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In the continuous evolution of mobile communication technology, 5.5G network is a key step towards 

future communication, which is gradually becoming the focus of academia and industry. To solve the 

complex signal propagation and serious multi-path interference in high frequency band, the improved 

particle swarm differential evolution algorithm and multi-objective differential evolution particle swarm 

optimization algorithm are proposed to maximum coverage and minimum power consumption in 

wireless sensor networks. This method improves the efficiency of solving complex optimization problems 

by maintaining the global search ability and enhancing the local search performance. The experiment 

was carried out on a customized simulation platform and tested for different scale sensor deployment 

scenarios. The research results indicated that the optimal coverage after optimizing the parameters of 

the community antenna occurred when the inertia factor was 0.4 and 0.7, at 0.641 and 0.640, 

respectively. The average optimal coverage was 0.633 and 0.632 when the inertia factor was 0.6 and 

0.7, respectively. The designed algorithm performed the best in reducing transmission power, 

computational efficiency, and exploring solution space. The minimum total transmission power reached 

33.5dBm, the maximum number of Pareto front points reached 240, and the calculation time was the 

shortest, at 530s. The research results show that the proposed optimization algorithm can effectively 

improve the coverage and energy efficiency of the 5.5G network, providing an effective solution for 

network optimization. 

Povzetek: Predstavljena je skupna optimizacija 5.5G kot RT modeliranje + PSO-MDE za azimut/nagib 

anten in MOPSO-DE za oddajno moč. Rezultati: večja pokritost, nižja moč, hitrejša konvergenca, več 

Pareto rešitev, boljša energetska učinkovitost. 

 

1 Introduction 
With the continuous advancement of mobile 

communication technology, the world is rapidly 

transitioning to fifth generation mobile communication 

technology. The 5.5G network provides strong support 

for emerging technologies such as the Internet of Things, 

augmented reality, and virtual reality with its higher data 

transmission rate, lower latency, and wider connectivity 

capabilities [1-2]. However, the high-frequency 

communication characteristics and ultra-dense 

deployment requirements of 5.5G networks also make 

the wireless signal propagation environment more 

complex, posing new challenges to network coverage 

and energy efficiency [3]. Traditional optimization 

algorithms are prone to getting stuck in local optima and 

have slow convergence speed under high-dimensional 

search spaces and nonlinear constraints, making it 

difficult to meet the high real-time and performance 

requirements of 5.5G [4]. The Ray Tracing (RT) 

algorithm can simulate the propagation path of 

electromagnetic waves, and accurately characterize the  

 

channel characteristics in high-frequency communication 

environments. It is suitable for 5.5G network modeling  

and performance optimization. Particle Swarm 

Optimization (PSO) is a stochastic optimization method 

based on swarm intelligence, which has fast convergence 

speed and simple implementation [5-6]. The Differential 

Evolution (DE) strategy is a population-based stochastic 

optimization algorithm mainly used to solve continuous 

optimization problems. Therefore, the study adopts the 

RT algorithm for channel modeling to quantitatively 

evaluate network performance. An optimized PSO 

algorithm that combines Metropolis criterion and DE 

(PSO-MDE) is proposed to optimize antenna parameters. 

The Multi-objective PSO based on DE (MOPSO-DE) is 

taken to optimize the signal transmission power to 

improve the performance of the 5.5 network by 

increasing the signal propagation rate and reducing 

energy consumption management. 

The innovation of the research lies in improving the 

traditional PSO algorithm, which enhances the 

algorithm's global search and local fine adjustment 
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capabilities. In addition, a crowding distance algorithm is 

introduced to maintain the diversity of the solution set. 

Compared with traditional optimization methods, the 

contribution of the research is to propose a joint 

optimization framework combining RT modeling and 

PSO-MDE algorithm, which can simultaneously 

optimize the antenna direction parameters and 

transmission power allocation strategy of the base station 

in the community. The adaptive evolution mechanism is 

introduced to improve the convergence speed and search 

accuracy in complex scenarios. Simulation experiments 

based on synthetic urban environment verify that the 

proposed method is significantly superior to the 

mainstream algorithm in coverage and interference 

control. 

To systematically verify the effectiveness of the 

proposed method, the research aims to clearly explore 

whether the proposed improved algorithm is superior to 

the current mainstream optimization algorithm in the 

statistical sense in the 5.5G cellular network under the 

same number of nodes and deployment constraints, and 

evaluate its performance in energy management, 

especially its potential in reducing transmission power 

and improving energy efficiency. Therefore, two 

research hypotheses are proposed. One is that PSO-MDE 

algorithm will achieve higher network coverage than 

JADE and ABC algorithm. The second assumption is 

that PSO-MDE algorithm is better than JADE and ABC 

algorithm in reducing the total transmission power and 

improving energy efficiency. To verify these 

assumptions, the research compares the performance of 

different algorithms in coverage and energy management 

through simulation experiments, and uses statistical 

methods to evaluate whether the performance 

improvement of PSO-MDE algorithm is statistically 

significant. 

The research will be divided into the following five 

sections. Section 1 introduces the relevant background 

and existing research. Section 2 describes the proposed 

joint optimization method. Section 3 presents the 

experimental results and performance analysis. Section 4 

discusses the results and compares them with recent 

studies. Section 5 summarizes the full text and looks 

forward to future work. 

2 Related works 
The rapid development of wireless communication 

technology has made network performance optimization 

increasingly important. Mao et al. proposed a damage 

assessment method based on convolutional neural 

networks from components to the overall structure to 

address the post-earthquake damage assessment needs of 

reinforced concrete communication buildings. The 

research results indicated that the proposed method was 

highly consistent with the expert evaluation conclusions, 

and the optimized convolutional neural network had 

good accuracy and stability [7]. Yu et al. proposed a 

system optimization method based on Reconfigurable 

Intelligent Surfaces (RIS) to achieve ultra-wireless 

bandwidth, ultra large-scale connectivity, and highly 

reliable communication in 6G communication networks. 

By reviewing relevant research literature in recent years, 

the performance optimization of RIS assisted wireless 

communication networks was summarized and the 

potential future research direction for RIS assisted 

communication network deployment was explored [8]. 

Liang et al. proposed a traffic control scheduling 

generation method for train communication networks 

based on improved incremental scheduling strategy and 

improved grey wolf optimization algorithm to meet the 

high transmission demand of massive real-time data in 

intelligent rail transit. The research results indicated that 

this method had advantages in computational accuracy 

and speed, and could reduce the average end-to-end 

delay to 57 μs [9]. Yu et al. proposed a joint cross-layer 

optimization framework to address the deep learning 

semantic encoding and decoding exacerbating traditional 

communication energy consumption. The research 

results indicated that the framework could effectively 

solve the joint optimization problem of semantic and 

physical layers by jointly optimizing physical layer 

power control and semantic layer compression allocation 

[10]. 

Network optimization often involves multiple 

objectives, such as coverage, capacity, energy efficiency, 

and cost. The PSO algorithm, especially its multi-

objective version, can effectively handle these multi-

objective optimization problems and find the optimal 

solution that balances different objectives. Hu et al. 

proposed an intelligent deployment method for 

emergency ground to air communication networks based 

on a hybrid layered PSO algorithm to effectively respond 

to the transmission of emergency monitoring data during 

large-scale environmental emergencies. The research 

results indicated that this method could adaptively update 

the deployment location and communication link of 

emergency communication resources, significantly 

improve adaptability after multiple iterations, and 

achieve comprehensive coverage and balanced 

distribution of communication nodes [11]. Wang et al. 

proposed a multi-objective PSO algorithm to solve the 

time-consuming and inefficient design of traditional 

terahertz metamaterial absorbers. The research results 

indicated that this method could achieve dual objective 

optimization of absorber structural parameters with 

absorption rate and quality factor as independent 

objectives, significantly improving design efficiency and 

performance [12]. Nuthakki et al. proposed an AI driven 

method using an improved multi-objective PSO 

algorithm to achieve high resource utilization in cloud 

data centers in intelligent manufacturing environments. 

The research results indicated that this method 

outperformed other multi-objective algorithms in 

optimizing resource allocation in intelligent 

manufacturing cloud environments [13]. 

To sum up, the existing methods may perform well 

in specific environments, but the generalization ability 

and adaptability need to be improved, and some 

algorithms have high computational complexity. The 

trade-offs and balances between different objectives still 

need to be further analyzed. Table 1 compares the 
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application environment, key results, research gaps, and 

SOTA drawbacks of each network optimization method. 

Therefore, the research combines RT algorithm to 

optimize the 5.5G network, and introduces de-mutation 

and crossover operation to improve the traditional PSO 

algorithm, aiming to improve the adaptability, real-time 

performance and optimization efficiency of the 

algorithm, so as to better meet the challenges of network 

optimization in large-scale and complex environments. 

Table 1: Comparison of research results of various network optimization methods. 

Reference Algorithm Application environment Key results Limitations of SOTA 

[7] Mao C 

X et al. 

Convolutional 

neural network  

Post-earthquake damage evaluation 
of RC frame communication 

buildings 

High consistency with expert 
assessment; optimized CNN model 

shows good accuracy and stability 

Lack of verification of 
algorithm generalization 

capability 

[8] Yu W 
W et al. 

RIS auxiliary 

network 

optimization 

6G communication networks 
Enhances communication 
performance 

High computational 

complexity; lacks real-time 

capability 

[9] Liang C 
et al. 

Improved grey 

wolf optimization 

algorithm 

Train communication networks in 
intelligent rail transit 

Reduces average end-to-end latency 
to 57μs 

Algorithm adaptability needs 
improvement 

[10] Yu K 

W et al. 

Joint cross-layer 
optimization 

framework 

Communication energy 
consumption in deep learning 

semantic encoding and decoding 

Effectively addresses the joint 
optimization issue of semantic and 

physical layers 

Further research focuses on 
trade-offs between different 

objectives 

[11] Hu W 
Z et al. 

Hybrid hierarchical 
PSO algorithm 

Intelligent deployment of 
emergency aerial-ground 

communication networks under 

large-scale sudden environmental 
events 

Significantly improves fitness after 
multiple iterations; achieves 

comprehensive coverage and 

balanced distribution of 
communication nodes 

Performs well in specific 

environments but lacks 

generalization capability 

[12] Wang 
Y R et al. 

MPSO 
Design of terahertz metamaterial 
absorbers 

Achieves dual-objective optimization 

of absorber structure parameters, 
significantly improving design 

efficiency and performance 

Lacks universal solutions for 
broader scenarios 

[13] 

Nuthakki P 

et al. 

Improved MPSO 
Resource allocation in cloud data 
centers for smart manufacturing 

Outperforms other multi-objective 

algorithms in optimizing resource 
allocation in smart manufacturing 

cloud environments 

The computational 

complexity and real-time 
capability of the algorithm 

need further optimization 

 

3 Methods and materials 

3.1 Optimization of antenna parameters 

for 5.5G network in community based 

on RT and improved PSO-MDE 

algorithm 

Signal propagation and energy management are two key 

dimensions in 5.5G network optimization. Signal 

propagation can improve signal coverage quality and 

reduce interference by optimizing antenna parameters, 

while energy management can reduce energy 

consumption by optimizing transmission power [14-15]. 

Therefore, a sequential linkage two-stage optimization 

framework is proposed to improve the configuration 

efficiency of antenna parameters and transmission power 

in 5.5G cellular network. In this framework, PSO-MDE 

is first used to optimize the antenna azimuth and tilt 

angle of each sector to maximize the signal coverage in 

the cell. Then, taking the obtained antenna parameters as 

input, MOPSO-DE is used to further optimize the 

transmission power of each sector, while considering 

minimizing power overhead and maximizing overall 

coverage. This two-stage strategy decouples the complex 

search space and avoids the convergence difficulty in 

high-dimensional joint optimization. The dependent path 

is clear, and the subsequent power optimization stage is 

directly affected by the antenna parameters in the early 

stage. It also has strong scalability. Firstly, a cellular 

network structure is constructed to visually demonstrate 

the spatial layout relationship between typical cell 

division and base station antennas. The cellular network 

structure is shown in Figure 1. 
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Figure 1: Schematic diagram of cellular network structure and base station layout. 
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Figure 2: Schematic diagram of antenna azimuth angle and tilt angle. 

 

As shown in Figure 1, a cellular network consists of 

multiple base stations, each responsible for covering one 

or more sectors, forming a hexagonal structure similar to 

a honeycomb. Each antenna of the three-sector base 

station is responsible for covering an area within 120°, 

and the antenna can independently set its direction and 

tilt angle. In this structure, antenna parameters directly 

determine the direction and intensity distribution of 

signal radiation. Reasonable configuration can 

effectively expand the effective coverage area, and 

reduce blind spots and overlapping interference [16]. In 

this cellular structure, each sector is considered as an 

independent optimization unit, and the antenna 

parameters of all 21 sectors are jointly optimized. 

Therefore, the optimization problem has a high-

dimensional search space with 42-dimensional 

continuous variables. The optimization goal is to 

maximize the overall coverage performance and signal 

power distribution quality in the region by adjusting the 

antenna azimuth and tilt angle of all sectors under the 

fixed network topology and deployment architecture. 

This study refers to the areas where communities serve 

each department, rather than macro level residential 

areas. The designed dual-objective fitness function is 

based on the proportion of users who meet the signal 

strength threshold (coverage) and the average received 

power level in the whole simulation area. To ensure the 

authenticity and challenge of the modeling, this study did 

not make assumptions about simplifying sector 

deployment strategies, nor did it incorporate sector or 

shared antenna parameters. However, it retains a 

completely independent antenna configuration, making 

the optimization task closer to the requirements of real 

cellular network configuration. The azimuth and tilt 

angle parameters of the antenna are two key control 
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parameters for the community antenna, as shown in 

Figure 2. 
As shown in Figure 2, the horizontal direction of the 

main beam of the azimuth antenna controls the angle 

range of signal coverage, usually from 0° to 360°. The 

vertical pitch angle of the tilt angle controls the degree of 

tilt of the main lobe of the signal, usually set between 0° 

and 15°. If the beam is too small, it will move towards 

the far end, which may cause cross zone interference. If 

it is too large, the signal will be concentrated in the near 

end, resulting in poor reception for remote users [17]. In 

the 5.5G high-frequency communication environment, to 

more accurately capture the propagation path and loss 

law of signals in complex environments, the RT 

algorithm is used for channel modeling to quantitatively 

evaluate the coverage performance of cellular networks. 

The RT method accurately models the signal propagation 

characteristics by simulating the reflection, diffraction, 

and penetration paths of radio waves in real 

environments. The total channel loss is shown in 

equation (1). 

0 10
1

( ) 10 log ( )
M

rj
j

L d L n d L
=

= + +   (1) 

In equation (1), 0L  represents the free space path 

loss. n  represents the path loss index, which is set 

according to specific scenarios. S represents the 

transmission distance. rjL  represents the additional loss 

caused by the j -th reflection or diffraction. M  

represents the total number of multi-path components. 

The antenna parameter optimization is to maximize the 

coverage within the area. The received power at each 

user's location is shown in equation (2). 

, ( , ) ( )r i t i i iP P G L d = + −  (2) 

In equation (2), ,r iP  is the received power of the i -th 

receiving point. tP  is the power of the transmitted signal. 

( , )i iG    represents the gain function. i  represents the 

angle with the receiving point. i represents the relevant 

antenna gain. ( )iL d  is the path loss. The grid-based 

evaluation method can divide the research area into 

several equally spaced small grids, calculate and 

statistically analyze the received signal strength of each 

grid point, and evaluate the overall coverage 

performance. Coverage refers to the proportion of areas 

in which the received signal strength indicator (RSSI) 

exceeds a preset threshold in a specific area. It reflects 

the signal coverage quality of the network in the region. 

To accurately evaluate the coverage, the RSSI threshold 

and analysis window are defined. The RSSI threshold is 

set to -90dbm. Only when the RSSI value is higher than 

this threshold, the area is considered to be effectively 

covered. The analysis window is defined as a meshed 

area, and each grid point represents a measurement point. 

The coverage is determined by calculating the RSSI 

value of each grid point and determining whether it 

exceeds the threshold. It is commonly used for signal 

coverage analysis and optimization in wireless networks. 

The coverage rate of the community is shown in equation 

(3). 
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In equation (3), cov  is the coverage probability, 

representing the probability that the received power is 

greater than a certain threshold thP .   is an indicator 

function ranging from 0 to 1. N  is the total number of 

grids. This method can accurately evaluate the coverage 

performance of the network and use it as the objective 

function for optimization. Further research will encode 

the antenna azimuth and tilt angle of each community as 

variables to form a "particle" in the particle swarm. 

Taking the total coverage within the region as the fitness 

function, the optimal combination of antenna parameters 

is obtained. The optimization objective function for 

maximizing coverage is shown in equation (4). 

cov
,

max ( , )
i i

i iF
 

  =  (4) 

In equation (4), F  is the optimized objective 

function. ( , )i i   represents the azimuth and elevation 

angles of the i -th receiving point. The parameter 

modeling is completed. Coverage optimization has 

nonlinear and multi peak characteristics, while PSO still 

suffers from premature convergence in high-dimensional 

complex spaces. Therefore, the DE is introduced to 

improve the PSO algorithm. DE can generate new 

solutions by mutating and recombining individual 

differences, and has strong global search capabilities. In 

addition, the research also introduces the Metropolis 

criterion and adaptive inertia factor to enhance the ability 

to escape from local optima, balancing global exploration 

and local development. The specific process of PSO-

MDE algorithm is shown in Figure 3. 
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Figure 3: Flow chart of PSO-MDE algorithm. 

 

From Figure 3, firstly, the position, velocity, and 

fitness values of the particle swarm are initialized, and 

the inertia factor is set. In each iteration, particles move 

according to velocity and position update equations. The 

adaptive inertia factor dynamically adjusts according to 

the iteration process to achieve a balance from global 

search to local fine search. The particle velocity and 

position updates combine the velocity update mechanism 

of PSO with the mutation crossover operation of DE. 

Specifically, the velocity update of particles follows the 

velocity update equation of the standard particle swarm 

algorithm, and introduces adaptive inertia weights to 

dynamically adjust the motion trend of particles. This 

process ensures that particles can search effectively 

according to the individual optimal position and the 

global optimal position. The variant operation is part of 

the PSO update cycle and directly participates in 

updating particle positions rather than being independent 

of the main cycle. The specific calculation is shown in 

equation (5). 

min max min

max

( )exp
k

k
    

  
= + − −   

  
  (5) 

In equation (5),   is the current inertia factor. k  is 

the number of iterations.   is a parameter that controls 

the inertia factor to reduce speed. In the location update 

phase, mutation and crossover operations of DE are 

introduced to enhance the diversity and global search 

ability of the population. Specifically, for each particle, 

firstly, the mutation operation of DE is performed, 

selecting three different particles and calculating their 

difference vectors, and then adding them to the current 

position of the particles to generate a new mutation 

vector. Then, the DE crossover operation is performed, 

and some components of the mutation vector are 

replaced with a certain probability at the current particle 

position to generate a test vector. This test vector is then 

used to evaluate its fitness. If the fitness is better than the 

current particle position, the particle position is updated. 

In this way, DE mutation and crossover operation 

provide new candidate solutions for PSO and increase 

the diversity of the population. In this way, PSO-MDE 

combines the fast convergence characteristics of PSO 

and the global search ability of DE to improve the 

optimization performance. If the newly generated 

particles are better than the current solution, they will be 

updated directly. If it is inferior to the current solution, it 

is accepted with a certain probability according to the 

Metropolis criterion to avoid falling into local optima. 

During the iteration process, the individual extremum 

and global optimal solution are continuously updated 

until the termination condition is met. The pseudo-code 

of PSO-MDE algorithm is shown in Figure 4. 
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// Initialize parameters

Set population size N, maximum number of iterations T, inertia weight ω, cognitive component c1, 

social component c2

Set differential evolution scaling factor λ, crossover probability CR

// Initialize the swarm

For i = 1 to N:

    Randomly initialize particle position position[i] and velocity velocity[i]

    Evaluate fitness fitness[i]

    If fitness[i] is better than personal best pbest[i]:

        Update pbest[i] = position[i]

    If fitness[i] is better than global best gbest:

        Update gbest = position[i]

// Start iterations

For t = 1 to T:

    For i = 1 to N:

        // Differential Evolution Mutation

        Randomly select j, k, l ≠ i from {1, 2, ..., N}

        Calculate mutation vector mutant = pbest[i] + λ * (position[j] - position[k]) + (position[l] - 

position[j])

        

        // Differential Evolution Crossover

        Create trial vector trial = position[i]

        For each dimension d = 1 to D:

            If rand() < CR or d = randomly chosen dimension:

                Set trial[d] = mutant[d]

        

        // Evaluate trial vector fitness fitness[trial]

        If fitness[trial] is better than fitness[i]:

            Update position[i] = trial

        

        // PSO velocity and position update

        Update velocity[i] = ω * velocity[i] + c1 * rand() * (pbest[i] - position[i]) + c2 * rand() * (gbest 

- position[i])

        Update position[i] = position[i] + velocity[i]

        

    // Update global best

    For i = 1 to N:

        If fitness[i] is better than gbest:

            Update gbest = position[i]

// Output results

Return global best solution gbest

 

Figure 4: Pseudo-code of PSO-MDE algorithm. 

 

From Figure 4, in pseudo-code, key symbol or 

variable mutation represents mutation operation, 

crossover represents crossover operation, and CR 

represents crossover probability in DE. PSO-MDE 

algorithm combines the advantages of PSO and DE, and 

enhances the global search ability of PSO by introducing 

DE mutation and crossover operation. In the initialization 

phase of the algorithm, the position and speed of the 

particle swarm are randomly generated, and the fitness is 

evaluated. In the iteration process, the DE strategy is 

used to update the particle velocity, and the parameters 

such as mutation factor and crossover probability are 

automatically adjusted to meet the needs of different 

search stages. This improved strategy helps the particles 

jump out of the local optimum, improves the diversity of 

solutions, and speeds up the convergence speed. Finally, 

PSO-MDE algorithm shows better performance in multi-

objective optimization problems and has wide 

application potential. 
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3.2 Power allocation optimization based on 

MOPSO-DE 

To ensure the feasibility and robustness of the 

optimization process, the series optimization architecture 

is adopted. In phase 1, the fixed initial transmission 

power is analyzed, and the antenna azimuth and tilt angle 

of the sector are optimized by PSO-MDE. On this basis, 

in phase 2, MOPSO-DE is used to further refine and 

optimize the transmission power of each sector. The 

output of antenna angle is directly used as the input 

environment variable in the power optimization phase 

rather than sharing variable parameters to ensure the 

consistency of physical configuration. Next, the study 

optimizes the energy consumption of the 5.5G network. 

Due to the uneven spatial distribution of business 

demands in complex urban environments, it is necessary 

to allocate transmission power reasonably to ensure 

network coverage and energy efficiency. Therefore, the 

study selects maximum coverage and minimum total 

transmission power as optimization objectives to 

construct a multi-objective optimization model [18-19]. 

MOPSO has good global search capability when dealing 

with multi-objective problems. However, it has 

shortcomings in maintaining population diversity and 

improving local accuracy [20]. Therefore, to optimize the 

signal transmission power in residential areas, the 

research has also adopted DE to improve MOPSO. The 

MOPSO-DE process is shown in Figure 5. 

From Figure 5, first, the individual particle swarm is 

initialized. Each particle represents a cell transmission 

power combination. The initialization process includes 

initializing the position and speed of the particle swarm. 

The initial position of each particle is set to its initial 

personal optimal value. In this way, the algorithm can 

provide a reasonable starting point for each particle in the 

initial stage, so as to improve the optimization efficiency. 

Secondly, the fitness of individuals under the two 

objectives of "maximizing regional coverage" and 

"minimizing total transmission power" is calculated 

through the objective function. All non-dominated 

solutions will enter the external elite pool and use 

crowding distance sorting to maintain the diversity of the 

solution set. During the iteration process, particles update 

by guiding individuals to learn the historical optimal 

position and performing differential mutation operations. 

The updated velocity is shown in equation (6). 

1 2 3( )r r rev x u x x= +  −  (6) 

In equation (6), 
ev  is the variation vector of the e -th 

particle. 
1rx ,

2rx , and 
3rx  are the current position vectors 

of three different particles randomly selected from the 

current population. u  is the differential variation scaling 

factor. The specific calculation of its position is shown in 

equation (7). 
1

e e

t

e

tx x v+ = +   (7) 

In equation (7), 1

e

tx +  and t

ex  are the current position 

vectors of the e -th particle in the 1t + -th and t -th 

generations, respectively. 
ev  is the velocity vector 

obtained through differential variation. The pseudo-code 

of MOPSO-DE algorithm is shown in Figure 6. 
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parameters
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best value
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Optimized signal transmission power 
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Total transmission 
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Generate initial population

 

Figure 5: Optimization of signal transmission power in community based on MOPSO-DE algorithm. 
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// Initialize the parameters

Set the number of particles N, maximum iterations T, mutation factor F, crossover probability CR

Initialize the position and velocity of each particle randomly

// Initialize the archive with the initial particles

for each particle i from 1 to N do

    Evaluate the fitness of particle i

    if particle i is non-dominated then

        Add particle i to the archive

    end if

end for

// Main loop

for iteration from 1 to T do

    for each particle i from 1 to N do

        // Differential Evolution Mutation

        Choose three distinct particles j, k, l different from i

        V = particle[j] + F * (particle[k] - particle[l])

        

        // Differential Evolution Crossover

        U = particle[i]

        for each dimension d from 1 to D do

            if rand() < CR or d is a random dimension then

                U[d] = V[d]

            end if

        end for

        

        // Evaluate the fitness of the trial vector U

        Evaluate the fitness of U

        

        // Non-dominated sorting

        if U dominates particle[i] then

            Replace particle[i] with U

        else if U is non-dominated and dominates some particles in the archive then

            Replace the dominated particles in the archive with U

        end if

        

        // Update the personal best position of particle i if necessary

        if U is better than the personal best of particle i then

            Update the personal best of particle i

        end if

    end for

    

    // Update the global best position if necessary

    Update the global best position from the archive

end for

// Output the Pareto front

Return the archive as the Pareto front

 
Figure 6: Pseudo-code of MOPSO-DE algorithm. 

 

From Figure 6, the pseudo-code of MOPSO-DE 

algorithm integrates PSO and DE for multi-objective 

optimization. The key parameters include the number of 

particles, the number of iterations, and the variation 

factor F. The particle position is randomly initialized, a 

new solution is generated through DE, and the non-

dominated archive is evaluated and updated. The 

individual and global optima are updated iteratively. 

Finally, the Pareto front solution set is obtained. 

Subsequently, based on the Pareto dominance 

relationship and crowding distance, individual strengths 

and weaknesses are judged, and the elite pool is updated. 

The Pareto optimal solution set is an ideal state of 

resource allocation in multi-objective optimization. All 

these sets of non-dominated solutions form the Pareto 

front in the objective space. The Pareto front diagram is 

shown in Figure 7. 



398 Informatica 49 (2025) 389–406 C. Jian et al. 

Parato

Total transmission power of the 

network（dBm）

T
o
ta

l 
co

v
er

ag
e 

ra
te

 o
f 

th
e 

co
m

m
u
n
it

y

Launch strategy

 

Figure 7: Pareto front diagram for multi-objective optimization. 
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Figure 8: Schematic diagram of the crowded distance algorithm. 

 

Figure 7 shows the Pareto front of the multi-

objective optimization problem, which is used to show 

the dual-objective optimization relationship between 

coverage and transmission power, as well as the 

corresponding mechanism between the "Pareto front" and 

the actual deployment strategy. It does not correspond to 

specific experimental data. The graph covers the non-

dominated solutions in several experiments. Pareto front 

represents the solution set that achieves the optimal 

balance among multiple objectives. The horizontal axis 

in the figure represents the total transmission power of 

the network, measured in DBM, while the vertical axis 

represents the total coverage area of the cell. Each point 

corresponds to a launch strategy that meets the 

constraints. Due to the natural conflict between the two 

objectives, the optimal solution cannot be achieved 

simultaneously. Therefore, the output solution of this 

algorithm is not the only optimal solution, but rather 

constitutes an optimal set, namely the Pareto front. 

Decision makers can select appropriate equilibrium 

points in the Pareto front based on the needs of different 

business scenarios. The mathematical definition of Pareto 

solution is shown in equation (8). 

1

2
1

Maximize ( ) ( )

Minimize ( )
N

i
i

f x A x

f x P
=

=



= 

 (8) 

In equation (8), 
1( )f x is the sum of the total coverage 

rate of the community and the coverage rate A . 
2 ( )f x  is 

the total transmission power. x  is a set of parameters 

that includes the transmission power of each base station. 

iP  is the transmission power of the i -th base station. 

After sorting the non-dominated solutions, to prevent the 

solution set from being too concentrated on the Pareto 

front, the crowding distance algorithm is introduced as an 

auxiliary evaluation metric to maintain the diversity of 

the solution set. Crowding distance measures the distance 

between an individual and other non-dominated solutions 

in the solution space. A higher value indicates that the 

area in which the individual is located is sparser and 

more representative. The specific calculation process is 

shown in Figure 8. 
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As shown in Figure 8, firstly, all non-dominated 

solutions are sorted in ascending order according to their 

respective objective functions. Secondly, the maximum 

and minimum crowding distances of individuals in each 

target dimension are set to infinity to preserve the 

boundary solutions. Subsequently, the difference 

between each remaining solution and adjacent solutions 

in each target dimension is calculated and normalized. 

Finally, the normalized distances on all target dimensions 

are accumulated to obtain the total crowding distance of 

the solution. A large crowding distance indicates that the 

solution is located in a sparser area, and priority should 

be given to preserving it to enhance the diversity of the 

population. This mechanism effectively avoids the 

aggregation of individuals in the solution set and helps 

generate a wider and more evenly distributed Pareto 

front. Crowding distance measures the density of 

solutions around a solution in the objective function 

space. The solution with larger crowding distance means 

that it is relatively isolated in the target space, that is, 

there are fewer solutions around, which helps to maintain 

the diversity of solution set. To calculate the crowding 

distance, the non-dominated solutions are sorted for each 

objective function, and then the infinite crowding 

distance is assigned to the boundary solution. The 

distance difference between each solution and adjacent 

solutions in each target dimension is calculated and 

normalized. Finally, the normalized distances of all target 

dimensions are accumulated to obtain the total crowding 

distance of each solution, which is used to evaluate the 

diversity of solutions. The specific calculation is shown 

in equation (9). 

max min

( 1) ( 1)m m m

i

m m

f i f i
D

f f

+ − −
=

−
 (9) 

In equation (9), m

iD  represents the rate of change or 

difference of the i  -th data point in the m -th dimension. 

( 1)mf i+  and ( 1)mf i−  are the function values of the 

direct successor and direct precursor of the i th solution 

on the m -th objective function, respectively. max

mf  and 

min

mf  are the maximum and minimum values of all 

solutions on the m -th objective function, respectively. 

The total crowding distance is the sum of the dimensions 

of each target, as shown in equation (10). 

1

M
m

i i
m

D D
=

=    (10) 

In equation (10), M  is the total number of 

dimensions. 
iD  is the comprehensive rate of change or 

difference of the i -th data point across all dimensions. 

Crowded distance contributes to the convergence and 

diversity of equilibrium solutions in multi-objective 

optimization processes. For example, three solutions are 

considered, including A (0.8, 0.2), B (0.9, 0.5), and C 

(0.95, 0.7) in the dual-objective problem. After the 

targets are arranged in ascending order, B is between A 

and C. The crowded distance is combined with the 

distance between the left and right solutions of B in each 

target dimension to calculate the sparsity of its local 

solution. If the solution around solution B is sparse and 

the crowding distance is large, it is more likely to be 

retained in the next generation. Throughout the process, 

the MOPSO-DE algorithm approaches the Pareto optimal 

solution set through continuous iterations, achieving 

intelligent scheduling and optimized allocation of signal 

transmission power [21-22]. In the 5.5G network 

optimization, energy efficiency is a key performance 

index, which measures the energy efficiency of the 

network when transmitting data. The calculation is 

shown in equation (11). 

E

T

E
 =   (11) 

In equation (11), 
E  is energy efficiency. T  is the 

network throughput. E  is the total energy consumption. 

Improving energy efficiency directly means reducing 

energy consumption without sacrificing network 

throughput. By optimizing the network configuration, 

adjusting the antenna parameters, reducing the 

transmission power, and other measures, the network 

energy consumption can be significantly reduced and the 

network throughput is improved while maintaining the 

network performance. The antenna parameters are 

optimized. By adjusting the azimuth and dip angle of the 

antenna and optimizing the signal coverage, unnecessary 

energy consumption can be reduced. The transmission 

power is reduced. By optimizing signal transmission 

strategies, the transmission power of base stations can be 

reduced while maintaining network coverage and 

throughput. Using energy-saving equipment and 

selecting network devices with energy-saving functions, 

such as routers and switches, can effectively reduce 

energy consumption. Intelligent energy management is 

adopted to dynamically adjust the energy consumption of 

equipment according to the network load to achieve the 

energy saving goal. The combination of these 

optimization strategies and MOPSO-DE algorithm is 

conducive to the intelligent scheduling and optimal 

allocation of signal transmission power [23-24]. 

4 Results 

4.1 Experimental environment and data 

sources 

The algorithm models and simulation programs used in 

the research are developed and run in the Windows 11 

operating system environment. The programming 

language used is Python 3.10, mainly relying on 

scientific computing and drawing libraries such as 

NumPy, Matplotlib, SciPy, etc. The computing platform 

is an Intel Core i7-12700H processor with 16GB of 

memory. The topology structure of the residential area 

used in the simulation refers to typical urban residential 

scenarios. The simulation area is divided into a square 

area of 100m×100m, containing 7 cellular base stations, 

deployed with three sector antennas. The simulation area 

size represents a typical urban macro cellular cell. It can 

capture the key features of signal propagation in urban 

environments, such as building occlusion, street layout, 
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Table 2: Experimental environment parameters. 

Parameter 

categories 

Parameter 

name 

Parame

ter values 

Paramet

er categories 

Parameter 

name 
Parameter values 

Network 

configuration 

Number of 

base stations 
10 

Channel 

model 

Ray tracing 

model 

Including 

reflection, diffraction 

and penetration 

Number of 

sectors 
30 Path loss index 2.5-3.5 

Frequency 

band 
26 GHz 

Total number 

of multipath 

components 

10 

Bandwidth 
100 

MHz 

Terrain 

attenuation factor 
0.5-1.5 

Power 

emission range 

20-40 

dBm 

Building 

penetration loss 
10-20 dB 

Receive 

signal strength 

threshold 

-90 

dBm 
\ \ 

 

and multi-path effects, without requiring excessive 

computational complexity. Urban macro cellular cells 

usually cover hundreds of meters, so a 100×100 meter 

area can well simulate this environment. In addition, this 

size includes sufficient buildings and obstacles in the 

simulation to reflect the complexity of signal propagation 

in urban environments. The number of particles is set to 

50 to balance the search ability and computational 

efficiency. The convergence criterion is that the 

maximum iteration is 500 times or the change of fitness 

function value is less than 0.001. The experiment runs 30 

times to evaluate the stability of the algorithm. The 

random seed is fixed at 42 to ensure that the experiment 

can be repeated. The reflection coefficient of RT 

simulation configuration is set to 0.6 to simulate the 

typical reflection behavior in urban environments. The 

path loss index is set between 2.5 and 3.5 to simulate 

signal attenuation in different environments. In addition, 

the terrain attenuation factor is considered to be within 

0.5 to 1.5 and the building penetration loss is set between 

10 and 20 dB. The network configuration and channel 

model parameters for the experiment are shown in Table 

2. 

4.2 Performance analysis of community 

antenna parameter optimization 

algorithm based on PSO-MDE 

In the optimized cellular network community antenna 

parameters based on PSO-MDE algorithm, to 

comprehensively evaluate the performance of PSO-MDE 

algorithm, new optimization algorithms such as Artificial 

Bee Colony (ABC) and Adaptive Differential Evolution 

Algorithm (JADE) are introduced for comparative 

experiments. The adaptive inertia factor can be 

dynamically adjusted based on the information obtained 

during the search process. Therefore, this study explores 

the influence of inertia factors on the optimization effect 

of parameters, and the results are shown in Figure 9. 

Figure 9 (a) shows the influence of inertia factor 

control parameters on optimization performance. Figure 

9 (b) shows the comparison results of standard deviations 

for different algorithms. According to Figure 9 (a), as the 

inertia factor increased from 0 to 1, the coverage showed 

a fluctuating trend. The optimal coverage occurred when 

the inertia factor was 0.4 and 0.7, reaching 0.641 and 

0.640, respectively. The average optimal coverage was 

0.633 and 0.632 when the inertia factor was 0.6 and 0.7, 

respectively. As shown in Figure 9 (b), the standard 

deviation of the PSO-MDE algorithm was always the 

lowest, about 1.3×10-3, indicating its good stability 

under different inertia factors. The standard deviations of 

ABC and JADE algorithms were relatively high, ranging 

from approximately 1.4×10-3to 1.5×10-3and 1.5×10-3 to 

1.6×10-3, respectively, with significant fluctuations. This 

may be because the PSO-MDE algorithm has advantages 

in parameter adjustment and adaptability, allowing it to 

maintain good stability and consistency under different 

conditions. Based on the convergence speed and 

optimization effect, the algorithm iteration was carried 

out when inertia factor influencing parameter was 0.3. To 

comprehensively evaluate the proposed algorithm, a 

comparative experiment was conducted on the coverage 

optimization of the three algorithms, with 20 repetitions. 

The obtained results are shown in Figure 10. 
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(a) The influence of different inertia factor control parameters on 

optimization performance
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Figure 9: Influence of inertia factor on optimization effect. 

(a) Optimal optimization coverage iteration chart
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Figure 10: Comparison of coverage of different algorithms. 

(b) CCDF curve of RSRP before and after optimization 

in region B
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Figure 11: Comparison results of CCDF of different algorithms. 

 

Figure 10 (a) shows the iterative variation of optimal 

coverage for different algorithms. Figure 10 (b) 

compares coverage optimization results of different 

algorithms on the target area. As shown in Figure 10 (a), 

the PSO-MDE algorithm quickly converged after about 

100 iterations, and the final coverage rate reached about 

0.641. After 120 and 140 iterations, JADE and ABC 

achieved optimal coverage rates of approximately 0.602 

and 0.559, respectively. According to Figure 10 (b), 

PSO-MDE led in both the optimal coverage and average 

optimal coverage indicators, with values of 

approximately 0.645 and 0.648, respectively. The 

optimal coverage and average optimal coverage of JADE 

and ABC were approximately 0.637 and 0.639, as well as 

0.633 and 0.635, respectively. The reason for this result 

is that although JADE improves the adaptability of 

traditional DE, there may still be problems with slow 

convergence speed or falling into local optima in multi-

dimensional search spaces. The ABC algorithm has 

relatively weak exploration ability due to its dependence 

on the honey source update mechanism. To verify the 

optimization effect of the algorithm on different regions, 
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two publicly available urban residential regions A and B 

are selected for comparative experiments on their grid 

Reference Signal Received Power (RSRP). The 

Complementary Cumulative Distribution Function 

(CCDF) is taken to evaluate the coverage quality of the 

network. The obtained results are shown in Figure 11. 

Figures 11 (a) and (b) show the CCDF curves of 

regions A and B before and after optimization, 

respectively. As shown in Figure 11 (a), after optimizing 

region A, the CCDF curves of all algorithms shifted to 

the right, indicating an overall improvement in RSRP 

values and signal quality. The CCDF curve optimized by 

PSO-MDE algorithm was the closest to the right, 

indicating its optimal performance in improving RSRP. 

When the CCDF was 0.8, the RSRP value of PSO-MDE 

was about -85dBm, while ABC and JADE were about -

95dBm and -90dBm, respectively. This is because PSO-

MDE has better adaptability and search ability when 

dealing with multi-objective optimization problems. 

From Figure 11 (b), in region B, the CCDF curves of all 

optimized algorithms were significantly better than 

before optimization, indicating the positive effect of the 

optimization on improving RSRP. Specifically, the PSO-

MDE algorithm showed the greatest improvement after 

optimization, with its CCDF curve significantly better 

than ABC and JADE in the high RSRP value region. 

When the CCDF value was 0.7, the RSRP value of PSO-

MDE was about -75dBm, while ABC and JADE were 

about -90dBm and -85dBm, respectively. The reason for 

this result is related to the search strategy and 

adaptability. The PSO-MDE algorithm may have 

achieved a better balance between exploration and 

development, which can more effectively find solutions 

to improve RSRP during the optimization process. 

4.3 Performance analysis of signal 

transmission power optimization 

algorithm based on MOPSO-DE 

To verify the feasibility of the MOPSO-DE-based 

community signal optimization algorithm proposed in the 

study, a relatively new multi-objective optimization 

algorithm (Optimized Multi-Objective PSO, OMOPSO) 

and Non-dominated Sorting Genetic Algorithm III 

(NSGA-III) area selected for comparative experiments in 

terms of convergence speed and energy efficiency. The 

obtained results are shown in Figure 12. 

Figures 12 (a) and (b) show the variation curves of 

fitness function values and system energy efficiency with 

iteration times for different algorithms, respectively. As 

shown in Figure 12 (a), MOPSO-DE algorithm reached a 

stable state after about 15 iterations, and the fitness 

function value was 0.15, while OMOPSO and NSGA-III 

were stable around 0.19 and 0.25 after 30 iterations, 

respectively. This fast convergence may be due to 

improvements in the MOPSO-DE algorithm, which 

makes it more efficient in the search process. As shown 

in Figure 12 (b), the energy efficiency of the MOPSO-

DE algorithm continued to increase during the iteration 

process and stabilized after approximately 120 iterations, 

ultimately reaching about 5.4. In contrast, the energy 

efficiency of the OMOPSO algorithm fluctuated 

significantly during the iteration process, ultimately 

stabilizing at around 5.2, while the energy efficiency of 

the NSGA-III algorithm remained relatively stable 

throughout the entire iteration process, ultimately 

stabilizing at around 4.4. This indicates that the MOPSO-

DE algorithm performs the best in improving system 

energy efficiency, possibly because it can better balance 

different objectives during the optimization process, 

thereby achieving higher energy efficiency. The 

experiment further explores the performance of various 

algorithms in signal transmission power optimization 

tasks, and the results are shown in Table 3. 
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Figure 12: Performance variation curve of different algorithms with the number of iterations. 
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Table 3: Comparison results of signal transmission power optimization algorithm performance. 

Algorithm MOPSO-DE OMOPSO NSGA-III SPEA2 PSO 

Iterations 100 200 100 200 100 200 100 200 100 200 

Total transmission 

power (dBm) 
35.2 33.5 36 34.5 37 35.5 36.8 36.0 35 35 

Computation 

time(s) 
110 530 120 550 100 540 130 520 100 500 

Pareto front points 200 240 180 220 170 210 165 205 160 200 

Standard deviation 0.5 0.3 0.7 0.6 0.4 0.2 0.5 0.5 0.6 0.6 

p p<0.01 

 

From Table 2, after 100 iterations, the performance 

of each optimization algorithm was significantly 

different in terms of signal transmission power control 

and Pareto solution quality. MOPSO-DE algorithm 

performed best with a minimum total transmission power 

of 35.2 DBM and 200 Pareto front points, and the 

standard deviation was 0.5, indicating that the algorithm 

had good stability in multiple operations. This is due to 

its fast convergence property that combines the global 

search capabilities of DE and PSO, which achieves an 

effective balance between exploration and utilization. 

The optimal transmission power of OMOPSO was 36.0 

DBM, and the standard deviation was 0.7. The stability 

and energy efficiency of the solution were also good. The 

transmission power of NSGA-III was 37.0 DBM, which 

was the worst, but the standard deviation was 0.4, 

indicating that the algorithm was stable. It is speculated 

that it tends to maintain the diversity of solutions and 

sacrifice the convergence accuracy. Although the 

transmission power of traditional PSO was 35.0 DBM, 

which was close to MOPSO-DE, only 160 Pareto 

solutions were obtained, indicating that the distribution 

of solutions was insufficient and easy to fall into local 

optimum. In general, OMOPSO and MOPSO-DE are 

superior to the baseline algorithm in terms of 

convergence speed, solution set diversity, and power 

optimization, reflecting the enhanced role of sub-

evolution mechanism in multi-objective problems. 

Statistical tests also showed that OMOPSO and MOPSO-

DE had significant advantages (p<0.01). 

5 Discussion 
The proposed PSO-MDE and MOPSO-DE algorithms 

show significant performance advantages in antenna 

configuration and power allocation optimization of 5.5G 

cellular networks. By combining RT technology and 

PSO algorithm, these algorithms not only surpass the 

traditional PSO algorithm in convergence speed, but also 

show excellent performance in coverage gain and energy 

trade-off. PSO-MDE algorithm uses DE strategy to 

enhance the global search ability. The Metropolis 

criterion and adaptive inertia factor effectively avoid 

local optima, thereby accelerating convergence speed. 

This improvement makes the algorithm more balanced in 

global search and local fine adjustment in complex multi-

objective optimization problems. MOPSO-DE algorithm 

can significantly reduce energy consumption while 

ensuring network coverage by optimizing signal 

transmission power, which is of great significance to 

improve the energy efficiency and sustainability of the 

network. 

Compared with the baseline algorithm, such as ABC, 

adaptive DE algorithm, OMOPSO, and NSGA-III, the 

proposed algorithm shows higher stability and 

consistency in coverage optimization and energy 

efficiency. When dealing with high-dimensional search 

space and nonlinear constraints, the baseline algorithm is 

often prone to fall into local optimization with slow 

convergence speed. It is difficult to balance different 

objectives in multi-objective optimization problems. In 

contrast, PSO-MDE and MOPSO-DE algorithms achieve 

better coverage and energy efficiency through accurate 

modeling and optimization strategies, providing an 

effective technical path for intelligent planning and 

performance improvement of 5.5G networks. 

To sum up, the proposed algorithm shows obvious 

technical advantages in 5.5G network optimization, 

which not only improves the network coverage and 

energy efficiency, but also provides new ideas and 

methods for future network optimization. These 

achievements have important technical significance and 

application value for promoting the development of 5.5G 

and future communication technologies. 

6 Conclusion 
To improve the signal coverage performance and energy 

utilization efficiency of 5.5G cellular networks in the 

high frequency band, a joint optimization framework 

combining RT modeling and multi-objective 

evolutionary algorithm was constructed to optimize 

antenna parameters and transmission power. The RT 

algorithm was taken to finely model the channel 

propagation characteristics in complex urban scenarios, 

and the optimization strategy was adopted to conduct 

multidimensional search and optimization on base 

stations in residential areas to maximize signal strength 

and minimize interference. In terms of antenna 

optimization, the optimal coverage of PSO-MDE 

algorithm was 0.645, which was 0.008 higher than JADE 

algorithm and 0.012 higher than ABC algorithm. The 
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average optimal coverage of PSO-MDE algorithm was 

0.648, 0.009 higher than JADE algorithm and 0.015 

higher than ABC algorithm. In terms of transmission 

power optimization, MOPSO-DE algorithm had the 

lowest total transmission power at 200 iterations, which 

was 33.5 DBM, 2.5 DBM lower than OMOPSO 

algorithm and 1.5 DBM lower than NSGA-III algorithm. 

The results show that the proposed joint optimization 

algorithm can effectively improve the performance of 

5.5G network and provide an effective solution for 

network optimization. However, the research still has 

some limitations. Firstly, the experiment is based on 

static synthetic data, and the dynamic user behavior and 

time series channel changes have not been considered. In 

addition, the computational complexity of the algorithm 

used in large-scale, real-time optimization scenarios still 

needs to be further reduced. Therefore, future work will 

focus on the following directions. Firstly, online learning 

mechanism and dynamic adaptive strategies, such as 

adaptive PSO or reinforcement learning method, will be 

introduced to improve the real-time response ability of 

the model to environmental changes. Secondly, it 

combines the low complexity approximate optimization 

method to improve the deployment efficiency of the 

algorithm on edge devices. Thirdly, dynamic multi-user 

modeling and spatiotemporal channel data are integrated 

to enhance the generalization ability of the model to the 

real network environment. It is expected that these 

improvements will provide more practical and forward-

looking technical support for intelligent optimization of 

5.5G and even future 6G networks. 
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