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This research explores adaptive routing in Software-Defined Networks (SDNs) using reinforcement 

learning. Two models—R-Learner (Q-learning) and R-Optimizer (policy-gradient)—are evaluated against 

the Dijkstra baseline across four topologies: Fat Tree, Abilene, Custom, and Dense Adaptive Mesh. 

Experiments run over 100 TCP/UDP traffic episodes using Mininet and the Ryu controller. Key metrics 

include throughput, jitter, round-trip time (RTT), and packet loss ratio (PLR). Statistically validated 

results show R-Optimizer outperforms R-Learner, achieving ~7.4% higher throughput, 44% lower jitter, 

19.5% lower RTT, and >50% lower packet loss. Both models also surpass Dijkstra in throughput and 

delay reduction. These results support reinforcement learning as a viable approach for real-time SDN 

routing and future controller integration. 

Povzetek: Članek predstavi dvofazni model za adaptivno usmerjanje v SDN s Q-learningom (R-Learner) 

in policy-gradient pristopom (R-Optimizer). Preizkusi v Mininetu na štirih topologijah pokažejo, da R-

Optimizer izboljša prepustnost (~7,4 %) in izgubo paketov (>50 %) ter občutno prekaša Dijkstrov 

algoritem. 

 
 

1 Introduction 
The rapid demand for data-driven services, cloud 

platforms, and real-time applications has made network 

environments more complex and more challenging to 

manage. These conditions often overwhelm traditional 

routing methods. In response, researchers have turned to 

reinforcement learning (RL) as a tool within Software-

Defined Networking (SDN) to support more adaptive, 

policy-based routing that can adjust to changing 

network demands [1]. Traditional network 

infrastructures, which rely on fixed, distributed routing 

setups, may frequently fall short of delivering the speed 

and flexibility when needed to maintain consistent 

Quality of Service (QoS) [2]. SDN helps overcome 

these issues by separating the control and data planes, 

allowing for centralized control and flexible, real-time 

reconfiguration [3]. 

The SDN architecture comprises an application, control, 

and data plane interconnected via protocols like 

OpenFlow to support real-time management and policy 

enforcement [4]. Figure 1 illustrates the Architecture of 

the SDN system with integrated reinforcement learning. 

The R-Learner and R-Optimizer (RL Agent) reside in 

the Application Plane and interact with the SDN Control 

Software in the Control Layer via APIs to install routing 

decisions dynamically.  

The Control Layer communicates with the network 

infrastructure using OpenFlow to manage network 

devices and enforce routing policies. The design 

maintains the traditional three SDN planes: the 

Application Plane, where the R-Learner and R-

Optimizer agents calculate routing decisions by 

exploring path diversity under dynamic traffic patterns. 

The Control Plane is managed by the Ryu controller and 

extended with a custom module to enable the RL agents 

to install or update flow rules dynamically. 

The Data Plane consists of OpenFlow switches that 

forward traffic based on the flow rules set by the 

controller. The RL agents monitor network statistics like 

link utilization and RTT through the southbound 

interface, select optimal routes, and then guide the 

controller to modify flow tables in real time. This 

separation of roles—keeping the learning logic in the 

application plane and the rule enforcement in the control 

and data planes—ensures greater modularity, makes the 

system easier to debug and allows for the easy 

integration of new learning strategies without changing 

the switch infrastructure. Learning effective routing 

policies has become critical as modern networks demand 

millisecond-level responsiveness and context-aware 

decision-making. This way drives the exploration of 

intelligent methods beyond traditional static or rule-

based strategies.  

While SDN significantly improves control capabilities, 
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real-time route optimization remains challenging 

[5]. Classical routing algorithms such as Dijkstra's and 

Equal-Cost Multi-Path (ECMP) often respond reactively 

to network changes and fail to adapt efficiently to link 

failures, congestion, or topological variation [6][45]. 

 Khan et al. [7] Tested the performance of POX and 

RYU controllers using Dijkstra-based routing in SDN 

environments, demonstrating that RYU consistently 

provided lower latency and higher throughput under 

varying traffic loads compared to POX. The study 

emphasized that RYU's modularity and scalability make 

it better suited for implementing advanced routing 

strategies, including reinforcement learning while 

retaining Dijkstra as a comparative baseline for 

deterministic routing performance under static 

conditions. 

Kumar and Thakur [8] Evaluated Ryu controller 

performance over Dijkstra, Bellman-Ford, and Floyd-

Warshall algorithms using the RYU controller in SDN 

testbeds. Their findings showed that Dijkstra achieves 

lower RTT in stable topologies but struggles under 

dynamic traffic due to its static path selection, leading to 

congestion and packet drops. This showcased 

approaches in SDN and the need for adaptive, learning-

based routing to address traffic variability and 

topological changes efficiently. 

Naimullah et al. [9] analyzed the performance of POX 

and RYU controllers using Dijkstra's algorithm in SDN 

environments and reported that RYU outperformed 

POX in scalability and efficiency across larger 

topologies. However, the study also noted that Dijkstra's 

routing lacked adaptability under congestion, where link 

failures occur at certain times, also demanding the 

limitations of classical shortest-path approaches in 

dynamic SDNs and motivating the exploration of 

reinforcement learning for more responsive and robust 

routing strategies.

 

Figure 1: Architecture of SDN with reinforcement 

learning integration for dynamic routing 

 

As an alternative, reinforcement learning (RL) offers the 

ability to learn adaptive routing policies by interacting 

with the environment and optimizing behavior based on 

cumulative rewards [10]. In recent years, researchers 

have integrated Artificial Intelligence (AI), particularly 

reinforcement learning, into SDN controllers to enhance 

proactive decision-making and traffic engineering [11], 

[12]. Deep reinforcement learning (DRL) models have 

shown impressive results in reducing packet loss, 

minimizing delays, also dynamically balancing traffic 

loads [13], [14]. Researchers have successfully deployed 

Graph Neural Networks (GNNs) and Convolutional 

Neural Networks (CNNs) beyond DRL to improve fault 

tolerance, detect anomalies, and enhance routing 

resilience in SDNs [15], [16]. 

Unlike previous studies that often evaluate RL models 

within a single, simplified network structure, this work 

adopts a topology-aware approach. Research Questions 

To guide this investigation, the study focuses on the 

following research questions: 

• Can a staged reinforcement learning framework, 

leveraging an initial exploration phase followed 

by policy-gradient-based refinement, enhance 

routing efficiency across diverse software-

defined network topologies under dynamic 

traffic conditions? 

• How does the policy-gradient-based R-

Optimizer compare with the exploration-phase 

agent (R-Learner) in terms of convergence 

speed and Quality of Service metrics—such as 

throughput, jitter, RTT, and packet loss—under 

TCP and UDP traffic across diverse network 

topologies? 

To investigate the outlined research questions, this study 

introduces a dual-agent reinforcement learning 

framework designed for adaptive routing in software-

defined networks (SDNs). The framework deals with 

two complementary strategies: Q-learning (R-Learner), 

which focuses on exploring the environment, and policy-

gradient methods (R-Optimizer), which refine routing 

decisions based on observed performance under varying 

traffic conditions.  

The approach is tested on four SDN topologies—Fat 

Tree, Abilene, Custom, and Dense Adaptive Mesh—to 

understand how network structure affects convergence 

rates, routing efficiency, and quality of service. These 

topologies were chosen specifically to represent a broad 

range of structural complexity, from the regularity of Fat 

Tree and Abilene to the irregular, high-density layouts of 

Custom and Dense Mesh. Such variation allows for a 

more nuanced evaluation of how well reinforcement 

learning adapts to different network environments. The 

broader motivation builds on recent work showing that 

deep reinforcement learning can offer strong results in 

SDN routing tasks [18, 20], and reinforces the idea that 

topology-aware testing is essential for drawing robust 

conclusions [17, 21].  
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The experimental environment is built using Mininet, 

which provides a scalable and flexible testbed [22]. 

Routing control is managed through the Ryu controller 

[23], and iPerf is used to generate realistic traffic 

patterns based on TCP and UDP protocols [24]. To 

benchmark the performance of the learning framework, 

a traditional Dijkstra-based routing strategy was 

implemented on the same setup, providing a clear point 

of comparison under identical network conditions. 

We conduct our experiments in each topology with 100 

simulation episodes. Moreover, selected samples were 

analyzed to evaluate performance across key quality of 

service metrics: throughput, RTT, jitter, and packet loss 

ratio (PLR). Results show that the policy-gradient-based 

R-Optimizer consistently performs better than the Q-

learning-based R-Learner, particularly in topologies 

with higher redundancy and path diversity, such as Fat 

Tree while maintaining adaptability and stability across 

different network environments. These findings 

demonstrate how topological diversity significantly 

influences routing efficiency and learning behavior 

within reinforcement learning-based SDN routing. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work. Section 3 presents the 

proposed system. Section 4 describes the experimental 

setup. Section 5 details the results and analysis. Section 

6 provides QoS comparison and section 7 is discussion. 

Finally, Section 8 concludes the paper and outlines 

future work 

 

2 Related work 
 

Software-defined networking (SDN) separates the 

control and data planes, enabling centralized 

programmability and abstraction of the underlying 

infrastructure [25]. The controller acts as the network's 

"brain," dynamically managing flow rules and routing. 

Due to its modularity in part design, Ryu stands out 

among available controllers, offering Python design, 

OpenFlow compatibility, and suitability for 

reinforcement learning (RL) integration [26]. 

Traditional SDN routing methods—like Dijkstra's 

algorithm and Equal-Cost Multi-Path (ECMP)—perform 

reliably under stable conditions but lack adaptability to 

congestion, link failures, and traffic surges [27]. 

Researchers have proposed reactive traffic-engineering 

solutions, but these still fail to meet real-time, low-

latency demands [28]. Moreover, most traditional 

approaches do not learn from past network behavior, so 

they cannot improve or adapt over time. To deal with 

this, researchers have started using reinforcement 

learning (RL) and deep RL (DRL) for SDN routing [29], 

[30]. 

 These models utilize deep Q-networks and policy 

gradient methods to adjust routing decisions based on 

real-time network feedback dynamically. The goal is to 

optimize long-term performance rather than reacting 

solely to short-term events. Studies show that they can 

boost throughput, reduce delay, and lower packet loss, 

even under unpredictable traffic loads [31]. Advanced 

methods like hierarchical and meta-RL improve how fast 

they learn and how well they handle different network 

situations [32], [33].  

These models also reduce the need for manual tuning, 

making the system more autonomous and scalable.  

Additionally, RL agents can continually adapt to traffic 

shifts over time without requiring a restart or reset of the 

entire network. 

Recent approaches also include topology-aware learning 

where models make use of how the network is structured 

[33]. This helps to make rorouting decicion by the agent 

understand the role of links, paths, and node positions. 

Deep learning methods like transformers and 

convolutional neural networks (CNNs) have been used for 

traffic prediction, detecting anomalies, and improving 

routing during failures [35], [36].  

These methods can catch early signs of congestion or link 

stress and adjust routing before problems get worse. Some 

setups use supervised learning first to teach the model 

basic patterns, then switch to reinforcement learning to 

fine-tune behavior in live scenarios. This shortens training 

time and improves stability. 

Other designs use alert mechanisms or graph-based 

learning to help the agent focus on the most relevant parts 

of the network at any moment. This is useful when the 

network is large and links behave differently depending 

on traffic. These ideas are still developing but show good 

results in testbeds. 

Mininet and the Ryu controller continue to be the go-to 

tools for testing this kind of setup [39], [40]. Mininet 

deals wiht complex topologies without needing physical 

switches, and Ryu makes it easy to plug in custom logic 

through its Python API. This allows routing agents to read 

traffic stats, update flow rules, and learn over time. There 

are open templates available for things like ECMP and 

custom controller functions, which help speed up testing 

and cut setup time [41], [42], [43]. These tools make it 

easier to repeat experiments and build on other 

researchers’ work. 

Despite these advances, a gap remains in frameworks that 

systematically assess RL-based routing across multiple 

SDN topologies. This study addresses that gap through a 

dual-agent architecture—R-Learner and R-Optimizer—

evaluated on Fat Tree, Abilene, Custom, and Mesh 

networks, with a focus on convergence behavior and 

quality of service performance. 
 

3 Proposed system  
 

This section describes a structured SDN flow control 

framework that works on a two-stage routing process. The 

system introduces two coordinated modules—Route-

Learner and Route-Optimizer—each responsible for a 

specific phase. In the first stage, the route learner probes 

the network to identify available paths and assess real-

time network conditions. In the second stage, the Route-

Optimizer takes the aid of this information to refine 

routing decisions, aiming to improve traffic distribution 

and reduce congestion. Both modules are integrated into 

the Ryu controller, enabling real-time interaction with the 

network topology. This setup allows the system to 
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periodically adjust forwarding rules based on updated 

path and traffic condition data, ensuring efficient routing 

even as network demands fluctuate. Our implementation 

followed a two-phase staged framework. In phase one, 

the R-Learner operated on the live SDN topology to 

collect QoS data and estimate routing values using Q-

learning. 

 

 

Table 1: Prior RL-Based SDN routing studies

Study Method Topologies 
Metrics 

Evaluated 
Key Findings Identified Gaps 

Liu [29] 
Deep Q-Network 

(DQN) 
Fat Tree 

Throughput, 

Delay 

Improved congestion 

handling 

Single topology, no 

policy-gradient 

Kim et 

al. [31] 
DRL (Actor-Critic) Custom Mesh 

Latency, Packet 

Loss 

Reduced delays and 

PLR 

Limited topology 

diversity 

Suh et al. 

[11] 

DRL for Network 

Slicing 
Data Center 

Bandwidth, 

Delay 

Dynamic slicing for 

QoS 

Not focused on 

routing decisions 

Chen et 

al. [33] 
Multi-Agent RL Custom Load Balancing Better fault tolerance 

No policy-gradient 

exploration 

Xie et al. 

[19] 
GNN-RL Mesh Throughput 

Captures topology 

structure 

Limited scalability, 

single topology 

Yang & 

Li [37] 

Deep 

Reinforcement 

Learning (DRL) 

Data Center 

SDN 

Latency, 

Reward, Speed 

Reduced latency by 

6.3%, improved 

reward convergence 

Focus on congestion 

control, lacks multi-

topology routing 

analysis 

Ma et al. 

[38] 

Q-Learning Generic SDN Throughput, 

Delay, Load 

Balancing 

Improved throughput 

by 30%, reduced 

delay by 25% 

Uses Q-learning 

only, lacks policy-

gradient comparison 

Kim et 

al. [31] 

Q-Learning + 

Policy-Gradient 

(Dual-Agent) 

Fat Tree, 

Abilene, 

Custom, Mesh  

Throughput, 

Jitter, RTT, 

PLR 

Consistent QoS 

improvements across 

topologies 

Multi-topology, 

staged policy-

gradient use 
 

 

Once exploration was complete, it was halted while the 

topology remained active. In phase two, the R-

Optimizer refined routing decisions on the same 

topology using the Q-table generated by the R-Learner 

via a policy-gradient method. This structured approach 

ensured realistic traffic conditions while leveraging 

prior exploration. 

For comparison, we also implemented Dijkstra’s 

shortest-path algorithm in the Ryu controller and 

evaluated it under identical TCP and UDP traffic across 

all topologies. This provided a consistent baseline to 

measure improvements over the learning-based 

framework. 

 
 

3.1 Reinforcement learning integration in 

SDN 
 

Enhance the Ryu controller with custom RL modules to 

enable intelligent routing in SDN. When the system 

receives a packet_in event from the switch, it identifies 

the source–destination context and evaluates all feasible 

paths. It then selects a forwarding action based on the 

chosen agent's strategy—either R-Learner or R-

Optimizer. In practice, this selection follows a staged 

approach: the system first operates with the R-Learner 

to explore and gather routing knowledge under live 

network conditions and, after sufficient exploration, 

transitions to using the R-Optimizer on the same active 

topology to refine routing decisions using the 

knowledge learned during the R-Learner phase. The  

 

system verifies each forwarding action. 

Furthermore, it observes outcomes like delivery status, 

delay, or signs of congestion. We later use this 

information to improve future routing decisions through  

 

 

gradual adjustments. Updated routing choices are 

applied  

immediately by installing new flow rules using 

OpenFlow 1.0, maintaining smooth and responsive  

network operation. 

Additionally, for baseline benchmarking, we 

implemented the Dijkstra shortest-path routing 

algorithm within the Ryu controller. We evaluated it 

across all topologies under the same traffic generation 

settings (either TCP or UDP) used for the reinforcement 

learning agents. 

 
 

3.2 R-Learner: exploration-based adaptive 

routing 
 

The R-Learner module defines predefined criteria 

to assess links and nodes within the network topology, 

selecting routing paths deemed efficient. It updates 

routing preferences based on the observed outcomes of 

previous forwarding decisions, using this performance 

history to guide future path selection. The state 

representation used in our implementation is limited to 

the source and destination switch identifiers (src_dpid, 

dst_dpid). It does not explicitly include live network 

metrics such as link utilization, RTT, or congestion 
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Algorithm 1: R-Learner: Based Adaptive Routing 

Input: Network topology GG, source-destination switch 

pair (s,d)(s, d), exploration rate ε, learning rate α, 

discount factor γ  

Output: Updated Q-table Q, selected routing path p 

1. Begin 

2. Initialize Q-table  

3. Q[state][action]arbitrarily 

4. Observe current state S←(s,d) 

5. If random() < ε then 

6.   a←select a random path from s to d 

7. Else 

8.    a←argmaxQ[S][a] // select path with 

highest Q-value 

9. End If 

10. Install flow entries along path a using 

install_path_flows() 

11. Forward packet through path a 

12. Observe resulting reward r (based on delivery 

status, delay, congestion) 

13. Observe next state S′←(s,d) // remains same 

unless topology changes 

14. Update Q-value: 

15. Q(s,a)←Q(s,a)+α[r+γ⋅a′max

Q(s′,a′)−Q(s,a)] 
16. Return selected path a and updated Q-table 

17. End 

status. Instead, the agent learns effective routing paths 

through repeated exploration under dynamic traffic 

patterns, indirectly capturing performance through 

delivery outcomes. 

 

• State representation: We represent each state 

using the tuple (src_dpid, dst_dpid), which 

identifies the source and destination switches. 

• Action: An action corresponds to selecting one 

of the simple paths between the source and 

destination. 

• Reward: In our current implementation, the 

reward is assigned as a scalar value, with a 

positive reward (e.g., +10) if the forwarding 

succeeds and a negative reward (e.g., -10) if 

the forwarding fails. While factors like 

throughput, latency, and congestion motivate 

the need for adaptive routing, we currently 

capture their indirect effects through packet 

delivery success and learning. 

• Q-Value update: 

             Q(s,a)←Q(s,a)+α[r+γ⋅a′maxQ(s′,a′)−Q(s,a)] 

   Where α is the learning rate, and γ is the discount 

factor. 

Exploration strategy: The agent follows a ϵ-greedy 

approach, selecting a random path with probability ϵ 

and the best-known path otherwise. 

Integration: Once a path is selected, flow rules are 

installed using install_path_flows(), and the Q-values 

are updated based on the observed reward. 

 

Algorithm 1 outlines the decision-making process used 

by the Route-Learner module. The system supports 

routing decisions with the help of a performed path 

maintained in the evaluation table. Each routing path is 

selected based on current performance metrics linked 

with links and nodes. The process follows fixed rules 

for path selection, ensuring consistent routing behavior 

across the network topology. 

 

 

3.3 R-Optimizer: probability-driven 

routing strategy 
The R-Optimizer module applies a rule-based 

mechanism at each hop to determine routing decisions. 

It selects the next-hop option from the current switch 

based on predefined performance metrics and static 

path preferences, enabling consistent per-hop routing 

toward the destination. 

• State representation: We represent states as 

(src, dst, current_switch), which includes the 

flow endpoints and the current switch in the 

path. 

• Action: For each state, the agent creates a 

probability distribution over potential next-hop 

forwarding options from the current switch and 

samples from this distribution to select the 

next hop toward the destination. 

• Reward: The reward is currently assigned 

using a simple scalar value based on the 

success of packet forwarding actions. We use a 

basic success/failure evaluation due to the 

lightweight nature of the optimizer in this 

implementation, with the indirect influence of 

path congestion or delay captured through 

delivery success. 

• To formalize this approach, we designed the 

Route-Optimizer to improve long-term 

network performance, defined as: 

•  𝐽(𝜃) =  Eτ ∼ πθ[∑ rt𝑛
𝑡=0 ] 

• Where θ represents the policy parameters, 

τ denotes trajectories under the policy πθ, 

and it is the reward at time t. 
• Policy gradients for updating the 

policy are computed as: 
• ∇{𝜃}𝐽(𝜃)=  Eτ[ ∑T∇θlogπθ(at∣st)(Rt−b)] 

• Where b is a baseline (e.g., the average 

reward) used to reduce variance during 

learning. This formulation enables the Route-

Optimizer to apply predefined routing rules, 

which are based on accumulated performance 

data, ensuring consistent behavior across 

various network scenarios. 

• Policy update: 

P(s, a) ← P(s, a) + α ⋅ (r − b) ⋅ ∇logP(s, a) 

• Adaptation: Over time, the system assigns 

higher probabilities to high-performing actions 

while gradually avoiding ineffective routes.. 

• Integration: Routing decisions are enforced 

through add_flow() and OFPPacketOut, 

enabling real-time responsiveness. 

  Algorithm 2 summarizes the Q-Optimizer’s policy-

gradient approach. The agent gradually shifts 

preference toward higher-performing routes by 

sampling paths according to a softmax distribution and 



 

 

 

348 Informatica 49 (2025) 343-360                                                                                                                             D. Goteti et al. 

 

updating the policy in proportion to the received reward 

minus a baseline. Immediate installation of new flow 

rules ensures that these learned improvements take 

effect in real time. 

 
 

3.4 Topology discovery and path 

management 
 

Both R-Learner and R-Optimizer need an up-to-date 

view of the network. We use Ryu’s EventSwitchEnter 

to catch new switches and links and maintain a live 

graph in NetworkX. The agents then run over this graph 

to make their routing choices. 

Operational loop: 

1. Topology discovery – update the NetworkX 

graph on switch/link events 

2. Path enumeration – list all simple paths 

between src and dst via all_simple_paths() 

3. Action selection – the active agent (R-Learner 

or R-Optimizer) picks one path 

4. Flow installation – push OpenFlow rules for 

the chosen path 

5. Reward update – measure delivery success, 

delay, or congestion and use that feedback to 

refine the agent 

This setup makes routing both topology-aware and 

traffic-sensitive, adapting to structural changes and 

varied traffic patterns on the fly. 
 

3.4.1 Topology discovery and path management 
Both R-Learner and R-Optimizer need an up-to-date 

view of the network. We use Ryu’s EventSwitchEnter 

to catch new switches and links and maintain a live 

graph in NetworkX. The agents then run over this graph 

to make their routing choices. 

Operational loop: 

6. Topology discovery – update the NetworkX 

graph on switch/link events 

7. Path enumeration – list all simple paths 

between src and dst via all_simple_paths() 

8. Action selection – the active agent (R-Learner 

or R-Optimizer) picks one path 

9. Flow installation – push OpenFlow rules for 

the chosen path 

10. Reward update – measure delivery success, 

delay, or congestion and use that feedback to 

refine the agent 

This setup enables topology-aware, traffic-sensitive 

routing that adapts in real time. For benchmarking, 

Dijkstra’s algorithm was run using the live NetworkX 

graph for deterministic path selection and flow 

installation across all topologies. 

 
 

3.5 Hyper parameter selection and 

sensitivity 
 

In the implementation, the R-Learner makes use of a 

discount factor (γ) of 0.95 to ensure the agent values 

future rewards while handling responsiveness to 

delivery outcomes under dynamic traffic conditions, a 

learning rate (α) of 0.1 to enable stable yet effective Q-

value updates, and a fixed exploration rate (ε) of 0.1 to 

balance exploration and exploitation during learning. 

These values were chosen through extensive testing 

conducted across the different topologies. Premature 

cover where occurred due to lower ε values (<0.05) on 

suboptimal paths, while higher ε values (>0.2) delayed 

convergence without significant QoS improvements. 

Similarly, higher α values (>0.15) caused unstable Q-

value fluctuations, while lower α values (<0.05) slowed 

adaptation under dynamic traffic conditions. 

For the R-Optimizer, the policy distribution for each 

state is initialized with small random values and 

normalized for action selection, functioning 

equivalently to a softmax mechanism to encourage 

action diversity. Although an explicit temperature 

parameter was not used, normalization effectively 

allowed the agent to explore routing actions in early 

episodes while gradually converging to high-reward 

paths as learning progressed. 
 

3.6 Exploration-exploitation strategy and 

learning stability 
 

The R-Learner employs an ε-greedy strategy with a 

fixed exploration rate (ε) of 0.1 to balance exploration 

and exploitation during learning. This value was chosen 

to maintain adequate exploration of alternative paths 

while allowing convergence toward high-reward routes 

under dynamic traffic conditions. Although a decay 

schedule for ε was not implemented in the current 

study, iterative testing confirmed that a fixed ε provided 

stable and consistent learning across episodes without 

premature convergence or excessive route oscillations. 
 

   As our experiments span multiple topologies (Fat 

Tree, Abilene, Custom, Dense Adaptive Mesh) under 

diverse TCP/UDP traffic scenarios, we monitored 

improvements in key QoS metrics (throughput, jitter, 

RTT, PLR) across 100 simulation episodes to evaluate 

learning consistency. Consistent metric improvements 

over episodes indicate stable convergence of the R-

Learner’s policy under the fixed ε strategy across all 

topologies. While explicit cumulative reward or Q-

value convergence plots were not included due to the 

multi-topology setup and computational constraints, 

future work will incorporate systematic ε decay 

schedules and detailed convergence visualizations to 

further analyze learning dynamics and stability across 

complex network environments. 

 

4 Experimental setup  
 

 We ran all experiments on Mininet, a lightweight SDN 

emulator, using MiniEdit to draw and configure each 

topology’s switch–host layout. The Ryu controller 

formed our control plane and was extended with two 

Python modules—R-Learner and R-Optimizer—to 

make adaptive routing decisions. Ryu was chosen for its 

modular architecture and seamless integration with 

Python-based RL agents. Flow rules were installed via 

OpenFlow 1.0. In our experimental workflow, the 
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proposed system was executed in two clear stages. 

First, the R-Learner was run on the live Mininet 

topology, enabling it to explore the environment, gather 

QoS data, and learn state-action values using Q-

learning while the network handled active traffic. After 

completing sufficient exploration episodes, we stopped 

the R-Learner while keeping the topology running. In 

the second stage, the Route-Optimizer was executed on 

the same active topology, utilizing the routing metrics 

and path evaluations generated in the first stage by the 

Route Learner. This staged process ensured that routing 

refinement was informed by previously collected 

network performance data, aligning with our design 

objective of consistent, context-informed decision-

making while maintaining uninterrupted network 

operation throughout the experiment. iPerf was used to 

generate realistic traffic loads using both TCP and UDP 

streams, offering controlled variability and 

repeatability. In addition to our dual-agent framework, 

we implemented the Dijkstra shortest-path routing 

algorithm on the same Ryu controller and evaluated it 

across all four topologies under identical traffic 

conditions. Dijkstra routing was executed on the live 

Mininet topology using the NetworkX graph for path 

computation, with flows installed using OpenFlow 1.0. 

This deterministic baseline allowed for a direct, fair 

comparison of Quality of Service (QoS) metrics 

between classical shortest-path routing and our 

adaptive, learning-based routing framework under 

dynamic traffic loads. 
 

Traffic modeling: 

We used iPerf to generate traffic flows and test TCP 

and UDP sessions under varying network loads. For 

each topology, we configured multiple host pairs to 

produce east-west traffic patterns: 

• Fat Tree: h1–h16, h5–h12, h2–h14 

• Abilene: h8–h12, h3–h9 

• Custom: h1–h16, h4–h10 

• DAM: Five randomly selected host pairs per 

run (e.g., h2–h25, h7–h19) 

Each test lasted 60 seconds, with interarrival times 

uniformly distributed between 1–3 seconds to simulate 

dynamic traffic.  

    TCP tests leveraged iPerf with CUBIC congestion 

control, allowing flows to dynamically adjust to 

available bandwidth while providing insights into 

throughput and RTT under adaptive congestion 

conditions. In contrast, UDP flows operated at 90% of 

link capacity without congestion control, making them 

sensitive to packet loss and jitter during congestion.  

     Congestion was modeled and observed organically 

by initiating multiple overlapping TCP and UDP flows 

across shared paths, which progressively increased link 

utilization and queue buildup within the network. This 

setup allowed the R-Learner and R-Optimizer to 

experience realistic congestion and adapt routing 

decisions under both connection-oriented (TCP) and 

connectionless (UDP) traffic conditions. 

For every topology: 

 

1. Simulation episodes: 100 runs with varying 

traffic loads 

2. Data collection: Record throughput, RTT, 

jitter, and packet loss ratio (PLR) in each 

episode 

3. Detailed analysis: 10 systematically sampled 

episodes at fixed intervals (every 10th episode) 

from the 100 total simulation episodes for each 

topology (Episodes 10, 20, 30, …, 100). This 

approach provided a consistent, representative 

view of convergence trends and metric 

stability across the learning process. 

This design allowed consistent, controlled evaluation of 

R-Learner and R-Optimizer performance under 

realistic, dynamic conditions. Mininet was run in 

single-instance mode without parallelization to maintain 

controlled conditions. Average runtime per 100-episode 

simulation was ~2.5 hours per topology, depending on 

traffic intensity and topology complexity. Experiment 

setup is shown in Table 2. 

 

          Table 2: Experimental setup components 

Emulation Platform Mininet 

Topology Design 

Tool 

MiniEdit (Mininet GUI) 

SDN Controller Ryu (Python-based) 

Flow Protocol OpenFlow v1.0 

Routing Agents R-Learner 

R-Optimizer 

Traffic Generator iPerf (TCP/UDP) 

Performance 

Tools 

iPerf, ping 

Host 

Communication 

Fat Tree: h1 <->h14 

Abilene: h8 <-> h32 

Custom: h1 <-> h16 

DAM: randomly selected host 

pairs (e.g., h1 <-> h50) 

Number of 

Episodes 

100 per topology 

Analysis Sample 10 episodes per topology 

QoS Metrics 

Evaluated 

Throughput, Jitter, 

Round-Trip Time (RTT), 

Packet Loss Ratio (PLR) 

CPU Intel Core i7-12700 (12 cores, 

2.10 GHz) 

RAM 32 GB DDR4 

OS Ubuntu 22.04 LTS 

 

4.1 Performance metric evaluation 
 

To evaluate routing behavior under different 

reinforcement models, four key Quality of Service 

(QoS) metrics were recorded during each simulation: 

 

• Throughput: Measured in Mbps/Gbps using 

iPerf TCP tests, indicating the rate of 

successful data delivery over time. 

• Jitter: Collected from iPerf UDP reports jitter 
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reflects variations in packet arrival times. 

Lower jitter values indicate more stable 

delivery, which is critical for time-sensitive 

applications. 

• Round-Trip Time (RTT): Recorded using 

ping, RTT measures the time packets travel to 

and back to the destination. We average the 

values across multiple packets for accuracy. 

• Packet Loss Ratio (PLR): We calculate 

Packet Loss Rate (PLR), derived from iPerf 

UDP data, as the percentage of lost packets 

relative to the total number of packets sent. It 

plays a key indicator of delivery reliability and 

the extent of network congestion.  

These metrics were averaged across selected test 

intervals to evaluate routing consistency and 

overall network performance. 

 
 

4.1 Topology design and structural 
characteristics 
 

To clarify the differences across topologies, Table 3 

summarizes the structural metrics for the Fat Tree, 

Abilene, Custom, and Dense Adaptive Mesh (DAM) 

topologies used in our experiments, including node 

count, average node degree, and link redundancy. 
 

Table 3: Topology structural metrics 
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Fat Tree 20 36 3.6 
High 

(80%) 
0.85 

Abilene 12 15 2.5 
Medium 

(50%) 
0.58 

Custom 16 18 2.25 
Low 

(30%) 
0.42 

DAM 30 60 4.0 
Very High 

(90%) 
0.92 

 

The Fat Tree topology, with its full path redundancy, 

makes it prone to failures and congestion. As indicated 

by a Topology Complexity Index (TCI) of 1.00. The 

Abilene topology, based on a real-world backbone 

network, provides moderate redundancy and serves as a 

balanced testbed for evaluating routing under practical 

connectivity conditions. The Custom topology features 

limited path redundancy and a lower average node 

degree, offering insights into routing performance in 

sparse connectivity scenarios. The Dense Adaptive 

Mesh (DAM) topology is densely interconnected, with 

a high average node degree and maximum redundancy, 

simulating complex data center environments to 

examine system scalability and routing stability under 

high-density traffic conditions.   Each result section in 

Section 6 analyzes the performance of our staged dual-

agent framework, where the R-Learner was first 

executed to explore and learn routing policies on the 

live topology, followed by the R-Optimizer, which 

utilized the learned knowledge from the R-Learner 

phase to refine routing decisions under the same 

operational conditions.  

This structured execution allows us to evaluate how 

leveraging exploration knowledge through staged 

learning improves Quality of Service (QoS) metrics 

compared to the initial exploration phase 
 

5 Results and analysis  
 

We ran R-Learner and R-Optimizer across four SDN 

topologies, collecting data from over 100 simulation 

episodes per topology. For consistency and precise 

tracking of convergence and stability, we systematically 

analyzed 10 episodes per topology at fixed intervals (every 

10th episode: Episodes 10, 20, 30, ..., 100). We targeted to 

observe the learning progression of each agent under 

varied traffic conditions, measured by four key Quality of 

Service (QoS) metrics: throughput, jitter, RTT, and packet 

loss ratio (PLR). 

To benchmark these learning-based approaches, we 

additionally implemented Dijkstra's shortest-path 

algorithm as a deterministic baseline using the Ryu 

controller across all topologies. As Dijkstra computes a 

static shortest path for a given topology, its performance 

remains constant across episodes under identical 

conditions. "Therefore, we included Dijkstra results in the 

final QoS comparison tables but excluded them from the 

per-episode analysis 

 

5.1 Fat tree topology 

 

Figure 2: Fat tree topology 

 

Figure 2—comprising core switches (c0–c3), aggregation 

switches (a1–a8), edge switches (e1–e8), and 16 hosts—

R-Learner and R-Optimizer were evaluated under 

identical east–west traffic between h1 and h2 across 10 

systematically sampled episodes.
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Table 4: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Fat Tree Topology 

 

 
 

Table 5: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Abilene Topology 

 
 

Table 6: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Custom Topology 

 
  

Table 7: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over DAM Topology 
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In the Fat Tree topology, as illustrated in  

 

 

 

Figure 3: Abilene Topology 

      
As summarized in Table 4, R-Optimizer consistently 

outperformed R-Learner across all QoS metrics. It 

achieved an average throughput of 43.04 Gbps, compared 

to 40.42 Gbps for R-Learner, marking a 6.5% gain. Jitter 

remained low and steady for R-Optimizer at 0.0011 ms, 

while R-Learner averaged 0.0019 ms, indicating smoother 

packet delivery. The average Round-Trip Time (RTT) 

dropped from 0.1631 ms with R-Learner to 0.1201 ms 

under R-Optimizer, a 26.3% improvement, highlighting 

more responsive path selection. Packet Loss Ratio (PLR) 

was reduced by nearly half, with R-Optimizer averaging 

0.134% versus 0.251% for R-Learner, reflecting a 46.6% 

improvement in delivery reliability.    

In the final comparative analysis, Dijkstra’s algorithm 

demonstrated stable but lower performance, achieving 

1.17 Gbps throughput, with higher RTT (1.46 ms), jitter 

(1.11 ms), and PLR (1.60%). 

These results illustrate Dijkstra’s effectiveness in stable 

path computation but highlight its limitations in adapting 

to dynamic traffic and congestion compared to 

reinforcement learning-based methods. 

Overall, these findings confirm that while Dijkstra serves 

as a consistent reference, R-Optimizer’s policy-gradient 

learning ensures superior adaptability and quality of  

 

5.2   Abilene topology 
The Abilene topology closely resembles real-world 

networks, featuring a moderately dense mesh structure 

with multiple intersecting paths, as shown in Figure 3.  

Its semi-random layout introduces non-uniform routing 

challenges, making it ideal for evaluating the adaptability  

of learning-based models in more unpredictable 

environments. Our tests simulated traffic between hosts 

h8 and h32, passing through varied and often 

asymmetrical paths. The irregular link distribution 

required both the R-Learner and R-Optimizer to consider 

latency, route consistency, and link reliability during 

routing decisions. 

As shown in Table 5, R-Optimizer outperformed R-

Learner across all QoS metrics. On average, throughput 

improved from 38.85 Gbps (R-Learner) to 40.91 Gbps 

(R-Optimizer), an increase of approximately 5.3%. Jitter 

was more stable and lower under R-Optimizer, averaging 

0.0016 ms compared to 0.0030 ms for R-Learner, 

reflecting smoother packet delivery. RTT saw a notable 

improvement, with R-Optimizer averaging 0.1894 ms 

compared to 0.2357 ms under R-Learner, an approximate 

19.6% reduction. Most significantly, Packet Loss Ratio 

(PLR) dropped from 0.334% with R-Learner to 0.143% 

under R-Optimizer, marking a 57.2% reduction in 

delivery failures. 

For benchmarking, Dijkstra’s shortest-path algorithm was 

executed under the same conditions on the Abilene 

topology. As Dijkstra computes a fixed path without 

dynamic adaptation, its performance remained constant 

across tests, achieving 1.03 Gbps throughput, with 1.64 

ms RTT, 1.30 ms jitter, and 1.49% PLR. While Dijkstra 

provides stable shortest-path routing, it lacks the ability to 

adapt to dynamic traffic fluctuations and congestion, 

limiting its effectiveness in complex, real-world network 

scenarios.

These results highlight that R-Optimizer demonstrates 

superior convergence, smoother delivery, and stronger 

resilience to routing inconsistencies even in irregular, 

less predictable topologies like Abilene, while Dijkstra 

serves as a static baseline for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Custom topology 
 

The custom topology, resembling a real-world enterprise 

or regional backbone network with a hierarchical and 

asymmetric design, is used in this study. With its 

moderately dense mesh structure and multiple 

intersecting paths, it mirrors the irregularity and 

unpredictability of real-world networks. The semi-

random layout introduces non-uniform routing 

challenges, making it an ideal testbed for evaluating the 

adaptability of learning-based models under such 

conditions. 
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We simulated traffic between hosts h1 and h16, 

navigating varying and often asymmetrical paths. The 

non-uniform link distribution required both the R-

Learner and R-Optimizer to account for latency, route 

consistency, and link reliability to optimize performance. 

As shown in Figure 4, the topology features multiple 

layers of switches connected to hosts, with controllers 

ensuring fault tolerance and scalability. The irregular 

link distribution creates both optimal and suboptimal 

routing paths, challenging the models in path selection 

and congestion management. 

 

Figure 4: Custom topology 

 

As presented in Table 6, R-Optimizer consistently 

outperformed R-Learner across all performance metrics. 

On average, throughput improved from 39.02 Gbps (R-

Learner) to 42.42 Gbps (R-Optimizer), reflecting a 

performance boost of approximately 8.7%. Jitter was 

notably lower and more stable under R-Optimizer, 

averaging 0.0013 ms compared to 0.0022 ms for R-

Learner. RTT also saw a marked improvement, with R-

Optimizer achieving 0.1407 ms, compared to 0.1736 ms 

for R-Learner—an approximately 18.9% reduction in 

delay. Packet Loss Ratio (PLR) was significantly reduced, 

from 0.219% under R-Learner to 0.137% under R-

Optimizer, indicating a 37.4% reduction in packet loss. 

To provide a baseline comparison, Dijkstra’s shortest-path 

algorithm was evaluated under the same conditions on the 

custom topology. Dijkstra’s routing, while stable, 

produced 0.94 Gbps throughput, 1.56 ms RTT, 1.28 ms 

jitter, and 1.52% PLR. These static results underscore 

Dijkstra’s limitations in adapting to dynamic congestion 

and load variations within irregular topologies. 

These results demonstrate that R-Optimizer offers 

superior adaptability and congestion resilience compared 

to R-Learner and the deterministic Dijkstra algorithm, 

ensuring smoother and more reliable performance in 

complex, unpredictable network environments. 
 

5.4 Dense Adaptive Mesh (DAM) Topology 
 

The Dense Adaptive Mesh (DAM) topology, inspired 

by real-world, large-scale SDN networks, features a 

semi-structured, dense mesh design with 10 switches 

(s1–s10) and 50 hosts (h1–h50). This topology creates a 

highly redundant network with varying link lengths and 

congestion-prone paths. Its irregular distribution of 

links and varied path depths makes it well-suited for 

testing routing models under complex and 

unpredictable environments. 

Traffic was dynamically generated between randomly 

selected host pairs (e.g., h1 ↔ h50), and both R-Learner 

and R-Optimizer agents navigated these paths over 10 

test episodes. The network’s dense interconnectivity 

and partial mesh structure required the models to 

carefully account for route consistency, latency, and 

packet loss while selecting optimal paths. 
 

Figure 5: Dense Adaptive Mesh (DAM) Topology 
 

As shown in Table 7, R-Optimizer consistently 

outperformed R-Learner across all key metrics. On 

average, throughput improved from 37.53 Gbps (R-

Learner) to 40.77 Gbps (R-Optimizer), marking an 

increase of about 8.6%. Jitter was significantly lower 

and more stable under R-Optimizer, averaging 0.0022 

ms compared to 0.0035 ms for R-Learner. RTT also 

improved, with R-Optimizer achieving 0.1801 ms 

compared to 0.2109 ms for R-Learner, an approximate 

14.6% reduction in latency. The Packet Loss Ratio 

(PLR) dropped from 0.404% under R-Learner to 

0.177% with R-Optimizer, indicating a 56% reduction 

in packet loss. 
 

For comparative benchmarking, Dijkstra’s shortest-path 

algorithm was evaluated once under identical traffic 

conditions on the DAM topology. As expected, 

Dijkstra’s routing yielded a consistent 0.92 Gbps 

throughput, 1.89 ms RTT, 1.54 ms jitter, and 1.94% 

PLR across all tests. These fixed results demonstrate 

Dijkstra’s deterministic behavior while highlighting its 

limitations in adapting to dynamic congestion and load 

fluctuations inherent in high-density topologies like 

DAM. 

These results confirm that R-Optimizer is better 

equipped to handle the complexity of DAM topology. It 

consistently provides higher throughput, lower jitter, 

reduced RTT, and less packet loss under dynamic, 

congestion-prone conditions, demonstrating its ability 

to adapt to high-density network environments while 

ensuring efficient and reliable data transmission. 
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6    QoS Comparison across topologies  
 

       This section compares the two learning models—R-

Learner and R-Optimizer—across all four evaluated SDN 

topologies: Fat Tree, Abilene, Custom, and Dense 

Adaptive Mesh (DAM). 

The comparison is systematically organized according to 

each quality-of-service metric, namely Throughput, Jitter, 

Round-Trip Time (RTT), and Packet Loss Ratio (PLR), to 

clearly illustrate each approach's relative strengths and 

adaptability under varying network structures 

 

6.1 Throughput analysis 
 

Throughput, defined as the rate of successful data delivery 

over the network, serves as a primary QoS indicator 

reflecting routing efficiency under diverse topological and 

traffic conditions. As shown in Figure 6 and detailed in 

Table 8, the R-Optimizer consistently delivers higher 

throughput across all evaluated topologies, benefiting 

from its policy-gradient strategy and staged learning. 

Specifically, in the Fat Tree topology, the R-Optimizer 

achieves 43.04 Gbps, outperforming the R-Learner’s 

40.42 Gbps by approximately 6.5%. In the Custom 

topology, the R-Optimizer reaches 42.42 Gbps, exceeding 

the R-Learner’s 39.08 Gbps by around 8.5%. For the 

Abilene and DAM topologies, the R-Optimizer improves 

throughput by 5–8% over the R-Learner, demonstrating 

adaptability despite irregular link distributions and 

topological complexities. 
 

Table 8: Average throughput comparison (Gbps) 

Topology R-Learner R-Optimizer Dijkstra 

Fat Tree 40.42 43.04 1.17 

Abilene 38.78 40.93 0.92 

Custom 39.08 42.42 0.51 

Dense Mesh DAM) 37.53 40.77 0.49 

 

For benchmarking, Dijkstra’s algorithm was evaluated 

under identical traffic conditions across all topologies. 

Unlike the reinforcement learning models, Dijkstra’s 

throughput varied based on the topology due to path 

lengths and congestion points, yielding 1.17 Gbps on Fat 

Tree, 0.92 Gbps on Abilene, 0.51 Gbps on Custom, and 

0.49 Gbps on DAM. These results underscore that while 

Dijkstra efficiently computes deterministic shortest paths, 

it lacks the capability to dynamically adapt under 

congestion or link failures, leading to stagnant or limited 

throughput under dynamic conditions. 

In contrast, the R-Optimizer leverages reinforcement 

learning to dynamically identify higher-bandwidth paths, 

resulting in 6.5–9.5% throughput gains over the R-Learner 

across topologies while maintaining stability under 

varying network conditions. This highlights the potential 

of learning-based routing in enhancing throughput 

performance within SDN environments, while Dijkstra 

serves as a non-adaptive baseline against which the 

dynamic advantages of reinforcement learning approaches 

can be effectively demonstrated. 

 
Figure 6: Throughput Comparison Across SDN 

Topologies 
 

6.2 Jitter analysis 
 

Jitter represents the variability in packet arrival 

intervals and is particularly critical for time-sensitive 

applications such as VoIP, real-time video, and 

streaming services. Lower jitter indicates more 

consistent timing in packet delivery, essential for 

maintaining quality in these applications. 

As illustrated in Figure 7 and summarized in Table 9, 

the R-Optimizer consistently maintains lower jitter 

across all evaluated topologies, reflecting improved 

timing consistency in packet transmission and more 

stable routing behavior under varying network 

conditions. 

In the Fat Tree and Custom topologies, where traffic 

paths are symmetrical yet deep, the R-Learner 

exhibits jitter of 0.0019 ms and 0.0022 ms, 

respectively, while the R-Optimizer reduces jitter to 

0.0011–0.0013 ms. The Dijkstra algorithm, by 

contrast, demonstrates significantly higher jitter at 

1.11 ms (Fat Tree) and 3.51 ms (Custom) due to its 

static shortest-path routing that does not adapt under 

congestion. 
 

Table 9: Average jitter comparison (ms) 

Topology 
R-

Learner 

R-

Optimizer 

   

Dijkstra 

Fat Tree 0.0019 0.0011 1.11 

Abilene 0.0030 0.0016 1.80 

Custom 0.0022 0.0013 3.51 

Dense Mesh 

 (DAM) 
0.0035 0.0022 

 

3.80 
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Greater improvements are observed in the Abilene 

and Dense Adaptive Mesh (DAM) topologies, where 

the R-Learner shows fluctuations up to 0.0030–0.0035 

ms, while the R-Optimizer sustains tighter bounds 

around 0.0016–0.0022 ms. Dijkstra’s jitter in these 

topologies is considerably higher, measured at 1.80 

ms (Abilene) and 3.80 ms (DAM), further illustrating 

the limitations of non-adaptive routing under dynamic 

traffic conditions. 

These patterns highlight the R-Optimizer’s ability to 

maintain smoother packet delivery even in distributed 

and less predictable environments, while Dijkstra 

serves as a static baseline illustrating the clear 

advantages of reinforcement learning approaches in 

jitter reduction within SDN environments. 

 

 
Figure 7: Jitter comparison for R-Learner, R-

Optimizer, and Dijkstra across SDN topologies. 
 

6.3 Round-Trip Time (RTT) analysis 
 

Round-trip time (RTT) represents the total time it takes for 

a packet to travel to its destination and return to the 

source. Lower RTT values indicate faster network 

responsiveness, which is crucial for delay-sensitive 

applications. 

As illustrated in Figure 8 and detailed in Table 10, the R-

Optimizer consistently reduces RTT across all evaluated 

topologies, reflecting its ability to select paths that 

minimize overall transmission delay. 

In the Abilene topology, RTT reduces from 0.236 ms 

under the R-Learner to 0.189 ms with the R-Optimizer, 

while Dijkstra demonstrates a significantly higher RTT of 

2.30 ms due to its static path selection under congestion.  
 

 

Table 10: Average RTT Comparison (ms) 

Topology R-Learner R-Optimizer  Dijkstra 

Fat Tree 0.1631 0.1192 1.46 

Abilene 0.2357 0.1894 2.30 

Custom 0.1736 0.1407 3.96 

Dense Mesh 

     (DAM) 
0.2109 0.1801 

 

4.20 

 

 
Figure 8. RTT comparison for R-Learner, R-Optimizer, 

and Dijkstra across SDN topologies. 

 

Similar gains are observed in Fat Tree and Custom 

topologies, where RTT drops from 0.163–0.174 ms to 

0.119–0.141 ms under R-Optimizer, while Dijkstra shows 

1.46 ms (Fat Tree) and 3.96 ms (Custom), reflecting its 

inability to dynamically adapt. In the Dense Mesh (DAM), 

where route diversity and path variations are high, the R-

Optimizer reduces RTT from 0.211 ms (R-Learner) to 

0.180 ms, while Dijkstra shows 4.20 ms, highlighting its 

limitations under complex topologies. 

These results confirm that the R-Optimizer effectively 

manages latency in structured and semi-random SDN 

topologies while demonstrating substantial improvements 

over static approaches like Dijkstra. 

 
6.4 Packet Loss Ratio (PLR) analysis 
Packet Loss Ratio (PLR) measures the percentage of 

packets lost during transmission, directly impacting 

reliability, retransmission rates, and overall network 

efficiency. Lower PLR reflects better congestion 

handling and stable delivery. 

As illustrated in Figure 9 and summarized in Table 11, the 

packet loss ratio (PLR) is consistently lower under the R-

Optimizer across all evaluated topologies. In the Dense 

Mesh (DAM) topology, PLR decreases from 0.404% with 

the R-Learner to 0.177% using the R-Optimizer, while 

Dijkstra records a significantly higher PLR of 4.10%, 

indicating its inability to adapt under congestion. In the 

Fat Tree topology, PLR drops from 0.251% under the R-

Learner to 0.133% with the R-Optimizer, compared to 

Dijkstra 1.60%. Similarly, in the Abilene topology, PLR 

reduces from 0.344% to 0.143%, whereas Dijkstra 

registers 2.10%. In the Custom topology, PLR decreases 

from 0.219% with the R-Learner to 0.137% with the R-

Optimizer, while Dijkstra reports 3.54% under identical 

conditions. 
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Table 11: Average PLR Comparison (ms) 

Topology R-Learner R-Optimizer    Dijkstra 

Fat Tree 0.251 0.133 1.60 

Abilene 0.344 0.143 2.10 

Custom 0.219 0.137 3.54 

DenseMesh 

(DAM) 
0.404 0.177 

 

4.10 

 
Figure 9: Packet loss ratio comparison for R-Learner, 

R-Optimizer, and Dijkstra across SDN topologies 
 

These improvements demonstrate the R-Optimizer’s 

ability to adjust to congestion conditions in real time, 

minimizing loss even under complex and asymmetric 

routing challenges, while Dijkstra’s static nature limits 

its effectiveness under dynamic SDN traffic. 
 

6.5 Overall model comparison 
 

To generalize performance trends across diverse 

topologies, the average values of all four QoS metrics—

throughput, jitter, RTT, and PLR—were computed for 

R-Learner, R-Optimizer, and Dijkstra. Table 12 

summarizes these consolidated findings. 

The analysis reveals that the R-Optimizer consistently 

delivers superior QoS outcomes. Compared to the R-

Learner, it improves throughput by 7.36%, reduces jitter 

by 44%, shortens RTT by 19.5%, and cuts packet loss by 

over 50%. Against Dijkstra, the R-Optimizer demonstrates 

even more pronounced advantages, delivering over 42 

times higher throughput, over 760 times lower jitter, 

reducing RTT by over 95%, and lowering packet loss by 

over 94% across all evaluated topologies. 

These cumulative improvements highlight the R-

Optimizer’s efficiency in maintaining stable and 

responsive routing decisions, irrespective of network 

structure, while also illustrating the limitations of static 

routing approaches under dynamic SDN conditions. The 

consolidated results reinforce the earlier per-topology 

observations and establish the R-Optimizer as a scalable 

and resilient solution for real-time SDN routing, 

outperforming both R-Learner and Dijkstra consistently 

across key QoS metrics.  

 

 

 

 

 

 

Table 12: Average QoS Performance across All 

Topologies 

Metric R-Learner R-Optimizer Dijkstra 

Throughput 38.93 Gbps 41.79 Gbps 0.77 Gbps 

Jitter 0.0026 ms 0.00145 ms 2.805 ms 

RTT 0.1955 ms 0.1574 ms 2.98 ms 

Packet Loss 0.301 % 0.1483 % 2.835% 

 

6.6 Statistical validation of results 
 

To ensure the reliability and reproducibility of our 

performance evaluations, we conducted detailed 

statistical analyses across 100 simulation episodes for 

each of the four SDN topologies—Fat Tree, Abilene, 

Custom, and Dense Mesh. We computed the mean, 

standard deviation (SD), and 95% confidence 

intervals (CI) for four key Quality of Service (QoS) 

metrics: Throughput (Gbps), Jitter (ms), Round-Trip 

Time (RTT, ms), and Packet Loss Ratio (PLR, %) 

under three approaches: R-Learner, R-Optimizer, and 

Dijkstra. 

For instance, in the Fat Tree topology: 

• R-Optimizer achieved a mean throughput of 43.04 

Gbps (SD = 0.40, 95% CI: 42.78–43.30),compared to 

R-Learner at 40.42 Gbps (SD = 0.35, 95% CI: 40.20–

40.64), and 

• Dijkstra at only 1.17 Gbps (SD = 0.05, 95% CI: 1.14–

1.20). 
 

Table 13: Average QoS Performance across All 
Topologies 

QoS Metric 
R-Learner 

(Mean ± SD) 

R-Optimizer 

(Mean ± SD) 

Dijkstra 

(Mean ± SD) 

Throughput 

(Gbps) 
38.93 ± 0.35 41.79 ± 0.40 0.77 ± 0.05 

Jitter (ms) 
0.00265 ± 

0.0003 

0.00155 ± 

0.0002 
2.805 ± 0.02 

RTT (ms) 0.195 ± 0.005 
0.157 ± 

0.004 
2.98 ± 0.03 

Packet 

Loss (%) 
0.303 ± 0.02 

0.148 ± 

0.015 
2.835 ± 0.04 

 

In terms of jitter, R-Optimizer consistently achieved 

the lowest values, e.g., 0.0011 ms in Fat Tree (SD = 

0.0002), outperforming both R-Learner (0.0019 ms, SD 

= 0.0003) and Dijkstra (1.11 ms, SD = 0.02). 

Similarly, RTT was minimized under R-Optimizer at 

0.1192 ms (SD = 0.004), versus R-Learner at 0.1631 

ms (SD = 0.005) and Dijkstra at 1.46 ms (SD = 0.03). 

The PLR dropped from 0.251% under R-Learner and 

1.60% under Dijkstra to 0.133% with R-Optimizer. 
These per-topology observations are supported by 

aggregated metrics across all four topologies, as 

summarized in Table 13. 
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Significance testing 
 

To assess whether the performance gains of R-Optimizer 

over R-Learner were statistically significant, we 

performed paired t-tests across 100 episodes per metric 

per topology. Dijkstra, being deterministic and non-

learning, was excluded from these tests but included in 

benchmarking tables as a fixed baseline. 

 
Table 14: Average QoS Performance across All 

Topologies 

Metric t-statistic p-value Inference 

Throughput 16.06 0.0006 Yes 

Jitter 11.89 0.0012 Yes 

RTT 12.28 0.0010 Yes 

Packet Loss 8.48 0.0034 Yes 

 

These results confirm that the R-Optimizer's gains are 

statistically significant, consistent, and reliable—

validating the robustness of the proposed learning-

based framework for adaptive SDN routing. Dijkstra 

serves as a non-adaptive baseline, underscoring the 

advantages of dynamic, learning-based routing in 

complex environments. 

 

7 Discussion 
 

The proposed dual-agent reinforcement learning 

framework demonstrated measurable improvements 

across all evaluated SDN topologies. The R-Optimizer 

invariably outperformed the R-Learner, achieving up to 

7.4% higher throughput, 44% lower jitter, 19.5% 

reduction in RTT, and over 50% reduction in packet 

loss. These gains highlight how effectively the policy-

gradient-based R-Optimizer adapts to dynamic traffic 

patterns, particularly in irregular topologies such as 

Abilene and Dense Adaptive Mesh. Unlike Q-learning, 

which relies on ε-greedy exploration and fixed decision 

intervals, the policy gradient method updates routes 

continuously based on real-time feedback, enabling 

faster and smoother adaptation to changing network 

states. While training, the R-Optimizer is more 

computationally intensive due to gradient calculations; 

however, its stability post-training—with minimal route 

changes—ensures reliable and low-disruption 

operation. 

The staged use of Q-learning for environment 

exploration, followed by policy-gradient optimization, 

enabled the system to maintain low delay and high 

throughput with minimal packet loss, even under 

changing conditions. For benchmarking, we also 

implemented the Dijkstra shortest-path algorithm on the 

same setup. Though it offers predictable and loop-free 

routing, it lacks adaptability. Across all topologies, 

Dijkstra consistently delivered lower throughput and 

experienced higher delay, jitter, and packet loss, 

reinforcing the limitations of static routing without 

adaptive feedback. 

Our Mininet-based evaluation ensured consistency and 

repeatability of the results. However, real-world 

deployment introduces challenges, such as OpenFlow 

rule installation latency, asynchronous link-state 

updates, and increased controller processing overhead 

during high traffic churn. To address this, we 

incorporated asynchronous event handling, selective 

flow installations, and a distributed controller model 

using east-west interfaces to sync Q-values and policy 

updates. This design supports scalable deployment in 

data centers and backbone networks. 

We also analyzed route stability in terms of the 

frequency of flow reconfiguration. During training, R-

Learner triggered 3–5 reconfigurations per flow, 

whereas R-Optimizer stabilized after 20–30 episodes, 

dropping to 0–1 reconfiguration per episode—an 

important indicator of robust, low-disruption learning. 

Although our reward function was initially designed to 

account for throughput, delay, jitter, and packet loss, 

the Mininet testbed required a simplified version due to 

limited access to real-time metrics. Future work will 

integrate a complete QoS-weighted reward function 

into the Ryu agents to align the implementation with the 

theoretical design. 

Looking ahead, we will extend benchmarking to 

include Equal-Cost Multi-Path (ECMP) routing 

alongside Dijkstra, allowing a more comprehensive 

comparison. We also plan to include Deep Neural 

Network (DNN) reinforcement learning to enhance 

decision-making in complex environments. Advanced 

variants, such as Deep Q-Networks (DQN), will be 

explored to enhance scalability, convergence speed, and 

adaptability in dynamic traffic and topology conditions. 

 

8 Conclusion 
 

This work proposed a dual-agent reinforcement 

learning framework for adaptive SDN routing, 

integrating Q-learning and policy-gradient strategies 

to handle diverse network topologies and traffic 

patterns. The R-Optimizer agent consistently 

delivered stable and efficient routing decisions, 

reducing key QoS impairments such as delay, jitter, 

and packet loss. Comparative analysis confirmed its 

advantages over both the baseline R-Learner and 

traditional routing methods such as Dijkstra’s 

algorithm, which lacked adaptability under variable 

load conditions. These findings underscore the value 

of reinforcement learning in optimizing SDN control 

and provide a foundation for scalable, intelligent 

routing in next-generation network infrastructures 
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