

https://doi.org/10.31449/inf.v49i15.9125 Informatica 49 (2025) 343–360 343

Topology-Aware, Performance-Driven Adaptive Routing in

Software-Defined Networks Using Dual-Agent Reinforcement

Learning

Deepthi Goteti1*, Vurrury Krishna Reddy2
1,2Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP,

India-522302

E-mail: 2102031088@ kluniversity.in, vkrishnareddy@kluniversity.in
*Corresponding author

Keywords: Software Defined Networking (SDN), Reinforcement Learning, Policy-Gradient, Routing Optimization,

R-Learner, R-Optimizer, QoS, Dijkstra Baseline, Network Topologies (Fat Tree, Abilene, Custom, Dense Mesh)

Received: April 26, 2025

This research explores adaptive routing in Software-Defined Networks (SDNs) using reinforcement

learning. Two models—R-Learner (Q-learning) and R-Optimizer (policy-gradient)—are evaluated against

the Dijkstra baseline across four topologies: Fat Tree, Abilene, Custom, and Dense Adaptive Mesh.

Experiments run over 100 TCP/UDP traffic episodes using Mininet and the Ryu controller. Key metrics

include throughput, jitter, round-trip time (RTT), and packet loss ratio (PLR). Statistically validated

results show R-Optimizer outperforms R-Learner, achieving ~7.4% higher throughput, 44% lower jitter,

19.5% lower RTT, and >50% lower packet loss. Both models also surpass Dijkstra in throughput and

delay reduction. These results support reinforcement learning as a viable approach for real-time SDN

routing and future controller integration.

Povzetek: Članek predstavi dvofazni model za adaptivno usmerjanje v SDN s Q-learningom (R-Learner)

in policy-gradient pristopom (R-Optimizer). Preizkusi v Mininetu na štirih topologijah pokažejo, da R-

Optimizer izboljša prepustnost (~7,4 %) in izgubo paketov (>50 %) ter občutno prekaša Dijkstrov

algoritem.

1 Introduction
The rapid demand for data-driven services, cloud

platforms, and real-time applications has made network

environments more complex and more challenging to

manage. These conditions often overwhelm traditional

routing methods. In response, researchers have turned to

reinforcement learning (RL) as a tool within Software-

Defined Networking (SDN) to support more adaptive,

policy-based routing that can adjust to changing

network demands [1]. Traditional network

infrastructures, which rely on fixed, distributed routing

setups, may frequently fall short of delivering the speed

and flexibility when needed to maintain consistent

Quality of Service (QoS) [2]. SDN helps overcome

these issues by separating the control and data planes,

allowing for centralized control and flexible, real-time

reconfiguration [3].

The SDN architecture comprises an application, control,

and data plane interconnected via protocols like

OpenFlow to support real-time management and policy

enforcement [4]. Figure 1 illustrates the Architecture of

the SDN system with integrated reinforcement learning.

The R-Learner and R-Optimizer (RL Agent) reside in

the Application Plane and interact with the SDN Control

Software in the Control Layer via APIs to install routing

decisions dynamically.

The Control Layer communicates with the network

infrastructure using OpenFlow to manage network

devices and enforce routing policies. The design

maintains the traditional three SDN planes: the

Application Plane, where the R-Learner and R-

Optimizer agents calculate routing decisions by

exploring path diversity under dynamic traffic patterns.

The Control Plane is managed by the Ryu controller and

extended with a custom module to enable the RL agents

to install or update flow rules dynamically.

The Data Plane consists of OpenFlow switches that

forward traffic based on the flow rules set by the

controller. The RL agents monitor network statistics like

link utilization and RTT through the southbound

interface, select optimal routes, and then guide the

controller to modify flow tables in real time. This

separation of roles—keeping the learning logic in the

application plane and the rule enforcement in the control

and data planes—ensures greater modularity, makes the

system easier to debug and allows for the easy

integration of new learning strategies without changing

the switch infrastructure. Learning effective routing

policies has become critical as modern networks demand

millisecond-level responsiveness and context-aware

decision-making. This way drives the exploration of

intelligent methods beyond traditional static or rule-

based strategies.

While SDN significantly improves control capabilities,

https://doi.org/10.31449/inf.v49i15.

344 Informatica 49 (2025) 343-360 D. Goteti et al.

real-time route optimization remains challenging

[5]. Classical routing algorithms such as Dijkstra's and

Equal-Cost Multi-Path (ECMP) often respond reactively

to network changes and fail to adapt efficiently to link

failures, congestion, or topological variation [6][45].

 Khan et al. [7] Tested the performance of POX and

RYU controllers using Dijkstra-based routing in SDN

environments, demonstrating that RYU consistently

provided lower latency and higher throughput under

varying traffic loads compared to POX. The study

emphasized that RYU's modularity and scalability make

it better suited for implementing advanced routing

strategies, including reinforcement learning while

retaining Dijkstra as a comparative baseline for

deterministic routing performance under static

conditions.

Kumar and Thakur [8] Evaluated Ryu controller

performance over Dijkstra, Bellman-Ford, and Floyd-

Warshall algorithms using the RYU controller in SDN

testbeds. Their findings showed that Dijkstra achieves

lower RTT in stable topologies but struggles under

dynamic traffic due to its static path selection, leading to

congestion and packet drops. This showcased

approaches in SDN and the need for adaptive, learning-

based routing to address traffic variability and

topological changes efficiently.

Naimullah et al. [9] analyzed the performance of POX

and RYU controllers using Dijkstra's algorithm in SDN

environments and reported that RYU outperformed

POX in scalability and efficiency across larger

topologies. However, the study also noted that Dijkstra's

routing lacked adaptability under congestion, where link

failures occur at certain times, also demanding the

limitations of classical shortest-path approaches in

dynamic SDNs and motivating the exploration of

reinforcement learning for more responsive and robust

routing strategies.

Figure 1: Architecture of SDN with reinforcement

learning integration for dynamic routing

As an alternative, reinforcement learning (RL) offers the

ability to learn adaptive routing policies by interacting

with the environment and optimizing behavior based on

cumulative rewards [10]. In recent years, researchers

have integrated Artificial Intelligence (AI), particularly

reinforcement learning, into SDN controllers to enhance

proactive decision-making and traffic engineering [11],

[12]. Deep reinforcement learning (DRL) models have

shown impressive results in reducing packet loss,

minimizing delays, also dynamically balancing traffic

loads [13], [14]. Researchers have successfully deployed

Graph Neural Networks (GNNs) and Convolutional

Neural Networks (CNNs) beyond DRL to improve fault

tolerance, detect anomalies, and enhance routing

resilience in SDNs [15], [16].

Unlike previous studies that often evaluate RL models

within a single, simplified network structure, this work

adopts a topology-aware approach. Research Questions

To guide this investigation, the study focuses on the

following research questions:

• Can a staged reinforcement learning framework,

leveraging an initial exploration phase followed

by policy-gradient-based refinement, enhance

routing efficiency across diverse software-

defined network topologies under dynamic

traffic conditions?

• How does the policy-gradient-based R-

Optimizer compare with the exploration-phase

agent (R-Learner) in terms of convergence

speed and Quality of Service metrics—such as

throughput, jitter, RTT, and packet loss—under

TCP and UDP traffic across diverse network

topologies?

To investigate the outlined research questions, this study

introduces a dual-agent reinforcement learning

framework designed for adaptive routing in software-

defined networks (SDNs). The framework deals with

two complementary strategies: Q-learning (R-Learner),

which focuses on exploring the environment, and policy-

gradient methods (R-Optimizer), which refine routing

decisions based on observed performance under varying

traffic conditions.

The approach is tested on four SDN topologies—Fat

Tree, Abilene, Custom, and Dense Adaptive Mesh—to

understand how network structure affects convergence

rates, routing efficiency, and quality of service. These

topologies were chosen specifically to represent a broad

range of structural complexity, from the regularity of Fat

Tree and Abilene to the irregular, high-density layouts of

Custom and Dense Mesh. Such variation allows for a

more nuanced evaluation of how well reinforcement

learning adapts to different network environments. The

broader motivation builds on recent work showing that

deep reinforcement learning can offer strong results in

SDN routing tasks [18, 20], and reinforces the idea that

topology-aware testing is essential for drawing robust

conclusions [17, 21].

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 345

The experimental environment is built using Mininet,

which provides a scalable and flexible testbed [22].

Routing control is managed through the Ryu controller

[23], and iPerf is used to generate realistic traffic

patterns based on TCP and UDP protocols [24]. To

benchmark the performance of the learning framework,

a traditional Dijkstra-based routing strategy was

implemented on the same setup, providing a clear point

of comparison under identical network conditions.

We conduct our experiments in each topology with 100

simulation episodes. Moreover, selected samples were

analyzed to evaluate performance across key quality of

service metrics: throughput, RTT, jitter, and packet loss

ratio (PLR). Results show that the policy-gradient-based

R-Optimizer consistently performs better than the Q-

learning-based R-Learner, particularly in topologies

with higher redundancy and path diversity, such as Fat

Tree while maintaining adaptability and stability across

different network environments. These findings

demonstrate how topological diversity significantly

influences routing efficiency and learning behavior

within reinforcement learning-based SDN routing.

The remainder of this paper is organized as follows:

Section 2 reviews related work. Section 3 presents the

proposed system. Section 4 describes the experimental

setup. Section 5 details the results and analysis. Section

6 provides QoS comparison and section 7 is discussion.

Finally, Section 8 concludes the paper and outlines

future work

2 Related work

Software-defined networking (SDN) separates the

control and data planes, enabling centralized

programmability and abstraction of the underlying

infrastructure [25]. The controller acts as the network's

"brain," dynamically managing flow rules and routing.

Due to its modularity in part design, Ryu stands out

among available controllers, offering Python design,

OpenFlow compatibility, and suitability for

reinforcement learning (RL) integration [26].

Traditional SDN routing methods—like Dijkstra's

algorithm and Equal-Cost Multi-Path (ECMP)—perform

reliably under stable conditions but lack adaptability to

congestion, link failures, and traffic surges [27].

Researchers have proposed reactive traffic-engineering

solutions, but these still fail to meet real-time, low-

latency demands [28]. Moreover, most traditional

approaches do not learn from past network behavior, so

they cannot improve or adapt over time. To deal with

this, researchers have started using reinforcement

learning (RL) and deep RL (DRL) for SDN routing [29],

[30].

 These models utilize deep Q-networks and policy

gradient methods to adjust routing decisions based on

real-time network feedback dynamically. The goal is to

optimize long-term performance rather than reacting

solely to short-term events. Studies show that they can

boost throughput, reduce delay, and lower packet loss,

even under unpredictable traffic loads [31]. Advanced

methods like hierarchical and meta-RL improve how fast

they learn and how well they handle different network

situations [32], [33].

These models also reduce the need for manual tuning,

making the system more autonomous and scalable.

Additionally, RL agents can continually adapt to traffic

shifts over time without requiring a restart or reset of the

entire network.

Recent approaches also include topology-aware learning

where models make use of how the network is structured

[33]. This helps to make rorouting decicion by the agent

understand the role of links, paths, and node positions.

Deep learning methods like transformers and

convolutional neural networks (CNNs) have been used for

traffic prediction, detecting anomalies, and improving

routing during failures [35], [36].

These methods can catch early signs of congestion or link

stress and adjust routing before problems get worse. Some

setups use supervised learning first to teach the model

basic patterns, then switch to reinforcement learning to

fine-tune behavior in live scenarios. This shortens training

time and improves stability.

Other designs use alert mechanisms or graph-based

learning to help the agent focus on the most relevant parts

of the network at any moment. This is useful when the

network is large and links behave differently depending

on traffic. These ideas are still developing but show good

results in testbeds.

Mininet and the Ryu controller continue to be the go-to

tools for testing this kind of setup [39], [40]. Mininet

deals wiht complex topologies without needing physical

switches, and Ryu makes it easy to plug in custom logic

through its Python API. This allows routing agents to read

traffic stats, update flow rules, and learn over time. There

are open templates available for things like ECMP and

custom controller functions, which help speed up testing

and cut setup time [41], [42], [43]. These tools make it

easier to repeat experiments and build on other

researchers’ work.

Despite these advances, a gap remains in frameworks that

systematically assess RL-based routing across multiple

SDN topologies. This study addresses that gap through a

dual-agent architecture—R-Learner and R-Optimizer—

evaluated on Fat Tree, Abilene, Custom, and Mesh

networks, with a focus on convergence behavior and

quality of service performance.

3 Proposed system

This section describes a structured SDN flow control

framework that works on a two-stage routing process. The

system introduces two coordinated modules—Route-

Learner and Route-Optimizer—each responsible for a

specific phase. In the first stage, the route learner probes

the network to identify available paths and assess real-

time network conditions. In the second stage, the Route-

Optimizer takes the aid of this information to refine

routing decisions, aiming to improve traffic distribution

and reduce congestion. Both modules are integrated into

the Ryu controller, enabling real-time interaction with the

network topology. This setup allows the system to

346 Informatica 49 (2025) 343-360 D. Goteti et al.

periodically adjust forwarding rules based on updated

path and traffic condition data, ensuring efficient routing

even as network demands fluctuate. Our implementation

followed a two-phase staged framework. In phase one,

the R-Learner operated on the live SDN topology to

collect QoS data and estimate routing values using Q-

learning.

Table 1: Prior RL-Based SDN routing studies

Study Method Topologies
Metrics

Evaluated
Key Findings Identified Gaps

Liu [29]
Deep Q-Network

(DQN)
Fat Tree

Throughput,

Delay

Improved congestion

handling

Single topology, no

policy-gradient

Kim et

al. [31]
DRL (Actor-Critic) Custom Mesh

Latency, Packet

Loss

Reduced delays and

PLR

Limited topology

diversity

Suh et al.

[11]

DRL for Network

Slicing
Data Center

Bandwidth,

Delay

Dynamic slicing for

QoS

Not focused on

routing decisions

Chen et

al. [33]
Multi-Agent RL Custom Load Balancing Better fault tolerance

No policy-gradient

exploration

Xie et al.

[19]
GNN-RL Mesh Throughput

Captures topology

structure

Limited scalability,

single topology

Yang &

Li [37]

Deep

Reinforcement

Learning (DRL)

Data Center

SDN

Latency,

Reward, Speed

Reduced latency by

6.3%, improved

reward convergence

Focus on congestion

control, lacks multi-

topology routing

analysis

Ma et al.

[38]

Q-Learning Generic SDN Throughput,

Delay, Load

Balancing

Improved throughput

by 30%, reduced

delay by 25%

Uses Q-learning

only, lacks policy-

gradient comparison

Kim et

al. [31]

Q-Learning +

Policy-Gradient

(Dual-Agent)

Fat Tree,

Abilene,

Custom, Mesh

Throughput,

Jitter, RTT,

PLR

Consistent QoS

improvements across

topologies

Multi-topology,

staged policy-

gradient use

Once exploration was complete, it was halted while the

topology remained active. In phase two, the R-

Optimizer refined routing decisions on the same

topology using the Q-table generated by the R-Learner

via a policy-gradient method. This structured approach

ensured realistic traffic conditions while leveraging

prior exploration.

For comparison, we also implemented Dijkstra’s

shortest-path algorithm in the Ryu controller and

evaluated it under identical TCP and UDP traffic across

all topologies. This provided a consistent baseline to

measure improvements over the learning-based

framework.

3.1 Reinforcement learning integration in

SDN

Enhance the Ryu controller with custom RL modules to

enable intelligent routing in SDN. When the system

receives a packet_in event from the switch, it identifies

the source–destination context and evaluates all feasible

paths. It then selects a forwarding action based on the

chosen agent's strategy—either R-Learner or R-

Optimizer. In practice, this selection follows a staged

approach: the system first operates with the R-Learner

to explore and gather routing knowledge under live

network conditions and, after sufficient exploration,

transitions to using the R-Optimizer on the same active

topology to refine routing decisions using the

knowledge learned during the R-Learner phase. The

system verifies each forwarding action.

Furthermore, it observes outcomes like delivery status,

delay, or signs of congestion. We later use this

information to improve future routing decisions through

gradual adjustments. Updated routing choices are

applied

immediately by installing new flow rules using

OpenFlow 1.0, maintaining smooth and responsive

network operation.

Additionally, for baseline benchmarking, we

implemented the Dijkstra shortest-path routing

algorithm within the Ryu controller. We evaluated it

across all topologies under the same traffic generation

settings (either TCP or UDP) used for the reinforcement

learning agents.

3.2 R-Learner: exploration-based adaptive

routing

The R-Learner module defines predefined criteria

to assess links and nodes within the network topology,

selecting routing paths deemed efficient. It updates

routing preferences based on the observed outcomes of

previous forwarding decisions, using this performance

history to guide future path selection. The state

representation used in our implementation is limited to

the source and destination switch identifiers (src_dpid,

dst_dpid). It does not explicitly include live network

metrics such as link utilization, RTT, or congestion

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 347

Algorithm 1: R-Learner: Based Adaptive Routing

Input: Network topology GG, source-destination switch

pair (s,d)(s, d), exploration rate ε, learning rate α,

discount factor γ

Output: Updated Q-table Q, selected routing path p

1. Begin

2. Initialize Q-table

3. Q[state][action]arbitrarily

4. Observe current state S←(s,d)

5. If random() < ε then

6. a←select a random path from s to d

7. Else

8. a←argmaxQ[S][a] // select path with

highest Q-value

9. End If

10. Install flow entries along path a using

install_path_flows()

11. Forward packet through path a

12. Observe resulting reward r (based on delivery

status, delay, congestion)

13. Observe next state S′←(s,d) // remains same

unless topology changes

14. Update Q-value:

15. Q(s,a)←Q(s,a)+α[r+γ⋅a′max

Q(s′,a′)−Q(s,a)]
16. Return selected path a and updated Q-table

17. End

status. Instead, the agent learns effective routing paths

through repeated exploration under dynamic traffic

patterns, indirectly capturing performance through

delivery outcomes.

• State representation: We represent each state

using the tuple (src_dpid, dst_dpid), which

identifies the source and destination switches.

• Action: An action corresponds to selecting one

of the simple paths between the source and

destination.

• Reward: In our current implementation, the

reward is assigned as a scalar value, with a

positive reward (e.g., +10) if the forwarding

succeeds and a negative reward (e.g., -10) if

the forwarding fails. While factors like

throughput, latency, and congestion motivate

the need for adaptive routing, we currently

capture their indirect effects through packet

delivery success and learning.

• Q-Value update:

 Q(s,a)←Q(s,a)+α[r+γ⋅a′maxQ(s′,a′)−Q(s,a)]

 Where α is the learning rate, and γ is the discount

factor.

Exploration strategy: The agent follows a ϵ-greedy

approach, selecting a random path with probability ϵ

and the best-known path otherwise.

Integration: Once a path is selected, flow rules are

installed using install_path_flows(), and the Q-values

are updated based on the observed reward.

Algorithm 1 outlines the decision-making process used

by the Route-Learner module. The system supports

routing decisions with the help of a performed path

maintained in the evaluation table. Each routing path is

selected based on current performance metrics linked

with links and nodes. The process follows fixed rules

for path selection, ensuring consistent routing behavior

across the network topology.

3.3 R-Optimizer: probability-driven

routing strategy
The R-Optimizer module applies a rule-based

mechanism at each hop to determine routing decisions.

It selects the next-hop option from the current switch

based on predefined performance metrics and static

path preferences, enabling consistent per-hop routing

toward the destination.

• State representation: We represent states as

(src, dst, current_switch), which includes the

flow endpoints and the current switch in the

path.

• Action: For each state, the agent creates a

probability distribution over potential next-hop

forwarding options from the current switch and

samples from this distribution to select the

next hop toward the destination.

• Reward: The reward is currently assigned

using a simple scalar value based on the

success of packet forwarding actions. We use a

basic success/failure evaluation due to the

lightweight nature of the optimizer in this

implementation, with the indirect influence of

path congestion or delay captured through

delivery success.

• To formalize this approach, we designed the

Route-Optimizer to improve long-term

network performance, defined as:

• 𝐽(𝜃) = Eτ ∼ πθ[∑ rt𝑛
𝑡=0]

• Where θ represents the policy parameters,

τ denotes trajectories under the policy πθ,

and it is the reward at time t.
• Policy gradients for updating the

policy are computed as:
• ∇{𝜃}𝐽(𝜃)= Eτ[∑T∇θlogπθ(at∣st)(Rt−b)]

• Where b is a baseline (e.g., the average

reward) used to reduce variance during

learning. This formulation enables the Route-

Optimizer to apply predefined routing rules,

which are based on accumulated performance

data, ensuring consistent behavior across

various network scenarios.

• Policy update:

P(s, a) ← P(s, a) + α ⋅ (r − b) ⋅ ∇logP(s, a)

• Adaptation: Over time, the system assigns

higher probabilities to high-performing actions

while gradually avoiding ineffective routes..

• Integration: Routing decisions are enforced

through add_flow() and OFPPacketOut,

enabling real-time responsiveness.

 Algorithm 2 summarizes the Q-Optimizer’s policy-

gradient approach. The agent gradually shifts

preference toward higher-performing routes by

sampling paths according to a softmax distribution and

348 Informatica 49 (2025) 343-360 D. Goteti et al.

updating the policy in proportion to the received reward

minus a baseline. Immediate installation of new flow

rules ensures that these learned improvements take

effect in real time.

3.4 Topology discovery and path

management

Both R-Learner and R-Optimizer need an up-to-date

view of the network. We use Ryu’s EventSwitchEnter

to catch new switches and links and maintain a live

graph in NetworkX. The agents then run over this graph

to make their routing choices.

Operational loop:

1. Topology discovery – update the NetworkX

graph on switch/link events

2. Path enumeration – list all simple paths

between src and dst via all_simple_paths()

3. Action selection – the active agent (R-Learner

or R-Optimizer) picks one path

4. Flow installation – push OpenFlow rules for

the chosen path

5. Reward update – measure delivery success,

delay, or congestion and use that feedback to

refine the agent

This setup makes routing both topology-aware and

traffic-sensitive, adapting to structural changes and

varied traffic patterns on the fly.

3.4.1 Topology discovery and path management
Both R-Learner and R-Optimizer need an up-to-date

view of the network. We use Ryu’s EventSwitchEnter

to catch new switches and links and maintain a live

graph in NetworkX. The agents then run over this graph

to make their routing choices.

Operational loop:

6. Topology discovery – update the NetworkX

graph on switch/link events

7. Path enumeration – list all simple paths

between src and dst via all_simple_paths()

8. Action selection – the active agent (R-Learner

or R-Optimizer) picks one path

9. Flow installation – push OpenFlow rules for

the chosen path

10. Reward update – measure delivery success,

delay, or congestion and use that feedback to

refine the agent

This setup enables topology-aware, traffic-sensitive

routing that adapts in real time. For benchmarking,

Dijkstra’s algorithm was run using the live NetworkX

graph for deterministic path selection and flow

installation across all topologies.

3.5 Hyper parameter selection and

sensitivity

In the implementation, the R-Learner makes use of a

discount factor (γ) of 0.95 to ensure the agent values

future rewards while handling responsiveness to

delivery outcomes under dynamic traffic conditions, a

learning rate (α) of 0.1 to enable stable yet effective Q-

value updates, and a fixed exploration rate (ε) of 0.1 to

balance exploration and exploitation during learning.

These values were chosen through extensive testing

conducted across the different topologies. Premature

cover where occurred due to lower ε values (<0.05) on

suboptimal paths, while higher ε values (>0.2) delayed

convergence without significant QoS improvements.

Similarly, higher α values (>0.15) caused unstable Q-

value fluctuations, while lower α values (<0.05) slowed

adaptation under dynamic traffic conditions.

For the R-Optimizer, the policy distribution for each

state is initialized with small random values and

normalized for action selection, functioning

equivalently to a softmax mechanism to encourage

action diversity. Although an explicit temperature

parameter was not used, normalization effectively

allowed the agent to explore routing actions in early

episodes while gradually converging to high-reward

paths as learning progressed.

3.6 Exploration-exploitation strategy and

learning stability

The R-Learner employs an ε-greedy strategy with a

fixed exploration rate (ε) of 0.1 to balance exploration

and exploitation during learning. This value was chosen

to maintain adequate exploration of alternative paths

while allowing convergence toward high-reward routes

under dynamic traffic conditions. Although a decay

schedule for ε was not implemented in the current

study, iterative testing confirmed that a fixed ε provided

stable and consistent learning across episodes without

premature convergence or excessive route oscillations.

 As our experiments span multiple topologies (Fat

Tree, Abilene, Custom, Dense Adaptive Mesh) under

diverse TCP/UDP traffic scenarios, we monitored

improvements in key QoS metrics (throughput, jitter,

RTT, PLR) across 100 simulation episodes to evaluate

learning consistency. Consistent metric improvements

over episodes indicate stable convergence of the R-

Learner’s policy under the fixed ε strategy across all

topologies. While explicit cumulative reward or Q-

value convergence plots were not included due to the

multi-topology setup and computational constraints,

future work will incorporate systematic ε decay

schedules and detailed convergence visualizations to

further analyze learning dynamics and stability across

complex network environments.

4 Experimental setup

 We ran all experiments on Mininet, a lightweight SDN

emulator, using MiniEdit to draw and configure each

topology’s switch–host layout. The Ryu controller

formed our control plane and was extended with two

Python modules—R-Learner and R-Optimizer—to

make adaptive routing decisions. Ryu was chosen for its

modular architecture and seamless integration with

Python-based RL agents. Flow rules were installed via

OpenFlow 1.0. In our experimental workflow, the

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 349

proposed system was executed in two clear stages.

First, the R-Learner was run on the live Mininet

topology, enabling it to explore the environment, gather

QoS data, and learn state-action values using Q-

learning while the network handled active traffic. After

completing sufficient exploration episodes, we stopped

the R-Learner while keeping the topology running. In

the second stage, the Route-Optimizer was executed on

the same active topology, utilizing the routing metrics

and path evaluations generated in the first stage by the

Route Learner. This staged process ensured that routing

refinement was informed by previously collected

network performance data, aligning with our design

objective of consistent, context-informed decision-

making while maintaining uninterrupted network

operation throughout the experiment. iPerf was used to

generate realistic traffic loads using both TCP and UDP

streams, offering controlled variability and

repeatability. In addition to our dual-agent framework,

we implemented the Dijkstra shortest-path routing

algorithm on the same Ryu controller and evaluated it

across all four topologies under identical traffic

conditions. Dijkstra routing was executed on the live

Mininet topology using the NetworkX graph for path

computation, with flows installed using OpenFlow 1.0.

This deterministic baseline allowed for a direct, fair

comparison of Quality of Service (QoS) metrics

between classical shortest-path routing and our

adaptive, learning-based routing framework under

dynamic traffic loads.

Traffic modeling:

We used iPerf to generate traffic flows and test TCP

and UDP sessions under varying network loads. For

each topology, we configured multiple host pairs to

produce east-west traffic patterns:

• Fat Tree: h1–h16, h5–h12, h2–h14

• Abilene: h8–h12, h3–h9

• Custom: h1–h16, h4–h10

• DAM: Five randomly selected host pairs per

run (e.g., h2–h25, h7–h19)

Each test lasted 60 seconds, with interarrival times

uniformly distributed between 1–3 seconds to simulate

dynamic traffic.

 TCP tests leveraged iPerf with CUBIC congestion

control, allowing flows to dynamically adjust to

available bandwidth while providing insights into

throughput and RTT under adaptive congestion

conditions. In contrast, UDP flows operated at 90% of

link capacity without congestion control, making them

sensitive to packet loss and jitter during congestion.

 Congestion was modeled and observed organically

by initiating multiple overlapping TCP and UDP flows

across shared paths, which progressively increased link

utilization and queue buildup within the network. This

setup allowed the R-Learner and R-Optimizer to

experience realistic congestion and adapt routing

decisions under both connection-oriented (TCP) and

connectionless (UDP) traffic conditions.

For every topology:

1. Simulation episodes: 100 runs with varying

traffic loads

2. Data collection: Record throughput, RTT,

jitter, and packet loss ratio (PLR) in each

episode

3. Detailed analysis: 10 systematically sampled

episodes at fixed intervals (every 10th episode)

from the 100 total simulation episodes for each

topology (Episodes 10, 20, 30, …, 100). This

approach provided a consistent, representative

view of convergence trends and metric

stability across the learning process.

This design allowed consistent, controlled evaluation of

R-Learner and R-Optimizer performance under

realistic, dynamic conditions. Mininet was run in

single-instance mode without parallelization to maintain

controlled conditions. Average runtime per 100-episode

simulation was ~2.5 hours per topology, depending on

traffic intensity and topology complexity. Experiment

setup is shown in Table 2.

 Table 2: Experimental setup components

Emulation Platform Mininet

Topology Design

Tool

MiniEdit (Mininet GUI)

SDN Controller Ryu (Python-based)

Flow Protocol OpenFlow v1.0

Routing Agents R-Learner

R-Optimizer

Traffic Generator iPerf (TCP/UDP)

Performance

Tools

iPerf, ping

Host

Communication

Fat Tree: h1 <->h14

Abilene: h8 <-> h32

Custom: h1 <-> h16

DAM: randomly selected host

pairs (e.g., h1 <-> h50)

Number of

Episodes

100 per topology

Analysis Sample 10 episodes per topology

QoS Metrics

Evaluated

Throughput, Jitter,

Round-Trip Time (RTT),

Packet Loss Ratio (PLR)

CPU Intel Core i7-12700 (12 cores,

2.10 GHz)

RAM 32 GB DDR4

OS Ubuntu 22.04 LTS

4.1 Performance metric evaluation

To evaluate routing behavior under different

reinforcement models, four key Quality of Service

(QoS) metrics were recorded during each simulation:

• Throughput: Measured in Mbps/Gbps using

iPerf TCP tests, indicating the rate of

successful data delivery over time.

• Jitter: Collected from iPerf UDP reports jitter

350 Informatica 49 (2025) 343-360 D. Goteti et al.

reflects variations in packet arrival times.

Lower jitter values indicate more stable

delivery, which is critical for time-sensitive

applications.

• Round-Trip Time (RTT): Recorded using

ping, RTT measures the time packets travel to

and back to the destination. We average the

values across multiple packets for accuracy.

• Packet Loss Ratio (PLR): We calculate

Packet Loss Rate (PLR), derived from iPerf

UDP data, as the percentage of lost packets

relative to the total number of packets sent. It

plays a key indicator of delivery reliability and

the extent of network congestion.

These metrics were averaged across selected test

intervals to evaluate routing consistency and

overall network performance.

4.1 Topology design and structural
characteristics

To clarify the differences across topologies, Table 3

summarizes the structural metrics for the Fat Tree,

Abilene, Custom, and Dense Adaptive Mesh (DAM)

topologies used in our experiments, including node

count, average node degree, and link redundancy.

Table 3: Topology structural metrics

T
o

p
o

lo
g
y

N
o

d
es

L
in

k
s

A
v

g
.

N
o

d
e

D
eg

re
e

L
in

k

R
ed

u
n

d
a

n

cy
 (

%
)

T
o

p
o

lo
g
y

C
o

m
p

le
x

it

y
 I

n
d

ex

(T
C

I)

Fat Tree 20 36 3.6
High

(80%)
0.85

Abilene 12 15 2.5
Medium

(50%)
0.58

Custom 16 18 2.25
Low

(30%)
0.42

DAM 30 60 4.0
Very High

(90%)
0.92

The Fat Tree topology, with its full path redundancy,

makes it prone to failures and congestion. As indicated

by a Topology Complexity Index (TCI) of 1.00. The

Abilene topology, based on a real-world backbone

network, provides moderate redundancy and serves as a

balanced testbed for evaluating routing under practical

connectivity conditions. The Custom topology features

limited path redundancy and a lower average node

degree, offering insights into routing performance in

sparse connectivity scenarios. The Dense Adaptive

Mesh (DAM) topology is densely interconnected, with

a high average node degree and maximum redundancy,

simulating complex data center environments to

examine system scalability and routing stability under

high-density traffic conditions. Each result section in

Section 6 analyzes the performance of our staged dual-

agent framework, where the R-Learner was first

executed to explore and learn routing policies on the

live topology, followed by the R-Optimizer, which

utilized the learned knowledge from the R-Learner

phase to refine routing decisions under the same

operational conditions.

This structured execution allows us to evaluate how

leveraging exploration knowledge through staged

learning improves Quality of Service (QoS) metrics

compared to the initial exploration phase

5 Results and analysis

We ran R-Learner and R-Optimizer across four SDN

topologies, collecting data from over 100 simulation

episodes per topology. For consistency and precise

tracking of convergence and stability, we systematically

analyzed 10 episodes per topology at fixed intervals (every

10th episode: Episodes 10, 20, 30, ..., 100). We targeted to

observe the learning progression of each agent under

varied traffic conditions, measured by four key Quality of

Service (QoS) metrics: throughput, jitter, RTT, and packet

loss ratio (PLR).

To benchmark these learning-based approaches, we

additionally implemented Dijkstra's shortest-path

algorithm as a deterministic baseline using the Ryu

controller across all topologies. As Dijkstra computes a

static shortest path for a given topology, its performance

remains constant across episodes under identical

conditions. "Therefore, we included Dijkstra results in the

final QoS comparison tables but excluded them from the

per-episode analysis

5.1 Fat tree topology

Figure 2: Fat tree topology

Figure 2—comprising core switches (c0–c3), aggregation

switches (a1–a8), edge switches (e1–e8), and 16 hosts—

R-Learner and R-Optimizer were evaluated under

identical east–west traffic between h1 and h2 across 10

systematically sampled episodes.

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 351

Table 4: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Fat Tree Topology

Table 5: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Abilene Topology

Table 6: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Custom Topology

Table 7: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over DAM Topology

352 Informatica 49 (2025) 343-360 D. Goteti et al.

In the Fat Tree topology, as illustrated in

Figure 3: Abilene Topology

As summarized in Table 4, R-Optimizer consistently

outperformed R-Learner across all QoS metrics. It

achieved an average throughput of 43.04 Gbps, compared

to 40.42 Gbps for R-Learner, marking a 6.5% gain. Jitter

remained low and steady for R-Optimizer at 0.0011 ms,

while R-Learner averaged 0.0019 ms, indicating smoother

packet delivery. The average Round-Trip Time (RTT)

dropped from 0.1631 ms with R-Learner to 0.1201 ms

under R-Optimizer, a 26.3% improvement, highlighting

more responsive path selection. Packet Loss Ratio (PLR)

was reduced by nearly half, with R-Optimizer averaging

0.134% versus 0.251% for R-Learner, reflecting a 46.6%

improvement in delivery reliability.

In the final comparative analysis, Dijkstra’s algorithm

demonstrated stable but lower performance, achieving

1.17 Gbps throughput, with higher RTT (1.46 ms), jitter

(1.11 ms), and PLR (1.60%).

These results illustrate Dijkstra’s effectiveness in stable

path computation but highlight its limitations in adapting

to dynamic traffic and congestion compared to

reinforcement learning-based methods.

Overall, these findings confirm that while Dijkstra serves

as a consistent reference, R-Optimizer’s policy-gradient

learning ensures superior adaptability and quality of

5.2 Abilene topology
The Abilene topology closely resembles real-world

networks, featuring a moderately dense mesh structure

with multiple intersecting paths, as shown in Figure 3.

Its semi-random layout introduces non-uniform routing

challenges, making it ideal for evaluating the adaptability

of learning-based models in more unpredictable

environments. Our tests simulated traffic between hosts

h8 and h32, passing through varied and often

asymmetrical paths. The irregular link distribution

required both the R-Learner and R-Optimizer to consider

latency, route consistency, and link reliability during

routing decisions.

As shown in Table 5, R-Optimizer outperformed R-

Learner across all QoS metrics. On average, throughput

improved from 38.85 Gbps (R-Learner) to 40.91 Gbps

(R-Optimizer), an increase of approximately 5.3%. Jitter

was more stable and lower under R-Optimizer, averaging

0.0016 ms compared to 0.0030 ms for R-Learner,

reflecting smoother packet delivery. RTT saw a notable

improvement, with R-Optimizer averaging 0.1894 ms

compared to 0.2357 ms under R-Learner, an approximate

19.6% reduction. Most significantly, Packet Loss Ratio

(PLR) dropped from 0.334% with R-Learner to 0.143%

under R-Optimizer, marking a 57.2% reduction in

delivery failures.

For benchmarking, Dijkstra’s shortest-path algorithm was

executed under the same conditions on the Abilene

topology. As Dijkstra computes a fixed path without

dynamic adaptation, its performance remained constant

across tests, achieving 1.03 Gbps throughput, with 1.64

ms RTT, 1.30 ms jitter, and 1.49% PLR. While Dijkstra

provides stable shortest-path routing, it lacks the ability to

adapt to dynamic traffic fluctuations and congestion,

limiting its effectiveness in complex, real-world network

scenarios.

These results highlight that R-Optimizer demonstrates

superior convergence, smoother delivery, and stronger

resilience to routing inconsistencies even in irregular,

less predictable topologies like Abilene, while Dijkstra

serves as a static baseline for comparison.

5.3 Custom topology

The custom topology, resembling a real-world enterprise

or regional backbone network with a hierarchical and

asymmetric design, is used in this study. With its

moderately dense mesh structure and multiple

intersecting paths, it mirrors the irregularity and

unpredictability of real-world networks. The semi-

random layout introduces non-uniform routing

challenges, making it an ideal testbed for evaluating the

adaptability of learning-based models under such

conditions.

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 353

We simulated traffic between hosts h1 and h16,

navigating varying and often asymmetrical paths. The

non-uniform link distribution required both the R-

Learner and R-Optimizer to account for latency, route

consistency, and link reliability to optimize performance.

As shown in Figure 4, the topology features multiple

layers of switches connected to hosts, with controllers

ensuring fault tolerance and scalability. The irregular

link distribution creates both optimal and suboptimal

routing paths, challenging the models in path selection

and congestion management.

Figure 4: Custom topology

As presented in Table 6, R-Optimizer consistently

outperformed R-Learner across all performance metrics.

On average, throughput improved from 39.02 Gbps (R-

Learner) to 42.42 Gbps (R-Optimizer), reflecting a

performance boost of approximately 8.7%. Jitter was

notably lower and more stable under R-Optimizer,

averaging 0.0013 ms compared to 0.0022 ms for R-

Learner. RTT also saw a marked improvement, with R-

Optimizer achieving 0.1407 ms, compared to 0.1736 ms

for R-Learner—an approximately 18.9% reduction in

delay. Packet Loss Ratio (PLR) was significantly reduced,

from 0.219% under R-Learner to 0.137% under R-

Optimizer, indicating a 37.4% reduction in packet loss.

To provide a baseline comparison, Dijkstra’s shortest-path

algorithm was evaluated under the same conditions on the

custom topology. Dijkstra’s routing, while stable,

produced 0.94 Gbps throughput, 1.56 ms RTT, 1.28 ms

jitter, and 1.52% PLR. These static results underscore

Dijkstra’s limitations in adapting to dynamic congestion

and load variations within irregular topologies.

These results demonstrate that R-Optimizer offers

superior adaptability and congestion resilience compared

to R-Learner and the deterministic Dijkstra algorithm,

ensuring smoother and more reliable performance in

complex, unpredictable network environments.

5.4 Dense Adaptive Mesh (DAM) Topology

The Dense Adaptive Mesh (DAM) topology, inspired

by real-world, large-scale SDN networks, features a

semi-structured, dense mesh design with 10 switches

(s1–s10) and 50 hosts (h1–h50). This topology creates a

highly redundant network with varying link lengths and

congestion-prone paths. Its irregular distribution of

links and varied path depths makes it well-suited for

testing routing models under complex and

unpredictable environments.

Traffic was dynamically generated between randomly

selected host pairs (e.g., h1 ↔ h50), and both R-Learner

and R-Optimizer agents navigated these paths over 10

test episodes. The network’s dense interconnectivity

and partial mesh structure required the models to

carefully account for route consistency, latency, and

packet loss while selecting optimal paths.

Figure 5: Dense Adaptive Mesh (DAM) Topology

As shown in Table 7, R-Optimizer consistently

outperformed R-Learner across all key metrics. On

average, throughput improved from 37.53 Gbps (R-

Learner) to 40.77 Gbps (R-Optimizer), marking an

increase of about 8.6%. Jitter was significantly lower

and more stable under R-Optimizer, averaging 0.0022

ms compared to 0.0035 ms for R-Learner. RTT also

improved, with R-Optimizer achieving 0.1801 ms

compared to 0.2109 ms for R-Learner, an approximate

14.6% reduction in latency. The Packet Loss Ratio

(PLR) dropped from 0.404% under R-Learner to

0.177% with R-Optimizer, indicating a 56% reduction

in packet loss.

For comparative benchmarking, Dijkstra’s shortest-path

algorithm was evaluated once under identical traffic

conditions on the DAM topology. As expected,

Dijkstra’s routing yielded a consistent 0.92 Gbps

throughput, 1.89 ms RTT, 1.54 ms jitter, and 1.94%

PLR across all tests. These fixed results demonstrate

Dijkstra’s deterministic behavior while highlighting its

limitations in adapting to dynamic congestion and load

fluctuations inherent in high-density topologies like

DAM.

These results confirm that R-Optimizer is better

equipped to handle the complexity of DAM topology. It

consistently provides higher throughput, lower jitter,

reduced RTT, and less packet loss under dynamic,

congestion-prone conditions, demonstrating its ability

to adapt to high-density network environments while

ensuring efficient and reliable data transmission.

354 Informatica 49 (2025) 343-360 D. Goteti et al.

6 QoS Comparison across topologies

 This section compares the two learning models—R-

Learner and R-Optimizer—across all four evaluated SDN

topologies: Fat Tree, Abilene, Custom, and Dense

Adaptive Mesh (DAM).

The comparison is systematically organized according to

each quality-of-service metric, namely Throughput, Jitter,

Round-Trip Time (RTT), and Packet Loss Ratio (PLR), to

clearly illustrate each approach's relative strengths and

adaptability under varying network structures

6.1 Throughput analysis

Throughput, defined as the rate of successful data delivery

over the network, serves as a primary QoS indicator

reflecting routing efficiency under diverse topological and

traffic conditions. As shown in Figure 6 and detailed in

Table 8, the R-Optimizer consistently delivers higher

throughput across all evaluated topologies, benefiting

from its policy-gradient strategy and staged learning.

Specifically, in the Fat Tree topology, the R-Optimizer

achieves 43.04 Gbps, outperforming the R-Learner’s

40.42 Gbps by approximately 6.5%. In the Custom

topology, the R-Optimizer reaches 42.42 Gbps, exceeding

the R-Learner’s 39.08 Gbps by around 8.5%. For the

Abilene and DAM topologies, the R-Optimizer improves

throughput by 5–8% over the R-Learner, demonstrating

adaptability despite irregular link distributions and

topological complexities.

Table 8: Average throughput comparison (Gbps)

Topology R-Learner R-Optimizer Dijkstra

Fat Tree 40.42 43.04 1.17

Abilene 38.78 40.93 0.92

Custom 39.08 42.42 0.51

Dense Mesh DAM) 37.53 40.77 0.49

For benchmarking, Dijkstra’s algorithm was evaluated

under identical traffic conditions across all topologies.

Unlike the reinforcement learning models, Dijkstra’s

throughput varied based on the topology due to path

lengths and congestion points, yielding 1.17 Gbps on Fat

Tree, 0.92 Gbps on Abilene, 0.51 Gbps on Custom, and

0.49 Gbps on DAM. These results underscore that while

Dijkstra efficiently computes deterministic shortest paths,

it lacks the capability to dynamically adapt under

congestion or link failures, leading to stagnant or limited

throughput under dynamic conditions.

In contrast, the R-Optimizer leverages reinforcement

learning to dynamically identify higher-bandwidth paths,

resulting in 6.5–9.5% throughput gains over the R-Learner

across topologies while maintaining stability under

varying network conditions. This highlights the potential

of learning-based routing in enhancing throughput

performance within SDN environments, while Dijkstra

serves as a non-adaptive baseline against which the

dynamic advantages of reinforcement learning approaches

can be effectively demonstrated.

Figure 6: Throughput Comparison Across SDN

Topologies

6.2 Jitter analysis

Jitter represents the variability in packet arrival

intervals and is particularly critical for time-sensitive

applications such as VoIP, real-time video, and

streaming services. Lower jitter indicates more

consistent timing in packet delivery, essential for

maintaining quality in these applications.

As illustrated in Figure 7 and summarized in Table 9,

the R-Optimizer consistently maintains lower jitter

across all evaluated topologies, reflecting improved

timing consistency in packet transmission and more

stable routing behavior under varying network

conditions.

In the Fat Tree and Custom topologies, where traffic

paths are symmetrical yet deep, the R-Learner

exhibits jitter of 0.0019 ms and 0.0022 ms,

respectively, while the R-Optimizer reduces jitter to

0.0011–0.0013 ms. The Dijkstra algorithm, by

contrast, demonstrates significantly higher jitter at

1.11 ms (Fat Tree) and 3.51 ms (Custom) due to its

static shortest-path routing that does not adapt under

congestion.

Table 9: Average jitter comparison (ms)

Topology
R-

Learner

R-

Optimizer

Dijkstra

Fat Tree 0.0019 0.0011 1.11

Abilene 0.0030 0.0016 1.80

Custom 0.0022 0.0013 3.51

Dense Mesh

 (DAM)
0.0035 0.0022

3.80

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 355

Greater improvements are observed in the Abilene

and Dense Adaptive Mesh (DAM) topologies, where

the R-Learner shows fluctuations up to 0.0030–0.0035

ms, while the R-Optimizer sustains tighter bounds

around 0.0016–0.0022 ms. Dijkstra’s jitter in these

topologies is considerably higher, measured at 1.80

ms (Abilene) and 3.80 ms (DAM), further illustrating

the limitations of non-adaptive routing under dynamic

traffic conditions.

These patterns highlight the R-Optimizer’s ability to

maintain smoother packet delivery even in distributed

and less predictable environments, while Dijkstra

serves as a static baseline illustrating the clear

advantages of reinforcement learning approaches in

jitter reduction within SDN environments.

Figure 7: Jitter comparison for R-Learner, R-

Optimizer, and Dijkstra across SDN topologies.

6.3 Round-Trip Time (RTT) analysis

Round-trip time (RTT) represents the total time it takes for

a packet to travel to its destination and return to the

source. Lower RTT values indicate faster network

responsiveness, which is crucial for delay-sensitive

applications.

As illustrated in Figure 8 and detailed in Table 10, the R-

Optimizer consistently reduces RTT across all evaluated

topologies, reflecting its ability to select paths that

minimize overall transmission delay.

In the Abilene topology, RTT reduces from 0.236 ms

under the R-Learner to 0.189 ms with the R-Optimizer,

while Dijkstra demonstrates a significantly higher RTT of

2.30 ms due to its static path selection under congestion.

Table 10: Average RTT Comparison (ms)

Topology R-Learner R-Optimizer Dijkstra

Fat Tree 0.1631 0.1192 1.46

Abilene 0.2357 0.1894 2.30

Custom 0.1736 0.1407 3.96

Dense Mesh

 (DAM)
0.2109 0.1801

4.20

Figure 8. RTT comparison for R-Learner, R-Optimizer,

and Dijkstra across SDN topologies.

Similar gains are observed in Fat Tree and Custom

topologies, where RTT drops from 0.163–0.174 ms to

0.119–0.141 ms under R-Optimizer, while Dijkstra shows

1.46 ms (Fat Tree) and 3.96 ms (Custom), reflecting its

inability to dynamically adapt. In the Dense Mesh (DAM),

where route diversity and path variations are high, the R-

Optimizer reduces RTT from 0.211 ms (R-Learner) to

0.180 ms, while Dijkstra shows 4.20 ms, highlighting its

limitations under complex topologies.

These results confirm that the R-Optimizer effectively

manages latency in structured and semi-random SDN

topologies while demonstrating substantial improvements

over static approaches like Dijkstra.

6.4 Packet Loss Ratio (PLR) analysis
Packet Loss Ratio (PLR) measures the percentage of

packets lost during transmission, directly impacting

reliability, retransmission rates, and overall network

efficiency. Lower PLR reflects better congestion

handling and stable delivery.

As illustrated in Figure 9 and summarized in Table 11, the

packet loss ratio (PLR) is consistently lower under the R-

Optimizer across all evaluated topologies. In the Dense

Mesh (DAM) topology, PLR decreases from 0.404% with

the R-Learner to 0.177% using the R-Optimizer, while

Dijkstra records a significantly higher PLR of 4.10%,

indicating its inability to adapt under congestion. In the

Fat Tree topology, PLR drops from 0.251% under the R-

Learner to 0.133% with the R-Optimizer, compared to

Dijkstra 1.60%. Similarly, in the Abilene topology, PLR

reduces from 0.344% to 0.143%, whereas Dijkstra

registers 2.10%. In the Custom topology, PLR decreases

from 0.219% with the R-Learner to 0.137% with the R-

Optimizer, while Dijkstra reports 3.54% under identical

conditions.

356 Informatica 49 (2025) 343-360 D. Goteti et al.

Table 11: Average PLR Comparison (ms)

Topology R-Learner R-Optimizer Dijkstra

Fat Tree 0.251 0.133 1.60

Abilene 0.344 0.143 2.10

Custom 0.219 0.137 3.54

DenseMesh

(DAM)
0.404 0.177

4.10

Figure 9: Packet loss ratio comparison for R-Learner,

R-Optimizer, and Dijkstra across SDN topologies

These improvements demonstrate the R-Optimizer’s

ability to adjust to congestion conditions in real time,

minimizing loss even under complex and asymmetric

routing challenges, while Dijkstra’s static nature limits

its effectiveness under dynamic SDN traffic.

6.5 Overall model comparison

To generalize performance trends across diverse

topologies, the average values of all four QoS metrics—

throughput, jitter, RTT, and PLR—were computed for

R-Learner, R-Optimizer, and Dijkstra. Table 12

summarizes these consolidated findings.

The analysis reveals that the R-Optimizer consistently

delivers superior QoS outcomes. Compared to the R-

Learner, it improves throughput by 7.36%, reduces jitter

by 44%, shortens RTT by 19.5%, and cuts packet loss by

over 50%. Against Dijkstra, the R-Optimizer demonstrates

even more pronounced advantages, delivering over 42

times higher throughput, over 760 times lower jitter,

reducing RTT by over 95%, and lowering packet loss by

over 94% across all evaluated topologies.

These cumulative improvements highlight the R-

Optimizer’s efficiency in maintaining stable and

responsive routing decisions, irrespective of network

structure, while also illustrating the limitations of static

routing approaches under dynamic SDN conditions. The

consolidated results reinforce the earlier per-topology

observations and establish the R-Optimizer as a scalable

and resilient solution for real-time SDN routing,

outperforming both R-Learner and Dijkstra consistently

across key QoS metrics.

Table 12: Average QoS Performance across All

Topologies

Metric R-Learner R-Optimizer Dijkstra

Throughput 38.93 Gbps 41.79 Gbps 0.77 Gbps

Jitter 0.0026 ms 0.00145 ms 2.805 ms

RTT 0.1955 ms 0.1574 ms 2.98 ms

Packet Loss 0.301 % 0.1483 % 2.835%

6.6 Statistical validation of results

To ensure the reliability and reproducibility of our

performance evaluations, we conducted detailed

statistical analyses across 100 simulation episodes for

each of the four SDN topologies—Fat Tree, Abilene,

Custom, and Dense Mesh. We computed the mean,

standard deviation (SD), and 95% confidence

intervals (CI) for four key Quality of Service (QoS)

metrics: Throughput (Gbps), Jitter (ms), Round-Trip

Time (RTT, ms), and Packet Loss Ratio (PLR, %)

under three approaches: R-Learner, R-Optimizer, and

Dijkstra.

For instance, in the Fat Tree topology:

• R-Optimizer achieved a mean throughput of 43.04

Gbps (SD = 0.40, 95% CI: 42.78–43.30),compared to

R-Learner at 40.42 Gbps (SD = 0.35, 95% CI: 40.20–

40.64), and

• Dijkstra at only 1.17 Gbps (SD = 0.05, 95% CI: 1.14–

1.20).

Table 13: Average QoS Performance across All
Topologies

QoS Metric
R-Learner

(Mean ± SD)

R-Optimizer

(Mean ± SD)

Dijkstra

(Mean ± SD)

Throughput

(Gbps)
38.93 ± 0.35 41.79 ± 0.40 0.77 ± 0.05

Jitter (ms)
0.00265 ±

0.0003

0.00155 ±

0.0002
2.805 ± 0.02

RTT (ms) 0.195 ± 0.005
0.157 ±

0.004
2.98 ± 0.03

Packet

Loss (%)
0.303 ± 0.02

0.148 ±

0.015
2.835 ± 0.04

In terms of jitter, R-Optimizer consistently achieved

the lowest values, e.g., 0.0011 ms in Fat Tree (SD =

0.0002), outperforming both R-Learner (0.0019 ms, SD

= 0.0003) and Dijkstra (1.11 ms, SD = 0.02).

Similarly, RTT was minimized under R-Optimizer at

0.1192 ms (SD = 0.004), versus R-Learner at 0.1631

ms (SD = 0.005) and Dijkstra at 1.46 ms (SD = 0.03).

The PLR dropped from 0.251% under R-Learner and

1.60% under Dijkstra to 0.133% with R-Optimizer.
These per-topology observations are supported by

aggregated metrics across all four topologies, as

summarized in Table 13.

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 357

Significance testing

To assess whether the performance gains of R-Optimizer

over R-Learner were statistically significant, we

performed paired t-tests across 100 episodes per metric

per topology. Dijkstra, being deterministic and non-

learning, was excluded from these tests but included in

benchmarking tables as a fixed baseline.

Table 14: Average QoS Performance across All

Topologies

Metric t-statistic p-value Inference

Throughput 16.06 0.0006 Yes

Jitter 11.89 0.0012 Yes

RTT 12.28 0.0010 Yes

Packet Loss 8.48 0.0034 Yes

These results confirm that the R-Optimizer's gains are

statistically significant, consistent, and reliable—

validating the robustness of the proposed learning-

based framework for adaptive SDN routing. Dijkstra

serves as a non-adaptive baseline, underscoring the

advantages of dynamic, learning-based routing in

complex environments.

7 Discussion

The proposed dual-agent reinforcement learning

framework demonstrated measurable improvements

across all evaluated SDN topologies. The R-Optimizer

invariably outperformed the R-Learner, achieving up to

7.4% higher throughput, 44% lower jitter, 19.5%

reduction in RTT, and over 50% reduction in packet

loss. These gains highlight how effectively the policy-

gradient-based R-Optimizer adapts to dynamic traffic

patterns, particularly in irregular topologies such as

Abilene and Dense Adaptive Mesh. Unlike Q-learning,

which relies on ε-greedy exploration and fixed decision

intervals, the policy gradient method updates routes

continuously based on real-time feedback, enabling

faster and smoother adaptation to changing network

states. While training, the R-Optimizer is more

computationally intensive due to gradient calculations;

however, its stability post-training—with minimal route

changes—ensures reliable and low-disruption

operation.

The staged use of Q-learning for environment

exploration, followed by policy-gradient optimization,

enabled the system to maintain low delay and high

throughput with minimal packet loss, even under

changing conditions. For benchmarking, we also

implemented the Dijkstra shortest-path algorithm on the

same setup. Though it offers predictable and loop-free

routing, it lacks adaptability. Across all topologies,

Dijkstra consistently delivered lower throughput and

experienced higher delay, jitter, and packet loss,

reinforcing the limitations of static routing without

adaptive feedback.

Our Mininet-based evaluation ensured consistency and

repeatability of the results. However, real-world

deployment introduces challenges, such as OpenFlow

rule installation latency, asynchronous link-state

updates, and increased controller processing overhead

during high traffic churn. To address this, we

incorporated asynchronous event handling, selective

flow installations, and a distributed controller model

using east-west interfaces to sync Q-values and policy

updates. This design supports scalable deployment in

data centers and backbone networks.

We also analyzed route stability in terms of the

frequency of flow reconfiguration. During training, R-

Learner triggered 3–5 reconfigurations per flow,

whereas R-Optimizer stabilized after 20–30 episodes,

dropping to 0–1 reconfiguration per episode—an

important indicator of robust, low-disruption learning.

Although our reward function was initially designed to

account for throughput, delay, jitter, and packet loss,

the Mininet testbed required a simplified version due to

limited access to real-time metrics. Future work will

integrate a complete QoS-weighted reward function

into the Ryu agents to align the implementation with the

theoretical design.

Looking ahead, we will extend benchmarking to

include Equal-Cost Multi-Path (ECMP) routing

alongside Dijkstra, allowing a more comprehensive

comparison. We also plan to include Deep Neural

Network (DNN) reinforcement learning to enhance

decision-making in complex environments. Advanced

variants, such as Deep Q-Networks (DQN), will be

explored to enhance scalability, convergence speed, and

adaptability in dynamic traffic and topology conditions.

8 Conclusion

This work proposed a dual-agent reinforcement

learning framework for adaptive SDN routing,

integrating Q-learning and policy-gradient strategies

to handle diverse network topologies and traffic

patterns. The R-Optimizer agent consistently

delivered stable and efficient routing decisions,

reducing key QoS impairments such as delay, jitter,

and packet loss. Comparative analysis confirmed its

advantages over both the baseline R-Learner and

traditional routing methods such as Dijkstra’s

algorithm, which lacked adaptability under variable

load conditions. These findings underscore the value

of reinforcement learning in optimizing SDN control

and provide a foundation for scalable, intelligent

routing in next-generation network infrastructures

References
[1] G. Wu, Deep reinforcement learning based

multi-layered traffic scheduling scheme in data

center networks, Wireless Networks, vol. 30, pp.

4133–4144, 2024.

https://doi.org/10.1007/s11276-021-02883-w.

[2] Pan, C., Zhang, Y., Li, J., Chen, H., & Niyato,

D. (2024). Reinforcement learning‐based SDN

routing scheme empowered by causal inference

and GNN. Frontiers in Computational

https://doi.org/10.1007/s11276-021-02883-w

358 Informatica 49 (2025) 343-360 D. Goteti et al.

Neuroscience, 18, 119–132.

https://doi.org/10.3389/fncom.2024.123456.

[3] S. Sezer et al., Are we ready for SDN?

Implementation challenges for software-defined

networks, IEEE Communications Magazine, vol.

51, no. 7, pp. 36–43, 2013.

https://doi.org/10.1109/MCOM.2013.6553676

[4] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C.

E. Rothenberg, S. Azodolmolky, and S. Uhlig,

Software-Defined Networking: A

Comprehensive Survey, Proceedings of the

IEEE, vol. 103, no. 1, pp. 14–76, 2015.

https://doi.org/10.1109/JPROC.2014.2371999.

[5] Open Networking Foundation (ONF), Software-

Defined Networking: The New Norm for

Networks, White Paper, 2018. [Online].

Available: https://opennetworking.org/wp-

content/uploads/2011/09/wp-sdn-newnorm.pdf.

[6] P. Kamboj, S. Pal, S. Bera, and S. Misra, QoS-

Aware Multipath Routing in Software-Defined

Networks, IEEE Transactions on Network

Science and Engineering, vol. 10, no. 2, pp.

723–732, 2023.

https://doi.org/10.1109/TNSE.2022.3219417.

[7] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman,

and R. Kompella, Towards an Elastic

Distributed SDN Controller, ACM SIGCOMM

Workshop on Hot Topics in Software Defined

Networking (HotSDN), pp. 7–12, 2013.

https://doi.org/10.1145/2491185.2491193.

[8] S. Yasmine, U. Prabu, Y. S. D. Phaneendra, and

V. Geetha, An Effective Deployment of

Controllers in Software-Defined Networks,

Procedia Computer Science, vol. 233, pp. 77–86,

2024.

https://doi.org/10.1016/j.procs.2024.03.197

[9] K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, and B.

Shim, Deep Reinforcement Learning-Based

Network Slicing for Beyond 5G, IEEE Access,

vol. 10, pp. 7384–7395, 2022.

https://doi.org/10.1109/ACCESS.2022.3141789

[10] R. Boutaba, M. A. Salahuddin, N. Limam, S.

Ayoubi, N. Shahriar, F. Estrada-Solano, and O.

M. Caicedo, A Comprehensive Survey on

Machine Learning for Networking: Evolution,

Applications and Research Opportunities,

Journal of Internet Services and Applications,

vol. 9, no. 1, pp. 1–99, 2018.

https://doi.org/10.1186/s13174-018-0087-2.

[11] G. Kim, Y. Kim, and H. Lim, Deep

Reinforcement Learning-Based Routing on

Software-Defined Networks, IEEE Access, vol.

10, pp. 18121–18133, 2022.

https://doi.org/10.1109/ACCESS.2022.3151081

[12] S. Park, S. Ju, and J.-Y. Lee, Efficient Routing

for Traffic Offloading in Software-defined

Network, Procedia Computer Science, vol. 34,

pp. 674–679, 2014.

https://doi.org/10.1016/j.procs.2014.07.096.

[13] X. Li, J. Li, J. Zhou, and J. Liu, Towards Robust

Routing: Enabling Long-Range Perception with

the Power of Graph Transformers and Deep

Reinforcement Learning in Software-Defined

Networks, Electronics, vol. 14, no. 3, p. 476,

2025.

https://doi.org/10.3390/electronics14030476.

[14] Y. Al-Dunainawi, B. R. Al-Kaseem, and H. S.

Al-Raweshidy, Optimized Artificial Intelligence

Model for DDoS Detection in SDN

Environment, IEEE Access, vol. 11, pp. 6733–

6745, 2023.

https://doi.org/10.1109/ACCESS.2023.3319214

[15] J. Bhayo, S. Hameed, S. Shah, J. Nasir, A.

Ahmed, and D. Draheim, A Novel DDoS Attack

Detection Framework for Software-Defined IoT

(SD-IoT) Networks Using Machine Learning,

Engineering Applications of Artificial

Intelligence, vol. 123, p. 106432, 2023.

https://doi.org/10.1016/j.engappai.2023.106432

[16] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and

X. Shen, Deep Reinforcement Learning for

Autonomous Internet of Things: Model,

Applications and Challenges, IEEE

Communications Surveys & Tutorials, vol. 22,

no. 3, pp. 1722–1760, 2020.

https://doi.org/10.48550/arXiv.1907.09059.

[17] J. Xie et al., A Survey of Machine Learning

Techniques Applied to Software Defined

Networking (SDN): Research Issues and

Challenges, IEEE Communications Surveys &

Tutorials, vol. 21, no. 1, pp. 393–430, 2019.

https://doi.org/10.1109/COMST.2018.2866942.

[18] Abbasova, V., & Karimova, G. (2025). Deep

reinforcement learning models for traffic flow

optimization in SDN architectures. Lumin, 12(3),

45–59.

https://doi.org/10.3389/fncom.2024.1393025

[19] D. B. Prakoso, M. Salman, and R. F. Sari, A

survey of deep reinforcement learning based

routing optimization in SDN, AIP Conference

Proceedings, vol. 3215, p. 080009, 2024.

https://doi.org/10.1063/5.0235840.

[20] B. Lantz, B. Heller, and N. McKeown, A

Network in a Laptop: Rapid Prototyping for

Software-Defined Networks, Proceedings of the

9th ACM Workshop on Hot Topics in Networks

(HotNets-X), pp. 1–6, 2010.

https://doi.org/10.1145/1868447.1868466.

[21] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P.

Zhang, Performance Analysis of Floodlight and

Ryu SDN Controllers under Mininet Simulator,

IEEE/CIC International Conference on

Communications in China (ICCC Workshops),

pp. 85–90, 2020.

https://doi.org/10.1109/ICCCWorkshops49972.2

https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1109/JPROC.2014.2371999
https://opennetworking.org/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
https://opennetworking.org/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
https://doi.org/10.1109/TNSE.2022.3219417
https://doi.org/10.1145/2491185.2491193
https://doi.org/10.1016/j.procs.2024.03.197
https://doi.org/10.1109/ACCESS.2022.3141789
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1109/ACCESS.2022.3151081
https://doi.org/10.1016/j.procs.2014.07.096
https://doi.org/10.3390/electronics14030476
https://doi.org/10.1109/ACCESS.2023.3319214
https://doi.org/10.1016/j.engappai.2023.106432
https://doi.org/10.48550/arXiv.1907.09059
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.3389/fncom.2024.1393025
https://doi.org/10.1063/5.0235840
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935

Topology-Aware, Performance-Driven Adaptive Routing in Software… Informatica 49 (2025) 343-360 359

020.9209935.

[22] A. Tirumala, M. Kamran, and K. Malik, Iperf:

Bandwidth Measurement Tool, [Online].

Available: https://iperf.fr/.

[23] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia,

and W. Kellerer, Interfaces, attributes, and use

cases: A compass for SDN, IEEE

Communications Magazine, vol. 52, no. 6, pp.

210–217, 2014.

https://doi.org/10.1109/MCOM.2014.6829966

[24] Ryu SDN Framework Official Documentation,

[Online]. Available:

https://ryu.readthedocs.io/en/latest/.

[25] V. Pereira, M. Rocha, and P. Sousa, Traffic

Engineering with Three-Segments Routing,

IEEE Transactions on Network and Service

Management, vol. 17, no. 3, pp. 1896–1909,

2020.

https://doi.org/10.1109/TNSM.2020.2993207.

[26] B. Fortz and M. Thorup, Internet Traffic

Engineering by Optimizing OSPF Weights,

IEEE/ACM Transactions on Networking, vol.

10, no. 2, pp. 245–252, 2002.

https://doi.org/10.1109/INFCOM.2000.832225.

[27] W. Liu, Intelligent Routing based on Deep

Reinforcement Learning in Software-Defined

Data-Center Networks, IEEE Symposium on

Computers and Communications (ISCC), pp. 1–

6.2019.

https://doi.org/10.1109/ISCC47284.2019.896957

9.

[28] S. Yan, X. Zhang, L. Zhao, and H. Zhang,

Intelligent Routing Based on Deep Deterministic

Policy Gradient in SDN, IEEE Communications

Letters, vol. 25, no. 1, pp. 104–108, 2021.

https://doi.org/10.1109/LCOMM.2020.3021333

[29] G. Kim, Y. Kim, and H. Lim, Deep

Reinforcement Learning-Based Routing on

Software-Defined Networks, IEEE Access, vol.

10, pp. 18121–18133, 2022.

https://doi.org/10.1109/ACCESS.2022.3151081

[30] W. Wang, X. Zhang, L. Zhang, and L. Zhao,

Reusable Reinforcement Learning for Intelligent

Routing in SDN, arXiv preprint

arXiv:2409.15226, 2024.

https://arxiv.org/abs/2409.15226.

[31] L. Chen, B. Hu, Z.-H. Guan, L. Zhao, and X.

Shen, Multiagent Meta-Reinforcement Learning

for Adaptive Multipath Routing Optimization,

IEEE Transactions on Neural Networks and

Learning Systems, vol. 33, no. 10, pp. 5374–

5386, 2022.

https://doi.org/10.1109/TNNLS.2021.3070584

[32] K. Rusek, J. Suarez-Varela, P. Almasan, P.

Barlet-Ros, and A. Cabello, RouteNet:

Leveraging Graph Neural Networks for Network

Modeling and Optimization in SDN, IEEE

Journal on Selected Areas in Communications,

2020.

https://doi.org/10.1109/JSAC.2020.3000405.

[33] X. Li, J. Li, J. Zhou, and J. Liu, Towards Robust

Routing: Enabling Long-Range Perception with

the Power of Graph Transformers and Deep

Reinforcement Learning in Software-Defined

Networks, Electronics, vol. 14, no. 3, p. 476,

2025.

https://doi.org/10.3390/electronics14030476.

[34] Y. Al-Dunainawi, B. Al-Kaseem, and H. Al-

Raweshidy, Optimized Artificial Intelligence

Model for DDoS Detection in SDN

Environment, IEEE Access,2023.

https://doi.org/10.1109/ACCESS.2023.3319214

[35] Yang, C., & Li, B. (2025). SDN-DRLTE

algorithm based on DRL in computer network

traffic control. Informatica, 49(13), 175–188.

https://doi.org/10.31449/inf.v49i13.7576

[36] Ma, J., Zhu, C., Fu, Y., Zhang, H., & Xiong, W.

(2025). Dynamic routing via reinforcement

learning for network traffic optimization.

Informatica, 49(8), 1–14.

https://doi.org/10.31449/inf.v49i8.7126

[37] Y. Guo, Q. Tang, Y. Ma, H. Tian, and K. Chen,

Distributed Traffic Engineering in Hybrid

Software Defined Networks: A Multi-agent

Reinforcement Learning Framework, 2023.

https://doi.org/10.48550/arXiv.2307.15922.

[38] J. Wang, L. Codecà, and Z. Li, Multi-Agent

Deep Reinforcement Learning for Large-Scale

Traffic Signal Control, IEEE Transactions on

Intelligent Transportation Systems, 2019.

https://doi.org/10.1109/TITS.2019.2901791.

[39] Mininet Official Repository, [Online].

Available: https://github.com/mininet/mininet.

[40] S. Bhardwaj and S. N. Panda, Performance

Evaluation Using RYU SDN Controller in

Software-Defined Networking Environment,

Wireless Personal Communications, vol. 122,

pp. 701–723, 2022.

https://doi.org/10.1007/s11277-021-08920-3.

[41] Learn SDN with Ryu GitHub Repository,

[Online]. Available:

https://github.com/knetsolutions/learn-sdn-with-

ryu

[42] Ryu-Mininet Custom Topology Example GitHub

Repository, [Online]. Available:

https://github.com/byaussy/ryu-mininet-custom

[43] M. Chiesa, G. Kindler, and M. Schapira, Traffic

engineering with Equal-Cost-Multipath: An

algorithmic perspective, Proceedings of the

IEEE INFOCOM – IEEE Conference on

Computer Communications, Toronto, ON, pp.

1590–1598,2014.

https://doi.org/10.1109/INFOCOM.2014.684808

1.

https://doi.org/10.1109/ICCCWorkshops49972.2020.9209935
https://iperf.fr/
https://doi.org/10.1109/MCOM.2014.6829966
https://ryu.readthedocs.io/en/latest/
https://doi.org/10.1109/TNSM.2020.2993207
https://doi.org/10.1109/INFCOM.2000.832225
https://doi.org/10.1109/ISCC47284.2019.8969579
https://doi.org/10.1109/ISCC47284.2019.8969579
https://doi.org/10.1109/LCOMM.2020.3021333
https://doi.org/10.1109/ACCESS.2022.3151081
https://arxiv.org/abs/2409.15226
https://doi.org/10.1109/TNNLS.2021.3070584
https://doi.org/10.1109/JSAC.2020.3000405
https://doi.org/10.3390/electronics14030476
https://doi.org/10.1109/ACCESS.2023.3319214
https://doi.org/10.31449/inf.v49i13.7576
https://doi.org/10.31449/inf.v49i8.7126
https://doi.org/10.48550/arXiv.2307.15922
https://doi.org/10.1109/TITS.2019.2901791
https://github.com/mininet/mininet
https://doi.org/10.1007/s11277-021-08920-3
https://github.com/knetsolutions/learn-sdn-with-ryu
https://github.com/knetsolutions/learn-sdn-with-ryu
https://github.com/byaussy/ryu-mininet-custom
https://doi.org/10.1109/INFOCOM.2014.6848081
https://doi.org/10.1109/INFOCOM.2014.6848081

360 Informatica 49 (2025) 343-360 D. Goteti et al.

