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The increasing popularity of Internet of Things (IoT) applications highlights the demand for task 

scheduling in the cloud–fog scenarios, where low latency, short makespan, and minimal energy use are 

of the utmost concern. Although prior optimization methods solved the problems, limitations remain in 

convergence speed and overall scheduling performance. We present an Enhanced Locust Swarm 

Optimization Algorithm (ELSOA) for scheduling IoT tasks across fog nodes and cloud servers. ELSOA 

integrates Opposition-Based Learning (OBL) and chaotic sine mapping to improve the balance between 

exploration and exploitation, accelerating convergence and avoiding local optima. Experimental results 

using both simulated and real-world datasets (GoCJ) demonstrate that ELSOA achieves an average 

reduction of 19.3% in makespan and 17.7% in energy consumption compared to state-of-the-art methods. 

These findings confirm that ELSOA offers a scalable and effective solution for dynamic IoT task 

scheduling in large-scale fog–cloud environments. 

Povzetek: Izboljšan algoritem ELSOA z OBL in kaotičnim sinusnim preslikavanjem omogoča bolj 

kvalitetno razporejanje IoT opravil v cloud–fog sistemih, saj skrajša skupni čas izvajanja, zmanjša porabo 

energije ter izboljša točnost. 

 

1 Introduction 
The Internet of Things (IoT) continues to reshape 

industries by enabling massive connectivity and data 

generation across devices [1], creating new challenges in 

energy management, data processing, and system 

optimization [2-4]. With the growth of intelligent 

infrastructures such as microgrids and electric vehicle 

networks, the integration of renewable energy and 

decentralized control systems has become critical [5, 6]. 

In parallel, the rise of digital technologies like FinTech 

and machine learning has transformed economic 

forecasting and decision-making processes, reflecting 

broader shifts toward data-driven optimization and real-

time analytics [2,3]. In this context, fog computing has 

emerged as a key complement to cloud computing, 

offering low-latency, edge-level processing crucial for IoT 

systems. Efficient task scheduling in such distributed 

architectures remains essential to ensure smooth operation 

and optimal resource utilization [7]. 

Efficient scheduling of tasks is necessary to maximize 

IoT-based cloud-fog performance. As the number of 

devices increases, generating a more significant number of 

tasks, minimizing latency is essential to satisfy the real-

time demands of IoT applications such as healthcare 

monitoring, intelligent traffic systems, and industrial 

automation [8]. Energy efficiency is also critical for 

maximizing the lifetime of IoT devices and fog nodes, 

which tend to be power-constrained [9]. Minimization of 

the makespan, or the duration of processing all tasks,  

 

 

ensures that the system operates at its maximum while 

keeping available resources to a minimum [10]. 

To counter the problems of efficient task scheduling 

in fog-cloud systems, this paper proposes an Enhanced 

Locust Swarm Optimization Algorithm (ELSOA). Based 

on the foraging behavior of the locust, the LSO algorithm 

exhibits robust capabilities in solving computationally 

complex optimization problems [11]. However, the 

algorithm has limitations in preserving the exploration-

exploitation balance. ELSOA, on the other hand, 

incorporates enhancements to improve exploration and 

exploitation ability, thus making the algorithm fit to 

optimize task scheduling in dynamically changing and 

limited-resource environments such as IoT-based fog-

cloud computing. This work aims to address the following 

key research questions: 

• Can ELSOA achieve lower makespan and energy 

consumption trade-offs compared to existing 

swarm intelligence algorithms in fog–cloud 

computing environments?  

• Does integrating Opposition-Based Learning 

(OBL) and chaotic sine maps into the base LSO 

framework result in faster and more stable 

convergence for dynamic, large-scale scheduling 

problems?  

• Is ELSOA robust and scalable when applied to 

both synthetic and real-world IoT workloads under 

varying infrastructure conditions (e.g., limited fog 

nodes, increased task count)? 
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2 Related work 
Abdel-Basset, et al. [12] suggested the Harris Hawks 

Optimization with Local Search (HHOLS) algorithm for 

scheduling tasks in fog computing. The energy-conscious 

metaheuristic aims to enhance the quality of service of 

Industrial Internet of Things (IIoT) applications. It uses 

normalization, scaling, and a swap mutation method to 

improve workload balancing, followed by a local search 

approach that helps enhance solution quality. 

Abd Elaziz, et al. [13] proposed a novel Artificial 

Ecosystem Optimization (AEO) algorithm for scheduling 

tasks in IoT in clouds and fog. It is enhanced with the Salp 

Swarm Algorithm (SSA) to increase AEOS exploitation 

capability. The proposed algorithm, tested using synthetic 

and actual datasets, performs better at minimizing 

makespan time and maximizing throughput. Mousavi, et 

al. [14] introduced the D-NSGA-II, a bi-objective 

optimization method for minimizing energy utilization 

and the response time in task scheduling. D-NSGA-II 

balances exploitation and exploration using a 

recombination operator and controls the selection 

pressure. 

Saif, et al. [15] proposed a Multi-Objective Grey Wolf 

Optimizer (MGWO) that minimizes delay and energy 

consumption in task scheduling in a cloud-fog 

environment. When executed in a fog broker setting, the 

algorithm performs better in optimizing QoS objectives 

than state-of-the-art ones. Yin, et al. [16] developed a new 

Genetic Ant Colony Optimization (GACO) algorithm for 

resource scheduling in cloud-fog systems. The hybrid 

approach combines Genetic Algorithm (GA) and Ant 

Colony Optimization (ACO) with niche technology and 

pheromone updates. NGACO improves makespan, 

reduces economic costs, and enhances load balancing. 

Qasim and Sajid [17] introduced a Firefly Algorithm-

based scheduler to schedule IoT tasks in cloud computing. 

The algorithm uses transfer functions and quantification to 

minimize the makespan of tasks allocated to virtual 

machines. Qi, et al. [18] proposed a time-sensitive 

scheduling algorithm, IPAQ, that schedules tasks based on 

their sensitivity to time. IPAQ combines Particle Swarm 

Optimization (PSO) and Analytic Hierarchy Process 

(AHP) to schedule in a dynamic environment.  

The current research centers mostly around task 

scheduling optimization in cloud-fog IoT environments to 

minimize latency, power usage, and makespan. Yet, a 

number of the existing solutions are incomplete. As shown 

in Table 1, numerous previous methods do not efficiently 

find the right exploration-exploitation balance of the 

solution space, resulting in poor performance in complex, 

time-varying environments. Most existing strategies also 

do not handle multi-objective optimization, so the energy 

and the response time are considered in the same 

formulation while the solution scales to large IoT 

networks. To fill these voids, the paper proposes ELSOA, 

which better handles both exploration and exploitation and 

specializes in multi-objective task scheduling for the 

cloud-fog system. 

Table 1: An overview of relevant research 

Reference Algorithm Achievement Shortcoming Task 

scale 

Dataset 

type 

Multi-

objective 

[12] HHOLS Improves energy, makespan, and 

flow time 

Limited exploration–exploitation 

balance 

Medium Synthetic Yes 

[13] AEOSSA Minimizes makespan and 
improves throughput 

Focuses on makespan only Medium–
Large 

Real + 
Synthetic 

Partially 

[14] D-NSGA-II Balances energy and response time Weak scaling on large IoT networks Medium Synthetic Yes 

[15] MGWO Minimizes delay and energy Lacks task fairness consideration Medium Real Yes 

[16] NGACO Enhances makespan and cost 
reduction 

Ignores energy efficiency Medium Synthetic No 

[17] Firefly Faster convergence than HHO/DE Single-objective focus Small–

Medium 

Synthetic No 

[18] IPAQ Time-aware fairness optimization Poor scalability Medium Real Yes 

3 Problem statement 
The IoT is a revolutionary technological development 

based on the aspiration to interconnect physical objects 

with digital ones. Different smart devices, such as 

gateways, actuators, sensors, cameras, traffic management 

systems, and embedded controllers, are made possible 

through network-enabled communication and 

coordination [19]. These systems have applications in 

various categories, including healthcare, energy, urban 

security, building management, and industrial monitoring. 

These applications generate large amounts of raw, real-

time data that need to be analyzed and recorded for future 

reference. This data is commonly forwarded to a central 

platform, e.g., a cloud infrastructure, for extensive 

preservation and management. 

Although cloud computing offers scalable 

computation and storage resources, it is not always 

suitable for timely or time-critical tasks. Delays in  

 

transmission and the use of off-site data centers can cause 

performance bottlenecks and temporary service outages, 

especially when network connectivity is poor [20]. These 

shortcomings have been addressed by an intermediate 

solution known as fog computing, where computation is 

shifted closer to the data sources. It minimizes the need to 

send all data to off-site servers, thereby lessening network 

traffic and enhancing response times. 

The hybrid cloud–fog framework is structured 

hierarchically into three layers, as shown in Figure 1. The 

lower layer comprises various devices supported by IoT 

dispersed throughout the physical environment. These 

devices act as data sources, consistently generating 
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contextual and operational information. The middle layer, 

or the fog layer, is formed by distributed processing nodes, 

more commonly called fog nodes or edge gateways, to 

handle initial data processing, filtering, and localized 

analytics. These nodes act as an intelligent buffer zone 

between raw data generation and centralized processing. 

At its top tier, there are data centers and cloud 

environments. These high-capacity systems enable the 

execution of intricate calculations, the storage of 

information for extended periods, and the performance of 

sophisticated analyses, such as machine learning and the 

processing of large datasets. While the cloud layer is 

compelling for processing, it is not ideal for missions that 

require rapid feedback. 

In such a multi-level setup, the problem is to schedule 

tasks among various system levels smartly. Optimal 

scheduling should decide where every task is executed, 

either at the fog level for prompt response or offloaded to 

the cloud for heavy computation. The major goal of this 

study is to optimize task assignments to shorten total 

execution time (makespan) and conserve energy on 

available resources. This is the foundation of this 

optimization problem addressed by our proposed 

algorithm. 

Applications in fog–cloud architecture are classified 

depending on their sensitivity to time. The time-critical 

ones with immediate processing needs are dealt with at fog 

nodes to provide low-latency responses. The opposite is 

true for delay-tolerant applications, as they are offloaded 

to the cloud, where there is greater computational power. 

Efficient scheduling is crucial for managing resource 

utilization while meeting the timing requirements of every 

task. Devices at the edge serve as initial data sources, 

sending unprocessed information to the local fog hub for 

rapid processing. Figure 2 depicts the mechanism for task 

scheduling in a cloud–fog setting. The scheduling policy 

is designed to maximize task allocation by minimizing 

execution time and energy usage, thereby optimizing 

overall system efficiency. 

Assume a situation where there are 𝑛 tasks: 𝑇 =
{𝑇1, 𝑇2, . . . , 𝑇𝑛}, each having a length of Million 

Instructions (MI). Alongside, there are 𝑚 devices 𝐷 =
𝐷𝑐𝑙𝑜𝑢𝑑 ∪ 𝐷𝑓𝑜𝑔, where 𝐷𝑐𝑙𝑜𝑢𝑑 = {𝐷1, 𝐷2, . . . , 𝐷𝑚} 

represents the cloud devices and 𝐷𝑓𝑜𝑔 =

{𝐷𝑚+1, 𝐷𝑚+2, . . . , 𝐷𝑝} refers to the fog devices. Each 

device 𝐷𝑗   has processing power denoted by 𝐷𝑝𝑤𝑗
 (in 

Millions of Instructions Per Second or MIPS), along with 

bandwidth, RAM, and storage capabilities. 

The task scheduling problem aims to minimize two 

components: the makespan and energy consumption. The 

Expected Completion Time (ECT) for a task 𝑇𝑖  given to 

device 𝐷𝑗  is calculated using Eq. 1. 

𝐸𝐶𝑇𝑖𝑗 =
𝑙𝑖

𝐷𝑝𝑤𝑗
× (

𝑀𝐼
𝑀𝐼𝑃𝑆

)
 (1) 

Where 𝑙𝑖 is the length of the task 𝑇𝑖  in MI and 𝐷𝑝𝑤𝑗
 is the 

processing power of the device 𝐷𝑗 . 

A decision indicator indicates whether the task 𝑇𝑖  is 

allocated to the device 𝐷𝑗 , formulated as: 

𝐷𝑒𝑐𝑖𝑗

= {
1,   𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑒𝑣𝑖𝑐𝑒 𝐷𝑗

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

The total execution time for the device 𝐷𝑗  is computed 

by summing the execution times of all tasks assigned to it: 

𝐸𝑇𝑗 = ∑ 𝐷𝑒𝑐𝑖𝑗 × 𝐸𝐶𝑇𝑖𝑗

𝑛

𝑖=1

 (3) 

Makespan represents the maximum time required to 

complete all tasks, calculated using Eq. 4. 

𝑀𝐾𝑠 (𝑆) = 𝑚𝑎𝑥
𝑗=1,2,...,𝑚

𝐸𝑇𝑗 (4) 

Where 𝑚 is the total number of devices. 

The second objective is to minimize energy 

consumption during task execution. Energy consumption 

for the device 𝐷𝑗  is influenced by its idle and active states, 

given by: 

𝐸(𝐷𝑗) = [𝐸𝑇𝑗 × 𝛽𝑗 + (𝑀𝐾𝑠 − 𝐸𝑇𝑗) × 𝛼𝑗]

× 𝐷𝑝𝑤𝑗
 

(5) 

Where 𝛽𝑗 is a factor representing the energy consumed in 

the idle state of the device 𝐷𝑗  and 𝛼𝑗 is a factor 

representing the energy consumed in the active state of the 

device 𝐷𝑗 . 

The total energy consumption across all devices is 

calculated using Eq. 6. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸(𝐷𝑗)

𝑚

𝑗=1

 (6) 

The ultimate goal is to minimize both the makespan 

and total energy consumption. The final objective function 

combines these two objectives, with 𝜆 λ as a weighting 

factor between 0 and 1, as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = 𝜆 × 𝑀𝐾𝑠 + (1 − 𝜆) × 𝐸𝑡𝑜𝑡𝑎𝑙  (7) 

Where 𝜆 denotes the relative importance of makespan 

versus energy consumption. 

4 Enhanced locust swarm 

optimization algorithm 
Metaheuristic optimization algorithms effectively solve 

complex optimization problems in various fields of 

science and engineering. Classical optimization methods 

often fail in complex scenarios because they are prone to 

being trapped by a local optimum. The new LSOA, based 

on the natural swarming behaviors of the locusts, has the 

potential to resolve such intricate issues. It has some 

limitations concerning convergence rate and exploration-

exploitation trade-off. In this investigation, a new variant, 

ELSOA, is introduced by incorporating key enhancements 

to the fundamental LSOA, thereby overcoming the 

mentioned limitations. 

In LSOA, a candidate solution denotes the location of 

a hypothetical "locust" within a search space, figuratively 

a farm field. Every locust measures the quality of the "food 

source" associated with its fitness value. The population 

comprises locust agents with two modes of behaviors: 
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Individual Behavior (IB) and Social Behavior (SB). A 

solution vector initially indicates every locust as follows: 

𝑋𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,𝑛] (8) 

Where 𝑋𝑘 is the position vector of the 𝑘th locust, 𝑥𝑘,𝑗 is the 

position of locust 𝑘 in the 𝑗th dimension, 𝑛 denotes the 

number of decision variables or dimensions. Each 

dimension 𝑗 is bounded by lower and upper limits 𝐿𝑗 and 

𝑈𝑗, respectively. 

The movement of every locust relies upon a 

mechanism of social attraction or repulsion, known as 

Social Force (SF), that controls the influence between 

locusts. The social influence factor leads locusts to keep a 

proper distance and avoid early convergence. Individual 

behavior position is updated using Eq. 9. 

𝑆𝑘,𝑗
𝑡 = 𝑟 + 𝜌(𝑋𝑘

𝑡 , 𝑋𝑙
𝑡) × 𝑠(𝑑𝑘,𝑙

𝑡 ) × 𝑢𝑘,𝑙
𝑡  (9) 

Where 𝑟 is a uniformly random number in the interval [-

1,1], 𝑋𝑘
𝑡  and 𝑋𝑙

𝑡 are positions of two distinct locusts 𝑘 and 

𝑙, 𝑢𝑘,𝑙
𝑡  is the unit vector pointing from locust 𝑘 towards 

locust 𝑙 at iteration 𝑡, and 𝑑𝑘,𝑙
𝑡  is the Euclidean distance 

between locusts 𝑘 and 𝑙. 
The social function is defined as follows: 

𝑠(𝑑𝑘,𝑙
𝑡 ) = 𝐹 × 𝑒−

𝑑𝑘,𝑙
𝑡

𝐿 − 𝑒𝑑𝑘,𝑙
𝑡

 (10) 

Where 𝐹 controls the attraction scale and 𝐿 adjusts the 

attraction length. 

The relative selection function between locusts is 

calculated using Eq. 11, considering their fitness ranks. 

𝜌(𝑋𝑘
𝑡 , 𝑋𝑙

𝑡)

= {
𝑒−5

𝑟𝑎𝑛𝑘(𝑋𝑙
𝑡)

𝑁 ,   𝑖𝑓 𝑟𝑎𝑛𝑘(𝑋𝑙
𝑡) < 𝑟𝑎𝑛𝑘(𝑋𝑘

𝑡)

𝑒−5
𝑟𝑎𝑛𝑘(𝑋𝑘

𝑡)
𝑁 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

 
(11) 

Where rank determines the locust's fitness rank (higher 

fitness corresponds to a better rank) and 𝑁 is the total 

number of locusts. 

The cumulative social force acting on locust 𝑘 is the 

sum of influences from all other locusts, calculated as 

follows: 

𝑆𝐹𝑘
𝑡 = ∑ 𝑆𝑘,𝑗

𝑡

𝑁

𝑗=1,𝑗≠𝑘

 (12) 

The updated position of the locust 𝑘 is decided by 

comparing the fitness values: 

𝑋𝑘
𝑡+1 = {

𝑋𝑘
𝑛𝑒𝑤 ,   𝑖𝑓 𝑓(𝑋𝑘

𝑛𝑒𝑤) < 𝑓(𝑋𝑘
𝑡)

𝑋𝑘
𝑡 ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 (13) 

Where 𝑓 denotes the fitness evaluation function and 𝑋𝑘
𝑛𝑒𝑤 

represents the newly generated candidate position. 

Social behavior encourages locusts in less optimal 

regions (lower-ranked solutions) to explore better 

solutions. A subset 𝐺 ⊆ 𝑃, consisting of weaker-

performing locusts, is identified, where 𝑃 represents the 

entire population. The subset is bounded by the best-

performing locust 𝑋𝑏𝑒𝑠𝑡  and the worst-performing locust 

𝑋𝑤𝑜𝑟𝑠𝑡 . A subgroup 𝑆𝐺 is formed, and the subgroup size 

parameter is calculated using Eq. 14. 

𝑒𝑠 =
𝛼 × ∑ (𝑈𝑗 − 𝐿𝑗)𝑛

𝑗=1

𝑛
 (14) 

Where 𝛼 is an adjustable parameter between [0,1], 

controlling subgroup exploration range, and 𝑛 is the 

dimensionality of the optimization problem. 

The subgroup constraints for each dimension are 

updated as follows: 

𝑈𝑗
𝑆𝐺 = 𝑏𝑗 + 𝑒𝑠,   𝐿𝑗

𝑆𝐺 = 𝑏𝑗 + 𝑒𝑠 (15) 

Where 𝑏𝑗 denotes the central reference position in 

dimension 𝑗. 
Two significant enhancements are integrated into 

LSOA to form the proposed ELSOA. The OBL technique 

is employed to enhance population diversity and 

accelerate convergence. Each candidate solution is 

accompanied by its opposite solution, calculated using Eq. 

16. 

𝑋𝑘,𝑗
𝑜𝑝𝑝

= 𝑈𝑗 + 𝐿𝑗 − 𝑋𝑘,𝑗 (16) 

Where 𝑋𝑘,𝑗
𝑜𝑝𝑝

 is the opposite position for locust 𝑘 in 

dimension 𝑗 and 𝑋𝑘,𝑗 is the original position. 

Chaotic sine maps are applied to generate pseudo-

random initial solutions and updates to ensure diverse 

solution space exploration and avoid premature 

convergence. The chaotic sequence is calculated using Eq. 

17. 

𝑧𝑡+1 =
𝜇

4
× 𝑠𝑖𝑛(𝜋𝑧𝑡) (17) 

Where 𝑧𝑡 ∈ [0,1] is the chaotic variable at iteration 𝑡 and 

𝜇 is a chaotic control parameter typically set to 4 for 

maximum chaos. 

The designed ELSOA addresses the task scheduling 

issue in fog-cloud computing systems for IoT, utilizing a 

systematic, step-by-step optimization technique. The 

algorithm initially builds a diversified population of 

potential solutions, each representing a possible 

scheduling approach. It achieves this by leveraging the 

OBL mechanism to generate both the initial and its 

opposite points simultaneously, thereby doubling the 

population coverage via opposition-based initialization 

and mitigating premature convergence. The solutions are 

evaluated with the assistance of a function that considers 

both the execution time of the tasks (makespan) and the 

power consumption, allowing the algorithm to test their 

feasibility and efficiency in scheduling. 

In the subsequent optimization steps, ELSOA 

gradually improves the solution by balancing global 

exploration and local exploitation. ELSOA refines each 

locust’s position with the help of IB by tuning them 

according to nearby solution interactions, subsequently 

enhancing capability at the local search level. At the same 

time, with SB, inferior-performing locusts systematically 

venture to new areas with the help of top-performing 

solutions and subgroup borders. Further, by applying 

chaotic sine maps in solution updates, exploration 

capability is improved, and the algorithm is not trapped in 

local optima. The iterations continue until optimal or near-

optimal task allocation is obtained, reducing execution 

time and energy consumption. Therefore, ELSOA offers a 

reliable solution to efficiently schedule tasks, addressing 
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performance and energy-efficiency requirements in 

cloud–fog computing. 

5 Experimental evaluation 
This section outlines the details of the simulations, 

including the parameter values, the employed simulation 

framework, and the results achieved. In the cloud–fog 

computing scenario utilized for simulation, each 

computational resource (device) is characterized by 

distinct specifications, including storage capability, 

processing power, RAM capacity, and network 

bandwidth. The most critical experimental parameter is 

computational power, expressed in terms of MIPS. More 

specifically, as shown in Table 2, our system comprises 15 

fog nodes with limited computational power and five 

cloud servers with higher computational resources. 

Although cloud servers offer better computational power, 

performing operations on them also incurs higher 

operational costs than fog nodes. 

We employed the well-known iFogSim simulator to 

perform experiments and assess the proposed ELSOA 

method against various metaheuristic algorithms, 

incorporating real-world and simulated datasets. The 

iFogSim simulator extends the CloudSim framework, 

facilitating algorithm evaluation in cloud–fog computing 

contexts. The parameter setups for our simulation 

environment are detailed in Table 3, implemented using 

Java programming within the Eclipse IDE environment 

alongside iFogSim. 

 

Table 2: Configuration details of simulation environment 

components 

Attributes Fog layer Cloud Layer 
(Centralized) 

Total nodes 15 5 

Memory (RAM) Between 512 GB and 

1000 GB 

From 106 to 4*106 

GB 
Bandwidth 1*103 Megabytes per 

second 

1*102 Megabytes 

per second 

Storage capacity 0.5 to 1 Terabyte 100 Terabytes 
Processing power 500–2000 MIPS 3000–4000 MIPS 

Table 3: Configuration of the simulation platform 

Hardware/software 

component 

Details 

Operating system Windows 11 Pro, 64-bit architecture 

Simulation tool used iFogSim framework 

Installed RAM 16 Gigabytes 
Processor model Intel® CoreTM i5-12400 @ 2.50 GHz 

 

We conducted experiments on both real-life and 

synthetic datasets to investigate the efficiency and 

robustness of ELSOA. For synthetic datasets, we 

randomly created 1000 tasks with lengths varying from 

500 to 15,000 MI. For real-life datasets, we utilized a 

Google cluster workload tracing dataset known as 

GoCJDataset, which was generated by applying Monte 

Carlo simulations commonly used in the literature. The set 

contains 1000 tasks of varying lengths, spanning 15,000 

to 900,000 MI. Tables 4 and 5 list details on real-world 

and simulated datasets. Every experiment was run 100 

times for consistent and reliable assessments, capturing 

minimum, average, and maximum values. 

The performance of ELSOA is evaluated against 

some state-of-the-art metaheuristic algorithms, such as 

Arithmetic Optimization Algorithm (AOA) [21], Whale 

Optimization Algorithm (WOA) [22], HHO [23], PSO 

[24], and Hunger Game Search (HGS) [25], which have 

been shown to solve massive and complicated scheduling 

issues efficiently. The algorithms were compared based on 

several key performance parameters, including makespan 

and energy utilization. 

Table 4. Characteristics of the simulated workload dataset 

Attribute Value range 

Data size (I/O per task) 300 to 600 Megabytes 
Execution duration From 1.29 to 11.94 minutes 

Task computational size 500 to 15,000 MI 

Total task count Between 200 and 1000 tasks 

Table 5. Characteristics of the GoCJ real-world dataset 

Attribute Value range 

Data size (I/O per task) 400 to 700 Megabytes 

Execution duration 1.6 to 16 minutes 

Task computational size 15,000 to 900,000 MI 
Number of job requests Between 200 and 1000 tasks 

 

Figures 3 and 4 present a comparison of ELSOA's 

performance with that of competitor algorithms based on 

makespan values derived from both synthetic and actual 

datasets. The horizontal axis in these figures represents 

quantities of tasks, and the vertical axis displays mean 

makespan times obtained. The experimental results 

demonstrate the superiority of ELSOA, outperforming 

competitor approaches across all task scales and datasets. 

The reason is that ELSOA significantly outperforms the 

established HGS algorithm, particularly in cases involving 

large tasks. 

 

Figure 3: Average makespan comparison of ELSOA and 

baseline algorithms on simulated tasks 

 

Figures 5 and 6 illustrate comparisons between 

ELSOA and competing algorithms in terms of energy 

utilization conducted on simulated and real-world 

datasets. The values shown prove that ELSOA 

consistently utilized less energy compared to all 

competing algorithms, verifying its efficiency in terms of 

energy usage in task scheduling.  
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Figure 4: Average makespan comparison of ELSOA and 

baseline algorithms on GoCJ real-world tasks 

 

Figure 5: Average energy usage comparison of ELSOA 

and baseline algorithms on simulated tasks 

 

Figure 6: Average energy usage comparison of ELSOA 

and baseline algorithms on GoCJ real-world tasks 

 

 

Figure 7: Mean optimal objective scores across varying 

task counts using the simulated dataset 

 

To validate the better performance and resilience of 

the proposed ELSOA algorithm, Figures 7 and 8 illustrate 

the mean optimal objective scores produced by ELSOA 

compared to other algorithms. The results explicitly 

demonstrate the exceptional performance of ELSOA, 

highlighting its potential to handle large-scale job 

scheduling cases in cloud efficiently–fog environments. 

As such, the proposed ELSOA represents a considerable 

advancement over job scheduling, consistently 

outperforming rival metaheuristics and ensuring holistic 

improvements in minimizing makespan and energy 

efficiency in synthetic and real-life datasets. 

 

Figure 8: Mean optimal objective scores across varying 

task counts using the GoCJ real-world dataset 

 

To verify the statistical robustness of ELSOA's 

performance improvements, we conducted paired t-tests 

between ELSOA and each baseline algorithm across both 

makespan and energy consumption. Each test used the 

results from 100 independent runs. The null hypothesis 

(H₀) assumed no significant difference between the 

compared algorithms. The results showed that all 

comparisons between ELSOA and baseline methods were 

statistically significant with p-values < 0.01, rejecting H₀ 
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at the 95% confidence level. A summary of the t-test 

results is presented in Table 6. 

Table 6. Paired t-test results comparing ELSOA with 

baseline algorithms 

Metric Baseline 

algorithm 

Mean 

difference 
(ELSOA – 

Baseline) 

p-

value 

Significant 

(p < 0.05) 

Makespan 

(Synthetic) 

WOA -12.4% 0.0021 Yes 

Makespan 

(GoCJ) 

HHO -14.1% 0.0008 Yes 

Energy 
(Synthetic) 

AOA -16.7% 0.0043 Yes 

Energy 

(GoCJ) 

PSO -17.2% 0.0016 Yes 

 

6 Discussion 
ELSOA demonstrated consistent superiority over 

benchmark metaheuristics. This improved performance is 

attributed to two key enhancements: OBL, which 

broadens the initial search space, and chaotic sine 

mapping, which prevents stagnation in local optima and 

sustains global exploration throughout the search process. 

WOA and PSO, while efficient in smaller task scenarios, 

show limitations in maintaining solution quality as task 

complexity increases. These methods often converge 

prematurely or fail to refine solutions beyond early 

iterations. In contrast, ELSOA effectively balances 

exploration and exploitation, adapting well across varying 

workloads. The use of subgroup-based search dynamics 

helps ELSOA avoid crowding in suboptimal regions, 

leading to higher-quality convergence. 

ELSOA scales effectively under increasing task 

volumes, maintaining stable optimization performance. 

Unlike simpler swarm-based methods, which degrade 

rapidly with task complexity, ELSOA dynamically adjusts 

its exploration parameters to sustain effectiveness. This 

scalability makes it suitable for large-scale IoT 

environments where workloads can be highly variable and 

heterogeneous. Additionally, the algorithm exhibits strong 

adaptability in resource-constrained environments. For 

instance, in configurations with limited fog node 

availability, ELSOA’s resource-aware search improves 

task allocation, optimizing both latency and energy use. 

Competing algorithms often favor cloud-heavy scheduling 

due to their global optimization tendencies, which results 

in higher energy costs and longer makespan. 

Despite its strengths, ELSOA has several limitations. 

It does not currently incorporate deadline constraints or 

priority classes, which are critical in real-time and latency-

sensitive IoT applications. The optimization framework 

lacks explicit QoS controls, such as guarantees on jitter, 

fairness, or throughput. The scheduling approach assumes 

a static, pre-known workload rather than dynamic or 

online task arrivals typical in real deployments. Security 

and fault tolerance considerations, such as handling node 

failures or malicious behavior, are beyond the present 

scope. 

7 Conclusion 
The present study proposed ELSOA to deal with the task 

scheduling problem in IoT-based cloud–fog 

environments. Owing to the high complexity in optimising 

energy consumption and task executing efficiency 

(makespan), strategic improvements, specifically OBL for 

better initial diversity in the solutions and chaos sine maps 

for improved exploration ability, are incorporated into the 

proposed algorithm. These capabilities enable ELSOA to 

escape local optima and quickly converge to optimal 

values. 

We compared ELSOA's performance exhaustively 

with both simulated and real-life scenarios in the iFogSim 

simulation environment using established metaheuristic 

methods, including HGS, WOA, HHO, PSO, and AOA. 

Experimental outcomes have demonstrated that ELSOA 

exhibits higher efficiency concerning makespan reduction 

and energy efficiency than other competitor methods for 

various workload values. Furthermore, convergence 

analysis has also established ELSOA's efficiency in 

achieving fast and stable convergence in complex 

scenarios. The findings demonstrated that our proposed 

ELSOA boosts computational efficiency in cloud–fog 

computing environments and significantly contributes to 

sustainable resource management. 
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