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This research explores adaptive routing in Software-Defined Networks (SDNs) using reinforcement
learning. Two models—R-Learner (Q-learning) and R-Optimizer (policy-gradient)—are evaluated against
the Dijkstra baseline across four topologies: Fat Tree, Abilene, Custom, and Dense Adaptive Mesh.
Experiments run over 100 TCP/UDP traffic episodes using Mininet and the Ryu controller. Key metrics
include throughput, jitter, round-trip time (RTT), and packet loss ratio (PLR). Statistically validated
results show R-Optimizer outperforms R-Learner, achieving ~7.4% higher throughput, 44% lower jitter,
19.5% lower RTT, and >50% lower packet loss. Both models also surpass Dijkstra in throughput and
delay reduction. These results support reinforcement learning as a viable approach for real-time SDN
routing and future controller integration.

Povzetek: Clanek predstavi dvofazni model za adaptivno usmerjanje v SDN s Q-learningom (R-Learner)
in policy-gradient pristopom (R-Optimizer). Preizkusi v Mininetu na Stirih topologijah pokazejo, da R-
Optimizer izboljsa prepustnost (~7,4 %) in izgubo paketov (>50 %) ter obcutno prekasa Dijkstrov

algoritem.

1 Introduction

The rapid demand for data-driven services, cloud
platforms, and real-time applications has made network
environments more complex and more challenging to
manage. These conditions often overwhelm traditional
routing methods. In response, researchers have turned to
reinforcement learning (RL) as a tool within Software-
Defined Networking (SDN) to support more adaptive,
policy-based routing that can adjust to changing
network  demands [1].  Traditional  network
infrastructures, which rely on fixed, distributed routing
setups, may frequently fall short of delivering the speed
and flexibility when needed to maintain consistent
Quality of Service (QoS) [2]. SDN helps overcome
these issues by separating the control and data planes,
allowing for centralized control and flexible, real-time
reconfiguration [3].

The SDN architecture comprises an application, control,
and data plane interconnected via protocols like
OpenFlow to support real-time management and policy
enforcement [4]. Figure 1 illustrates the Architecture of
the SDN system with integrated reinforcement learning.
The R-Learner and R-Optimizer (RL Agent) reside in
the Application Plane and interact with the SDN Control
Software in the Control Layer via APIs to install routing
decisions dynamically.

The Control Layer communicates with the network

infrastructure using OpenFlow to manage network
devices and enforce routing policies. The design
maintains the traditional three SDN planes: the
Application Plane, where the R-Learner and R-
Optimizer agents calculate routing decisions by
exploring path diversity under dynamic traffic patterns.
The Control Plane is managed by the Ryu controller and
extended with a custom module to enable the RL agents
to install or update flow rules dynamically.

The Data Plane consists of OpenFlow switches that
forward traffic based on the flow rules set by the
controller. The RL agents monitor network statistics like
link utilization and RTT through the southbound
interface, select optimal routes, and then guide the
controller to modify flow tables in real time. This
separation of roles—keeping the learning logic in the
application plane and the rule enforcement in the control
and data planes—ensures greater modularity, makes the
system easier to debug and allows for the easy
integration of new learning strategies without changing
the switch infrastructure. Learning effective routing
policies has become critical as modern networks demand
millisecond-level responsiveness and context-aware
decision-making. This way drives the exploration of
intelligent methods beyond traditional static or rule-
based strategies.

While SDN significantly improves control capabilities,
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real-time route optimization remains challenging
[5]. Classical routing algorithms such as Dijkstra's and
Equal-Cost Multi-Path (ECMP) often respond reactively
to network changes and fail to adapt efficiently to link
failures, congestion, or topological variation [6][45].

Khan et al. [7] Tested the performance of POX and
RYU controllers using Dijkstra-based routing in SDN
environments, demonstrating that RYU consistently
provided lower latency and higher throughput under
varying traffic loads compared to POX. The study
emphasized that RYU's modularity and scalability make
it better suited for implementing advanced routing
strategies, including reinforcement learning while
retaining Dijkstra as a comparative baseline for
deterministic  routing performance under static
conditions.

Kumar and Thakur [8] Evaluated Ryu controller
performance over Dijkstra, Bellman-Ford, and Floyd-
Warshall algorithms using the RYU controller in SDN
testbeds. Their findings showed that Dijkstra achieves
lower RTT in stable topologies but struggles under
dynamic traffic due to its static path selection, leading to
congestion and packet drops. This showcased
approaches in SDN and the need for adaptive, learning-
based routing to address traffic variability and
topological changes efficiently.

Naimullah et al. [9] analyzed the performance of POX
and RYU controllers using Dijkstra's algorithm in SDN
environments and reported that RYU outperformed
POX in scalability and efficiency across larger
topologies. However, the study also noted that Dijkstra's
routing lacked adaptability under congestion, where link
failures occur at certain times, also demanding the
limitations of classical shortest-path approaches in
dynamic SDNs and motivating the exploration of
reinforcement learning for more responsive and robust

routing strategies.
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Figure 1: Architecture of SDN with reinforcement
learning integration for dynamic routing
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As an alternative, reinforcement learning (RL) offers the
ability to learn adaptive routing policies by interacting
with the environment and optimizing behavior based on
cumulative rewards [10]. In recent years, researchers
have integrated Artificial Intelligence (Al), particularly
reinforcement learning, into SDN controllers to enhance
proactive decision-making and traffic engineering [11],
[12]. Deep reinforcement learning (DRL) models have
shown impressive results in reducing packet loss,
minimizing delays, also dynamically balancing traffic
loads [13], [14]. Researchers have successfully deployed
Graph Neural Networks (GNNs) and Convolutional
Neural Networks (CNNs) beyond DRL to improve fault
tolerance, detect anomalies, and enhance routing
resilience in SDNs [15], [16].

Unlike previous studies that often evaluate RL models
within a single, simplified network structure, this work
adopts a topology-aware approach. Research Questions
To guide this investigation, the study focuses on the
following research questions:

e Can a staged reinforcement learning framework,
leveraging an initial exploration phase followed
by policy-gradient-based refinement, enhance
routing efficiency across diverse software-
defined network topologies under dynamic
traffic conditions?

e How does the policy-gradient-based R-
Optimizer compare with the exploration-phase
agent (R-Learner) in terms of convergence
speed and Quality of Service metrics—such as
throughput, jitter, RTT, and packet loss—under
TCP and UDP traffic across diverse network
topologies?

To investigate the outlined research questions, this study
introduces a dual-agent reinforcement learning
framework designed for adaptive routing in software-
defined networks (SDNs). The framework deals with
two complementary strategies: Q-learning (R-Learner),
which focuses on exploring the environment, and policy-
gradient methods (R-Optimizer), which refine routing
decisions based on observed performance under varying
traffic conditions.

The approach is tested on four SDN topologies—Fat
Tree, Abilene, Custom, and Dense Adaptive Mesh—to
understand how network structure affects convergence
rates, routing efficiency, and quality of service. These
topologies were chosen specifically to represent a broad
range of structural complexity, from the regularity of Fat
Tree and Abilene to the irregular, high-density layouts of
Custom and Dense Mesh. Such variation allows for a
more nuanced evaluation of how well reinforcement
learning adapts to different network environments. The
broader motivation builds on recent work showing that
deep reinforcement learning can offer strong results in
SDN routing tasks [18, 20], and reinforces the idea that
topology-aware testing is essential for drawing robust
conclusions [17, 21].
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The experimental environment is built using Mininet,
which provides a scalable and flexible testbed [22].
Routing control is managed through the Ryu controller
[23], and iPerf is used to generate realistic traffic
patterns based on TCP and UDP protocols [24]. To
benchmark the performance of the learning framework,
a traditional Dijkstra-based routing strategy was
implemented on the same setup, providing a clear point
of comparison under identical network conditions.

We conduct our experiments in each topology with 100
simulation episodes. Moreover, selected samples were
analyzed to evaluate performance across key quality of
service metrics: throughput, RTT, jitter, and packet loss
ratio (PLR). Results show that the policy-gradient-based
R-Optimizer consistently performs better than the Q-
learning-based R-Learner, particularly in topologies
with higher redundancy and path diversity, such as Fat
Tree while maintaining adaptability and stability across
different network environments. These findings
demonstrate how topological diversity significantly
influences routing efficiency and learning behavior
within reinforcement learning-based SDN routing.

The remainder of this paper is organized as follows:
Section 2 reviews related work. Section 3 presents the
proposed system. Section 4 describes the experimental
setup. Section 5 details the results and analysis. Section
6 provides QoS comparison and section 7 is discussion.
Finally, Section 8 concludes the paper and outlines
future work

2 Related work

Software-defined networking (SDN) separates the
control and data planes, enabling centralized
programmability and abstraction of the underlying
infrastructure [25]. The controller acts as the network's
"brain,” dynamically managing flow rules and routing.
Due to its modularity in part design, Ryu stands out
among available controllers, offering Python design,
OpenFlow  compatibility, and  suitability  for
reinforcement learning (RL) integration [26].

Traditional SDN routing methods—Ilike Dijkstra's
algorithm and Equal-Cost Multi-Path (ECMP)—perform
reliably under stable conditions but lack adaptability to
congestion, link failures, and traffic surges [27].
Researchers have proposed reactive traffic-engineering
solutions, but these still fail to meet real-time, low-
latency demands [28]. Moreover, most traditional
approaches do not learn from past network behavior, so
they cannot improve or adapt over time. To deal with
this, researchers have started using reinforcement
learning (RL) and deep RL (DRL) for SDN routing [29],
[30].

These models utilize deep Q-networks and policy
gradient methods to adjust routing decisions based on
real-time network feedback dynamically. The goal is to
optimize long-term performance rather than reacting
solely to short-term events. Studies show that they can
boost throughput, reduce delay, and lower packet loss,
even under unpredictable traffic loads [31]. Advanced
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methods like hierarchical and meta-RL improve how fast
they learn and how well they handle different network
situations [32], [33].

These models also reduce the need for manual tuning,
making the system more autonomous and scalable.
Additionally, RL agents can continually adapt to traffic
shifts over time without requiring a restart or reset of the
entire network.

Recent approaches also include topology-aware learning
where models make use of how the network is structured
[33]. This helps to make rorouting decicion by the agent
understand the role of links, paths, and node positions.
Deep learning methods like transformers and
convolutional neural networks (CNNs) have been used for
traffic prediction, detecting anomalies, and improving
routing during failures [35], [36].

These methods can catch early signs of congestion or link
stress and adjust routing before problems get worse. Some
setups use supervised learning first to teach the model
basic patterns, then switch to reinforcement learning to
fine-tune behavior in live scenarios. This shortens training
time and improves stability.

Other designs use alert mechanisms or graph-based
learning to help the agent focus on the most relevant parts
of the network at any moment. This is useful when the
network is large and links behave differently depending
on traffic. These ideas are still developing but show good
results in testbeds.

Mininet and the Ryu controller continue to be the go-to
tools for testing this kind of setup [39], [40]. Mininet
deals wiht complex topologies without needing physical
switches, and Ryu makes it easy to plug in custom logic
through its Python API. This allows routing agents to read
traffic stats, update flow rules, and learn over time. There
are open templates available for things like ECMP and
custom controller functions, which help speed up testing
and cut setup time [41], [42], [43]. These tools make it
easier to repeat experiments and build on other
researchers’ work.

Despite these advances, a gap remains in frameworks that
systematically assess RL-based routing across multiple
SDN topologies. This study addresses that gap through a
dual-agent architecture—R-Learner and R-Optimizer—
evaluated on Fat Tree, Abilene, Custom, and Mesh
networks, with a focus on convergence behavior and
quality of service performance.

3 Proposed system

This section describes a structured SDN flow control
framework that works on a two-stage routing process. The
system introduces two coordinated modules—Route-
Learner and Route-Optimizer—each responsible for a
specific phase. In the first stage, the route learner probes
the network to identify available paths and assess real-
time network conditions. In the second stage, the Route-
Optimizer takes the aid of this information to refine
routing decisions, aiming to improve traffic distribution
and reduce congestion. Both modules are integrated into
the Ryu controller, enabling real-time interaction with the
network topology. This setup allows the system to
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periodically adjust forwarding rules based on updated
path and traffic condition data, ensuring efficient routing
even as network demands fluctuate. Our implementation
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followed a two-phase staged framework. In phase one,

Table 1: Prior RL-Based SDN routing studies
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the R-Learner operated on the live SDN topology to
collect QoS data and estimate routing values using Q-
learning.

Metrics

Study Method Topologies Evaluated Key Findings Identified Gaps
. Deep Q-Network Throughput, Improved congestion | Single topology, no
Liu [29] (DQN) Fat Tree Delay handling policy-gradient
Kim et . Latency, Packet | Reduced delays and | Limited topology
al. [31] DRL (Actor-Critic) | Custom Mesh Loss PLR diversity
Suhetal. | DRL for Network Data Center Bandwidth, Dynamic slicing for | Not  focused on
[11] Slicing Delay QoS routing decisions
Chen et Multi-Agent RL Custom Load Balancing | Better fault tolerance No po_||cy-grad|ent
al. [33] exploration
Xie et al. GNN-RL Mesh Throughput Captures  topology L_imited scalability,
[19] structure single topology
Yang & | Deep Data Center Latency, Reduced latency by Focus on congestion
Li [37] Reinforcement SDN Reward, Speed | 6.3%, improved control, lacks multi-
Learning (DRL) reward convergence | topology routing
analysis
Ma et al Q-Learning Generic SDN | Throughput, Improved throughput | Uses Q-Iearnin_g
[38] ' Delay, Load by 30%, reduced only, lacks policy-
Balancing delay by 25% gradient comparison
Kim et Q-ITearning_ + Fat_ Tree, T_hroughput, _Consistent QoS | Multi-topology, _
al. [31] Policy-Gradient Abileneg, Jitter, RTT, | improvements across | staged policy-
' (Dual-Agent) Custom, Mesh | PLR topologies gradient use

Once exploration was complete, it was halted while the
topology remained active. In phase two, the R-
Optimizer refined routing decisions on the same
topology using the Q-table generated by the R-Learner
via a policy-gradient method. This structured approach
ensured realistic traffic conditions while leveraging
prior exploration.

For comparison, we also implemented Dijkstra’s
shortest-path algorithm in the Ryu controller and
evaluated it under identical TCP and UDP traffic across
all topologies. This provided a consistent baseline to
measure improvements over the learning-based
framework.

3.1 Reinforcement learning integration in
SDN

Enhance the Ryu controller with custom RL modules to
enable intelligent routing in SDN. When the system
receives a packet_in event from the switch, it identifies
the source—destination context and evaluates all feasible
paths. It then selects a forwarding action based on the
chosen agent's strategy—either R-Learner or R-
Optimizer. In practice, this selection follows a staged
approach: the system first operates with the R-Learner
to explore and gather routing knowledge under live
network conditions and, after sufficient exploration,
transitions to using the R-Optimizer on the same active
topology to refine routing decisions using the
knowledge learned during the R-Learner phase. The

system verifies each forwarding action.

Furthermore, it observes outcomes like delivery status,
delay, or signs of congestion. We later use this
information to improve future routing decisions through

gradual adjustments.
applied

immediately by installing new flow rules using
OpenFlow 1.0, maintaining smooth and responsive
network operation.

Additionally, for baseline benchmarking, we
implemented the Dijkstra shortest-path  routing
algorithm within the Ryu controller. We evaluated it
across all topologies under the same traffic generation
settings (either TCP or UDP) used for the reinforcement
learning agents.

Updated routing choices are

3.2 R-Learner: exploration-based adaptive
routing

The R-Learner module defines predefined criteria
to assess links and nodes within the network topology,
selecting routing paths deemed efficient. It updates
routing preferences based on the observed outcomes of
previous forwarding decisions, using this performance
history to guide future path selection. The state
representation used in our implementation is limited to
the source and destination switch identifiers (src_dpid,
dst_dpid). It does not explicitly include live network
metrics such as link utilization, RTT, or congestion
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status. Instead, the agent learns effective routing paths
through repeated exploration under dynamic traffic
patterns, indirectly capturing performance through
delivery outcomes.

e State representation: We represent each state
using the tuple (src_dpid, dst_dpid), which
identifies the source and destination switches.

e Action: An action corresponds to selecting one
of the simple paths between the source and
destination.

e Reward: In our current implementation, the
reward is assigned as a scalar value, with a
positive reward (e.g., +10) if the forwarding
succeeds and a negative reward (e.g., -10) if
the forwarding fails. While factors like
throughput, latency, and congestion motivate
the need for adaptive routing, we currently
capture their indirect effects through packet
delivery success and learning.

e Q-Value update:

Q(S,a)<—Q(S,a)+0,[r+Y'a’maXQ(S’,a’)*Q(S,a)]

Where o is the learning rate, and y is the discount
factor.
Exploration strategy: The agent follows a e-greedy
approach, selecting a random path with probability €
and the best-known path otherwise.
Integration: Once a path is selected, flow rules are
installed using install_path_flows(), and the Q-values
are updated based on the observed reward.

Algorithm 1 outlines the decision-making process used
by the Route-Learner module. The system supports
routing decisions with the help of a performed path
maintained in the evaluation table. Each routing path is
selected based on current performance metrics linked

Algorithm 1: R-Learner: Based Adaptive Routing
Input: Network topology GG, source-destination switch
pair (s,d)(s, d), exploration rate ¢, learning rate a,
discount factor y

Output: Updated Q-table Q, selected routing path p

Begin

Initialize Q-table

Q[state][action]arbitrarily

Observe current state S«—(s,d)

If random() < ¢ then
a<—select a random path from s to d

Else

a«——argmaxQ[S][a] // select path with

highest Q-value

End If

10. Install flow entries along path a using
install_path_flows()

11. Forward packet through path a

12. Observe resulting reward r (based on delivery
status, delay, congestion)

13. Observe next state S'«<—(s,d) // remains same
unless topology changes

14. Update Q-value:

15. Q(s,a)«—Q(s,a)+a[r+y-a’'max
Q(s",a")-Q(s.a)]

16. Return selected path a and updated Q-table

17. End

N~ wWNE

©
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with links and nodes. The process follows fixed rules
for path selection, ensuring consistent routing behavior
across the network topology.

3.3 R-Optimizer:
routing strategy

The R-Optimizer module applies a rule-based
mechanism at each hop to determine routing decisions.
It selects the next-hop option from the current switch
based on predefined performance metrics and static
path preferences, enabling consistent per-hop routing
toward the destination.

e State representation: We represent states as
(src, dst, current_switch), which includes the
flow endpoints and the current switch in the
path.

e Action: For each state, the agent creates a
probability distribution over potential next-hop
forwarding options from the current switch and
samples from this distribution to select the
next hop toward the destination.

e Reward: The reward is currently assigned
using a simple scalar value based on the
success of packet forwarding actions. We use a
basic success/failure evaluation due to the
lightweight nature of the optimizer in this
implementation, with the indirect influence of
path congestion or delay captured through
delivery success.

e To formalize this approach, we designed the
Route-Optimizer to improve long-term
network performance, defined as:

e J(6) = Et~mb[Xi,rt]

e Where 0 represents the policy parameters,
T denotes trajectories under the policy 70,
and it is the reward at time t.

o Policy gradients for updating the
policy are computed as:

* Viy®= ETx1velognecatist)(Re—b)]

e Where b is a baseline (e.g., the average
reward) used to reduce variance during
learning. This formulation enables the Route-
Optimizer to apply predefined routing rules,
which are based on accumulated performance
data, ensuring consistent behavior across
various network scenarios.

e Policy update:

P(s,a) « P(s,a) + - (r —b) - VlogP(s, a)

e Adaptation: Over time, the system assigns
higher probabilities to high-performing actions
while gradually avoiding ineffective routes..

e Integration: Routing decisions are enforced
through add_flow() and OFPPacketOut,
enabling real-time responsiveness.

Algorithm 2 summarizes the Q-Optimizer’s policy-
gradient approach. The agent gradually shifts
preference toward higher-performing routes by
sampling paths according to a softmax distribution and

probability-driven
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updating the policy in proportion to the received reward
minus a baseline. Immediate installation of new flow
rules ensures that these learned improvements take
effect in real time.

3.4  Topology
management

discovery and path

Both R-Learner and R-Optimizer need an up-to-date
view of the network. We use Ryu’s EventSwitchEnter
to catch new switches and links and maintain a live
graph in NetworkX. The agents then run over this graph
to make their routing choices.
Operational loop:
1. Topology discovery — update the NetworkX
graph on switch/link events
2. Path enumeration — list all simple paths
between src and dst via all_simple_paths()
3. Action selection — the active agent (R-Learner
or R-Optimizer) picks one path
4. Flow installation — push OpenFlow rules for
the chosen path
5. Reward update — measure delivery success,
delay, or congestion and use that feedback to
refine the agent
This setup makes routing both topology-aware and
traffic-sensitive, adapting to structural changes and
varied traffic patterns on the fly.

3.4.1 Topology discovery and path management
Both R-Learner and R-Optimizer need an up-to-date
view of the network. We use Ryu’s EventSwitchEnter
to catch new switches and links and maintain a live
graph in NetworkX. The agents then run over this graph
to make their routing choices.
Operational loop:
6. Topology discovery — update the NetworkX
graph on switch/link events
7. Path enumeration — list all simple paths
between src and dst via all_simple_paths()
8. Action selection — the active agent (R-Learner
or R-Optimizer) picks one path
9. Flow installation — push OpenFlow rules for
the chosen path
10. Reward update — measure delivery success,
delay, or congestion and use that feedback to
refine the agent
This setup enables topology-aware, traffic-sensitive
routing that adapts in real time. For benchmarking,
Dijkstra’s algorithm was run using the live NetworkX
graph for deterministic path selection and flow
installation across all topologies.

3.5 Hyper selection and

sensitivity

parameter

In the implementation, the R-Learner makes use of a
discount factor (y) of 0.95 to ensure the agent values
future rewards while handling responsiveness to
delivery outcomes under dynamic traffic conditions, a
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learning rate (o) of 0.1 to enable stable yet effective Q-
value updates, and a fixed exploration rate (g) of 0.1 to
balance exploration and exploitation during learning.
These values were chosen through extensive testing
conducted across the different topologies. Premature
cover where occurred due to lower ¢ values (<0.05) on
suboptimal paths, while higher ¢ values (>0.2) delayed
convergence without significant QoS improvements.
Similarly, higher a values (>0.15) caused unstable Q-
value fluctuations, while lower a values (<0.05) slowed
adaptation under dynamic traffic conditions.

For the R-Optimizer, the policy distribution for each
state is initialized with small random values and
normalized for action selection, functioning
equivalently to a softmax mechanism to encourage
action diversity. Although an explicit temperature
parameter was not used, normalization effectively
allowed the agent to explore routing actions in early
episodes while gradually converging to high-reward
paths as learning progressed.

3.6 Exploration-exploitation strategy and
learning stability

The R-Learner employs an g-greedy strategy with a
fixed exploration rate (g) of 0.1 to balance exploration
and exploitation during learning. This value was chosen
to maintain adequate exploration of alternative paths
while allowing convergence toward high-reward routes
under dynamic traffic conditions. Although a decay
schedule for & was not implemented in the current
study, iterative testing confirmed that a fixed & provided
stable and consistent learning across episodes without
premature convergence or excessive route oscillations.

As our experiments span multiple topologies (Fat
Tree, Abilene, Custom, Dense Adaptive Mesh) under
diverse  TCP/UDP traffic scenarios, we monitored
improvements in key QoS metrics (throughput, jitter,
RTT, PLR) across 100 simulation episodes to evaluate
learning consistency. Consistent metric improvements
over episodes indicate stable convergence of the R-
Learner’s policy under the fixed € strategy across all
topologies. While explicit cumulative reward or Q-
value convergence plots were not included due to the
multi-topology setup and computational constraints,
future work will incorporate systematic & decay
schedules and detailed convergence visualizations to
further analyze learning dynamics and stability across
complex network environments.

4 Experimental setup

We ran all experiments on Mininet, a lightweight SDN
emulator, using MiniEdit to draw and configure each
topology’s switch—host layout. The Ryu controller
formed our control plane and was extended with two
Python modules—R-Learner and R-Optimizer—to
make adaptive routing decisions. Ryu was chosen for its
modular architecture and seamless integration with
Python-based RL agents. Flow rules were installed via
OpenFlow 1.0. In our experimental workflow, the
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proposed system was executed in two clear stages.
First, the R-Learner was run on the live Mininet
topology, enabling it to explore the environment, gather
QoS data, and learn state-action values using Q-
learning while the network handled active traffic. After
completing sufficient exploration episodes, we stopped
the R-Learner while keeping the topology running. In
the second stage, the Route-Optimizer was executed on
the same active topology, utilizing the routing metrics
and path evaluations generated in the first stage by the
Route Learner. This staged process ensured that routing
refinement was informed by previously collected
network performance data, aligning with our design
objective of consistent, context-informed decision-
making while maintaining uninterrupted network
operation throughout the experiment. iPerf was used to
generate realistic traffic loads using both TCP and UDP
streams,  offering  controlled  variability  and
repeatability. In addition to our dual-agent framework,
we implemented the Dijkstra shortest-path routing
algorithm on the same Ryu controller and evaluated it
across all four topologies under identical traffic
conditions. Dijkstra routing was executed on the live
Mininet topology using the NetworkX graph for path
computation, with flows installed using OpenFlow 1.0.
This deterministic baseline allowed for a direct, fair
comparison of Quality of Service (Qo0S) metrics
between classical shortest-path routing and our
adaptive, learning-based routing framework under
dynamic traffic loads.

Traffic modeling:
We used iPerf to generate traffic flows and test TCP
and UDP sessions under varying network loads. For
each topology, we configured multiple host pairs to
produce east-west traffic patterns:

e Fat Tree: h1-h16, h5-h12, h2-h14

e Abilene: h8-h12, h3-h9

e Custom: h1-h16, h4-h10

e DAM: Five randomly selected host pairs per

run (e.g., h2-h25, h7-h19)

Each test lasted 60 seconds, with interarrival times
uniformly distributed between 1-3 seconds to simulate
dynamic traffic.

TCP tests leveraged iPerf with CUBIC congestion
control, allowing flows to dynamically adjust to
available bandwidth while providing insights into
throughput and RTT under adaptive congestion
conditions. In contrast, UDP flows operated at 90% of
link capacity without congestion control, making them
sensitive to packet loss and jitter during congestion.

Congestion was modeled and observed organically
by initiating multiple overlapping TCP and UDP flows
across shared paths, which progressively increased link
utilization and queue buildup within the network. This
setup allowed the R-Learner and R-Optimizer to
experience realistic congestion and adapt routing
decisions under both connection-oriented (TCP) and
connectionless (UDP) traffic conditions.

For every topology:
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1. Simulation episodes: 100 runs with varying
traffic loads
2. Data collection: Record throughput, RTT,
jitter, and packet loss ratio (PLR) in each
episode
3. Detailed analysis: 10 systematically sampled
episodes at fixed intervals (every 10th episode)
from the 100 total simulation episodes for each
topology (Episodes 10, 20, 30, ..., 100). This
approach provided a consistent, representative
view of convergence trends and metric
stability across the learning process.
This design allowed consistent, controlled evaluation of
R-Learner and R-Optimizer performance under
realistic, dynamic conditions. Mininet was run in
single-instance mode without parallelization to maintain
controlled conditions. Average runtime per 100-episode
simulation was ~2.5 hours per topology, depending on
traffic intensity and topology complexity. Experiment
setup is shown in Table 2.

Table 2: Experimental setup components
Emulation Platform Mininet

MiniEdit (Mininet GUI)

Topology Design
Tool
SDN Controller

Ryu (Python-based)

Flow Protocol OpenFlow v1.0

Routing Agents R-Learner
R-Optimizer

Traffic Generator| iPerf (TCP/UDP)

Performance iPerf, ping

Tools

Host Fat Tree: hl <->h14

Communication |Abilene: h8 <->h32
Custom: hl <->hl6
DAM: randomly selected host
pairs (e.g., hl <->h50)

Number of 100 per topology
Episodes
Analysis Sample | 10 episodes per topology
QoS Metrics Throughput, Jitter,
Evaluated Round-Trip Time (RTT),
Packet Loss Ratio (PLR)
CPU Intel Core i7-12700 (12 cores,
2.10 GHz)
RAM 32 GB DDR4
(O} Ubuntu 22.04 LTS

4.1 Performance metric evaluation

To evaluate routing behavior under different
reinforcement models, four key Quality of Service
(QoS) metrics were recorded during each simulation:

e Throughput: Measured in Mbps/Gbps using
iPerf TCP tests, indicating the rate of
successful data delivery over time.

e Jitter: Collected from iPerf UDP reports jitter
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reflects variations in packet arrival times.
Lower jitter values indicate more stable
delivery, which is critical for time-sensitive
applications.

e Round-Trip Time (RTT): Recorded using
ping, RTT measures the time packets travel to
and back to the destination. We average the
values across multiple packets for accuracy.

e Packet Loss Ratio (PLR): We calculate
Packet Loss Rate (PLR), derived from iPerf
UDP data, as the percentage of lost packets
relative to the total number of packets sent. It
plays a key indicator of delivery reliability and
the extent of network congestion.

These metrics were averaged across selected test

intervals to evaluate routing consistency and

overall network performance.

4.1 Topology design and structural
characteristics

To clarify the differences across topologies, Table 3
summarizes the structural metrics for the Fat Tree,
Abilene, Custom, and Dense Adaptive Mesh (DAM)
topologies used in our experiments, including node
count, average node degree, and link redundancy.

Table 3: Topology structural metrics

> n * § @ % —_ QE x _|
2 8| £| 25| £EL| 2580
s | 2| 3| ¢8| gz | SE=H
= 3 x FQo ™
FatTree |20 |36 |36 g‘g;) ) 0.85
Abilene | 12 | 15 | 2.5 ('\ggod/(')‘)’m 0.58
Custom | 16 | 18 | 2.25 '(-3%% 0.42
DAM 30 | 60 | 4.0 zg%r%)H'gh 0.92

The Fat Tree topology, with its full path redundancy,
makes it prone to failures and congestion. As indicated
by a Topology Complexity Index (TCI) of 1.00. The
Abilene topology, based on a real-world backbone
network, provides moderate redundancy and serves as a
balanced testbed for evaluating routing under practical
connectivity conditions. The Custom topology features
limited path redundancy and a lower average node
degree, offering insights into routing performance in
sparse connectivity scenarios. The Dense Adaptive
Mesh (DAM) topology is densely interconnected, with
a high average node degree and maximum redundancy,
simulating complex data center environments to
examine system scalability and routing stability under
high-density traffic conditions. Each result section in
Section 6 analyzes the performance of our staged dual-
agent framework, where the R-Learner was first
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executed to explore and learn routing policies on the
live topology, followed by the R-Optimizer, which
utilized the learned knowledge from the R-Learner
phase to refine routing decisions under the same
operational conditions.

This structured execution allows us to evaluate how
leveraging exploration knowledge through staged
learning improves Quality of Service (QoS) metrics
compared to the initial exploration phase

5 Results and analysis

We ran R-Learner and R-Optimizer across four SDN
topologies, collecting data from over 100 simulation
episodes per topology. For consistency and precise
tracking of convergence and stability, we systematically
analyzed 10 episodes per topology at fixed intervals (every
10th episode: Episodes 10, 20, 30, ..., 100). We targeted to
observe the learning progression of each agent under
varied traffic conditions, measured by four key Quality of
Service (QoS) metrics: throughput, jitter, RTT, and packet
loss ratio (PLR).

To benchmark these learning-based approaches, we
additionally  implemented  Dijkstra's  shortest-path
algorithm as a deterministic baseline using the Ryu
controller across all topologies. As Dijkstra computes a
static shortest path for a given topology, its performance
remains constant across episodes under identical
conditions. "Therefore, we included Dijkstra results in the
final QoS comparison tables but excluded them from the
per-episode analysis

5.1 Fat tree topology

Figure 2: Fat tree topology

Figure 2—comprising core switches (c0—c3), aggregation
switches (al-a8), edge switches (e1-€8), and 16 hosts—
R-Learner and R-Optimizer were evaluated under
identical east—west traffic between hl and h2 across 10
systematically sampled episodes.
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Table 4: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Fat Tree Topology

Episods | 1P (Gbps) | Tput(Ghps) | Titter (ms) | Jiter(ms) | ETT(me) | RIT(ms) | FLE(W) | FLE (%)

RL RO EL RO RL RO EL RO
10 40.3 432 0.002 0.002 0.156 0.09 0.3 0.18
20 40 43.1 0.002 0.001 0.16 0132 0.36 0.14
0 41.1 43 0.002 0.001 0.141 0119 0.11 0.07
40 404 418 0.002 0.001 0214 0164 0.13 0.14
30 40.4 417 0.002 0.001 0.16% 0115 0.8 0.09
[ 406 4 0.002 0.001 0.173 0123 011 0.09
70 404 434 0.002 0.001 0.133 0106 0.28 0.1
E0 404 428 0.002 0.001 0.194 0.09 033 0.13
a0 404 433 0.002 0.001 0.103 0136 029 0.19
100 40.2 43 0.001 0.001 0.184 0.111 0.3 0.18

Table 5: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Abilene Topology

Episoda Tput (Gbps) | Tput(Ghps) | Jitter (ms) | Jitter (ms) EIT(ms) | ETT(ms) | FLE(*) | PLE(%)

RL RO RL RO RL RO RL RO
10 376 403 0.0034 0.0013 0.2093 01301 0.39 .18
20 379 403 00032 0.0020 0.2153 01782 0.33 .14
0 378 406 0.0035 0.0023 0.2089 01799 041 016
40 377 409 00036 0.0021 02113 01823 043 020
30 376 407 0.0033 0.0022 0.2141 01817 042 017
60 373 413 00034 0.0021 0.2062 01791 033 0.14
70 374 404 00033 0.0023 0.2103 01515 037 016
&0 373 403 0.0036 0.0022 0.2121 01307 0.40 .19
90 373 403 0.0037 0.0024 0.2112 01524 043 0.21
100 372 408 0.0035 0.0021 0.2097 0.1756 0.4 0.22

Table 6: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over Custom Topology

Epizod Tput (Ghps) | Tput (Gbps) | Jitter (ms) | Jitter (ms) ETT ims) | RTT(ms) | FLE(%3) | FLE (%)

RL RO AL RD RL RO L RO
10 336 406 0.003 0.001 0.232 0.169 0.1 0.09
0 393 409 0.003 0.002 0.242 0.146 0.1 0.16
30 333 411 0.003 0.001 0.333 0217 0.44 0.18
40 393 412 0.003 0.002 0217 0202 0.2 0.14
50 339 416 0.003 0.002 0.236 0.149 0.46 0.18
60 333 408 0.003 0.002 0.205 0.191 0.38 0.07
70 332 404 0.003 0.002 0.148 0.258 021 0.11
&0 39.2 40.7 0.003 0.001 0.228 0.169 047 0.24
90 33.1 408 0.003 0.001 0.242 0.204 0.27 0.12
100 337 412 0.003 0.002 0253 0.189 0.37 0.14

Table 7: Performance Comparison of R-Optimizer (RO) and R-Learner (RL) over DAM Topology

Episods Tput (Ghps) | Tpat (Gbps) | Jitter fms) | Jitter (ms) ETT (me) | ETT(ms) | PLE(%3) | PLE (%)

AL RO RL RO EL RO EL RO
10 393 427 0.002 0.001 0.18% 0.157 0.14 0.11
20 9.2 426 0.002 0.002 0232 0118 025 0.07
0 8.1 421 0.002 0.002 0172 0.131 0.3 0.18
40 8.9 427 0.002 0.001 0.146 0.14 0.33 0.17
50 387 426 0.002 0.001 0.153 0123 028 0.13
80 9.1 421 0.002 0.002 0.173 0182 0.12 0.09
70 9.2 421 0.002 0.001 0.171 0123 0.25 0.08
B0 9.2 422 0.003 0.001 0.171 0.139 0.24 0.19
90 38.3 423 0.002 0.001 0.173 0.167 0.16 0.17
100 8.1 427 0.003 0.001 0.199 0123 0.1 0.18
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In the Fat Tree topology, as illustrated in

Figure 3: Abilene Topology

As summarized in Table 4, R-Optimizer consistently
outperformed R-Learner across all QoS metrics. It
achieved an average throughput of 43.04 Gbps, compared
to 40.42 Ghbps for R-Learner, marking a 6.5% gain. Jitter
remained low and steady for R-Optimizer at 0.0011 ms,
while R-Learner averaged 0.0019 ms, indicating smoother
packet delivery. The average Round-Trip Time (RTT)
dropped from 0.1631 ms with R-Learner to 0.1201 ms
under R-Optimizer, a 26.3% improvement, highlighting
more responsive path selection. Packet Loss Ratio (PLR)
was reduced by nearly half, with R-Optimizer averaging
0.134% versus 0.251% for R-Learner, reflecting a 46.6%
improvement in delivery reliability.

In the final comparative analysis, Dijkstra’s algorithm
demonstrated stable but lower performance, achieving
1.17 Gbps throughput, with higher RTT (1.46 ms), jitter
(1.11 ms), and PLR (1.60%).

These results illustrate Dijkstra’s effectiveness in stable
path computation but highlight its limitations in adapting
to dynamic traffic and congestion compared to
reinforcement learning-based methods.

These results highlight that R-Optimizer demonstrates
superior convergence, smoother delivery, and stronger
resilience to routing inconsistencies even in irregular,
less predictable topologies like Abilene, while Dijkstra
serves as a static baseline for comparison.
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Overall, these findings confirm that while Dijkstra serves
as a consistent reference, R-Optimizer’s policy-gradient
learning ensures superior adaptability and quality of

5.2 Abilene topology

The Abilene topology closely resembles real-world
networks, featuring a moderately dense mesh structure
with multiple intersecting paths, as shown in Figure 3.

Its semi-random layout introduces non-uniform routing
challenges, making it ideal for evaluating the adaptability
of learning-based models in more unpredictable
environments. Our tests simulated traffic between hosts
h8 and h32, passing through varied and often
asymmetrical paths. The irregular link distribution
required both the R-Learner and R-Optimizer to consider
latency, route consistency, and link reliability during
routing decisions.

As shown in Table 5, R-Optimizer outperformed R-
Learner across all QoS metrics. On average, throughput
improved from 38.85 Gbps (R-Learner) to 40.91 Ghps
(R-Optimizer), an increase of approximately 5.3%. Jitter
was more stable and lower under R-Optimizer, averaging
0.0016 ms compared to 0.0030 ms for R-Learner,
reflecting smoother packet delivery. RTT saw a notable
improvement, with R-Optimizer averaging 0.1894 ms
compared to 0.2357 ms under R-Learner, an approximate
19.6% reduction. Most significantly, Packet Loss Ratio
(PLR) dropped from 0.334% with R-Learner to 0.143%
under R-Optimizer, marking a 57.2% reduction in
delivery failures.

For benchmarking, Dijkstra’s shortest-path algorithm was
executed under the same conditions on the Abilene
topology. As Dijkstra computes a fixed path without
dynamic adaptation, its performance remained constant
across tests, achieving 1.03 Gbps throughput, with 1.64
ms RTT, 1.30 ms jitter, and 1.49% PLR. While Dijkstra
provides stable shortest-path routing, it lacks the ability to
adapt to dynamic traffic fluctuations and congestion,
limiting its effectiveness in complex, real-world network
scenarios.

5.3 Custom topology

The custom topology, resembling a real-world enterprise
or regional backbone network with a hierarchical and
asymmetric design, is used in this study. With its
moderately dense mesh structure and multiple
intersecting paths, it mirrors the irregularity and
unpredictability of real-world networks. The semi-
random layout introduces non-uniform  routing
challenges, making it an ideal testbed for evaluating the
adaptability of learning-based models under such
conditions.
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We simulated traffic between hosts hl and hl6,
navigating varying and often asymmetrical paths. The
non-uniform link distribution required both the R-
Learner and R-Optimizer to account for latency, route
consistency, and link reliability to optimize performance.
As shown in Figure 4, the topology features multiple
layers of switches connected to hosts, with controllers
ensuring fault tolerance and scalability. The irregular
link distribution creates both optimal and suboptimal
routing paths, challenging the models in path selection
and congestion management.
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Figure 4: Custom topology

As presented in Table 6, R-Optimizer consistently
outperformed R-Learner across all performance metrics.
On average, throughput improved from 39.02 Gbps (R-
Learner) to 42.42 Gbps (R-Optimizer), reflecting a
performance boost of approximately 8.7%. Jitter was
notably lower and more stable under R-Optimizer,
averaging 0.0013 ms compared to 0.0022 ms for R-
Learner. RTT also saw a marked improvement, with R-
Optimizer achieving 0.1407 ms, compared to 0.1736 ms
for R-Learner—an approximately 18.9% reduction in
delay. Packet Loss Ratio (PLR) was significantly reduced,
from 0.219% under R-Learner to 0.137% under R-
Optimizer, indicating a 37.4% reduction in packet loss.

To provide a baseline comparison, Dijkstra’s shortest-path
algorithm was evaluated under the same conditions on the
custom topology. Dijkstra’s routing, while stable,
produced 0.94 Gbps throughput, 1.56 ms RTT, 1.28 ms
jitter, and 1.52% PLR. These static results underscore
Dijkstra’s limitations in adapting to dynamic congestion
and load variations within irregular topologies.

These results demonstrate that R-Optimizer offers
superior adaptability and congestion resilience compared
to R-Learner and the deterministic Dijkstra algorithm,
ensuring smoother and more reliable performance in
complex, unpredictable network environments.

5.4 Dense Adaptive Mesh (DAM) Topology

The Dense Adaptive Mesh (DAM) topology, inspired
by real-world, large-scale SDN networks, features a
semi-structured, dense mesh design with 10 switches
(s1-s10) and 50 hosts (h1-h50). This topology creates a
highly redundant network with varying link lengths and
congestion-prone paths. Its irregular distribution of
links and varied path depths makes it well-suited for
testing routing models under complex and

Informatica 49 (2025) 343-360 353

unpredictable environments.

Traffic was dynamically generated between randomly
selected host pairs (e.g., hl <> h50), and both R-Learner
and R-Optimizer agents navigated these paths over 10
test episodes. The network’s dense interconnectivity
and partial mesh structure required the models to
carefully account for route consistency, latency, and
packet loss while selecting optimal paths.
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Figure 5: Dense Adaptive Mesh (DAM) Topology

As shown in Table 7, R-Optimizer consistently
outperformed R-Learner across all key metrics. On
average, throughput improved from 37.53 Gbps (R-
Learner) to 40.77 Gbps (R-Optimizer), marking an
increase of about 8.6%. Jitter was significantly lower
and more stable under R-Optimizer, averaging 0.0022
ms compared to 0.0035 ms for R-Learner. RTT also
improved, with R-Optimizer achieving 0.1801 ms
compared to 0.2109 ms for R-Learner, an approximate
14.6% reduction in latency. The Packet Loss Ratio
(PLR) dropped from 0.404% under R-Learner to
0.177% with R-Optimizer, indicating a 56% reduction
in packet loss.

For comparative benchmarking, Dijkstra’s shortest-path
algorithm was evaluated once under identical traffic
conditions on the DAM topology. As expected,
Dijkstra’s routing yielded a consistent 0.92 Gbps
throughput, 1.89 ms RTT, 1.54 ms jitter, and 1.94%
PLR across all tests. These fixed results demonstrate
Dijkstra’s deterministic behavior while highlighting its
limitations in adapting to dynamic congestion and load
fluctuations inherent in high-density topologies like
DAM.

These results confirm that R-Optimizer is better
equipped to handle the complexity of DAM topology. It
consistently provides higher throughput, lower jitter,
reduced RTT, and less packet loss under dynamic,
congestion-prone conditions, demonstrating its ability
to adapt to high-density network environments while
ensuring efficient and reliable data transmission.
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6 QoS Comparison across topologies

This section compares the two learning models—R-
Learner and R-Optimizer—across all four evaluated SDN
topologies: Fat Tree, Abilene, Custom, and Dense
Adaptive Mesh (DAM).

The comparison is systematically organized according to
each quality-of-service metric, namely Throughput, Jitter,
Round-Trip Time (RTT), and Packet Loss Ratio (PLR), to
clearly illustrate each approach's relative strengths and
adaptability under varying network structures

6.1 Throughput analysis

Throughput, defined as the rate of successful data delivery
over the network, serves as a primary QoS indicator
reflecting routing efficiency under diverse topological and
traffic conditions. As shown in Figure 6 and detailed in
Table 8, the R-Optimizer consistently delivers higher
throughput across all evaluated topologies, benefiting
from its policy-gradient strategy and staged learning.
Specifically, in the Fat Tree topology, the R-Optimizer
achieves 43.04 Gbps, outperforming the R-Learner’s
40.42 Gbps by approximately 6.5%. In the Custom
topology, the R-Optimizer reaches 42.42 Gbps, exceeding
the R-Learner’s 39.08 Gbps by around 8.5%. For the
Abilene and DAM topologies, the R-Optimizer improves
throughput by 5-8% over the R-Learner, demonstrating
adaptability despite irregular link distributions and
topological complexities.

Table 8: Average throughput comparison (Gbps)

Topology R-Learner R-Optimizer Dijkstra
Fat Tree 40.42 43.04 117
Abilene 38.78 40.93 0.92
Custom 39.08 42.42 051

Dense Mesh DAM)| 37.53 40.77 0.49

For benchmarking, Dijkstra’s algorithm was evaluated
under identical traffic conditions across all topologies.
Unlike the reinforcement learning models, Dijkstra’s
throughput varied based on the topology due to path
lengths and congestion points, yielding 1.17 Gbps on Fat
Tree, 0.92 Gbps on Abilene, 0.51 Gbps on Custom, and
0.49 Gbps on DAM. These results underscore that while
Dijkstra efficiently computes deterministic shortest paths,
it lacks the capability to dynamically adapt under
congestion or link failures, leading to stagnant or limited
throughput under dynamic conditions.

In contrast, the R-Optimizer leverages reinforcement
learning to dynamically identify higher-bandwidth paths,
resulting in 6.5-9.5% throughput gains over the R-Learner
across topologies while maintaining stability under
varying network conditions. This highlights the potential
of learning-based routing in enhancing throughput
performance within SDN environments, while Dijkstra
serves as a non-adaptive baseline against which the
dynamic advantages of reinforcement learning approaches
can be effectively demonstrated.
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Average Throughput Comparison Across Topologies
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Figure 6: Throughput Comparison Across SDN

Topologies
6.2 Jitter analysis

Jitter represents the variability in packet arrival
intervals and is particularly critical for time-sensitive
applications such as VolP, real-time video, and
streaming services. Lower jitter indicates more
consistent timing in packet delivery, essential for
maintaining quality in these applications.

As illustrated in Figure 7 and summarized in Table 9,
the R-Optimizer consistently maintains lower jitter
across all evaluated topologies, reflecting improved
timing consistency in packet transmission and more
stable routing behavior under varying network
conditions.

In the Fat Tree and Custom topologies, where traffic
paths are symmetrical yet deep, the R-Learner
exhibits jitter of 0.0019 ms and 0.0022 ms,
respectively, while the R-Optimizer reduces jitter to
0.0011-0.0013 ms. The Dijkstra algorithm, by
contrast, demonstrates significantly higher jitter at
1.11 ms (Fat Tree) and 3.51 ms (Custom) due to its
static shortest-path routing that does not adapt under
congestion.

Table 9: Average jitter comparison (ms)

Topology R- R- N
Learner | Optimizer | Dijkstra
Fat Tree 0.0019 0.0011 1.11
Abilene 0.0030 0.0016 1.80
Custom 0.0022 0.0013 3.51
De?;;':\"ﬂ‘;sr‘ 0.0035 |  0.0022 3.80
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Greater improvements are observed in the Abilene
and Dense Adaptive Mesh (DAM) topologies, where
the R-Learner shows fluctuations up to 0.0030-0.0035
ms, while the R-Optimizer sustains tighter bounds
around 0.0016-0.0022 ms. Dijkstra’s jitter in these
topologies is considerably higher, measured at 1.80
ms (Abilene) and 3.80 ms (DAM), further illustrating
the limitations of non-adaptive routing under dynamic
traffic conditions.

These patterns highlight the R-Optimizer’s ability to
maintain smoother packet delivery even in distributed
and less predictable environments, while Dijkstra
serves as a static baseline illustrating the clear
advantages of reinforcement learning approaches in
jitter reduction within SDN environments.

Average Jitter Comparison Across Topologies
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Figure 7: Jitter comparison for R-Learner, R-
Optimizer, and Dijkstra across SDN topologies.

6.3 Round-Trip Time (RTT) analysis

Round-trip time (RTT) represents the total time it takes for
a packet to travel to its destination and return to the

source. Lower RTT values indicate faster network
responsiveness, which is crucial for delay-sensitive
applications.

As illustrated in Figure 8 and detailed in Table 10, the R-
Optimizer consistently reduces RTT across all evaluated
topologies, reflecting its ability to select paths that
minimize overall transmission delay.

In the Abilene topology, RTT reduces from 0.236 ms
under the R-Learner to 0.189 ms with the R-Optimizer,
while Dijkstra demonstrates a significantly higher RTT of
2.30 ms due to its static path selection under congestion.

Table 10: Average RTT Comparison (ms)

Topology | R-Learner | R-Optimizer | Dijkstra

Fat Tree [0.1631 0.1192 1.46

Abilene |0.2357 0.1894 2.30

Custom |0.1736 0.1407 3.96
Dense Mesh

(DAM) 0.2109 0.1801 4.20
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Figure 8. RTT comparison for R-Learner, R-Optimizer,
and Dijkstra across SDN topologies.

Similar gains are observed in Fat Tree and Custom
topologies, where RTT drops from 0.163-0.174 ms to
0.119-0.141 ms under R-Optimizer, while Dijkstra shows
1.46 ms (Fat Tree) and 3.96 ms (Custom), reflecting its
inability to dynamically adapt. In the Dense Mesh (DAM),
where route diversity and path variations are high, the R-
Optimizer reduces RTT from 0.211 ms (R-Learner) to
0.180 ms, while Dijkstra shows 4.20 ms, highlighting its
limitations under complex topologies.

These results confirm that the R-Optimizer effectively
manages latency in structured and semi-random SDN
topologies while demonstrating substantial improvements
over static approaches like Dijkstra.

6.4 Packet Loss Ratio (PLR) analysis

Packet Loss Ratio (PLR) measures the percentage of
packets lost during transmission, directly impacting
reliability, retransmission rates, and overall network
efficiency. Lower PLR reflects better congestion
handling and stable delivery.

As illustrated in Figure 9 and summarized in Table 11, the
packet loss ratio (PLR) is consistently lower under the R-
Optimizer across all evaluated topologies. In the Dense
Mesh (DAM) topology, PLR decreases from 0.404% with
the R-Learner to 0.177% using the R-Optimizer, while
Dijkstra records a significantly higher PLR of 4.10%,
indicating its inability to adapt under congestion. In the
Fat Tree topology, PLR drops from 0.251% under the R-
Learner to 0.133% with the R-Optimizer, compared to
Dijkstra 1.60%. Similarly, in the Abilene topology, PLR
reduces from 0.344% to 0.143%, whereas Dijkstra
registers 2.10%. In the Custom topology, PLR decreases
from 0.219% with the R-Learner to 0.137% with the R-
Optimizer, while Dijkstra reports 3.54% under identical
conditions.
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Table 11: Average PLR Comparison (ms)

Topology R-Learner| R-Optimizer | Dijkstra
Fat Tree 0.251 0.133 1.60
Abilene 0.344 0.143 2.10
Custom 0.219 0.137 3.54
DenseMesh
(DAM) 0.404 0.177 4.10

Average PLR Comparison Across Topologies
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Figure 9: Packet loss ratio comparison for R-Learner,
R-Optimizer, and Dijkstra across SDN topologies

These improvements demonstrate the R-Optimizer’s
ability to adjust to congestion conditions in real time,
minimizing loss even under complex and asymmetric
routing challenges, while Dijkstra’s static nature limits
its effectiveness under dynamic SDN traffic.

6.5 Overall model comparison

To generalize performance trends across diverse
topologies, the average values of all four QoS metrics—
throughput, jitter, RTT, and PLR—were computed for
R-Learner, R-Optimizer, and Dijkstra. Table 12
summarizes these consolidated findings.

The analysis reveals that the R-Optimizer consistently
delivers superior QoS outcomes. Compared to the R-
Learner, it improves throughput by 7.36%, reduces jitter
by 44%, shortens RTT by 19.5%, and cuts packet loss by
over 50%. Against Dijkstra, the R-Optimizer demonstrates
even more pronounced advantages, delivering over 42
times higher throughput, over 760 times lower jitter,
reducing RTT by over 95%, and lowering packet loss by
over 94% across all evaluated topologies.

These cumulative improvements highlight the R-
Optimizer’s efficiency in maintaining stable and
responsive routing decisions, irrespective of network
structure, while also illustrating the limitations of static
routing approaches under dynamic SDN conditions. The
consolidated results reinforce the earlier per-topology
observations and establish the R-Optimizer as a scalable
and resilient solution for real-time SDN routing,
outperforming both R-Learner and Dijkstra consistently
across key QoS metrics.
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Table 12: Average QoS Performance across All

Topologies
Metric R-Learner | R-Optimizer | Dijkstra
Throughput [38.93 Gbps |41.79 Gbps  |0.77 Gbps
Jitter 0.0026 ms |0.00145 ms |2.805 ms
RTT 0.1955ms |0.1574ms  |2.98 ms
Packet Loss [0.301%  |0.1483 % 2.835%

6.6 Statistical validation of results

To ensure the reliability and reproducibility of our
performance evaluations, we conducted detailed
statistical analyses across 100 simulation episodes for
each of the four SDN topologies—Fat Tree, Abilene,
Custom, and Dense Mesh. We computed the mean,
standard deviation (SD), and 95% confidence
intervals (CI) for four key Quality of Service (QoS)
metrics: Throughput (Gbps), Jitter (ms), Round-Trip
Time (RTT, ms), and Packet Loss Ratio (PLR, %)
under three approaches: R-Learner, R-Optimizer, and
Dijkstra.

For instance, in the Fat Tree topology:

R-Optimizer achieved a mean throughput of 43.04
Gbps (SD = 0.40, 95% CI: 42.78-43.30),compared to
R-Learner at 40.42 Gbps (SD = 0.35, 95% CI: 40.20-
40.64), and

Dijkstra at only 1.17 Gbps (SD = 0.05, 95% CI: 1.14—
1.20).

Table 13: Average QoS Performance across All

Topologies

. R-Learner |R-Optimizer| Dijkstra
QoS Metric (Mean £ SD) |(Mean + SD)|(Mean + SD)
Throughputl ag o3 4 0.35 41,79 + 0.40 [0.77 + 0.05
(Gbps)

. 0.00265 + 0.00155 +
Jitter (ms) 0.0003 0.0002 2.805 + 0.02
0.157

RTT (ms) |0.195 + 0.005 0.004 2.98 + 0.03
Packet 0.148 +
Loss (%) 0.303+0.02 0.015 2.835 + 0.04

In terms of jitter, R-Optimizer consistently achieved
the lowest values, e.g., 0.0011 ms in Fat Tree (SD =
0.0002), outperforming both R-Learner (0.0019 ms, SD
= 0.0003) and Dijkstra (1.11 ms, SD = 0.02).

Similarly, RTT was minimized under R-Optimizer at
0.1192 ms (SD = 0.004), versus R-Learner at 0.1631
ms (SD = 0.005) and Dijkstra at 1.46 ms (SD = 0.03).
The PLR dropped from 0.251% under R-Learner and
1.60% under Dijkstra to 0.133% with R-Optimizer.
These per-topology observations are supported by
aggregated metrics across all four topologies, as
summarized in Table 13.
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Significance testing

To assess whether the performance gains of R-Optimizer
over R-Learner were statistically significant, we
performed paired t-tests across 100 episodes per metric
per topology. Dijkstra, being deterministic and non-
learning, was excluded from these tests but included in
benchmarking tables as a fixed baseline.

Table 14: Average QoS Performance across All

Topologies
Metric t-statistic p-value Inference
Throughput 16.06 0.0006 Yes
Jitter 11.89 0.0012 Yes
RTT 12.28 0.0010 Yes
Packet Loss 8.48 0.0034 Yes

These results confirm that the R-Optimizer's gains are
statistically ~significant, consistent, and reliable—
validating the robustness of the proposed learning-
based framework for adaptive SDN routing. Dijkstra
serves as a non-adaptive baseline, underscoring the
advantages of dynamic, learning-based routing in
complex environments.

7 Discussion

The proposed dual-agent reinforcement learning
framework demonstrated measurable improvements
across all evaluated SDN topologies. The R-Optimizer
invariably outperformed the R-Learner, achieving up to
7.4% higher throughput, 44% lower jitter, 19.5%
reduction in RTT, and over 50% reduction in packet
loss. These gains highlight how effectively the policy-
gradient-based R-Optimizer adapts to dynamic traffic
patterns, particularly in irregular topologies such as
Abilene and Dense Adaptive Mesh. Unlike Q-learning,
which relies on g-greedy exploration and fixed decision
intervals, the policy gradient method updates routes
continuously based on real-time feedback, enabling
faster and smoother adaptation to changing network
states. While training, the R-Optimizer is more
computationally intensive due to gradient calculations;
however, its stability post-training—with minimal route
changes—ensures  reliable and  low-disruption
operation.

The staged use of Q-learning for environment
exploration, followed by policy-gradient optimization,
enabled the system to maintain low delay and high
throughput with minimal packet loss, even under
changing conditions. For benchmarking, we also
implemented the Dijkstra shortest-path algorithm on the
same setup. Though it offers predictable and loop-free
routing, it lacks adaptability. Across all topologies,
Dijkstra consistently delivered lower throughput and
experienced higher delay, jitter, and packet loss,
reinforcing the limitations of static routing without
adaptive feedback.

Our Mininet-based evaluation ensured consistency and
repeatability of the results. However, real-world

deployment introduces challenges, such as OpenFlow
rule installation latency, asynchronous link-state
updates, and increased controller processing overhead
during high traffic churn. To address this, we
incorporated asynchronous event handling, selective
flow installations, and a distributed controller model
using east-west interfaces to sync Q-values and policy
updates. This design supports scalable deployment in
data centers and backbone networks.

We also analyzed route stability in terms of the
frequency of flow reconfiguration. During training, R-
Learner triggered 3-5 reconfigurations per flow,
whereas R-Optimizer stabilized after 20-30 episodes,
dropping to 0-1 reconfiguration per episode—an
important indicator of robust, low-disruption learning.
Although our reward function was initially designed to
account for throughput, delay, jitter, and packet loss,
the Mininet testbed required a simplified version due to
limited access to real-time metrics. Future work will
integrate a complete QoS-weighted reward function
into the Ryu agents to align the implementation with the
theoretical design.

Looking ahead, we will extend benchmarking to
include Equal-Cost Multi-Path  (ECMP) routing
alongside Dijkstra, allowing a more comprehensive
comparison. We also plan to include Deep Neural
Network (DNN) reinforcement learning to enhance
decision-making in complex environments. Advanced
variants, such as Deep Q-Networks (DQN), will be
explored to enhance scalability, convergence speed, and
adaptability in dynamic traffic and topology conditions.

8 Conclusion

This work proposed a dual-agent reinforcement
learning framework for adaptive SDN routing,
integrating Q-learning and policy-gradient strategies
to handle diverse network topologies and traffic
patterns. The R-Optimizer agent consistently
delivered stable and efficient routing decisions,
reducing key QoS impairments such as delay, jitter,
and packet loss. Comparative analysis confirmed its
advantages over both the baseline R-Learner and
traditional routing methods such as Dijkstra’s
algorithm, which lacked adaptability under variable
load conditions. These findings underscore the value
of reinforcement learning in optimizing SDN control
and provide a foundation for scalable, intelligent
routing in next-generation network infrastructures
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