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Understanding user consumption characteristics helps predict consumer behavior and design appropriate 

marketing strategies, which promotes spending and supports market economic circulation. However, 

existing models have a low recognition rate for user consumption characteristics and limited accuracy in 

consumer behavior prediction. To this end, a user consumption behavior prediction model was 

constructed in the research. The main innovation of the research method lies in the weighted 

reconstruction of the K-means distance calculation logic by feature variance to enhance the robustness 

of the non-convex data set class. The index weights are dynamically calculated through the entropy weight 

method to optimize the user value assessment. A Stacking ensemble framework based on error rate 

weighting is designed to integrate the advantages of XGBoost and random forest-based classifiers. 

Experimental results showed 96.3% feature recognition accuracy, 0.25% loss rate, and 0.91 AUC, 

demonstrating strong classification ability. Additionally, long-term consumption prediction experiments 

show that the proposed model reaches a maximum memory usage of 1170 MB, a maximum response time 

of 120 ms, while maintains an annual prediction accuracy of over 94.2%. These results indicate that the 

proposed model achieves high accuracy and adaptability in extracting consumption characteristics and 

forecasting future consumer behavior. Furthermore, the system exhibits greater stability and faster 

response times than comparable prediction models, providing new insights for merchants to optimize 

business strategies and anticipate market trends. 

Povzetek: Predstavljen je RK-W-Stacking, hibrid za napoved porabe. Je entropijsko utežen RFM, 

variančno utežen K-means, ki robustno izlušči potrošniške značilnosti ter stabilno napove dolgoročno 

vedenje v praksi. 

 

1 Introduction 
With technological advancements and the continuous 

improvement of living standards, traditional marketing 

methods have become less effective in the internet era. 

They fail to influence customer consumption habits and 

desires, creating an urgent need for businesses to explore 

new ways to stimulate spending [1]. Purchasing decisions 

are typically influenced by individual consumption habits. 

Predicting user consumption behavior and implementing 

appropriate marketing strategies can significantly improve 

business performance [2]. Therefore, summarizing user 

consumption characteristics and predicting their behavior 

is crucial for merchants to optimize operations and 

enhance market capital flow. Current methods for 

predicting user consumption behavior typically rely on 

single-model learning, which lacks specificity in 

extracting user characteristics and results in low overall 

prediction accuracy. Thus, a new approach is needed to 

accurately identify user features and efficiently predict 

consumer behavior [3]. The K-means clustering 

algorithm, an unsupervised learning method, is simple to 

implement and highly interpretable. It gourps similar 

characteristics to uncover hidden patterns in data, making  

 

it widely used in feature recognition [4]. Stacking 

overcomes the limitations of single models by leveraging  

multiple models to create complementary advantages. As 

an effective ensemble learning method, it captures 

different hidden relationships within the same dataset and 

has demonstrated strong predictive capabilities in image 

classification and financial stock selection [5]. Therefore, 

the K-means clustering and Stacking algorithms were 

optimized in the study, and a model for predicting user 

consumption characteristics was proposed. The research 

aims to improve the performance of user consumption 

behavior prediction through the following core goals: (i) 

Reconstruct the weight of the RFM index by using the 

entropy weight method to optimize the discrimination of 

user consumption characteristics; (ii) Improve the K-

means clustering algorithm based on feature variance to 

enhance the clustering robustness for non-convex 

datasets; (iii) Design an error-weighted Stacking ensemble 

framework to integrate the advantages of multi-basis 

classifiers to improve the prediction accuracy. 
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2 Related works 
K-means clustering is an algorithm that represents 

sample clustering through the squared Euclidean distance. 

Its core principle is to divide data into multiple clusters 

and iteratively minimize the total distance. Scholars 

worldwide have conducted research on this method. For 

example, Nie et al. raised an iterative reweighted 

algorithm to optimize K-means clustering. By redefining 

functions, this method reduced the computation of cluster 

centers in each iteration. Experimental results 

demonstrated that the optimized algorithm had a faster 

convergence speed, confirming its effectiveness and 

efficiency [6]. Brusco et al. aimed at the problem that the 

hierarchical clustering relied on by the Walktrap algorithm 

in the scale of psychological research networks might not 

provide the optimal solution for the sum-square 

optimization problem. They used the K-means clustering 

method (including exact and approximate methods) to 

replace the hierarchical clustering step in the Walktrap 

algorithm. The results show that the application of K-

means clustering can usually obtain a better sum-square 

solution, improving the effect of community detection [7]. 

Chen et al. addressed the mean difference issue in K-

means clustering identification by introducing a p-value 

constraint in cluster assignments. This constraint 

controlled the Type I error in mean difference testing 

between clusters. Their study validated the linear 

relationship between the p-value and Type I error in 

single-cell RNA sequencing data and demonstrated its 

effectiveness in accurate computation [8]. Unlike K-

means, Stacking is an ensemble learning method that 

relies on multiple models to create complementary 

advantages. Many research teams have applied it in 

predictive modeling. Meharie et al. proposed an ensemble 

model combining linear regression, support vector 

machines, and artificial neural networks for highway 

construction cost prediction. Results showed that this 

model had a lower prediction error than single ensemble 

models [9]. Xue et al. introduced a multi-objective 

evolutionary algorithm with probabilistic Stacking, 

incorporating a mechanism to guide offspring crossover 

and mutation in multi-objective genetic algorithms. 

Experiments demonstrated that the algorithm achieved 

high classification accuracy while reducing time costs 

[10]. 

To predict surrounding rock classification during 

tunnel boring machine operations, Hou et al. proposed an 

ensemble classifier that uses a tree-based feature selection 

method to process operational data. Comparisons with 

multiple single-class classifiers verified that the ensemble 

model had superior performance in rock classification 

prediction and stronger generalization ability for 

imbalanced small-sample datasets [11]. User consumption 

behavior characteristics are essential indicators for 

predicting consumer behavior and evaluating market 

conditions. Many scholars have extracted and analyzed 

these characteristics. Tang et al. addressed the issue of low 

clustering accuracy in user characteristics by introducing 

a customer feature analysis method based on behavioral 

segmentation. The study used maximum correlation and 

optimal redundancy to identify the best features, followed 

by affinity propagation clustering for analysis. 

Experimental results showed high accuracy in user 

classification with strong practical applications [12]. Yang 

et al. found that existing anomaly detection methods often 

overlooked abnormal data when analyzing consumption 

amount characteristics. To address this, they introduced a 

one-class support vector machine based on a growth 

model to mitigate the impact of anomalies. Experimental 

results confirmed that the model effectively handled 

abnormal data interference [13]. Yang et al. explored the 

influence of peer effects on daily essential consumption by 

applying a spatial autoregressive model to estimate the 

proportions of peer-influenced and autonomous 

consumption. Findings indicated that households 

prioritized peer effects in daily expenses but valued 

autonomy more in social expenditures [14]. As 

environmental issues become increasingly severe, Saif’s 

research team investigated whether corporate and 

consumer environmental responsibility strengthened 

green consumption behavior using structural equation 

modeling. Their analysis of large datasets found that 

consumer environmental responsibility did not directly 

drive green consumption behavior [15]. Khan et al. 

explored factors influencing green and sustainable 

consumption behavior by collecting survey data through 

Google Forms using a Likert 5-point scale. The study 

applied variance and multiple regression analysis, 

revealing that environmental awareness significantly 

influenced sustainable consumption behavior and that 

there were notable differences between male and female 

participants [16]. The key information of the relevant 

research is shown in Table 1.

Table 1: Summary of the main information of related research 

Ref. Core Method/Contribution Key Performance/Data 

[6] Iterative reweighted K-means optimization Faster convergence (generic datasets) 

[7] 
K-means clustering replaces Walktrap’s hierarchical 

clustering 

Better sum-square solutions (psychology 

networks) 

[8] p-value constraint in K-means cluster assignments Controlled Type I error (single-cell RNA data) 

[9] 
Stacking ensemble (linear regression + SVM + artificial 

neural networks) 

Lower prediction error (highway construction 

costs) 

[10] 
Multi-objective evolutionary algorithm with probabilistic 

Stacking 

Higher classification accuracy + reduced time 

cost 
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[11] 
Tree-based feature selection + Stacking ensemble 

classifier 

Superior rock classification for imbalanced 

samples 

[12] 
Customer feature analysis via behavioral segmentation + 

affinity propagation clustering 

High practical accuracy (electricity 

consumption) 

[13] 
Growth model-based one-class SVM for anomaly 

detection 

Effective abnormal data handling (campus 

consumption) 

[14] Spatial autoregressive model for peer effects 
Quantified autonomous/peer-influenced 

consumption (rural China) 

[15] 
Structural equation modeling for environmental 

responsibility effects 

No direct green consumption drive (large 

datasets) 

[16] 
Variance analysis + multiple regression for sustainable 

behavior 

Gender differences in environmental awareness 

(Likert-scale surveys) 

 

In summary, existing research has shown that analyzing 

user consumption behavior characteristics can help predict 

future consumer actions to some extent. However, 

challenges remain, such as low prediction accuracy in 

single-model approaches and weak multidimensional data 

processing capabilities. Stacking offers strong ensemble 

learning capabilities, integrating the advantages of 

different base models. Meanwhile, K-means can cluster 

complex user data to uncover hidden patterns. Therefore, 

this study proposes a consumption behavior characteristic 

prediction model based on K-means clustering and 

Stacking algorithms. The goal is to extract consumer 

behavior features accurately and provide effective 

consumption predictions, thereby enhancing merchants’ 

marketing capabilities and promoting a healthy market 

economy cycle. 

3 The user consumption behavior 

prediction model integrating K-

means and stacking 

3.1 Feature extraction design based on K-

means 

K-means quickly classifies user consumption 

behavior features after selecting the number of clusters k
. However, its clustering performance is sensitive to the 

choice of k  and struggles to converge on datasets with 

weak features [17]. This study replaces the standard 

distance metric in K-means with a weighted Euclidean 

distance based on feature variance. The distance 

calculation logic is reconstructed, and variance-guided 

centralization is used to prevent local optima caused by 

random selection of k . The process of the improved K-

means algorithm with feature variance weighting is shown 

in Figure 1.

Select the initial 

cluster center k
Calculated 

Euclidean distance

Assign to 

different clusters

Feature weighted 

variance

( )jD f jw

 

Figure 1: K-means operation flow chart based on feature variance weighting improvement

As shown in Figure 1, the improved K-means selects 

cluster centers based on feature variance from the dataset. 

The weighted Euclidean distance is calculated using the 

assigned weights, and samples are assigned to clusters 

based on their distance to the cluster centers. Distance 

calculation and sample assignment repeat until the cluster 

centers stabilize. The number of clusters k is automatically 

determined by the contour coefficient. Traverse the 

candidate k values within the preset range (from k=2 to the 

square root of the sample size), and perform weighted K-

means clustering respectively. The contour coefficient 

measures the closeness of the sample to the samples of the 

same cluster and the separation from other clusters. Its 

value range is [-1, 1]. The closer it is to 1, the higher the 

cohesion within the cluster and the better the separation 

between clusters. Select the k value that maximizes the 

contour coefficient as the optimal number of clusters. 

Before applying feature variance weighting, the dataset is 

represented in matrix form, as shown in Equation (1). 
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In Equation (1), m  and n  represent the number of 

samples and the number of features, respectively. The 

variance of a specific feature across all samples is 

calculated as shown in Equation (2). 
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In Equation (2), jx  represents the eigenvalue of the 

sample, and jf  represents its feature set. The greater the 

variance of a sample, the higher the assigned weight. The 

calculation of sample weights is given in Equation (3). 
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In Equation (3), p  represents the number of features 

in a sample, and jw  denotes the assigned sample weight. 

The calculation of the weighted Euclidean distance based 

on these weights is given in Equation (4). 
2 2 2

1 1 1 2 2 2( , ) ( ) ( ) ... ( )w i j i j i j p ip jpd x x w x x w x x w x x= − + − + + −  (4) 

In Equation (4), ipx  represents a single eigenvalue of 

sample ix , and the sum of the variance weights of all 

features is equal to 1, that is, 
1

1
P

P pw
=

= . The 

characteristic variance in Equation (2) is the global 

variance of the entire dataset. Since the weight is 

proportional to the feature variance, features with high 

variance have a greater influence in distance calculation. 

This may lead to sensitivity to outlier variance. For 

example, a feature with an exceptionally high variance 

may dominate the distance metric, thereby affecting the 

clustering results. The improved K-means enhances 

clustering performance on non-convex datasets. To further 

optimize classification results, this study preprocesses 

feature selection using the Recency-Frequency-Monetary 

(RFM) analysis tool before clustering. However, the 

traditional RFM model lacks differentiation between users 

with irregular large-amount consumption and users with 

steady, balanced consumption [18]. To reduce errors 

caused by time accumulation effects, this study applies the 

entropy weight method to independently determine the 

weights of R, F, and M indicators, and the normalized 

values of these three weighted indicators constitute the 

feature vectors for clustering. The improved RFM process 

based on the entropy weight method is shown in Figure 2. 
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Figure 2: Improved RFM flow chart based on entropy weight method

As shown in Figure 2, the traditional weights of R , 

F , and M  remain fixed. The entropy weight method is 

applied to recalculate the indicator weights, allowing 

different indicators to reflect their varying degrees of 

influence on customer value. This improves the linear 

correlation between customer value indicators and the 

original data. In the traditional RFM model, the number of 

purchases, total spending, and observation period length 

are key factors. A higher R  leads to a higher M , which 

in turn indicates greater customer value [19]. The 

calculation of customer value is shown in Equation (5). 

 R F Mscore w R w F w M=  +  +      (5) 

In Equation (5), the weights of R , F , and M  are 

Rw , Fw , and Mw , respectively. Notably, the resulting 

weighted R, F, M features—not the linear combination in 

Equation (5): directly from the input feature space for K-

means clustering, ensuring multidimensional pattern 

capture. This study recalculates indicator weights based 

on information entropy, as given in Equation (6). 
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In Equation (6), the s -th indicator of the r -th sample 

is represented by rsx . The entropy se  of s  determines 

the weight proportion on customer value, as shown in 

Equation (7). 
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In Equation (7), sw  represents the weight of the s -

th indicator. By applying the RFM analysis tool, data 

complexity is reduced, making clustering more efficient. 

A feature extraction algorithm combining RFM and K-

means is developed and named RFM-K-means. The RFM-

K-means feature extraction process is shown in Figure 3.

kData clustering The variance 
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Measure distance 

to center point
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according to a 
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k
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Figure 3: RFM-K-means consumption feature extraction flow chart

As shown in Figure 3, RFM-K-means uses the 

reweighted R, F, M values (derived from entropy-based 

weighting) as multidimensional input features for the 

improved K-means clustering, resulting in stable and 

accurate consumption user features. To minimize the 

impact of data units on output results, data normalization 

is performed before clustering. Both M  and F  are 

positively correlated with user value, whereas R  is 

negatively correlated [20]. The normalization process is 

shown in Equation (8). 
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In Equation (8), the value range is denoted by 

1,2,... ; 1,2,...r n s m= = , and the number of samples 

and features are represented by m  and n . The 

normalization process for negative indicators is given in 

Equation (9). 
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Equation (9) normalizes consumption frequency R , 

reducing the impact of unit differences on clustering 

performance. The reweighted RFM values capture more 

potential consumption patterns, leading to more accurate 

feature extraction after K-means clustering. The design of 

the normalization strategy is based on the inherent 

characteristics of the RFM model. R  is used as a negative 

indicator because the longer the recent consumption time 

interval of the user, the higher the risk of churn and the 

lower the customer value. Therefore, it needs to be 

converted into a feature that is positively correlated with 

user value through reverse normalization. The 

consumption amount M  usually shows a right-skewed 

distribution, while the consumption frequency F  is 

relatively evenly distributed. Min-Max normalization 

retains the skewed features of M  through linear 

compression to avoid the dilution of the features of high-

consumption users. Meanwhile, since F is evenly 

distributed, the same normalization method can 

effectively preserve its linear relationship. The research 

uses the entropy weight method for pre-weighting and 

combines Min-Max normalization to constrain the 

numerical range to [0, 1] while retaining the distribution 

characteristics of the data, ensuring the robustness of 

subsequent clustering against skewed data. 

3.2 Construction of a user consumption 

behavior prediction model with 

Stacking 

Although RFM-K-means offers refined clustering 

results for user consumption features, it cannot predict 

future behavior. A predictive model is needed to establish 

the relationship between features and outcomes. Stacking 

ensemble learning excels in predictive tasks, and its 

second-level output aligns better with practical 

applications. Moreover, in long-term predictions, seasonal 

or unexpected changes in user behavior may disrupt 

periodic patterns and introduce noise into the time series, 

resulting in a reduction in the intensity of long-term 

predicted patterns. Therefore, this study integrates RFM-

K-means with Stacking to construct a forecasting model 

called RK-W-Stacking. Stacking, as a layered ensemble 

algorithm, consists of multiple base classifiers and a meta-

classifier. Its basic operational process is shown in Figure 

4.
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Figure 4: Schematic diagram of multiple classifiers stacked in the Stacking algorithm

In Figure 4, training samples are first processed by 

multiple base classifiers, each producing a prediction. 

These predictions serve as secondary training samples for 

the meta-classifier, which generates the final prediction. 

The performance of Stacking largely depends on the 

choice of base classifiers. This study uses eXtreme 

Gradient Boosting (XGBoost), Random Forest (RF), and 

Gradient Boosting Decision Tree (GBDT) as base 

learners, with Logistic Regression Model (LRM) as the 

meta-learner. The GBDT expression is shown in Equation 

(10). 
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In Equation (10), a  represents the number of 

prediction rounds, and ( ; )aT x   denotes the number of 

weak learners. GBDT improves prediction accuracy by 

learning residuals from each classifier. XGBoost follows 

a similar principle but minimizes the loss function during 

the splitting process. The reduced loss function is given in 

Equation (11). 
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In Equation (11), L  represents the loss function, and 

  is the regularization term. Directly using the outputs of 

base classifiers to train the meta-learner poses a risk of 

overfitting. Assigning different weights to base classifiers 

based on their performance helps mitigate overfitting. 

Therefore, before the second Stacking training, this study 

applies error-based weighting to the base classifiers’ 

outputs. The weighted Stacking ensemble with XGBoost, 

RF, GBDT, and LRM is constructed as shown in Figure 5. 
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Figure 5: Construction diagram of the weighted set learner of Stacking

As shown in Figure 5, error-based weighting is 

applied to the base classifiers’ predictions. The weight 

distribution is determined based on the misclassification 

rates obtained from initial evaluations, improving the 

accuracy of the LRM final prediction. The error rate of 

base classifiers is calculated as shown in Equation (12). 

 
1 n
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c N
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In Equation (12), err  represents the error rate, and 
n  and c  denote the number of misclassified samples and 

the number of cross-validation folds, respectively. The 

weight coefficient for training the meta-classifier is 

calculated as shown in Equation (13). 
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In Equation (13),   and g  represent the learning 

weight derived from error rates and the weight coefficient 

for secondary training. The overall process of RK-W-

Stacking for user consumption behavior prediction is 

shown in Figure 6.
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Figure 6: Flowchart of the user consumption feature prediction model of RK-W-Stacking

As shown in Figure 6, the model preprocesses data to 

reduce the impact of missing values, outliers, and 

imbalanced distributions on initial samples. RFM 

indicators enhance feature representation, and the 

improved K-means algorithm provides clear feature 

clustering. The clustered features serve as training data for 

base classifiers, whose weighted predictions act as 

training data for the meta-classifier, ultimately yielding an 

accurate prediction. Data balancing is performed using the 

k-nearest neighbor’s method, which generates new 

samples based on Euclidean distance calculations, as 

shown in Equation (14). 

 
2( , ) ( )

n

i i

m

dist B C b c= −     (14) 

In Equation (14), the minority class samples are 

represented by b , and other samples by c . The 

generation of new samples based on minority samples is 

given in Equation (15). 

 (0,1)*( )b b rand b b= + −     (15) 

In Equation (15), b  is the nearest neighbor of b , and 

b  represents the newly generated sample. The proposed 

comprehensive prediction model improves data selection, 

feature classification, and training efficiency, improving 

feature extraction capability and prediction accuracy. The 

model implementation adopts version 4.1.0 of the R 

language. The key components rely on the following 

software libraries: Data preprocessing uses tidyverse 1.3.0 

and caret 6.0-94 packages; The K-means clustering 

implements an improved algorithm based on the stats 

4.1.0 package; In the base classifier, XGBoost adopts the 

xgboost 1.6.2 library, with a learning rate of 0.05, a 

maximum depth of 6, and 150 rounds of iterations set. 

Random Forest uses the randomForest 4.7-1.1 package, 

configures the number of feature selections as the square 

root of the total number of features, and builds 500 trees; 

The GBDT classifier is implemented through the gbm 

2.1.8.1 library, with the optimization parameters being 

300 trees and depth 5; The meta-classifier logistic 

regression implements L2 regularization using the glmnet 

4.1-4 package, and the regularization strength is set to 

0.01. The preprocessing process consists of three stages: 

numerical missing values are filled with the median, and 

typed missing values are filled with the mode. After 

identifying outliers based on the Z-score threshold 3.0, 1% 

tailing processing is performed; All features are mapped 

to the interval [0, 1] by Min-Max normalization. Time 

features are encoded with cyclic transformations using 

sine and cosine functions. For the problem of class 

imbalance, the nearest neighbor oversampling technique 

of k=5 is adopted, combined with the weighted Euclidean 

distance metric, to perform random interpolation on the 

minority class samples until they are balanced in size with 

the majority class samples. 

4 Performance analysis of the RK-

W-Stacking feature prediction 

model 

4.1 Simulation of the user consumption 

behavior prediction model 

To evaluate the performance of the RK-W-Stacking 

model in predicting user consumption behavior 

characteristics, the study compared RK-W-Stacking with 

the XGBoost model, the Support Vector Machine (SVM) 

model, and the Blending model. The KKBOX music 

subscription dataset used in the research is a publicly 

available and reflects users’ paid subscription behavior. 

This dataset is of moderate size and contains 

approximately 120,000 unique user records, covering 
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subscription activities throughout the entire year from 

January to December 2021. The dataset provides dozens 

of raw features (the raw data contains approximately 25 

fields), mainly covering basic user attributes, subscription 

package information, and core consumption interaction 

behaviors. The key features selected for the study include 

the order frequency, consumption amount, and time of 

first consumption, time of last consumption and total 

consumption amount during the observation period. There 

is a certain class imbalance problem in the data set. The 

proportion of active subscribers (high-value users) is 

usually lower than that of inactive or churn users, which 

reflects a common phenomenon in online subscription 

services. To alleviate the impact of this problem on model 

training, the study applied the oversampling technique 

based on K-nearest neighbors (K=5) in the preprocessing 

stage. This dataset demonstrates excellent user diversity, 

covering user groups with different demographic 

characteristics and consumption capacity levels, ensuring 

the generalization ability of the model training results. The 

data is sourced from the official open data platform of 

KKBOX, with a time granularity of Daily, precisely 

recording the date of each subscription transaction. The 

computing environment was set up with the Windows 

system, high-speed solid-state storage, 64 GB+ RAM, and 

an NVIDIA A100 GPU. The development tool was VS 

Code, all algorithms were implemented in R, and C++ was 

used for debugging. The learning curves of different basic 

classifiers are shown in Figure 7. 
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Figure 7: Learning curves of different basic classifiers 

As can be seen from Figure 7, the iterative efficiencies 

of different basic classifiers were close, but there are 

subtle differences in the iterative situations. The loss value 

of Random Forest rapidly dropped below 1.2 in the first 7 

iterations and eventually slowly decreased to 1.0. The loss 

value of GBDT rapidly dropped below 1.3 in the first 16 

iterations and eventually slowly decreased to 1.1. The loss 

value of LRM rapidly dropped below 1.2 in the first 10 

iterations and eventually slowly decreased to 1.1. It 

indicated that different basic classifiers can all learn 

effectively and efficiently. The pre-weighted performance 

of the basic model and the comparison after Stacking 

integration are shown in Table 2.

Table 2: Comparison of the performance of the basic model before weighting and after Stacking integration 

Model 
Accuracy Before 

Weighting (%) 

AUC Before 

Weighting 

F1-score Before 

Weighting (%) 

Weight in 

Stacking 

Accuracy After 

Stacking (%) 

XGBoost 92.1 0.85 88.3 0.38 96.3 (↑4.2) 

Random 

Forest 
90.5 0.82 86.7 0.35 96.3 (↑5.8) 

GBDT 91.3 0.84 87.2 0.27 96.3 (↑5.0) 

Weighted 

Stacking 
\ \ \ \ 96.3 

As can be seen from Table 2, in the basic model, 

XGBoost has the best individual performance (accuracy 

rate 92.1%, AUC 0.85), followed by GBDT, and Random 

Forest is slightly lower. After error-weighted ensemble, 

the accuracy rate of the Stacking model significantly 

increased to 96.3%, which was 4.2 percentage points 

higher than that of the optimal base model (XGBoost), 

which verified the complementary advantages of 

ensemble learning. The weight distribution showed that 

XGBoost had the highest contribution (0.38), which is 

consistent with its individual performance, indicating that 

the error weighting mechanism effectively enhanced the 

role of the high-performance base classifier. The accuracy 

rates, loss rates, ROC curves and F1 values of different 

models are shown in Table 3.

Table 3: Comparison of comprehensive performance of different models 

Model RK-W-Stacking XGBoost SVM Blending 

Accuracy (%) 96.3 90.2 86.7 90.7 

95% CI for Accuracy [95.5, 97.1] [89.1, 91.3] [85.3, 88.1] [89.6, 91.8] 

Loss Rate (%) 0.25 1.1 1.3 1.4 

Std Dev of Loss Rate 0.03 0.12 0.15 0.14 

AUC 0.91 0.79 0.65 0.73 

95% CI for AUC [0.89, 0.93] [0.77, 0.81] [0.62, 0.68] [0.71, 0.75] 
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F1-Score (%) >80 >40 >40 >50 

Std Dev of F1-Score 1.2 2.3 2.6 2 

p-value (vs RK-W-Stacking) \ <0.001 <0.001 <0.001 

 
As can be seen from Table 3, after stabilization, the 

accuracy rates of the RK-W-Stacking, XGBoost, SVM 

and Blending models are 96.3%, 90.2%, 86.7% and 90.7% 

respectively. The proposed RK-W-Stacking model was 

significantly superior to other models in terms of accuracy 

and converges within fewer iterations. RK-W-Stacking 

maintains a loss rate of 0.25%, while other models 

required more iterations to converge and had higher loss 

values. The results showed that RK-W-Stacking had 

achieved a high accuracy rate and a low loss rate in the 

recognition of consumption behavior characteristics, and 

its overall performance is stable. The area under the curve 

(AUC) of RK-W-Stacking was 0.91, which higher than 

0.79, 0.65 and 0.73 of XGBoost, SVM and Blending 

models respectively, proving its powerful classification 

ability. The F1 score of RK-W-Stacking remained above 

80%, which demonstrated its outstanding ability in 

complex data recognition. These results indicated that 

RK-W-Stacking can effectively capture positive 

examples, exhibit strong classification performance, and 

maintain a high recognition accuracy even in imbalanced 

datasets. Meanwhile, statistical analysis showed that the p 

values of XGBoost, SVM, and Blending models compared 

with RK-W-Stacking were all less than 0.001, indicating 

that the conclusion that the performance of the RK-W-

Stacking model was significantly better than that of other 

models is statistically significant. The confidence intervals 

and standard deviations obtained from statistical analysis 

also support the accuracy of the research results. 

4.2 Real-world application analysis of the 

user consumption behavior prediction 

model 

After verifying the predictive performance of RK-W-

Stacking through simulation, the study further examined 

its practical application value. Using the same dataset and 

computing environment, the study divided KKBOX’s 

2021 subscription consumption data into 12 months to 

extend the prediction period. Additionally, it introduced 

the Linear Regression (LR), Autoregressive Integrated 

Moving Average (ARIMA), and Bayesian Optimization 

(BO) models to compare with RK-W-Stacking in terms of 

program response, prediction error, and long-term 

forecasting accuracy. As data samples increased, memory 

usage and response time of the models are shown in Figure 

8.

600

1000

1400

0

1800

800 1400 2000 2600

240

180

120

60

0

M
em

o
ry

 d
em

an
d
 (

M
B

)

Data volume

(a) KS-CBP Memory usage and 

response time

R
es

p
o
n

se
 t

im
e 

(m
s)

600

1000

1400

0

1800

800 1400 2000 2600

240

180

120

60

0

M
em

o
ry

 d
em

an
d
 (

M
B

)

Data volume

(b) LR Memory usage and 

response time

R
es

p
o

n
se

 t
im

e 
(m

s)

600

1000

1400

0

1800

800 1400 2000 2600

240

180

120

60

0

M
em

o
ry

 d
em

an
d
 (

M
B

)

Data volume

(c) ARIMA Memory usage and 

response time

R
es

p
o
n

se
 t

im
e 

(m
s)

600

1000

1400

0

1800

800 1400 2000 2600

240

180

120

60

0

M
em

o
ry

 d
em

an
d
 (

M
B

)

Data volume

(d) BO Memory usage and 

response time

R
es

p
o

n
se

 t
im

e 
(m

s)

Internal memory

Response time

Internal memory

Response time

Internal memory

Response time

Internal memory

Response time

 

Figure 8: Changes in response time and memory usage of several models

As shown in Figure 8, memory usage and response 

time increased to varying degrees as the data sample size 

grew. When processing 2,600 samples, the memory usage 

of RK-W-Stacking, LR, ARIMA, and BO was 1, 170 MB, 

1, 430 MB, 1, 670 MB, and 1, 450 MB, respectively. RK-

W-Stacking saved approximately 14.2% of memory 

compared to LR. At the same sample size, RK-W-

Stacking’s response time was 120 ms, significantly lower 

than the 171 ms, 172 ms, and 232 ms of LR, ARIMA, and 

BO, respectively. These results demonstrated that RK-W-
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Stacking efficiently managed memory while maintaining 

fast response times, making it a more practical model. The 

study also analyzed the prediction accuracy of the models 

for user subscription behavior over 12 months, as shown 

in Figure 9. 
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Figure 9 Analysis of the forecast accuracy of user paid 

subscriptions in 2024 

As shown in Figure 9, RK-W-Stacking consistently 

maintained a prediction accuracy of over 94.2%, with an 

average fluctuation range of about 3%. The highest 

accuracy of 97.4% was observed in November. The main 

reason for the highest accuracy rate in November was that 

there are more shopping activities guided by merchants in 

November, which makes consumers’ shopping behaviors 

more regular. In contrast, the overall accuracy of LR, 

ARIMA, and BO models remained below 90%, with 

greater fluctuation. ARIMA’s prediction accuracy for the 

second quarter was only 85%, which was 11.8 percentage 

points lower than RK-W-Stacking’s 96.8%. These results 

indicated that RK-W-Stacking maintained stable and 

accurate predictions over extended time periods, 

demonstrating strong adaptability and accuracy. The study 

further analyzed the relative error in predicting 

subscription behavior in 2024 and compared the monthly 

subscription forecasts of RK-W-Stacking with actual 

consumption data. The results are shown in Figure 10.
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Figure 10: Analysis of prediction accuracy error and payment prediction trajectory

As shown in Figure 10(a), the relative prediction 

errors for RK-W-Stacking, LR, ARIMA, and BO were 

0.04, 0.06, 0.07, and 0.08, respectively. RK-W-Stacking’s 

error distribution was closer to the x-axis, with a 

maximum relative prediction error not exceeding 0.12. In 

contrast, LR and ARIMA had some outliers above 0.15, 

showing greater fluctuation. Although BO’s errors were 

closer to the x-axis, they still exhibited a larger range of 

variation. RK-W-Stacking’s prediction errors showed 

significant differences compared to LR, ARIMA, and BO. 

In Figure 10(b), the subscription prediction curve of RK-

W-Stacking shows certain deviations in mid-March and 

early October. The prediction results of the remaining 

months are highly consistent with the actual results. These 

findings indicated that RK-W-Stacking achieved high 

prediction accuracy with minimal diagnostic errors, 

making it highly effective for long-term monitoring of 

consumption behavior, significantly outperforming the 

comparison models. To further confirm the generalization 

ability of the model, the study introduced the Online Retail 

Dataset of the University of California with different time 

scales and types for cross-domain testing. This dataset 

contains 540,000 transaction records of British e-

commerce platforms from 2010 to 2011, covering features 

such as purchase frequency, amount, and product 

categories. The experiment retained the original 

preprocessing process (entropy weight method RFM 

weighting combined with improved K-means clustering), 

and divides the training set and the test set at 7:3. The 

generalization test results are shown in Table 4 as follows.

Table 4: Generalization test results 

Model Accuracy (%) AUC F1-Score (%) The prediction of a single sample is time-consuming (ms) 

RK-W-Stacking 93.7 0.89 87.5 1.4 

XGBoost 88.2 0.81 79.6 3.7 

SVM 84.1 0.72 75.3 2.1 

Blending 87.9 0.78 80.1 1.7 
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As can be seen from Table 4, the accuracy rate of the 

research method reaches 93.7%, while that of the other 

methods is all lower than 90%. The AUC of the research 

method reached 0.89, which was significantly higher than 

that of other methods. Meanwhile, the prediction time for 

a single sample of the research method is only 1.4 ms, 

which is lower than that of other methods. These results 

proved that the research method could maintain good 

generalization ability in different types of data and has 

strong enough computational efficiency. 

5 Discussion 
The RK-W-Stacking model has achieved a significant 

breakthrough in the field of user consumption behavior 

prediction through collaborative innovation in 

methodology. Its core advantage was first reflected in the 

dynamic feature optimization ability of the entropy weight 

RFM framework. The research method was based on 

information entropy to dynamically calibrate the weights 

of consumption closeness, consumption frequency and 

consumption amount, quantify the differentiated impact of 

each dimension on user value, and effectively distinguish 

the ambiguous boundary between unconventional high-

consumption users and stable low-consumption users. The 

reconstructed RFM features are used as the clustering 

input, significantly improving the feature separability. The 

variance-weighted K-means algorithm significantly 

reduces sensitivity to outliers by redefining the distance 

measurement logic, assigning greater weights to high-

variance features, and incorporating an automatic cluster 

number determination mechanism based on contour 

coefficients. This directly contributed to a feature 

recognition accuracy of 96.3%. The error-weighted 

stacked integration architecture further amplifies the 

model performance. The three types of base classifiers, 

namely XGBoost, Random Forest and GBDT, give full 

play to their complementary advantages. Meanwhile, the 

weight allocation mechanism based on the error rate (such 

as the weight of the best-performing XGBoost reaching 

0.38) enhances the contribution of high-performance 

models, suppressed the noise of weak classifiers and 

effectively alleviates the risk of overfitting. The logistic 

regression meta-classifier, by integrating the optimized 

prediction results, ultimately achieves an AUC of 0.91 and 

a loss rate of 0.25%, which was 4.2-9.6 percentage points 

higher than the accuracy of the single model. The 

robustness of the model was verified in three dimensions: 

computational efficiency, spatio-temporal adaptability, 

and cross-domain generalization ability: The peak 

memory usage is controlled at 1170 MB, and the response 

time is stable at 120 ms, which benefited from the 

dimensionality reduction of RFM features and the linear 

computational complexity of K-means. The 12-month 

long-term prediction maintained an accuracy rate of more 

than 94.2%. The use of periodic time feature coding and 

K-nearest neighbor balancing effectively resisted the 

interference of seasonal fluctuations and class imbalances. 

However, the research methods still have some 

limitations. The black box feature of stacked integration 

hinders decision traceability. In particular, the predictive 

fusion mechanism of meta-classifiers lacks transparency, 

restricting causal inference of marketing strategies. Key 

parameters such as the learning rate of XGBoost rely on 

empirical Settings, which may cause performance 

degradation in new scenarios. The current model deals 

with discrete consumption snapshots and does not fully 

model the sequence dependencies of continuous 

consumption behaviors. In future research, explainable 

artificial intelligence technologies can be integrated to 

reveal feature attribution, and explainable meta-classifiers 

(such as decision trees) can be adopted to enhance 

transparency. Bayesian optimization is introduced to 

achieve adaptive tuning of hyperparameters. 

6 Conclusion 
To address the challenges of extracting user 

consumption features and the low accuracy of 

consumption behavior prediction, this study developed an 

integrated consumption behavior feature prediction 

model. The model utilized an entropy weight method to 

enhance the RFM processing of initial samples, combined 

with an optimized K-means algorithm with improved 

minimum distance calculation logic and a weighted 

Stacking ensemble classifier. The experimental results 

showed that the proposed RK-W-Stacking prediction 

model achieved a consumption feature identification 

accuracy of 96.3%, a loss rate of 0.25%, and an area under 

the ROC curve of 0.91. The ROC curve closely aligned 

with the top of the y-axis, demonstrating high feature 

identification efficiency, low loss, and strong 

classification performance. The study further used the 

RK-W-Stacking prediction model to predict user 

consumption behavior over 12 months and validated its 

performance. The model’s peak memory usage reached 

1170 MB, and the response time remained under 120 ms. 

Throughout the year, prediction accuracy consistently 

exceeded 94.2%, with a relative error of 0.04. The 

predicted results closely matched the actual value curve. 

The proposed RK-W-Stacking prediction model 

significantly outperformed the compared prediction 

models in terms of accuracy and applicability. Although 

the proposed model demonstrated outstanding 

performance, the experiment did not comprehensively 

optimize the key parameter settings, and there is still room 

for improvement in the selection of base classifiers. Future 

work will refine the selection of base classifiers through 

experiments to better match secondary classification 

samples, reducing the impact of time effects on prediction 

accuracy. 
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