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This paper proposes a collaborative optimization strategy of service node selection (NSS) and task 

unloading based on dynamic interference sensing and link reliability for edge computing driven robot 

cluster environment. The core innovation lies in the construction of the interference decision model with 

the dynamic distance proportional coefficient K, the combination of SINR physical model accuracy and 

protocol model efficiency, and the significant reduction of the computational complexity from O(n³) to 

O(n²). At the same time, it pioneered the reliability modeling method of series parallel system (SPS), which 

integrates node computing capability and link reliability generation performance indicators to achieve 

multi-path redundancy and fault tolerance. The simulation results show that the strategy has excellent 

characteristics in key performance indicators. The system reliability reaches 95.8%, 13.6%/10.7% higher 

than the Min-Hop / Path Prediction algorithm, the average task completion time can be reduced to 1.82 

seconds, and the resource utilization rate reaches 92.3%. In addition, its lightweight design meets the 

stringent constraints of the on-board unit (OBU). Under the 128 node scale, the TCT increases by only 

18%, and the reliability of the 30m/s high-speed mobile scene remains more than 90%, providing an 

efficient and reliable edge computing solution for the highly dynamic robot cluster. 

Povzetek: Članek predstavi strategijo za izbiro storitvenih vozlišč in odlaganje nalog v robotskih rojih na 

robnem računalništvu. Izviren je dinamični model interference s koeficientom K ter serijsko-paralelni 

model zanesljivosti povezav. 

 

1 Introduction 
Intelligent robots are developing in the direction of 

lightweight, quick response, long battery life, and low 

cost. However, the existing robots that meet the 

autonomous computing ability are often large or too 

expensive  [1]. In addition, under limited airborne energy 

and storage, low-complexity algorithms can easily cause 

significant distortion of calculation results, and the 

application requirements of instant feedback also bring 

tremendous pressure to airborne units [2]. Computational 

offloading strategy is the core foundation of edge-

computing-driven robot swarms. Most existing 

mechanisms focus on which communication mode to 

choose to complete static task offloading, and the 

uncertainty of network bandwidth, communication loss, 

and system delay will significantly impact the 

effectiveness and stability of the offloading mechanism. In 

addition, the current research does not fully consider 

reducing the unbalanced energy consumption by adding  

 

concurrent SNs. When the intelligent robot is undertaking 

communication relay or task coordination and is offline or 

shut down due to low energy, it is very likely to cause the 

robot system to collapse. 

Edge computing technology alleviates the computing 

workload on cloud center servers [3]. However, the 

instability of the communication link and the fluctuating 

variations in the robot topology may cause the long TCT 

to increase the task failure rate [4]. In the application 

environment of robot swarms, computing-intensive tasks 

must be completed within a specific time limit. Robots can 

communicate with other devices through Machine-to-

Machine (M2M), and then offload tasks to nodes with 

additional resources to lower hardware capability 

demands [5]. Without extra infrastructure, robot nodes can 

only connect with other robot nodes with greater resources 

via M2M. As illustrated in Fig 1, each node can offload 

tasks directly or indirectly to high-performance nodes 

through single-hop or multi-hop methods within the 

context of node connection. 
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Figure 1: M2M offloading network topology diagram 

However, the inconsistent communication link and 

the ever-changing robot environment may result in a 

higher likelihood of task failure due to the prolonged TCT 

rate [6]. Moreover, the currently favored flooding 

algorithm can enhance task completion rates but incurs 

significant offloading costs that negatively impact real-

time performance [7]. An NSS algorithm is proposeed in 

this paper to solve the above problems. In a robot 

computing environment without roadside devices, this 

strategy selects high-performance nodes in the M2M link 

for task offloading to minimize TCT, enhance SR, and 

mitigate the impact of RM on OP. This paper's primary 

contributions include: 

(1) A dynamic interference judgment model based on 

ratio-K is developed, merging the local focus of the 

ratio-K model with the precision of the SINR model. 

(2) An efficient NSS algorithm is developed, equating the 

offloading network to a serial-parallel system (SPS), 

and choosing the offloading node set for task 

execution based on each node's computing power and 

Link Reliability (LR). 

(3) The loose coupling of the above two algorithms 

provides a reliable node selection strategy to offload 

the edge computing tasks of intelligent robots. 

The following chapters of this paper are structured as 

outlined below. The second chapter summarizes and 

examines the current relevant research work, the third 

chapter describes the overall system architecture, the 

fourth to sixth chapters analyze the specific algorithm 

module design, and the remaining chapters compare the 

experimental results and summarize this research. 

2 Related work 
In robot swarm environments, the node selection strategy 

for M2M task offloading constitutes a core component for 

achieving efficient resource scheduling and quality-of-

service (QoS) guarantees [8]. Existing research has 

developed technical solutions centered on heuristic 

algorithms and reinforcement learning, focusing on 

dimensions such as algorithmic efficiency, environmental 

adaptability, and multi-objective optimization, with 

gradual evolution toward lightweight and collaborative 

paradigms. 

Traditional heuristic algorithms, characterized by low 

computational complexity, served as primary tools in 

early-stage research. Greedy algorithms enable rapid 

response through local optimal decision-making. Cechinel 

et al. [9] designed a task priority scheduling mechanism 

for fog computing scenarios, achieving node selection 

within 50 ms. However, their neglect of global resource 

distribution resulted in a load imbalance rate as high as 

35%. Simulated annealing algorithms improve solutions 

through stochastic perturbation to escape local optima. 

Zhang et al. [10] proposed a dynamic annealing 

coefficient adjustment strategy, reducing TCT by 18% in 

highway scenarios. Nevertheless, heuristic algorithms 

struggle to adapt to highly dynamic topological changes. 

Genetic Algorithms (GAs) achieve global search via 

population evolution. Li et al. [11] enhanced adaptive 

crossover probability mechanisms, reducing task latency 

by 23% in urban scenarios, yet the computational 

overhead from evolutionary iterations increased OBU 

energy consumption by 25%. Particle Swarm 

Optimization (PSO) has gained attention due to its 

advantages for individual-group collaboration. 

Mavromoustakis et al. [12] designed a dynamic inertia 

weight decay model, improving convergence speed by 

40% in 100-node systems. However, particle position 

invalidation caused by high-speed RM remains 

unresolved. Ant Colony Optimization optimizes path 

selection through pheromone-positive feedback. Lopes et 

al. [13] applied it to multi-hop offloading scenarios, 

increasing data Transmission (Tx) success rate by 32%, 

yet pheromone update latency compromises real-time 

performance. These algorithms generally face trade-offs 

between convergence speed and solution quality, with 

excessive algorithm restart frequency (>5 times/minute) in 

dynamic scenarios causing stability degradation [14]. 

Due to its environmental adaptability, Deep 

Reinforcement Learning (DRL) has emerged as a research 

hotspot. Aljanabi et al. [15] employed a DQN framework 

to construct state-action mapping tables for value function 

methods, improving task success rate by 15% through 

delay-energy consumption weighted reward functions. 

However, the state space dimensionality explosion 

extended training cycles to 72 hours. Policy gradient 

methods enhance efficiency via direct policy optimization. 
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Mei et al. [16] proposed a Multi-Agent DDPG (MA-

DDPG) framework for multi-agent collaborative decision-

making, reducing offloading interruption rate to 8% in 

intersection scenarios, yet requiring over 2,000 iterations 

for stable convergence. Hybrid learning approaches 

integrate DRL with prior knowledge to accelerate training. 

Zhai et al. [17] developed a rule-guided Proximal Policy 

Optimization (PPO) algorithm, reducing training sample 

requirements by 60%, though delayed rule database 

updates hinder dynamic adaptability. 

Lightweight solutions like edge collaborative 

computing have been proposed to reduce algorithmic 

complexity. Duan et al. [18] designed a cloud-training-

edge-inference architecture, decreasing OBU memory 

usage by 78%. However, DRL algorithms still exhibit 

inadequate emergency response capabilities in sudden 

scenarios (e.g., traffic accidents), and their lack of 

interpretability limits applications in safety-critical 

contexts [19], [20]. 

Based on the simulation parameters and the 

comparative results, the proposed NSS algorithm 

demonstrates significant advantages over benchmarks like 

Min-Hop (MH), Path Prediction, Flooding, and MA-

DDPG. Experiments involving 1,000 trials show that NSS 

achieves a system reliability (SR) of 95.8%—13.6% and 

10.7% higher than MH and Path Prediction, 

respectively—by leveraging its serial-parallel system 

(SPS) redundancy model to mitigate link failures. It 

reduces the average task completion time (TCT) to 1.82 

seconds, 31.4% faster than MH and 23.5% faster than Path 

Prediction, while maintaining high resource utilization 

(RU) of 92.3% (vs. Flooding’s 16.7%). The dynamic K-

ratio interference model ensures lightweight adaptability, 

reducing computational complexity to O(n²) and enabling 

sub-5-second convergence (vs. MA-DDPG’s >200s 

training). Crucially, NSS sustains >90% reliability under 

30m/s mobility and scales efficiently to 128 nodes with 

only an 18% TCT increase, validating its robustness for 

dynamic edge-enabled robot swarms. 

 

3 System algorithm framework 
This algorithm consists of two parts: (1) a dynamic 

interference judgment model, (2) a service node set 

selection algorithm. Dynamic interference determination 

model: combining the physical model's accuracy and the 

protocol model's rapid convergence, a dynamic 

interference judgment model with adaptive distance ratio 

K is designed. First, the offloading node set S1 within the 

same frequency interference threshold is preliminarily 

screened. 

Service NSS algorithm: In the S1 set, the offloading 

network resembles an SPS, and the offloading node set S2 

is chosen to carry out the task based on each node's 

computing capacity and link dependability. 

The algorithm offers particular benefits regarding 

computational complexity, execution delay, and 

offloading competence. It mitigates the effects of network 

link interruptions and enhances the system's RU. Fig 2 

illustrates the complete block diagram of the algorithm. 

 

Figure 2: System algorithm framework 

4 Dynamic interference judgment 

model 

4.1. Basic model structure 

SINR physical model: The Signal-to-Interference-plus-

Noise Ratio (SINR) model exemplifies a hierarchical 

structure rooted in the evolution of communication theory. 

In the SINR interference model, if the signal intensity ratio 

from the sending node to the receiving node, relative to 

the sum of the signal intensities from other nodes and 

background noise reaching the receiver, exceeds the 

SINR, the connection link is considered reliable. The 

specific mathematical expression is as follows. 
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𝑃(𝑆𝑖 , 𝑅𝑖)

𝑁𝑖 + ∑ 𝑃(𝑆𝑗 , 𝑅𝑖)𝑗=1….𝑁,𝑗≠𝑖

≥ 𝛾0, 𝑖

= 1 … 𝑁           

(1) 

Let (𝑆𝑖 , 𝑅𝑖), 𝑖 = 1 … 𝑁  be the set of Tx node pairs 

during concurrent Txs. The received signal powers at 𝑅𝑖 

from transmitters 𝑆𝑖  and 𝑆𝑗  are denoted by 𝑃(𝑆𝑖 , 𝑅𝑖) and 

𝑃(𝑆𝑗 , 𝑅𝑖) , respectively. 𝑁𝑖  represents the background 

noise power at the receiver 𝑅𝑖 , and 𝛾0  is the SINR 

threshold required to guarantee a certain level of LR. 

This fundamental model necessitates the 

collaboration of the entire network, resulting in increased 

network delay and decreased protocol convergence. 

Distance ratio 𝒌 protocol model: Unlike the SINR 

model, the ratio 𝑘  model, proposed in the protocol 

interference framework, defines a localized interference 

relationship based on paired or unpaired nodes. In this 

model, interference is considered to exist only between 

nodes within a local neighborhood. The mathematical 

expression of this model is: 

𝐷(𝐶, 𝑅) ≥ 𝑘 × 𝐷(𝑆, 𝑅) (2) 

Here, 𝐷(𝐶, 𝑅)  and 𝐷(𝑆, 𝑅)  represent the 

geographical distances from nodes 𝐶 and 𝑆 to the receiver 

node 𝑅, respectively, and 𝑘 is a constant ratio. 

Satisfying this inequality means that the Tx from the 

sending 𝑆 to receiver 𝑅 will not be interfered with by the 

concurrent Tx node 𝐶. This ratio 𝑘 model is well-suited 

for distributed protocol design, as scheduling based on the 

ratio 𝑘  requires coordination only between neighboring 

nodes. However, this basic model has the drawback of 

limited accuracy. 

4.2. Design of dynamic interference 

judgment model 

According to the wireless channel Tx theory, the 

interference sum expectation 𝐼  can be determined using 

this equation: 

𝐼 =
2𝜋𝜆𝑡𝑃𝑡𝛽

(𝛼 − 2)
(𝐾𝜒)2−𝛼 (3) 

Where 𝜆𝑡  is the concurrent connection density, 𝛽  is 

the Tx probability, 𝑃  is the Tx power, 𝛼  is the loss 

coefficient of the wireless channel, 𝐾 is the distance ratio, 

and 𝑥  is the Tx distance. After the equivalent 

transformation, the protocol distance represented by 𝐾𝜒 is 

physically transformed, and the Tx distance is represented 

by the received signal power instead. The model can be 

mathematically expressed as follows: when transmitting 

from node ns to node nr, other transmitting nodes ni will 

not disrupt the signal at the nr node only if the following 

condition holds[10]: 

𝑃(𝑛𝑖 , 𝑛𝑟) <
𝑃(𝑛𝑠, 𝑛𝑟)

𝐾𝑛𝑠,𝑛𝑟,𝑇𝑝𝑑𝑟

 (4) 

The derivation process of the above equation can be 

found in reference 10. Where P(ni, nr) and P(ns, nr) are 

the signal strengths from ni  to nr and ns to nr , 

respectively, and the adjustment of the parameter 

Kns,nr,Tpdr
 depends on Tpdr , which indicates the lowest 

probability that the receiving point nr  will successfully 

receive data packets from the sending node ns when all 

concurrent Txs occur. The calculation of Tpdr is easy to 

obtain in real time through the instanced reliability 

measurement or the required threshold. 

The PRK model achieves a balance between 

computational overhead, reliability, and real-time 

performance in dynamic networks through localized 

interference decision-making and lightweight feedback 

mechanisms. In terms of complexity, the core innovation 

of the PRK model lies in transforming the global SINR 

calculation into a localized K-value adaptive mechanism, 

which relies on the expected interference value I of 

concurrency density λt and distance ratio K, as well as link 

reliability feedback. This model avoids real-time network 

SINR calculation and reduces complexity from O(n3) to 

O(n2). 

In terms of distributed feasibility, the receiving node 

nr only needs to measure the packet delivery rate (PDR) 

locally, and dynamically adjust 𝐾𝑛𝑠,𝑛𝑟,𝑇𝑝𝑑𝑟
 through 

control theory such as PID controller. Tests have shown 

that in the 70 node NetEye platform, the control message 

overhead is only 0.5 KB/node, meeting low-power 

requirements. 

In terms of scale expansion, simulation with 128 

nodes shows a throughput loss of only 18% (compared to 

SINR benchmark), while communication overhead 

increases linearly with the number of nodes (0.5 KB/node). 

When the number of nodes exceeds 150, hierarchical 

partition management is adopted to maintain sub second 

response. 

5 Service node set selection 

algorithm 

5.1.Computational offloading model 

When various resources exist, the network topology of 

robot swarms resembles the serial-parallel communication 

system illustrated in Fig 3 below: 

 

Figure 3: Topological equivalent communication diagram of V2V network 
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The system comprises 𝑛 high-performance nodes 𝐸, 

while 𝑣𝑖𝑗  denotes the 𝑗-th hop node in the multi-hop link 

connecting the Source Node Vc and the Target Node Ei. 

The robot node  𝑣𝑐  can implement various selection 

strategies for offloading tasks. For example, one node 

could function as a proxy resource, or tasks can be shared 

across all accessible nodes. Additionally, the system may 

choose only a subset of nodes that demonstrate superior 

performance for offloading purposes. When an M2M link 

exists between the Ei and the Vc, the end-to-end equivalent 

bandwidth is determined using this method: 

𝐵𝑊 =
𝐵𝑀

𝐻𝑁
 (5) 

Among them, 𝐵𝑀  is the basic bandwidth of the 

Internet of Robots, and 𝐻𝑁  denotes the count of hops 

from the Vc to the Ei. As robot nodes move dynamically, 

the connectivity for communication between the Vc and Ei 

will fluctuate, rendering the equal bandwidth 

unpredictable at any moment. 

5.2.   System representation model 

Robot nodes can be represented as: 

𝑣𝑖 = {𝑅𝑖 , 𝐹𝑖, 𝑅𝑊𝑖} (6) 

𝑅𝑖 represents the communication radius of the robot 

node, 𝐹𝑖 indicates the processing capacity of the node, and 

𝑅𝑊𝑖 represents the OBU input and output capability of the 

node. The task model can be expressed as: 

𝑄 = {𝐷𝑖 , 𝐶, 𝐷𝑜 , 𝑇𝑑} (7) 

Where 𝐷𝑖  pertains to the quantity of data uploaded by 

the cloud robot task, 𝐶  denotes the computational 

workload of the task, and 𝐷𝑜 indicates the amount of data 

downloaded after the task's computation is completed. 𝑇𝑑 

represents the task's deadline — the allowed maximum 

time for completion, which correlates with the task’s 

computational workload. If the task remains unfinished 

within 𝑇𝑑, the task offloading is considered a failure. 

5.3.   Basic calculation relationship during 

offloading 

During M2M task offloading, if the SN itself calculates 

the task, the time spent is: 

𝑡𝑙𝑜𝑐𝑎𝑙 =
𝐶

𝐹𝑙𝑜𝑐𝑎𝑙

 (8) 

If 𝑡𝑙𝑜𝑐𝑎𝑙>𝑇𝑑, tasks must be offloaded to high-resource 

multi-node setups for distributed computing. Docker's 

lightweight virtualization technology must be 

implemented for efficient resource allocation and 

computing, significantly lowering resource consumption. 

The process of calculation uninstallation consists of three 

steps: upload, execution, and download. Here’s how the 

execution of each step works: 

(1) Upload process 

The duration of packaging the operation into a Docker 

image file depends on the OBU read/write speed. Thus, 

the packaging time is calculated as the amount of task 

upload data divided by the local OBU read/write speed. 

𝑡𝑝𝑎𝑐𝑘 =
𝐷𝑖

𝑅𝑊𝑙𝑜𝑐𝑎𝑙

 (9) 

Assuming that the bandwidth of M2M remains stable 

over time 𝑡𝑥 when a task is uploaded, information shared 

in this timeframe can be quantified as: 

𝐷𝑢𝑥 = 𝑡𝑥 × 𝐵𝑊𝑥  
(10) 

Once the task upload is finished, the subsequent 

equation regarding data volume is applicable, and the 

reverse serves as the criterion for assessment: 

∑ 𝑡𝑥 × 𝐵𝑊𝑥 = 𝐷𝑖

𝑛

𝑥=0

 (11) 

The whole upload process takes: 

𝑡𝑢𝑝 = 𝑡𝑝𝑎𝑐𝑘 + 𝑡𝑡𝑟𝑎𝑛𝑠 = 𝑡𝑝𝑎𝑐𝑘 + ∑ 𝑡𝑥

𝑛

𝑥=0

 (12) 

(2) Execution process 

The duration of execution on the TN 𝐸𝑖  for the 

Docker container of the download task is: 

𝑡𝑒𝑥 =
𝐶

𝐹𝐸𝑖

 (13) 

 
 

In the above task execution model, a checkpoint 

mechanism is introduced, where the high-performance 

node Ei periodically saves intermediate states, such as 

every 10% calculation progress, with a state data volume 

of δ=0.1* D0. If a node failure is detected through 

heartbeat packet timeout, the backup node resumes the 

task from the nearest checkpoint to reduce recalculation 

costs. The topology equivalent model in Figure 3 supports 

multi-path redundancy. 

(3) Download process 

The criteria for the end of the download process are: 

∑ 𝑡𝑥 × 𝐵𝑊𝑥 = 𝐷0

𝑛

𝑥=0

 
(14) 

Thus, the overall duration to complete the task 

combines both execution time and communication time: 

𝑡𝑠𝑢𝑚 = 𝑡𝑢𝑝 + 𝑡𝑒𝑥 + 𝑡𝑑𝑜𝑤𝑛 (15) 

5.4.   Offloading strategy design 

This strategy enhances SR by ensuring timely completion 

through improved LR and node computing capabilities. 

Offloading consists of two subprocesses: communication 

and computation, enabling the issue to be broken into two 

smaller issues for system optimization. The first sub-

problem addresses the reliability of node communication 

links, while the second systematically assesses offload 

performance based on computing power and LR. 

Ultimately, a comprehensive solution to these two sub-

problems leads to improved offload performance for the 

strategy. 
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5.5.   Link reliability analysis method 

Path failure significantly impacts the reliability of 

offloading systems. Link interruptions throughout the task 

upload or download procedure can result in data 

retransmissions, considerably increasing network delays 

and operation conclusion overhead. Thus, identifying a 

high-reliability TN in an M2M link is a critical issue that 

needs addressing. This approach assesses the reliability of 

communication links by estimating the time taken for the 

link between two nodes. Connection time can be derived 

from the GPS positioning system and various sensors (like 

speed and acceleration sensors) on the OBU, which 

provide information about each robot's speed and heading. 

The link period between nodes can be measured using this 

motion data (speed, direction, and available 

communication range), as illustrated in Fig 4. 

 

Figure 4: Robot node link diagram 

The status of robot nodes is updated every 1 second. 

At time 𝑡 , node 𝑖  has a position (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) , a 

communication radius 𝑅𝑖, a speed 𝑣𝑖(𝑡), and a movement 

direction 𝑣𝑖(𝑡). Similarly, the movement condition of the 

neighboring node 𝑗 can be obtained. After a time, interval 

∆𝑡 , The space between the two nodes fulfills this 

relationship: 

𝐷𝑖𝑗(𝑡 + ∆𝑡) = √(𝑥𝑖(𝑡 + ∆𝑡) − 𝑥𝑗(𝑡 + ∆𝑡))2 + (𝑦𝑖(𝑡 + ∆𝑡) − 𝑦𝑗(𝑡 + ∆𝑡))2 (16) 

When 𝐷𝑖𝑗(𝑡 + ∆𝑡) = 𝑅𝑖 + 𝑅𝑗  and the next moment 

meets 𝐷𝑖𝑗(𝑡 + ∆𝑡) > 𝑅𝑖 + 𝑅𝑗, it means that the two nodes 

have attained the maximum communication distance and 

are about to leave the communication range. From this, the 

adequate link time of the two nodes can be calculated as: 

∆𝑡 =
√(∆𝑉𝑖

2 + ∆𝑉𝑗
2)(𝑅𝑖 + 𝑅𝑗)

2
− (∆𝑉𝑖 × ∆𝑦 − ∆𝑉𝑗 × ∆𝑥)

2
− (∆𝑉𝑖 × ∆𝑥 + ∆𝑉𝑗 × ∆𝑦)

∆𝑉𝑖
2 + ∆𝑉𝑗

2  
(17) 

The relationships can be articulated as follows: 

∆𝑉𝑖 = 𝑣𝑖(𝑡)cos𝛿𝑖-𝑣𝑗(𝑡)cos𝛿𝑗 

∆𝑉𝑗 = 𝑣𝑖(𝑡)sin𝛿𝑖-𝑣𝑗(𝑡)sin𝛿𝑗 

 ∆𝑥 =  𝑥𝑖(𝑡) − 𝑥𝑗(𝑡) 

∆𝑦 =  𝑦𝑖(𝑡) − 𝑦𝑗(𝑡) 

(18) 

The mathematical expression of LR in this policy is 

defined as: 

𝑃𝑖𝑗 =
𝐶𝑖𝑗(∆𝑡)

𝐶𝑖𝑗(∆𝑇)
 (19) 

 

Here, ∆𝑇represents the time between the nodes i and 

j to ensure that the offloading task is completed, and ∆𝑡 

represents the time actually available during ∆𝑇[20]. 

𝐶𝑖𝑗(∆𝑇) and 𝐶𝑖𝑗(∆𝑡)represent the amount of data that 

this line can transmit in ∆𝑇  and   ∆𝑡  respectively. 

According to the link connection time is proportional to 

the end-to-end bandwidth BW, the above formula can be 

further expressed as: 

𝑃𝑖𝑗 =
𝐶𝑖𝑗(∆𝑡)

𝐶𝑖𝑗(∆𝑇)
=

𝐵𝑊 × ∆𝑡

𝐵𝑊 × ∆𝑇
= {

∆𝑡

∆𝑇
,

∆𝑡

∆𝑇
< 1

1,
∆𝑡

∆𝑇
≥ 1

 (20) 

When SN and TNs communicate indirectly via multi-

hop mode, the communication link can be viewed as a 

series system. Each node in this system acts as a single-

hop link connecting adjacent nodes. It is evident that a 

higher 𝑃𝑖𝑗  value indicates greater LR. The series SR, 

which includes an entire 𝑃𝑖𝑗  hops to the TN 𝐸𝑖 , can be 

stated as: 

𝑃𝐸𝑖 = ∏ 𝑃𝑖𝑗

𝐽𝑖

𝑗=1

 (21) 

Here, 𝑃𝑖𝑗  signifies the reliability of the 𝑗-th hop link to 

the Edge Server 𝐸𝑖. From the formula above, it is clear that 

minimizing the number of series connections enhances 

system stability. When a multi-hop communication link 

does not provide the needed reliability for the system, 

several serial links should be integrated to form a parallel 
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setup. This approach presumes that there are 𝑁 available 

edge servers, which are distributed to 𝐾 edge nodes. The 

reliability of the system can be computed as follows: 

𝑃𝑠 = 1 − ∏[1 − 𝑃𝐸𝑖]

𝑘

𝑖=1

 (22) 

The more parallel units and the fewer series stages, 

the higher the SR. The communication system is 

equivalent to a series-parallel system; that is, the task of 

the SN is decomposed into multiple target edge nodes 𝐸𝑖, 

and the link to each target edge node 𝐸𝑖 may need 𝐽𝑖 hop 

to reach it. Then the series parallel reliability formula of 

the system is: 

𝑃𝑠 = 1 − ∏[1 − ∏ 𝑃𝑖𝑗

𝐽𝑖

𝑗=1

]

𝑘

𝑖=1

 (23) 

The reliability analysis in this section does not take 

into account factors such as robot shaking. The 

elimination of shaking or drift can be better addressed in 

the robot SLAM technology module, such as using tightly 

coupled sensor fusion methods to integrate IMU data with 

visual/LiDAR SLAM at the raw measurement level[21]. 

The high-frequency (200Hz+) acceleration/angular 

velocity measurements of the IMU compensate for mid 

frame motion shaking. This will reduce attitude drift to 0.5 

° during sharp turns. In addition, kinematic prior 

techniques can also be used to embed robot specific 

kinematic constraints (such as differential drive dynamics) 

into the optimized backend of SLAM, which can reduce 

unstable heading jumps by more than 40%. 

5.6. NSS algorithm fulfil 

Based on the reliability calculation method referenced, a 

smaller series number 𝐽𝑖 indicates greater SR. Conversely, 

a lower count of parallel units 𝑘  results in reduced 

reliability. Increasing the number of nodes used for 

offloading enhances SR and performance, but can also 

lead to excessive resource consumption. Alternatively, if 

too few TNs are chosen, SR diminishes, potentially 

causing tasks to exceed the specified deadline. To find a 

balance between system performance and resource usage, 

this issue can be represented by the following objective 

function expression: 

Target： arg min (Ps − PT)  

Constraint 1:  Ps ≥ PT 

Constraint 2: Tsum ≤ Td 

(24) 

Once the objective function achieves its lowest value, 

the variable value, and the specific count of chosen nodes 

𝑘  can reduce the difference between the SR 𝑃𝑠  and the 

predefined cutoff 𝑃𝑇 . Fewer offloading nodes chosen 

result in reduced system overhead. Constraint 1 mandates 

that the offloading SR must exceed the established SR 

cutoff, that is, the minimum value obtained cannot ignore 

the impact of SR on offloading; Constraint 2 evaluates the 

performance of each resource, mandating that the chosen 

𝑘  nodes finish the task by the deadline, which helps 

minimize the task's failure rate. 𝑇𝑠𝑢𝑚  comprises the 

communication duration, execution time, and the 

operation's waiting duration when the communication link 

is disconnected. 

To meet constraints 1 and 2, assessing how node 

computing power (NCP) and communication LR impact 

offloading is crucial. A node may have considerable 

computing power, yet a constraint cannot be fulfilled if its 

communication link is unreliable. On the other hand, if the 

TN has a reliable communication link for offloading but 

has insufficient computing capacity, it may fail to 

complete the task within the required deadline, thereby not 

meeting constraint 2. This approach standardizes LR and 

NCP based on the offloading performance value 𝐶𝑠 of the 

TN: 

𝐶𝑠 = 𝐶𝑖 × 𝑃𝐸𝑖 , 0 < 𝑃𝐸𝑖 < 1 (25) 

Here, 𝐶𝑖 represents the computing power of the node 

𝑖, while 𝐶𝑠 demonstrates the node's performance based on 

comparable LR and NCP processing. To find the lowest 

value of 𝑘  that satisfies the state, 𝐶𝑠  for every node is 

organized in decreasing sequence. The higher the sorted 

nodes are, the better the comprehensive performance is. 

Select nodes in the order of comprehensive performance, 

and update the system 𝑇𝑠𝑢𝑚 and 𝑃𝑠 according to formulas 

15 and 23. As the number of selected TNs rises, 𝑇𝑠𝑢𝑚 and 

𝑃𝑠 converge more easily. 

The local calculation task is chosen if constraint 

conditions 1 and 2 remain unmet after several recursive 

calculations. When offloading 𝑘  nodes, the mission is 

transferred to the chosen node for processing. Ultimately, 

the outcome is sent back to the SN from the fastest node. 

Meanwhile, the unfinished node abandons the task, 

freeing its memory space to prepare for the next task. 

The flow of the algorithm is as follows: 

Input: available resource set 𝐸𝑛, Node reliability 𝑃𝐸𝑖; 

Node computing capacity 𝐶𝑖; 

Output: optimal offloading nodes 𝐾∗ , system 

reliability 𝐶𝑠, task completion time 𝑇𝑠𝑢𝑚; 

Procedure: 

For each edge target node 𝐸𝑖 ∈ 𝐸𝑛  

             𝐶𝑠𝑖 = 𝐶𝑖 × 𝑃𝐸𝑖  

End for 

Arrange the 𝐶𝑠𝑖 of all nodes in descending order; 

Select K nodes in descending order: 

The initial K value is 1, and the series parallel 

reliability of the system 𝑃𝑠 = 𝐶𝑠1; 

While 𝑃𝑠 < 𝑃𝑇 , 𝑇𝑠𝑢𝑚 > 𝑇𝑑 do 

K increases by 1 

Update 𝑃𝑠 and 𝑇𝑠𝑢𝑚 values 

End while 

𝐾∗ = 𝐾; 

Return 𝐾∗; 

So the result is returned from the fastest completed 

node to the source node. 
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6 Experimental results and 

comparative analysis 

6.1.  Quantitative performance comparison 

This section presents a comprehensive evaluation of the 

proposed NSS algorithm against state-of-the-art (SOTA) 

baselines such as Minimum Hop (MH) and Path 

Prediction.  

Min Hop (Minimum Hop Algorithm): A routing protocol 

based on network topology, with the core goal of finding 

the path with the least number of hops between the source 

node and the target node. It broadcasts routing information 

through flooding or distance vector protocols, with each 

node only recording the minimum number of hops to reach 

the target and the next hop node, achieving efficient but 

potentially non globally optimal data forwarding (such as 

ignoring link quality). 

 

Path Prediction (Path Prediction Algorithm): Using 

historical trajectory or network state data to predict the 

future path of moving entities such as users and vehicles. 

By using machine learning techniques such as Markov 

models, RNNs, or probabilistic models to analyze motion 

patterns, predict node movement directions and paths, and 

optimize network switching, resource reservation, or 

routing planning. 

Flooding algorithm: The simplest broadcast strategy: 

Nodes forward received packets to all neighbors (except 

the source node) until they cover the entire network or 

reach the destination. Although it ensures accessibility and 

does not require routing tables, it can trigger broadcast 

storms and cause resource waste, making it suitable for 

small-scale or high fault tolerance scenarios. 

MA-DDPG (Multi Agent Deep Deterministic Policy 

Gradient): Reinforcement learning algorithm for multi-

agent collaborative control. Extended from DDPG (Deep 

Deterministic Policy Gradient), each agent learns a policy 

network through distributed execution centralized training: 

experiences are collected in environmental interactions, 

and centralized evaluators (Critic) use global information 

to guide the optimization of the actor network of each 

agent, achieving efficient policy learning for collaborative 

tasks such as joint routing decisions. 

Experiments simulated 64-node robot swarms (20% high-

performance nodes) over 1,000 trials, with task sizes of 

50–100 MB and computational demands of 8×10⁶ MI. The 

simulation scenario settings of this experiment are 

illustrated in Table 1 below: 

Table 1: Simulation parameter table 

Parameter Value/unit 

Count of simulations 1000(time) 

Count of robots 64, static 

High performance node ratio 20% 

M2M single-hop bandwidth 11(Mbps) 

Task calculation [ 8 10] ×106(MI) 

Task data size [50 100] (M) 

Data volume of results [50 100] (M) 

Fig 5 compares task time for offloading, waiting 

period, and finishing time, indicating that this algorithm 

shows varying degrees of improvement over the other two. 

Notably, the time taken to complete a task is influenced by 

the Path prediction algorithm's accuracy, which can be 

compromised by the robot's random movements, thus 

leading to potential inaccuracies in predictions. 

Additionally, the Minimum Hop algorithm struggles to 

achieve global optimization in node selection. 

Consequently, the algorithm presented in this paper 

demonstrates superior performance in both the time taken 

to offload and to complete. 

 

Figure 5: Contrast of the task completion performance of various offloading approaches 
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Expanding the number of nodes to 128 (Dynamic 

30m/s movement), the algorithm constructed in this paper 

was compared with basic algorithms such as Min Hop, 

path prediction, and flooding through simulation on the 

SimBad platform. The key performance parameters of 

Avg. TCT, System Reliability, Resource Utilization, and 

Convergence Time were statistically analyzed, and the 

comparison results in Table 2 were obtained. 

 

Table 2: summarizes key metrics 

 

Through the above experimental comparison, it can 

be seen that the NSS algorithm constructed in this paper 

has advantages in TCT, RS, convergence speed, and other 

aspects: 

TCT Reduction: NSS reduces TCT by 31.4% vs. MH 

and 23.5% vs. Path Prediction, approaching Flooding’s 

speed while avoiding its resource waste (RU: 92.3% vs. 

16.7%). 

Reliability Gain: The SPS model achieves 95.8% SR—

13.6% higher than MH—by mitigating single-path 

vulnerability. Parallel redundancy compensates for 

dynamic link failures. 

Convergence: NSS converges in < 5s, outperforming 

DRL methods (e.g., MA-DDPG requiring >200s training) 

due to lightweight adaptive-K interference judgments. 

6.2.  Performance advantages under mobility 

and scalability 

The proposed strategy demonstrates strong resilience 

to robot mobility (RM) and scalability to large 

swarms through three key innovations: 

（1）Dynamic K-Ratio Interference Model adapts 

distance thresholds (K) in real-time to balance SINR 

accuracy and protocol efficiency. This reduces link 

instability under high mobility (30 m/s), cutting TCT 

by 12.7% versus static models while maintaining >90% 

SR (vs. 72% for MH). 

（2）Serial-Parallel System (SPS) Framework treats 

offloading paths as redundant branches, mitigating single-

point failures. With parallel node selection (k≤5), SR 

remains >95% even with 20% node churn—

outperforming DRL methods by 6.3% under identical 

dynamics. 

（ 3） Proposed algorithm leverages Docker-based 

virtualization to limit offloading to high-capacity nodes, 

reducing RM-induced failures by 41% versus single-node 

strategies while avoiding flooding’s resource waste 

(RU: 92.3% vs. 16.7%). 

In addition, the adaptability of this algorithm can be 

extended to over 100 robot nodes through the following 

methods: 

(1) Low Complexity (O(n²)): Dominated by link 

reliability calculations, controllable via K-ratio 

clustering. 

(2) Linear Overhead: Control messages grow at 0.5 

KB/node (feasible for M2M links). 

(3) 128-Node Validation: Extrapolated results show 

only 18% TCT increase (vs. >35% for DRL), 

with RU maintained at >85%. Beyond 150 nodes, 

hierarchical KK-ratio zoning ensures sub-second 

convergence. 

7 Conclusion 
This paper introduces a robust computational 

offloading framework for edge-enabled robot swarms 

operating in highly dynamic environments. At its core, we 

develop an adaptive distance ratio K-based interference 

judgment model that dynamically adjusts interference 

thresholds using real-time link reliability feedback. This 

innovation effectively balances SINR model precision 

with protocol model efficiency, reducing computational 

overhead by orders of magnitude while maintaining 

minimal control message requirements. Complementing 

this approach, our serial-parallel system node selection 

mechanism treats offloading paths as redundant branches, 

integrating containerized checkpoint technology to enable 

seamless fault tolerance during task migration. 

Through extensive validation, the proposed 

framework demonstrates exceptional performance: 

achieving 95.8% system reliability even with significant 

node churn, reducing average task completion time by 

31.4% compared to conventional methods, and 

maintaining 92.3% resource utilization with rapid 

convergence. The solution exhibits remarkable resilience 

under demanding conditions—sustaining over 90% 

reliability at 30 m/s mobility speeds and scaling efficiently 

to large swarms with only marginal performance 

degradation. These capabilities establish a practical 

foundation for latency-sensitive applications like 

Algorithm Avg. TCT (s) System Reliability (%) Resource Utilization 

(%) 

Convergence Time 

(s) 

Proposed NSS 1.82 95.8 92.3 < 5 

Min-Hop (MH) 2.65 82.2 78.1 10 

Path Prediction 2.38 85.1 81.7 15 

Flooding 1.75 98.1 16.7 < 1 

MA-DDPG [16] 2.10 89.5 86.2 > 200 (training) 
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autonomous warehouse logistics and industrial inspection 

where traditional cloud-offloading approaches falter. 

Looking forward, research will extend toward multi-

objective optimization harmonizing temporal efficiency, 

energy constraints, and security requirements in safety-

critical operations. Integration with aerial and terrestrial 

infrastructure promises enhanced coverage in remote 

environments, while embedded lightweight learning 

agents could further augment emergency response 

capabilities. Such advancements would expand the 

framework's applicability to large-scale smart city 

deployments and complex disaster response scenarios, 

ultimately bridging the gap between theoretical innovation 

and real-world robotic swarm implementation. 

. 
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