by minimizing noise and redundancy, leading to more ac-
curate predictive models.

Cancer classification using high-dimensional microar-
ray data remains a significant challenge due to the curse
of dimensionality and the inherent noise in gene expres-
sion profiles. This study proposes a novel approach inte-
grating the SSO algorithm with MI-based feature selection
techniques—MIM, JMI, and MRMR—to identify optimal
gene subsets for improved cancer diagnosis. Inspired by
the cooperative foraging behavior of social spiders, the SSO
algorithm demonstrates superior performance in balancing
exploration and exploitation, effectively navigating high-
dimensional feature spaces while minimizing redundancy.

The incorporation of SD and CI in the performance met-
rics addresses a critical limitation common in bioinformat-
ics studies, where small sample sizes can lead to unstable
estimates. This methodological enhancement serves three
important purposes. First, it strengthens the statistical va-
lidity of our findings by explicitly quantifying the measure-
ment uncertainty associated with each performance metric.
Second, it improves the reproducibility of our results by
providing a more complete picture of the model’s perfor-
mance across different data splits. Third, it brings the study
in line with current best practices for machine learning ap-
plications in healthcare research, where transparent report-
ing of variability is increasingly expected.

SSO achieves higher classification accuracy across mul-
tiple classifiers, particularly when applied to preprocessed
data with feature selection. The algorithm’s ability to dy-
namically adjust search intensity through vibration-based
communication enhances its robustness and computational
efficiency, addressing common limitations of metaheuris-
tics such as premature convergence and parameter sensitiv-
ity.

Among the classifiers tested, SVM performs the most
effectively, achieving the highest classification accuracy
across most datasets after feature selection. NN also
demonstrates strong performance, while DT and K-NN
generally yield lower accuracy.

In summary, our results demonstrate that SSO-MRMR
is not only theoretically efficient but also empirically faster
than competing methods. Future work could explore par-
allelized implementations to further reduce runtime, par-
ticularly for the n?d term in ultra-large datasets. Addi-
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Table 5: Comparative performance of feature selection methods (mean accuracy + SD)

Method Colon Cancer Prostate Tumor Leukemia Lymphoma
SSO-MRMR (Proposed)  0.91 £ 0.02 0.89 +0.03 0.94+0.01 0.93+£0.02
PSO [4] 0.87 £0.03 0.85 £ 0.04 0.90 £0.02 0.88+£0.03
GA [7] 0.85 £0.04 0.82 £0.05 0.88£0.03 0.86+£0.04
AE [§] 0.88 £0.03 0.86 £ 0.04 0.91£0.02 0.89+£0.03

Table 6: Computational efficiency of feature selection methods

Method Complexity per Iteration Runtime (s)
SSO-MRMR (Proposed) O(P x (kN + n?d)) 120 + 15
PSO [6] O(P x N?) 180 + 20
GA [[7] O(T x P x N?) 220 £ 25
AE [§] O(N x L) 150 £ 18

Note: P = population size, [N = total features, d = selected features (d < N), k = neighbors in SSO, n = samples, L = layers in AE, T' = iterations.
Runtime measured on Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz with 16GB RAM, 10-fold CV.

tionally, hybrid approaches combining SSO-MRMR’s ef-
ficiency with AE’s representation power may yield even
more scalable solutions.

Several promising research directions emerge from this
study. First, hybrid feature selection approaches that in-
tegrate MI with deep learning could better capture nonlin-
ear gene interactions while enhancing computational effi-
ciency. Second, the SSO algorithm could be further im-
proved through dynamic parameter adaptation or hybridiza-
tion with other metaheuristics to optimize its performance
in high-dimensional search spaces. Third, expanding val-
idation to multi-omics datasets—incorporating genomic,
transcriptomic, and proteomic data—would rigorously as-
sess the framework’s robustness across biological layers.
For clinical translation, efforts should prioritize develop-
ing interpretable Al models based on the selected biomark-
ers, followed by prospective validation in hospital settings.
Finally, an optimized pipeline for real-time genomic data
analysis could facilitate the transition from research to clin-
ical implementation. Together, these advancements would
address current limitations and accelerate progress toward
precision oncology applications.

References

[1] Mathema V.B., Sen P., Lamichhane S., Oresi¢
M., Khoomrung S., Deep learning facili-
tates multi-data type analysis and predictive
biomarker discovery in cancer precision medicine,
Computational and  Structural Biotechnology
Journal, Volume 21, pp. 1372-1382, 2023.
https://doi.org/10.1016/j.csbj.2023.01.043

[2] Sultana A., Alam M.S., Liu X., Sharma R., Singla
R.K., Gundamaraju R., Shen B., Single-cell RNA-
seq analysis to identify potential biomarkers for di-
agnosis and prognosis of non-small cell lung can-

cer using comprehensive bioinformatics approaches,
Translational Oncology, Volume 27, 101571, 2023.
https://doi.org/10.1016/j.tranon.2022.101571

[3] Cattelani L., Ghosh A., Rintala T.J., Fortino V.,4
comprehensive evaluation framework for bench-
marking multi-objective feature selection in omics-
based biomarker discovery, IEEE/ACM Transac-
tions on Computational Biology and Bioinformat-
ics, Volume 21, Issue 6, pp. 2432-2446, 2024.
https://doi.org/10.1109/TCBB.2024.3480150

[4] Rafie A., Moradi P..A multi-objective gene selec-
tion for cancer diagnosis using particle swarm
optimization —and mutual information, Jour-
nal of Ambient Intelligence and Humanized
Computing, Volume 15, pp. 3777-3793, 2024.
https://doi.org/10.1007/512652-024-04853-4

[5] Zeng Y., He Y., Zheng R., Li M.,Inferring single-
cell gene regulatory mnetwork by non-redundant
mutual  information,  Briefings in Bioinfor-
matics, Volume 24, Issue 5, bbad326, 2023.
https://doi.org/10.1093/bib/bbad326

[6] Xial.,Zhang H., LiR., et al.,Adaptive barebones salp
swarm algorithm with quasi-oppositional learning for
medical diagnosis systems: A comprehensive analy-
sis, Journal of Bionic Engineering, Volume 19, pp.
240-256, 2022. https://doi.org/10.1007/s42235-021-
00114-8

[7] Wang Z., Zhou Y., Takagi T., Song J., Tian Y. S., &
Shibuya T.Genetic algorithm-based feature selection
with manifold learning for cancer classification using
microarray data. BMC bioinformatics, 24(1), 139.
2023. https://doi.org/10.1186/s12859-023-05267-3

[8] Torkey H., Atlam M., El-Fishawy N.,4 novel deep au-
toencoder based survival analysis approach for mi-



Cancer Classification through Gene Selection...

(9]

[10]

[12]

[13]

[14]

[17]

[18]

croarray dataset. Peer] Computer Science, vol. 7, p.
€492, 2021. https://doi.org/10.7717/peerj-cs.492

Oladimeji O.0., Ayaz H., McLoughlin 1., Un-
nikrishnan S.,  Mutual information-based ra-
diomic feature selection with SHAP explain-

ability for breast cancer diagnosis, Results
in Engineering, Volume 24, 103071, 2024.
https://doi.org/10.1016/j.rineng.2024.103071

Cava C., Sabetian S., Salvatore C. et al.Pan-
cancer classification of multi-omics data based
on machine learning models. Netw Model
Anal Health Inform Bioinforma, 13(6), 2024.

https://doi.org/10.1007/s13721-024-00441-w

Hamla H. and Ghanem K. A Hybrid Feature Selec-
tion Based on Fisher Score and SVM-RFE for Mi-
croarray Data. informatica, 48(1), pp 57-68, 2024.
https://doi.org/10.31449/inf.v48i1.4759

Shetty M. V., Jayadevappa D., Tunga S.,Optimized de-

formable model-based segmentation and deep learn-
ing for lung cancer classification, The Journal of
Medical Investigation, Volume 69, Issues 3—4, pp.
244-255,2022. https://doi.org/10.2152/jmi.69.244

Kim J., Yoon Y., Park H.-J., Kim Y.-H., Comparative
study of classification algorithms for various DNA mi-
croarray data, Genes, Volume 13, Issue 3, 494, 2022.
https://doi.org/10.3390/genes 13030494

Algahtani A., Alsubai S., Sha M., Vilcekova
L., Javed T., Cardiovascular Disease Detection
using Ensemble Learning, Computational Intelli-
gence and Neuroscience, 5267498, 9 pages, 2022.
https://doi.org/10.1155/2022/5267498

Khazaee Fadafen M., Rezaee K.,Ensemble-based
multi-tissue classification approach of colorectal can-
cer histology images using a novel hybrid deep learn-
ing framework, Scientific Reports, Volume 13, 8823,
2023. https://doi.org/10.1038/s41598-023-35431-x

Alfian G., Syafrudin M., Fahrurrozi L., Fitriyani N.L.,
Atmaji F.T.D., Widodo T., Bahiyah N., Benes F.,
Rhee J., Predicting breast cancer from risk factors
using SVM and extra-trees-based feature selection
method, Computers, Volume 11, Issue 9, 136, 2022.
https://doi.org/10.3390/computers11090136

Unal H. & Basgiftci F., Evolutionary design of neu-
ral network architectures: a review of three decades
of research. Artificial Intelligence Review, 55, 2022.
https://doi.org/10.1007/s10462-021-10049-5

Kumar S.A., Ananda Kumar T.D., Beeraka N.M., Pu-
jar G.V,, Singh M., Akshatha H.S.N., Bhagyalalitha
M., Machine learning and deep learning in data-
driven decision making of drug discovery and
challenges in high-quality data acquisition in the

[19]

[20]

(21]

[22]

[25]

[26]

[27]

Informatica 49 (2025) 537-550 549

pharmaceutical industry, Future Medicinal Chem-
istry, Volume 14, Issue 4, pp. 245-270, 2021.
https://doi.org/10.4155/fmc-2021-0243

Dwaraka S., Vijaya Lakshmi P., David Donald A.,
Aditya Sai Srinivas T., & Thippanna G., 4 Forest of
Possibilities: Decision Trees and Beyond. Journal of
Advancement in Parallel Computing, 6(3), pp 29-37,
2023. : https://doi.org/10.5281/zenodo.8372196

Ahmed Nadeem M.S., Waseem M.H., Aziz W,
Habib U., Masood A., Attique Khan M.,Hybridizing
artificial neural networks through feature se-
lection based supervised weight initialization
and traditional machine learning algorithms
for improved colon cancer prediction, 1EEE
Access, Volume 12, pp. 97099-97114, 2024.
https://doi.org/10.1109/ACCESS.2024.3422317

Ravinder A., & Sharma S. C. Exploring feature se-
lection and classification algorithms for cardiac ar-
rhythmia disease prediction. WSEAS Transactions
on Biology and Biomedicine, 19, 168—175, 2022.
https://doi.org/10.37394/23208.2022.19.19

Goliatt L., Saporetti C. M., Oliveira L. C., &
Pereira E. Performance of evolutionary op-
timized ~machine learning for modeling to-
tal organic carbon in core samples of shale
gas fields. Petroleum, 10(1), 150-164, 2024.
https://doi.org/10.1016/j.petlm.2023.05.005

Maceika A., Bugajev A., Sostak O. R., &
Vilutiené T. Decision tree and AHP meth-
ods application for projects assessment: A
case study. Sustainability, 13(10), 5502, 2021.

https://doi.org/10.3390/sul13105502

Mijwel M.M. Artificial neural networks ad-
vantages and disadvantages, = Mesopotamian
Journal of Big Data, 2021, pp. 29-31, 2021.
https://doi.org/10.58496/MIBD/2021/006

Ijaz M. F., Alfian G., Syafrudin M., & Rhee J. Hy-
brid prediction model for type 2 diabetes and hyper-
tension using DBSCAN-based outlier detection, syn-
thetic minority over-sampling technique (SMOTE),
and random forest. Applied Sciences, 8(8), 1325,
2018. https://doi.org/10.3390/app8081325

Birzhandi P, Kim K.T., Youn H.Y.,Reduction of
training data for support vector machine: a survey,
Soft Computing, Volume 26, pp. 3729-3742, 2022.
https://doi.org/10.1007/s00500-022-06787-5

Maiza M., Chouraqui S., Cherif C., & Taleb-
Ahmed A. Cancer classification through the se-
lection of genes extracted from microarray data.
Przeglad Elektrotechniczny, 101(4), 71-78, 2025.
https://doi.org/10.15199/48.2025.04.14



550

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

Informatica 49 (2025) 537-550

Anosh B. P. S., Annavarapu C. S. R., Dara
S.,  Clustering-based  hybrid feature selec-
tion approach for high dimensional microar-
ray data, Chemometrics and Intelligent Lab-
oratory Systems, Volume 213, 104305, 2021.
https://doi.org/10.1016/j.chemolab.2021.104305

Li B., Zhang P., Liang S., Ren G.,Feature extrac-
tion and selection for fault diagnosis of gear us-
ing wavelet entropy and mutual information, In:
2008 9th International Conference on Signal Pro-
cessing, Beijing, China, 2008; pp. 2846-2850.
https://doi.org/10.1109/ICOSP.2008.4697740

Sulaiman M.A., Labadin J.,Feature selection based
on mutual information, 9th International Conference
on IT in Asia (CITA), Sarawak, Malaysia, 2015; pp.
1-6. https://doi.org/10.1109/CITA.2015.7349827

Jalali-Najafabadi F., Stadler M., Dand N., et al.,
Application of information theoretic feature se-
lection and machine learning methods for the
development of genetic risk prediction models,
Scientific Reports, Volume 11, 23335, 2021.
https://doi.org/10.1038/s41598-021-00854-x

Khumukcham R., Urikhimbam B.C., Nazrul H.,
Dhruba K. B.,JoMIC: A joint Mi-based filter feature
selection method, Journal of Computational Mathe-
matics and Data Science, Volume 6, 100075, 2023.
https://doi.org/10.1016/j.jcmds.2023.100075

Jain PK., Jain M. & Pamula R., Explaining
and predicting employees attrition:  a machine
learning approach. SN Appl. Sci. 2, 757, 2020.
https://doi.org/10.1007/s42452-020-2519-4

Ginny Y. Wong, Frank H.F. Leung, Sai-Ho
Ling,4 hybrid  evolutionary  preprocessing
method for imbalanced datasets, Information

Sciences, Volumes 454-455,pp 161-177, 2018.
https://doi.org/10.1016/].ins.2018.04.068

Xinteng G., Xinggao L..4 novel effective diag-
nosis model based on optimized least squares
support machine for gene microarray, Applied
Soft Computing, Volume 66, pp 50-59,2018.
https://doi.org/10.1016/j.as0¢.2018.02.009

Houssein E.H., Abdelminaam D.S., Hassan H.N., Al-
Sayed M.M., Nabil E.,4 hybrid barnacles mating op-
timizer algorithm with support vector machines for
gene selection of microarray cancer classification,
IEEE Access, Volume 9, pp. 64895-64905, 2021.
https://doi.org/10.1109/ACCESS.2021.3075942

Giraud C.,Introduction to high-dimensional statis-
tics, 2nd ed. Chapman and Hall/CRC, 2021.
https://doi.org/10.1201/9781003158745

[38] Cherif C.,

C. Cherif et al.

Abdi M.K.,Ahmad A. and Maiza
M.,Predictive approach to the degree of business
process change, International Journal of Computing
and Digital Systems, 14(1), pp. 10505-10513, Dec.
2023. http://dx.doi.org/10.12785/ijcds/1401117

[39] KouL., Yuan Y., Sun J. and Lin Y., Prediction of Can-

cer Based on Mobile Cloud Computing and SVM, In-
ternational Conference on Dependable Systems and
Their Applications (DSA), Beijing, China, pp. 73-76,
2017. https://doi.org/10.1109/DSA.2017.20



	Introduction
	The social spider optimization (SSO)
	Runtime analysis
	Computational complexity

	Gene subset selection
	Mutual information
	Mutual information for feature selection
	Mutual information maximization (MIM)
	Joint mutual information (JMI)
	Max relevance min redundancy (MRMR)

	Feature selection with SSO
	Proposed approach for cancer classification
	Results and discussion
	Conclusion and future work

