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In the continuous evolution of mobile communication technology, 5.5G network is a key step towards
future communication, which is gradually becoming the focus of academia and industry. To solve the
complex signal propagation and serious multi-path interference in high frequency band, the improved
particle swarm differential evolution algorithm and multi-objective differential evolution particle swarm
optimization algorithm are proposed to maximum coverage and minimum power consumption in
wireless sensor networks. This method improves the efficiency of solving complex optimization problems
by maintaining the global search ability and enhancing the local search performance. The experiment
was carried out on a customized simulation platform and tested for different scale sensor deployment
scenarios. The research results indicated that the optimal coverage after optimizing the parameters of
the community antenna occurred when the inertia factor was 0.4 and 0.7, at 0.641 and 0.640,
respectively. The average optimal coverage was 0.633 and 0.632 when the inertia factor was 0.6 and
0.7, respectively. The designed algorithm performed the best in reducing transmission power,
computational efficiency, and exploring solution space. The minimum total transmission power reached
33.5dBm, the maximum number of Pareto front points reached 240, and the calculation time was the
shortest, at 530s. The research results show that the proposed optimization algorithm can effectively
improve the coverage and energy efficiency of the 5.5G network, providing an effective solution for
network optimization.

Povzetek: Predstavljena je skupna optimizacija 5.5G kot RT modeliranje + PSO-MDE za azimut/nagib
anten in MOPSO-DE za oddajno moc. Rezultati: vecja pokritost, niZja moc¢, hitrejSa konvergenca, ve¢

Pareto resitev, boljsa energetska ucinkovitost.

1 Introduction

With the continuous advancement of mobile
communication technology, the world is rapidly
transitioning to fifth generation mobile communication
technology. The 5.5G network provides strong support
for emerging technologies such as the Internet of Things,
augmented reality, and virtual reality with its higher data
transmission rate, lower latency, and wider connectivity
capabilities [1-2]. However, the high-frequency
communication  characteristics  and  ultra-dense
deployment requirements of 5.5G networks also make
the wireless signal propagation environment more
complex, posing new challenges to network coverage
and energy efficiency [3]. Traditional optimization
algorithms are prone to getting stuck in local optima and
have slow convergence speed under high-dimensional
search spaces and nonlinear constraints, making it
difficult to meet the high real-time and performance
requirements of 55G [4]. The Ray Tracing (RT)
algorithm can simulate the propagation path of
electromagnetic waves, and accurately characterize the

channel characteristics in high-frequency communication
environments. It is suitable for 5.5G network modeling
and performance optimization. Particle Swarm
Optimization (PSO) is a stochastic optimization method
based on swarm intelligence, which has fast convergence
speed and simple implementation [5-6]. The Differential
Evolution (DE) strategy is a population-based stochastic
optimization algorithm mainly used to solve continuous
optimization problems. Therefore, the study adopts the
RT algorithm for channel modeling to quantitatively
evaluate network performance. An optimized PSO
algorithm that combines Metropolis criterion and DE
(PSO-MDE) is proposed to optimize antenna parameters.
The Multi-objective PSO based on DE (MOPSO-DE) is
taken to optimize the signal transmission power to
improve the performance of the 5.5 network by
increasing the signal propagation rate and reducing
energy consumption management.

The innovation of the research lies in improving the
traditional PSO algorithm, which enhances the
algorithm's global search and local fine adjustment
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capabilities. In addition, a crowding distance algorithm is
introduced to maintain the diversity of the solution set.
Compared with traditional optimization methods, the
contribution of the research is to propose a joint
optimization framework combining RT modeling and
PSO-MDE algorithm, which can simultaneously
optimize the antenna direction parameters and
transmission power allocation strategy of the base station
in the community. The adaptive evolution mechanism is
introduced to improve the convergence speed and search
accuracy in complex scenarios. Simulation experiments
based on synthetic urban environment verify that the
proposed method is significantly superior to the
mainstream algorithm in coverage and interference
control.

To systematically verify the effectiveness of the
proposed method, the research aims to clearly explore
whether the proposed improved algorithm is superior to
the current mainstream optimization algorithm in the
statistical sense in the 5.5G cellular network under the
same number of nodes and deployment constraints, and
evaluate its performance in energy management,
especially its potential in reducing transmission power
and improving energy efficiency. Therefore, two
research hypotheses are proposed. One is that PSO-MDE
algorithm will achieve higher network coverage than
JADE and ABC algorithm. The second assumption is
that PSO-MDE algorithm is better than JADE and ABC
algorithm in reducing the total transmission power and
improving energy efficiency. To verify these
assumptions, the research compares the performance of
different algorithms in coverage and energy management
through simulation experiments, and uses statistical
methods to evaluate whether the performance
improvement of PSO-MDE algorithm is statistically
significant.

The research will be divided into the following five
sections. Section 1 introduces the relevant background
and existing research. Section 2 describes the proposed
joint optimization method. Section 3 presents the
experimental results and performance analysis. Section 4
discusses the results and compares them with recent
studies. Section 5 summarizes the full text and looks
forward to future work.

2 Related works

The rapid development of wireless communication
technology has made network performance optimization
increasingly important. Mao et al. proposed a damage
assessment method based on convolutional neural
networks from components to the overall structure to
address the post-earthquake damage assessment needs of
reinforced concrete communication buildings. The
research results indicated that the proposed method was
highly consistent with the expert evaluation conclusions,
and the optimized convolutional neural network had
good accuracy and stability [7]. Yu et al. proposed a
system optimization method based on Reconfigurable
Intelligent Surfaces (RIS) to achieve ultra-wireless
bandwidth, ultra large-scale connectivity, and highly
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reliable communication in 6G communication networks.
By reviewing relevant research literature in recent years,
the performance optimization of RIS assisted wireless
communication networks was summarized and the
potential future research direction for RIS assisted
communication network deployment was explored [8].
Liang et al. proposed a traffic control scheduling
generation method for train communication networks
based on improved incremental scheduling strategy and
improved grey wolf optimization algorithm to meet the
high transmission demand of massive real-time data in
intelligent rail transit. The research results indicated that
this method had advantages in computational accuracy
and speed, and could reduce the average end-to-end
delay to 57 us [9]. Yu et al. proposed a joint cross-layer
optimization framework to address the deep learning
semantic encoding and decoding exacerbating traditional
communication energy consumption. The research
results indicated that the framework could effectively
solve the joint optimization problem of semantic and
physical layers by jointly optimizing physical layer
power control and semantic layer compression allocation
[10].

Network optimization often involves multiple
objectives, such as coverage, capacity, energy efficiency,
and cost. The PSO algorithm, especially its multi-
objective version, can effectively handle these multi-
objective optimization problems and find the optimal
solution that balances different objectives. Hu et al.
proposed an intelligent deployment method for
emergency ground to air communication networks based
on a hybrid layered PSO algorithm to effectively respond
to the transmission of emergency monitoring data during
large-scale environmental emergencies. The research
results indicated that this method could adaptively update
the deployment location and communication link of
emergency communication resources, significantly
improve adaptability after multiple iterations, and
achieve comprehensive coverage and balanced
distribution of communication nodes [11]. Wang et al.
proposed a multi-objective PSO algorithm to solve the
time-consuming and inefficient design of traditional
terahertz metamaterial absorbers. The research results
indicated that this method could achieve dual objective
optimization of absorber structural parameters with
absorption rate and quality factor as independent
objectives, significantly improving design efficiency and
performance [12]. Nuthakki et al. proposed an Al driven
method using an improved multi-objective PSO
algorithm to achieve high resource utilization in cloud
data centers in intelligent manufacturing environments.

The research results indicated that this method
outperformed other multi-objective algorithms in
optimizing  resource  allocation in intelligent

manufacturing cloud environments [13].

To sum up, the existing methods may perform well
in specific environments, but the generalization ability
and adaptability need to be improved, and some
algorithms have high computational complexity. The
trade-offs and balances between different objectives still
need to be further analyzed. Table 1 compares the
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application environment, key results, research gaps, and
SOTA drawbacks of each network optimization method.
Therefore, the research combines RT algorithm to
optimize the 5.5G network, and introduces de-mutation
and crossover operation to improve the traditional PSO
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algorithm, aiming to improve the adaptability, real-time
performance and optimization efficiency of the
algorithm, so as to better meet the challenges of network

optimization in large-scale and complex environments.

Table 1: Comparison of research results of various network optimization methods.

Reference Algorithm Application environment Key results Limitations of SOTA
. Post-earthquake damage evaluation | High  consistency — with  expert | Lack of verification of
Ez]et';/:ao ¢ ;::unl'\;(l)lr:gtl\?vrzlk of RC frame communication | assessment; optimized CNN model | algorithm generalization
' buildings shows good accuracy and stability capability
[8] Yu W RIS auxiliary - Enhances communication High o computathnal
W et al net\_/vo_rk ) 6G communication networks performance compl_e_xny, lacks real-time
' optimization capability
[9] Liang C \llvmoil)frovgdtimizagirgz Train communication networks in | Reduces average end-to-end latency [ Algorithm adaptability needs
etal. _op intelligent rail transit to 57us improvement
algorithm
Joint  cross-layer | Communication ener Effectivel addresses the joint | Further research focuses on
[10] Yu K y ay y J
W et al optimization consumption in deep learning | optimization issue of semantic and | trade-offs between different
' framework semantic encoding and decoding physical layers objectives
Intelligent deployment of | Significantly improves fitness after
- . emergency aerial-ground | multiple iterations; achieves | Performs well in specific
[zlﬂ a||-|u w Eggr:ﬂ Tﬁ;ﬁ;ﬁhlcal communication networks under | comprehensive coverage and | environments but lacks
' 9 large-scale sudden environmental | balanced distribution of | generalization capability
events communication nodes
Achieves dual-objective optimization
12] Wang Design of terahertz metamaterial | of absorber structure parameters, | Lacks universal solutions for
MPSO
Y Retal. absorbers significantly ~ improving  design | broader scenarios
efficiency and performance
[13] Outperforms other multi-objective | The computational
. Resource allocation in cloud data | algorithms in optimizing resource | complexity and real-time
L\iuatlh akki P | Improved MPSO centers for smart manufacturing allocation in smart manufacturing | capability of the algorithm
’ cloud environments need further optimization

3 Methods and materials

3.1 Optimization of antenna parameters
for 5.5G network in community based
on RT and improved PSO-MDE
algorithm

Signal propagation and energy management are two key
dimensions in 5.5G network optimization. Signal
propagation can improve signal coverage quality and
reduce interference by optimizing antenna parameters,
while energy management can reduce energy
consumption by optimizing transmission power [14-15].
Therefore, a sequential linkage two-stage optimization
framework is proposed to improve the configuration
efficiency of antenna parameters and transmission power
in 5.5G cellular network. In this framework, PSO-MDE

is first used to optimize the antenna azimuth and tilt
angle of each sector to maximize the signal coverage in
the cell. Then, taking the obtained antenna parameters as
input, MOPSO-DE is used to further optimize the
transmission power of each sector, while considering
minimizing power overhead and maximizing overall
coverage. This two-stage strategy decouples the complex
search space and avoids the convergence difficulty in
high-dimensional joint optimization. The dependent path
is clear, and the subsequent power optimization stage is
directly affected by the antenna parameters in the early
stage. It also has strong scalability. Firstly, a cellular
network structure is constructed to visually demonstrate
the spatial layout relationship between typical cell
division and base station antennas. The cellular network
structure is shown in Figure 1.
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Figure 1: Schematic diagram of cellular network structure and base station layout.
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Figure 2: Schematic diagram of antenna azimuth angle and tilt angle.

As shown in Figure 1, a cellular network consists of
multiple base stations, each responsible for covering one
or more sectors, forming a hexagonal structure similar to
a honeycomb. Each antenna of the three-sector base
station is responsible for covering an area within 120°,
and the antenna can independently set its direction and
tilt angle. In this structure, antenna parameters directly
determine the direction and intensity distribution of
signal  radiation. Reasonable  configuration can
effectively expand the effective coverage area, and
reduce blind spots and overlapping interference [16]. In
this cellular structure, each sector is considered as an
independent optimization unit, and the antenna
parameters of all 21 sectors are jointly optimized.
Therefore, the optimization problem has a high-
dimensional search space with  42-dimensional
continuous variables. The optimization goal is to
maximize the overall coverage performance and signal

power distribution quality in the region by adjusting the
antenna azimuth and tilt angle of all sectors under the
fixed network topology and deployment architecture.
This study refers to the areas where communities serve
each department, rather than macro level residential
areas. The designed dual-objective fitness function is
based on the proportion of users who meet the signal
strength threshold (coverage) and the average received
power level in the whole simulation area. To ensure the
authenticity and challenge of the modeling, this study did
not make assumptions about simplifying sector
deployment strategies, nor did it incorporate sector or
shared antenna parameters. However, it retains a
completely independent antenna configuration, making
the optimization task closer to the requirements of real
cellular network configuration. The azimuth and tilt
angle parameters of the antenna are two key control
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parameters for the community antenna, as shown in
Figure 2.

As shown in Figure 2, the horizontal direction of the
main beam of the azimuth antenna controls the angle
range of signal coverage, usually from 0° to 360°. The
vertical pitch angle of the tilt angle controls the degree of
tilt of the main lobe of the signal, usually set between 0°
and 15°. If the beam is too small, it will move towards
the far end, which may cause cross zone interference. If
it is too large, the signal will be concentrated in the near
end, resulting in poor reception for remote users [17]. In
the 5.5G high-frequency communication environment, to
more accurately capture the propagation path and loss
law of signals in complex environments, the RT
algorithm is used for channel modeling to quantitatively
evaluate the coverage performance of cellular networks.
The RT method accurately models the signal propagation
characteristics by simulating the reflection, diffraction,

and penetration paths of radio waves in real
environments. The total channel loss is shown in
equation (1).
M
L(d) =L, +10nlog,,(d) + 2L, )
j=1

In equation (1), L, represents the free space path

loss. N represents the path loss index, which is set
according to specific scenarios. S represents the

transmission distance. L; represents the additional loss

caused by the ] -th reflection or diffraction. M
represents the total number of multi-path components.
The antenna parameter optimization is to maximize the
coverage within the area. The received power at each
user's location is shown in equation (2).

Ri=R+G(4.¢)-L(d) 2

In equation (2), P,; is the received power of the i -th
receiving point. P, is the power of the transmitted signal.
G(@,¢) represents the gain function. & represents the
angle with the receiving point. ¢ represents the relevant

antenna gain. L(d,) is the path loss. The grid-based
evaluation method can divide the research area into
several equally spaced small grids, calculate and
statistically analyze the received signal strength of each
grid point, and evaluate the overall coverage
performance. Coverage refers to the proportion of areas
in which the received signal strength indicator (RSSI)
exceeds a preset threshold in a specific area. It reflects
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the signal coverage quality of the network in the region.
To accurately evaluate the coverage, the RSSI threshold
and analysis window are defined. The RSSI threshold is
set to -90dbm. Only when the RSSI value is higher than
this threshold, the area is considered to be effectively
covered. The analysis window is defined as a meshed
area, and each grid point represents a measurement point.
The coverage is determined by calculating the RSSI
value of each grid point and determining whether it
exceeds the threshold. It is commonly used for signal
coverage analysis and optimization in wireless networks.
The coverage rate of the community is shown in equation

@)

N

In equation (3), 77, is the coverage probability,
representing the probability that the received power is
greater than a certain threshold P, . § is an indicator

function ranging from 0 to 1. N is the total number of
grids. This method can accurately evaluate the coverage
performance of the network and use it as the objective
function for optimization. Further research will encode
the antenna azimuth and tilt angle of each community as
variables to form a "particle" in the particle swarm.
Taking the total coverage within the region as the fitness
function, the optimal combination of antenna parameters
is obtained. The optimization objective function for
maximizing coverage is shown in equation (4).

F =maxi,, (¢, 6) 4)

In equation (4), F is the optimized objective
function. (4,6) represents the azimuth and elevation

angles of the i -th receiving point. The parameter
modeling is completed. Coverage optimization has
nonlinear and multi peak characteristics, while PSO still
suffers from premature convergence in high-dimensional
complex spaces. Therefore, the DE is introduced to
improve the PSO algorithm. DE can generate new
solutions by mutating and recombining individual
differences, and has strong global search capabilities. In
addition, the research also introduces the Metropolis
criterion and adaptive inertia factor to enhance the ability
to escape from local optima, balancing global exploration
and local development. The specific process of PSO-
MDE algorithm is shown in Figure 3.

N
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Figure 3: Flow chart of PSO-MDE algorithm.

From Figure 3, firstly, the position, velocity, and
fitness values of the particle swarm are initialized, and
the inertia factor is set. In each iteration, particles move
according to velocity and position update equations. The
adaptive inertia factor dynamically adjusts according to
the iteration process to achieve a balance from global
search to local fine search. The particle velocity and
position updates combine the velocity update mechanism
of PSO with the mutation crossover operation of DE.
Specifically, the velocity update of particles follows the
velocity update equation of the standard particle swarm
algorithm, and introduces adaptive inertia weights to
dynamically adjust the motion trend of particles. This
process ensures that particles can search effectively
according to the individual optimal position and the
global optimal position. The variant operation is part of
the PSO update cycle and directly participates in
updating particle positions rather than being independent
of the main cycle. The specific calculation is shown in
equation (5).

0= a)min + (wmax - wmin ) exp[_ﬂ(%jj

In equation (5), @ is the current inertia factor. k is
the number of iterations. A is a parameter that controls
the inertia factor to reduce speed. In the location update
phase, mutation and crossover operations of DE are

()

introduced to enhance the diversity and global search
ability of the population. Specifically, for each particle,
firstly, the mutation operation of DE is performed,
selecting three different particles and calculating their
difference vectors, and then adding them to the current
position of the particles to generate a new mutation
vector. Then, the DE crossover operation is performed,
and some components of the mutation vector are
replaced with a certain probability at the current particle
position to generate a test vector. This test vector is then
used to evaluate its fitness. If the fitness is better than the
current particle position, the particle position is updated.
In this way, DE mutation and crossover operation
provide new candidate solutions for PSO and increase
the diversity of the population. In this way, PSO-MDE
combines the fast convergence characteristics of PSO
and the global search ability of DE to improve the
optimization performance. If the newly generated
particles are better than the current solution, they will be
updated directly. If it is inferior to the current solution, it
is accepted with a certain probability according to the
Metropolis criterion to avoid falling into local optima.
During the iteration process, the individual extremum
and global optimal solution are continuously updated
until the termination condition is met. The pseudo-code
of PSO-MDE algorithm is shown in Figure 4.
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/I Initialize parameters

social component c2

/I Initialize the swarm
Fori=1toN:

Evaluate fitness fitness[i]

Update pbest[i] = position[i]
If fitness[i] is better than global best gbest:
Update gbest = position[i]

/[ Start iterations
Fort=1toT:
Fori=1toN:
/I Differential Evolution Mutation

position[j])

/I Differential Evolution Crossover
Create trial vector trial = position[i]
For each dimensiond = 1 to D:

Set trial[d] = mutant[d]
/I Evaluate trial vector fitness fitness[trial]
If fitness[trial] is better than fitness[i]:
Update position[i] = trial
/I PSO velocity and position update
- position[i])
/l Update global best
Fori=1toN:
If fitness[i] is better than gbest:
Update gbest = position[i]

// Output results
Return global best solution gbest

Set population size N, maximum number of iterations T, inertia weight o, cognitive component c1,

Set differential evolution scaling factor A, crossover probability CR

Randomly initialize particle position position[i] and velocity velocity[i]

If fitness[i] is better than personal best pbest[i]:

Randomly select j, k, 1 #1 from {1, 2, ..., N}
Calculate mutation vector mutant = pbest[i] + A * (position[j] - position[k]) + (position[l] -

If rand() < CR or d = randomly chosen dimension:

Update velocity[i] = o * velocity[i] + c1 * rand() * (pbest[i] - position[i]) + c2 * rand() * (gbest

Update position[i] = position[i] + velocity[i]

Figure 4: Pseudo-code of PSO-MDE algorithm.

From Figure 4, in pseudo-code, key symbol or
variable mutation represents ~mutation operation,
crossover represents crossover operation, and CR
represents crossover probability in DE. PSO-MDE
algorithm combines the advantages of PSO and DE, and
enhances the global search ability of PSO by introducing
DE mutation and crossover operation. In the initialization
phase of the algorithm, the position and speed of the
particle swarm are randomly generated, and the fitness is
evaluated. In the iteration process, the DE strategy is
used to update the particle velocity, and the parameters

such as mutation factor and crossover probability are
automatically adjusted to meet the needs of different
search stages. This improved strategy helps the particles
jump out of the local optimum, improves the diversity of
solutions, and speeds up the convergence speed. Finally,
PSO-MDE algorithm shows better performance in multi-
objective optimization problems and has wide
application potential.
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3.2 Power allocation optimization based on
MOPSO-DE

To ensure the feasibility and robustness of the
optimization process, the series optimization architecture
is adopted. In phase 1, the fixed initial transmission
power is analyzed, and the antenna azimuth and tilt angle
of the sector are optimized by PSO-MDE. On this basis,
in phase 2, MOPSO-DE is used to further refine and
optimize the transmission power of each sector. The
output of antenna angle is directly used as the input
environment variable in the power optimization phase
rather than sharing variable parameters to ensure the
consistency of physical configuration. Next, the study
optimizes the energy consumption of the 5.5G network.
Due to the uneven spatial distribution of business
demands in complex urban environments, it is necessary
to allocate transmission power reasonably to ensure
network coverage and energy efficiency. Therefore, the
study selects maximum coverage and minimum total
transmission power as optimization objectives to
construct a multi-objective optimization model [18-19].
MOPSO has good global search capability when dealing
with  multi-objective problems. However, it has
shortcomings in maintaining population diversity and
improving local accuracy [20]. Therefore, to optimize the
signal transmission power in residential areas, the
research has also adopted DE to improve MOPSO. The
MOPSO-DE process is shown in Figure 5.

From Figure 5, first, the individual particle swarm is
initialized. Each particle represents a cell transmission
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power combination. The initialization process includes
initializing the position and speed of the particle swarm.
The initial position of each particle is set to its initial
personal optimal value. In this way, the algorithm can
provide a reasonable starting point for each particle in the
initial stage, so as to improve the optimization efficiency.
Secondly, the fitness of individuals under the two
objectives of "maximizing regional coverage" and
"minimizing total transmission power" is calculated
through the objective function. All non-dominated
solutions will enter the external elite pool and use
crowding distance sorting to maintain the diversity of the
solution set. During the iteration process, particles update
by guiding individuals to learn the historical optimal
position and performing differential mutation operations.
The updated velocity is shown in equation (6).

Ve =X tU- (Xr2 _Xr3) (6)

In equation (6), v, is the variation vector of the e -th
particle. x,,X.,, and x_ are the current position vectors
of three different particles randomly selected from the
current population. u is the differential variation scaling
factor. The specific calculation of its position is shown in
equation (7).

Xt =X +v, )
In equation (7), x{™* and x{ are the current position
vectors of the e -th particle in the t+1-th and t -th
generations, respectively. v, is the velocity vector
obtained through differential variation. The pseudo-code
of MOPSO-DE algorithm is shown in Figure 6.

Fitness evaluation

AT T ( \
I Start )I | Regional coverage ' : |
=71 > rate : —>  lterative optimization :
{/ __________ \I : E% Total transmission | L |
I ‘ Inltla::]zeitlon B (el /I 1 Output result
|\ ()  parameters o~ _ P Bl .
L v —
— I S S | 2 l
| Setthe initial position of each I | Individual optimal | : = !
I particle to its initial personal I | initialization | I !
I best value | L | | Optimized signal transmission power |
————— 1— - == 1 scheme configuration for residential '
| |
—————Y————— I P A N ] areas )
[ ! | N ”
: Generate initial population — I () Pareto solution set R 2
I | | update | If \I
___________ | End
N ____ / § )

Figure 5: Optimization of signal transmission power in community based on MOPSO-DE algorithm.
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/I Initialize the parameters
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Set the number of particles N, maximum iterations T, mutation factor F, crossover probability CR

Initialize the position and velocity of each particle randomly

/I Initialize the archive with the initial particles
for each particle i from 1 to N do
Evaluate the fitness of particle i
if particle i is non-dominated then
Add particle i to the archive
end if
end for

/I Main loop
for iteration from 1 to T do
for each particle i from 1to N do
/I Differential Evolution Mutation
Choose three distinct particles j, k, | different from i
V = particle[j] + F * (particle[K] - particle[l])

/I Differential Evolution Crossover
U = particle[i]
for each dimension d from 1 to D do
if rand() < CR or d is a random dimension then
U[d] = V[d]
end if
end for

/I Evaluate the fitness of the trial vector U
Evaluate the fitness of U

/I Non-dominated sorting

if U dominates particle[i] then
Replace particle[i] with U

else if U is non-dominated and dominates some particles in the archive then
Replace the dominated particles in the archive with U

end if

/I Update the personal best position of particle i if necessary
if U is better than the personal best of particle i then
Update the personal best of particle i
end if
end for

/I Update the global best position if necessary
Update the global best position from the archive
end for

/I Output the Pareto front
Return the archive as the Pareto front

From Figure 6, the pseudo-code of MOPSO-DE

Figure 6: Pseudo-code of MOPSO-DE algorithm.

Subsequently, based

algorithm integrates PSO and DE for multi-objective
optimization. The key parameters include the number of
particles, the number of iterations, and the variation
factor F. The particle position is randomly initialized, a
new solution is generated through DE, and the non-
dominated archive is evaluated and updated. The
individual and global optima are updated iteratively.
Finally, the Pareto front solution set is obtained.

relationship and crowding distance, individual strengths
and weaknesses are judged, and the elite pool is updated.
The Pareto optimal solution set is an ideal state of
resource allocation in multi-objective optimization. All
these sets of non-dominated solutions form the Pareto
front in the objective space. The Pareto front diagram is
shown in Figure 7.
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Figure 7: Pareto front diagram for multi-objective optimization.
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Figure 8: Schematic diagram of the crowded distance algorithm.

Figure 7 shows the Pareto front of the multi-
objective optimization problem, which is used to show
the dual-objective optimization relationship between
coverage and transmission power, as well as the
corresponding mechanism between the "Pareto front™ and
the actual deployment strategy. It does not correspond to
specific experimental data. The graph covers the non-
dominated solutions in several experiments. Pareto front
represents the solution set that achieves the optimal
balance among multiple objectives. The horizontal axis
in the figure represents the total transmission power of
the network, measured in DBM, while the vertical axis
represents the total coverage area of the cell. Each point
corresponds to a launch strategy that meets the
constraints. Due to the natural conflict between the two
objectives, the optimal solution cannot be achieved
simultaneously. Therefore, the output solution of this
algorithm is not the only optimal solution, but rather
constitutes an optimal set, namely the Pareto front.
Decision makers can select appropriate equilibrium
points in the Pareto front based on the needs of different

business scenarios. The mathematical definition of Pareto
solution is shown in equation (8).
Maximize f,(x) = A(X)
—_ N ®)
Minimize f,(x) = 2P
i=1
In equation (8), f,(x) is the sum of the total coverage
rate of the community and the coverage rate A. f,(X) is

the total transmission power. x is a set of parameters
that includes the transmission power of each base station.
P is the transmission power of the i -th base station.

After sorting the non-dominated solutions, to prevent the
solution set from being too concentrated on the Pareto
front, the crowding distance algorithm is introduced as an
auxiliary evaluation metric to maintain the diversity of
the solution set. Crowding distance measures the distance
between an individual and other non-dominated solutions
in the solution space. A higher value indicates that the
area in which the individual is located is sparser and
more representative. The specific calculation process is
shown in Figure 8.
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As shown in Figure 8, firstly, all non-dominated
solutions are sorted in ascending order according to their
respective objective functions. Secondly, the maximum
and minimum crowding distances of individuals in each
target dimension are set to infinity to preserve the
boundary solutions. Subsequently, the difference
between each remaining solution and adjacent solutions
in each target dimension is calculated and normalized.
Finally, the normalized distances on all target dimensions
are accumulated to obtain the total crowding distance of
the solution. A large crowding distance indicates that the
solution is located in a sparser area, and priority should
be given to preserving it to enhance the diversity of the
population. This mechanism effectively avoids the
aggregation of individuals in the solution set and helps
generate a wider and more evenly distributed Pareto
front. Crowding distance measures the density of
solutions around a solution in the objective function
space. The solution with larger crowding distance means
that it is relatively isolated in the target space, that is,
there are fewer solutions around, which helps to maintain
the diversity of solution set. To calculate the crowding
distance, the non-dominated solutions are sorted for each
objective function, and then the infinite crowding
distance is assigned to the boundary solution. The
distance difference between each solution and adjacent
solutions in each target dimension is calculated and
normalized. Finally, the normalized distances of all target
dimensions are accumulated to obtain the total crowding
distance of each solution, which is used to evaluate the
diversity of solutions. The specific calculation is shown
in equation (9).

D" = f.(i+1)— fm(i -1 ©)

fmmax _ fmmm

In equation (9), D" represents the rate of change or
difference of the i -th data point in the m-th dimension.
f.(i+1) and f_(i—1) are the function values of the
direct successor and direct precursor of theith solution
on the m-th objective function, respectively. f™ and
f™ are the maximum and minimum values of all

solutions on the m-th objective function, respectively.
The total crowding distance is the sum of the dimensions
of each target, as shown in equation (10).

M
D =>D" (10)
m=1
In equation (10), M is the total number of

dimensions. D, is the comprehensive rate of change or

difference of the i-th data point across all dimensions.
Crowded distance contributes to the convergence and
diversity of equilibrium solutions in multi-objective
optimization processes. For example, three solutions are
considered, including A (0.8, 0.2), B (0.9, 0.5), and C
(0.95, 0.7) in the dual-objective problem. After the
targets are arranged in ascending order, B is between A
and C. The crowded distance is combined with the
distance between the left and right solutions of B in each
target dimension to calculate the sparsity of its local
solution. If the solution around solution B is sparse and
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the crowding distance is large, it is more likely to be
retained in the next generation. Throughout the process,
the MOPSO-DE algorithm approaches the Pareto optimal
solution set through continuous iterations, achieving
intelligent scheduling and optimized allocation of signal
transmission power [21-22]. In the 5.5G network
optimization, energy efficiency is a key performance
index, which measures the energy efficiency of the
network when transmitting data. The calculation is
shown in equation (11).

T

UE:E

In equation (11), 7. is energy efficiency. T is the

network throughput. E is the total energy consumption.
Improving energy efficiency directly means reducing
energy consumption without sacrificing network
throughput. By optimizing the network configuration,
adjusting the antenna parameters, reducing the
transmission power, and other measures, the network
energy consumption can be significantly reduced and the
network throughput is improved while maintaining the
network performance. The antenna parameters are
optimized. By adjusting the azimuth and dip angle of the
antenna and optimizing the signal coverage, unnecessary
energy consumption can be reduced. The transmission
power is reduced. By optimizing signal transmission
strategies, the transmission power of base stations can be
reduced while maintaining network coverage and
throughput.  Using energy-saving equipment and
selecting network devices with energy-saving functions,
such as routers and switches, can effectively reduce
energy consumption. Intelligent energy management is
adopted to dynamically adjust the energy consumption of
equipment according to the network load to achieve the
energy saving goal. The combination of these
optimization strategies and MOPSO-DE algorithm is
conducive to the intelligent scheduling and optimal
allocation of signal transmission power [23-24].

(11

4 Results
4.1 Experimental environment and data
sources

The algorithm models and simulation programs used in
the research are developed and run in the Windows 11
operating system environment. The programming
language used is Python 3.10, mainly relying on
scientific computing and drawing libraries such as
NumPy, Matplotlib, SciPy, etc. The computing platform
is an Intel Core i7-12700H processor with 16GB of
memory. The topology structure of the residential area
used in the simulation refers to typical urban residential
scenarios. The simulation area is divided into a square
area of 100mx100m, containing 7 cellular base stations,
deployed with three sector antennas. The simulation area
size represents a typical urban macro cellular cell. It can
capture the key features of signal propagation in urban
environments, such as building occlusion, street layout,
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Table 2: Experimental environment parameters.

Parameter Parameter Parame Paramet Parameter
. . Parameter values
categories name ter values er categories name
. Including
Numper of 10 Ray tracing reflection, diffraction
base stations model .
and penetration
Number of 30 Path loss index 2.5-35
sectors
Frequency Total number
26 GHz of multipath 10
!\Ietwgrk band Channel components
configuration model -
Bandwidth 100 Terrain 0.5-1.5
MHz attenuation factor T
_ _Power 20-40 Bu_lldlng 10-20 dB
emission range dBm penetration loss
Receive .90
signal strength dBm \ \
threshold

and multi-path effects, without requiring excessive
computational complexity. Urban macro cellular cells
usually cover hundreds of meters, so a 100x100 meter
area can well simulate this environment. In addition, this
size includes sufficient buildings and obstacles in the
simulation to reflect the complexity of signal propagation
in urban environments. The number of particles is set to
50 to balance the search ability and computational
efficiency. The convergence criterion is that the
maximum iteration is 500 times or the change of fitness
function value is less than 0.001. The experiment runs 30
times to evaluate the stability of the algorithm. The
random seed is fixed at 42 to ensure that the experiment
can be repeated. The reflection coefficient of RT
simulation configuration is set to 0.6 to simulate the
typical reflection behavior in urban environments. The
path loss index is set between 2.5 and 3.5 to simulate
signal attenuation in different environments. In addition,
the terrain attenuation factor is considered to be within
0.5 to 1.5 and the building penetration loss is set between
10 and 20 dB. The network configuration and channel
model parameters for the experiment are shown in Table
2.

4.2 Performance analysis of community

antenna parameter optimization
algorithm based on PSO-MDE

In the optimized cellular network community antenna
parameters based on PSO-MDE algorithm, to
comprehensively evaluate the performance of PSO-MDE
algorithm, new optimization algorithms such as Artificial
Bee Colony (ABC) and Adaptive Differential Evolution

Algorithm (JADE) are introduced for comparative
experiments. The adaptive inertia factor can be
dynamically adjusted based on the information obtained
during the search process. Therefore, this study explores
the influence of inertia factors on the optimization effect
of parameters, and the results are shown in Figure 9.

Figure 9 (a) shows the influence of inertia factor
control parameters on optimization performance. Figure
9 (b) shows the comparison results of standard deviations
for different algorithms. According to Figure 9 (a), as the
inertia factor increased from 0 to 1, the coverage showed
a fluctuating trend. The optimal coverage occurred when
the inertia factor was 0.4 and 0.7, reaching 0.641 and
0.640, respectively. The average optimal coverage was
0.633 and 0.632 when the inertia factor was 0.6 and 0.7,
respectively. As shown in Figure 9 (b), the standard
deviation of the PSO-MDE algorithm was always the
lowest, about 1.3x10-3, indicating its good stability
under different inertia factors. The standard deviations of
ABC and JADE algorithms were relatively high, ranging
from approximately 1.4x10-3to 1.5x10-3and 1.5x10-3 to
1.6x10-3, respectively, with significant fluctuations. This
may be because the PSO-MDE algorithm has advantages
in parameter adjustment and adaptability, allowing it to
maintain good stability and consistency under different
conditions. Based on the convergence speed and
optimization effect, the algorithm iteration was carried
out when inertia factor influencing parameter was 0.3. To
comprehensively evaluate the proposed algorithm, a
comparative experiment was conducted on the coverage
optimization of the three algorithms, with 20 repetitions.
The obtained results are shown in Figure 10.
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Figure 9: Influence of inertia factor on optimization effect.
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Figure 11: Comparison results of CCDF of different algorithms.

Figure 10 (a) shows the iterative variation of optimal
coverage for different algorithms. Figure 10 (b)
compares coverage optimization results of different
algorithms on the target area. As shown in Figure 10 (a),
the PSO-MDE algorithm quickly converged after about
100 iterations, and the final coverage rate reached about
0.641. After 120 and 140 iterations, JADE and ABC
achieved optimal coverage rates of approximately 0.602
and 0.559, respectively. According to Figure 10 (b),
PSO-MDE led in both the optimal coverage and average
optimal coverage indicators, with values of

approximately 0.645 and 0.648, respectively. The
optimal coverage and average optimal coverage of JADE
and ABC were approximately 0.637 and 0.639, as well as
0.633 and 0.635, respectively. The reason for this result
is that although JADE improves the adaptability of
traditional DE, there may still be problems with slow
convergence speed or falling into local optima in multi-
dimensional search spaces. The ABC algorithm has
relatively weak exploration ability due to its dependence
on the honey source update mechanism. To verify the
optimization effect of the algorithm on different regions,
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two publicly available urban residential regions A and B
are selected for comparative experiments on their grid
Reference Signal Received Power (RSRP). The
Complementary  Cumulative  Distribution  Function
(CCDF) is taken to evaluate the coverage quality of the
network. The obtained results are shown in Figure 11.

Figures 11 (a) and (b) show the CCDF curves of
regions A and B before and after optimization,
respectively. As shown in Figure 11 (a), after optimizing
region A, the CCDF curves of all algorithms shifted to
the right, indicating an overall improvement in RSRP
values and signal quality. The CCDF curve optimized by
PSO-MDE algorithm was the closest to the right,
indicating its optimal performance in improving RSRP.
When the CCDF was 0.8, the RSRP value of PSO-MDE
was about -85dBm, while ABC and JADE were about -
95dBm and -90dBm, respectively. This is because PSO-
MDE has better adaptability and search ability when
dealing with multi-objective optimization problems.
From Figure 11 (b), in region B, the CCDF curves of all
optimized algorithms were significantly better than
before optimization, indicating the positive effect of the
optimization on improving RSRP. Specifically, the PSO-
MDE algorithm showed the greatest improvement after
optimization, with its CCDF curve significantly better
than ABC and JADE in the high RSRP value region.
When the CCDF value was 0.7, the RSRP value of PSO-
MDE was about -75dBm, while ABC and JADE were
about -90dBm and -85dBm, respectively. The reason for
this result is related to the search strategy and
adaptability. The PSO-MDE algorithm may have
achieved a better balance between exploration and
development, which can more effectively find solutions
to improve RSRP during the optimization process.
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4.3 Performance analysis of signal
transmission power optimization
algorithm based on MOPSO-DE

To verify the feasibility of the MOPSO-DE-based
community signal optimization algorithm proposed in the
study, a relatively new multi-objective optimization
algorithm (Optimized Multi-Objective PSO, OMOPSO)
and Non-dominated Sorting Genetic Algorithm 111
(NSGA-I11) area selected for comparative experiments in
terms of convergence speed and energy efficiency. The
obtained results are shown in Figure 12.

Figures 12 (a) and (b) show the variation curves of
fitness function values and system energy efficiency with
iteration times for different algorithms, respectively. As
shown in Figure 12 (a), MOPSO-DE algorithm reached a
stable state after about 15 iterations, and the fitness
function value was 0.15, while OMOPSO and NSGA-III
were stable around 0.19 and 0.25 after 30 iterations,
respectively. This fast convergence may be due to
improvements in the MOPSO-DE algorithm, which
makes it more efficient in the search process. As shown
in Figure 12 (b), the energy efficiency of the MOPSO-
DE algorithm continued to increase during the iteration
process and stabilized after approximately 120 iterations,
ultimately reaching about 5.4. In contrast, the energy
efficiency of the OMOPSO algorithm fluctuated
significantly during the iteration process, ultimately
stabilizing at around 5.2, while the energy efficiency of
the NSGA-III algorithm remained relatively stable
throughout the entire iteration process, ultimately
stabilizing at around 4.4. This indicates that the MOPSO-
DE algorithm performs the best in improving system
energy efficiency, possibly because it can better balance
different objectives during the optimization process,
thereby achieving higher energy efficiency. The
experiment further explores the performance of various
algorithms in signal transmission power optimization
tasks, and the results are shown in Table 3.
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Figure 12: Performance variation curve of different algorithms with the number of iterations.
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Table 3: Comparison results of signal transmission power optimization algorithm performance.

Algorithm MOPSO-DE OMOPSO NSGA-III SPEA2 PSO
Iterations 100 200 100 200 100 200 100 200 100 200
Total transmission | 45 , 335 36 345 37 355 36.8 36.0 35 35
power (dBm)

Computation 110 530 120 550 100 540 130 520 100 500
time(s)

Pareto front points | 200 240 180 220 170 210 165 205 160 200
Standard deviation | 0.5 0.3 0.7 0.6 0.4 0.2 0.5 0.5 0.6 0.6
p p<0.01

From Table 2, after 100 iterations, the performance
of each optimization algorithm was significantly
different in terms of signal transmission power control
and Pareto solution quality. MOPSO-DE algorithm
performed best with a minimum total transmission power
of 35.2 DBM and 200 Pareto front points, and the
standard deviation was 0.5, indicating that the algorithm
had good stability in multiple operations. This is due to
its fast convergence property that combines the global
search capabilities of DE and PSO, which achieves an
effective balance between exploration and utilization.
The optimal transmission power of OMOPSO was 36.0
DBM, and the standard deviation was 0.7. The stability
and energy efficiency of the solution were also good. The
transmission power of NSGA-I11 was 37.0 DBM, which
was the worst, but the standard deviation was 0.4,
indicating that the algorithm was stable. It is speculated
that it tends to maintain the diversity of solutions and
sacrifice the convergence accuracy. Although the
transmission power of traditional PSO was 35.0 DBM,
which was close to MOPSO-DE, only 160 Pareto
solutions were obtained, indicating that the distribution
of solutions was insufficient and easy to fall into local
optimum. In general, OMOPSO and MOPSO-DE are
superior to the baseline algorithm in terms of
convergence speed, solution set diversity, and power
optimization, reflecting the enhanced role of sub-
evolution mechanism in  multi-objective problems.
Statistical tests also showed that OMOPSO and MOPSO-
DE had significant advantages (p<0.01).

5 Discussion

The proposed PSO-MDE and MOPSO-DE algorithms
show significant performance advantages in antenna
configuration and power allocation optimization of 5.5G
cellular networks. By combining RT technology and
PSO algorithm, these algorithms not only surpass the
traditional PSO algorithm in convergence speed, but also
show excellent performance in coverage gain and energy
trade-off. PSO-MDE algorithm uses DE strategy to
enhance the global search ability. The Metropolis
criterion and adaptive inertia factor effectively avoid
local optima, thereby accelerating convergence speed.
This improvement makes the algorithm more balanced in
global search and local fine adjustment in complex multi-

objective optimization problems. MOPSO-DE algorithm
can significantly reduce energy consumption while
ensuring network coverage by optimizing signal
transmission power, which is of great significance to
improve the energy efficiency and sustainability of the
network.

Compared with the baseline algorithm, such as ABC,
adaptive DE algorithm, OMOPSO, and NSGA-III, the
proposed algorithm shows higher stability and
consistency in coverage optimization and energy
efficiency. When dealing with high-dimensional search
space and nonlinear constraints, the baseline algorithm is
often prone to fall into local optimization with slow
convergence speed. It is difficult to balance different
objectives in multi-objective optimization problems. In
contrast, PSO-MDE and MOPSO-DE algorithms achieve
better coverage and energy efficiency through accurate
modeling and optimization strategies, providing an
effective technical path for intelligent planning and
performance improvement of 5.5G networks.

To sum up, the proposed algorithm shows obvious
technical advantages in 5.5G network optimization,
which not only improves the network coverage and
energy efficiency, but also provides new ideas and
methods for future network optimization. These
achievements have important technical significance and
application value for promoting the development of 5.5G
and future communication technologies.

6 Conclusion

To improve the signal coverage performance and energy
utilization efficiency of 5.5G cellular networks in the
high frequency band, a joint optimization framework
combiningg RT  modeling and  multi-objective
evolutionary algorithm was constructed to optimize
antenna parameters and transmission power. The RT
algorithm was taken to finely model the channel
propagation characteristics in complex urban scenarios,
and the optimization strategy was adopted to conduct
multidimensional search and optimization on base
stations in residential areas to maximize signal strength
and minimize interference. In terms of antenna
optimization, the optimal coverage of PSO-MDE
algorithm was 0.645, which was 0.008 higher than JADE
algorithm and 0.012 higher than ABC algorithm. The
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average optimal coverage of PSO-MDE algorithm was
0.648, 0.009 higher than JADE algorithm and 0.015
higher than ABC algorithm. In terms of transmission
power optimization, MOPSO-DE algorithm had the
lowest total transmission power at 200 iterations, which
was 33.5 DBM, 2.5 DBM lower than OMOPSO
algorithm and 1.5 DBM lower than NSGA-I11 algorithm.
The results show that the proposed joint optimization
algorithm can effectively improve the performance of
5.5G network and provide an effective solution for
network optimization. However, the research still has
some limitations. Firstly, the experiment is based on
static synthetic data, and the dynamic user behavior and
time series channel changes have not been considered. In
addition, the computational complexity of the algorithm
used in large-scale, real-time optimization scenarios still
needs to be further reduced. Therefore, future work will
focus on the following directions. Firstly, online learning
mechanism and dynamic adaptive strategies, such as
adaptive PSO or reinforcement learning method, will be
introduced to improve the real-time response ability of
the model to environmental changes. Secondly, it
combines the low complexity approximate optimization
method to improve the deployment efficiency of the
algorithm on edge devices. Thirdly, dynamic multi-user
modeling and spatiotemporal channel data are integrated
to enhance the generalization ability of the model to the
real network environment. It is expected that these
improvements will provide more practical and forward-
looking technical support for intelligent optimization of
5.5G and even future 6G networks.
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