
https://doi.org/10.31449/inf.v49i34.9018 Informatica 49 (2025) 61–68 61

ELSOA: Enhanced Locust Swarm Optimization for IoT Task

Scheduling in Cloud–Fog Systems

Dongge Tian

Department of Information Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050000, China

E-mail: tdghbhy@163.com

Keywords: internet of things, cloud computing, fog computing, locust optimization

Received: April 26, 2025

The increasing popularity of Internet of Things (IoT) applications highlights the demand for task

scheduling in the cloud–fog scenarios, where low latency, short makespan, and minimal energy use are

of the utmost concern. Although prior optimization methods solved the problems, limitations remain in

convergence speed and overall scheduling performance. We present an Enhanced Locust Swarm

Optimization Algorithm (ELSOA) for scheduling IoT tasks across fog nodes and cloud servers. ELSOA

integrates Opposition-Based Learning (OBL) and chaotic sine mapping to improve the balance between

exploration and exploitation, accelerating convergence and avoiding local optima. Experimental results

using both simulated and real-world datasets (GoCJ) demonstrate that ELSOA achieves an average

reduction of 19.3% in makespan and 17.7% in energy consumption compared to state-of-the-art methods.

These findings confirm that ELSOA offers a scalable and effective solution for dynamic IoT task

scheduling in large-scale fog–cloud environments.

Povzetek: Izboljšan algoritem ELSOA z OBL in kaotičnim sinusnim preslikavanjem omogoča bolj

kvalitetno razporejanje IoT opravil v cloud–fog sistemih, saj skrajša skupni čas izvajanja, zmanjša porabo

energije ter izboljša točnost.

1 Introduction
The Internet of Things (IoT) continues to reshape

industries by enabling massive connectivity and data

generation across devices [1], creating new challenges in

energy management, data processing, and system

optimization [2-4]. With the growth of intelligent

infrastructures such as microgrids and electric vehicle

networks, the integration of renewable energy and

decentralized control systems has become critical [5, 6].

In parallel, the rise of digital technologies like FinTech

and machine learning has transformed economic

forecasting and decision-making processes, reflecting

broader shifts toward data-driven optimization and real-

time analytics [2,3]. In this context, fog computing has

emerged as a key complement to cloud computing,

offering low-latency, edge-level processing crucial for IoT

systems. Efficient task scheduling in such distributed

architectures remains essential to ensure smooth operation

and optimal resource utilization [7].

Efficient scheduling of tasks is necessary to maximize

IoT-based cloud-fog performance. As the number of

devices increases, generating a more significant number of

tasks, minimizing latency is essential to satisfy the real-

time demands of IoT applications such as healthcare

monitoring, intelligent traffic systems, and industrial

automation [8]. Energy efficiency is also critical for

maximizing the lifetime of IoT devices and fog nodes,

which tend to be power-constrained [9]. Minimization of

the makespan, or the duration of processing all tasks,

ensures that the system operates at its maximum while

keeping available resources to a minimum [10].

To counter the problems of efficient task scheduling

in fog-cloud systems, this paper proposes an Enhanced

Locust Swarm Optimization Algorithm (ELSOA). Based

on the foraging behavior of the locust, the LSO algorithm

exhibits robust capabilities in solving computationally

complex optimization problems [11]. However, the

algorithm has limitations in preserving the exploration-

exploitation balance. ELSOA, on the other hand,

incorporates enhancements to improve exploration and

exploitation ability, thus making the algorithm fit to

optimize task scheduling in dynamically changing and

limited-resource environments such as IoT-based fog-

cloud computing. This work aims to address the following

key research questions:

• Can ELSOA achieve lower makespan and energy

consumption trade-offs compared to existing

swarm intelligence algorithms in fog–cloud

computing environments?

• Does integrating Opposition-Based Learning

(OBL) and chaotic sine maps into the base LSO

framework result in faster and more stable

convergence for dynamic, large-scale scheduling

problems?

• Is ELSOA robust and scalable when applied to

both synthetic and real-world IoT workloads under

varying infrastructure conditions (e.g., limited fog

nodes, increased task count)?

62 Informatica 49 (2025) 61–68 D. Tian

2 Related work
Abdel-Basset, et al. [12] suggested the Harris Hawks

Optimization with Local Search (HHOLS) algorithm for

scheduling tasks in fog computing. The energy-conscious

metaheuristic aims to enhance the quality of service of

Industrial Internet of Things (IIoT) applications. It uses

normalization, scaling, and a swap mutation method to

improve workload balancing, followed by a local search

approach that helps enhance solution quality.

Abd Elaziz, et al. [13] proposed a novel Artificial

Ecosystem Optimization (AEO) algorithm for scheduling

tasks in IoT in clouds and fog. It is enhanced with the Salp

Swarm Algorithm (SSA) to increase AEOS exploitation

capability. The proposed algorithm, tested using synthetic

and actual datasets, performs better at minimizing

makespan time and maximizing throughput. Mousavi, et

al. [14] introduced the D-NSGA-II, a bi-objective

optimization method for minimizing energy utilization

and the response time in task scheduling. D-NSGA-II

balances exploitation and exploration using a

recombination operator and controls the selection

pressure.

Saif, et al. [15] proposed a Multi-Objective Grey Wolf

Optimizer (MGWO) that minimizes delay and energy

consumption in task scheduling in a cloud-fog

environment. When executed in a fog broker setting, the

algorithm performs better in optimizing QoS objectives

than state-of-the-art ones. Yin, et al. [16] developed a new

Genetic Ant Colony Optimization (GACO) algorithm for

resource scheduling in cloud-fog systems. The hybrid

approach combines Genetic Algorithm (GA) and Ant

Colony Optimization (ACO) with niche technology and

pheromone updates. NGACO improves makespan,

reduces economic costs, and enhances load balancing.

Qasim and Sajid [17] introduced a Firefly Algorithm-

based scheduler to schedule IoT tasks in cloud computing.

The algorithm uses transfer functions and quantification to

minimize the makespan of tasks allocated to virtual

machines. Qi, et al. [18] proposed a time-sensitive

scheduling algorithm, IPAQ, that schedules tasks based on

their sensitivity to time. IPAQ combines Particle Swarm

Optimization (PSO) and Analytic Hierarchy Process

(AHP) to schedule in a dynamic environment.

The current research centers mostly around task

scheduling optimization in cloud-fog IoT environments to

minimize latency, power usage, and makespan. Yet, a

number of the existing solutions are incomplete. As shown

in Table 1, numerous previous methods do not efficiently

find the right exploration-exploitation balance of the

solution space, resulting in poor performance in complex,

time-varying environments. Most existing strategies also

do not handle multi-objective optimization, so the energy

and the response time are considered in the same

formulation while the solution scales to large IoT

networks. To fill these voids, the paper proposes ELSOA,

which better handles both exploration and exploitation and

specializes in multi-objective task scheduling for the

cloud-fog system.

Table 1: An overview of relevant research

Reference Algorithm Achievement Shortcoming Task

scale

Dataset

type

Multi-

objective

[12] HHOLS Improves energy, makespan, and

flow time

Limited exploration–exploitation

balance

Medium Synthetic Yes

[13] AEOSSA Minimizes makespan and
improves throughput

Focuses on makespan only Medium–
Large

Real +
Synthetic

Partially

[14] D-NSGA-II Balances energy and response time Weak scaling on large IoT networks Medium Synthetic Yes

[15] MGWO Minimizes delay and energy Lacks task fairness consideration Medium Real Yes

[16] NGACO Enhances makespan and cost
reduction

Ignores energy efficiency Medium Synthetic No

[17] Firefly Faster convergence than HHO/DE Single-objective focus Small–

Medium

Synthetic No

[18] IPAQ Time-aware fairness optimization Poor scalability Medium Real Yes

3 Problem statement
The IoT is a revolutionary technological development

based on the aspiration to interconnect physical objects

with digital ones. Different smart devices, such as

gateways, actuators, sensors, cameras, traffic management

systems, and embedded controllers, are made possible

through network-enabled communication and

coordination [19]. These systems have applications in

various categories, including healthcare, energy, urban

security, building management, and industrial monitoring.

These applications generate large amounts of raw, real-

time data that need to be analyzed and recorded for future

reference. This data is commonly forwarded to a central

platform, e.g., a cloud infrastructure, for extensive

preservation and management.

Although cloud computing offers scalable

computation and storage resources, it is not always

suitable for timely or time-critical tasks. Delays in

transmission and the use of off-site data centers can cause

performance bottlenecks and temporary service outages,

especially when network connectivity is poor [20]. These

shortcomings have been addressed by an intermediate

solution known as fog computing, where computation is

shifted closer to the data sources. It minimizes the need to

send all data to off-site servers, thereby lessening network

traffic and enhancing response times.

The hybrid cloud–fog framework is structured

hierarchically into three layers, as shown in Figure 1. The

lower layer comprises various devices supported by IoT

dispersed throughout the physical environment. These

devices act as data sources, consistently generating

ELSOA: Enhanced Locust Swarm Optimization for IoT Task… Informatica 49 (2025) 61–68 63

contextual and operational information. The middle layer,

or the fog layer, is formed by distributed processing nodes,

more commonly called fog nodes or edge gateways, to

handle initial data processing, filtering, and localized

analytics. These nodes act as an intelligent buffer zone

between raw data generation and centralized processing.

At its top tier, there are data centers and cloud

environments. These high-capacity systems enable the

execution of intricate calculations, the storage of

information for extended periods, and the performance of

sophisticated analyses, such as machine learning and the

processing of large datasets. While the cloud layer is

compelling for processing, it is not ideal for missions that

require rapid feedback.

In such a multi-level setup, the problem is to schedule

tasks among various system levels smartly. Optimal

scheduling should decide where every task is executed,

either at the fog level for prompt response or offloaded to

the cloud for heavy computation. The major goal of this

study is to optimize task assignments to shorten total

execution time (makespan) and conserve energy on

available resources. This is the foundation of this

optimization problem addressed by our proposed

algorithm.

Applications in fog–cloud architecture are classified

depending on their sensitivity to time. The time-critical

ones with immediate processing needs are dealt with at fog

nodes to provide low-latency responses. The opposite is

true for delay-tolerant applications, as they are offloaded

to the cloud, where there is greater computational power.

Efficient scheduling is crucial for managing resource

utilization while meeting the timing requirements of every

task. Devices at the edge serve as initial data sources,

sending unprocessed information to the local fog hub for

rapid processing. Figure 2 depicts the mechanism for task

scheduling in a cloud–fog setting. The scheduling policy

is designed to maximize task allocation by minimizing

execution time and energy usage, thereby optimizing

overall system efficiency.

Assume a situation where there are 𝑛 tasks: 𝑇 =
{𝑇1, 𝑇2, . . . , 𝑇𝑛}, each having a length of Million

Instructions (MI). Alongside, there are 𝑚 devices 𝐷 =
𝐷𝑐𝑙𝑜𝑢𝑑 ∪ 𝐷𝑓𝑜𝑔, where 𝐷𝑐𝑙𝑜𝑢𝑑 = {𝐷1, 𝐷2, . . . , 𝐷𝑚}

represents the cloud devices and 𝐷𝑓𝑜𝑔 =

{𝐷𝑚+1, 𝐷𝑚+2, . . . , 𝐷𝑝} refers to the fog devices. Each

device 𝐷𝑗 has processing power denoted by 𝐷𝑝𝑤𝑗
 (in

Millions of Instructions Per Second or MIPS), along with

bandwidth, RAM, and storage capabilities.

The task scheduling problem aims to minimize two

components: the makespan and energy consumption. The

Expected Completion Time (ECT) for a task 𝑇𝑖 given to

device 𝐷𝑗 is calculated using Eq. 1.

𝐸𝐶𝑇𝑖𝑗 =
𝑙𝑖

𝐷𝑝𝑤𝑗
× (

𝑀𝐼
𝑀𝐼𝑃𝑆

)
 (1)

Where 𝑙𝑖 is the length of the task 𝑇𝑖 in MI and 𝐷𝑝𝑤𝑗
 is the

processing power of the device 𝐷𝑗 .

A decision indicator indicates whether the task 𝑇𝑖 is

allocated to the device 𝐷𝑗 , formulated as:

𝐷𝑒𝑐𝑖𝑗

= {
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑒𝑣𝑖𝑐𝑒 𝐷𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

The total execution time for the device 𝐷𝑗 is computed

by summing the execution times of all tasks assigned to it:

𝐸𝑇𝑗 = ∑ 𝐷𝑒𝑐𝑖𝑗 × 𝐸𝐶𝑇𝑖𝑗

𝑛

𝑖=1

 (3)

Makespan represents the maximum time required to

complete all tasks, calculated using Eq. 4.

𝑀𝐾𝑠 (𝑆) = 𝑚𝑎𝑥
𝑗=1,2,...,𝑚

𝐸𝑇𝑗 (4)

Where 𝑚 is the total number of devices.

The second objective is to minimize energy

consumption during task execution. Energy consumption

for the device 𝐷𝑗 is influenced by its idle and active states,

given by:

𝐸(𝐷𝑗) = [𝐸𝑇𝑗 × 𝛽𝑗 + (𝑀𝐾𝑠 − 𝐸𝑇𝑗) × 𝛼𝑗]

× 𝐷𝑝𝑤𝑗

(5)

Where 𝛽𝑗 is a factor representing the energy consumed in

the idle state of the device 𝐷𝑗 and 𝛼𝑗 is a factor

representing the energy consumed in the active state of the

device 𝐷𝑗 .

The total energy consumption across all devices is

calculated using Eq. 6.

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸(𝐷𝑗)

𝑚

𝑗=1

 (6)

The ultimate goal is to minimize both the makespan

and total energy consumption. The final objective function

combines these two objectives, with 𝜆 λ as a weighting

factor between 0 and 1, as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = 𝜆 × 𝑀𝐾𝑠 + (1 − 𝜆) × 𝐸𝑡𝑜𝑡𝑎𝑙 (7)

Where 𝜆 denotes the relative importance of makespan

versus energy consumption.

4 Enhanced locust swarm

optimization algorithm
Metaheuristic optimization algorithms effectively solve

complex optimization problems in various fields of

science and engineering. Classical optimization methods

often fail in complex scenarios because they are prone to

being trapped by a local optimum. The new LSOA, based

on the natural swarming behaviors of the locusts, has the

potential to resolve such intricate issues. It has some

limitations concerning convergence rate and exploration-

exploitation trade-off. In this investigation, a new variant,

ELSOA, is introduced by incorporating key enhancements

to the fundamental LSOA, thereby overcoming the

mentioned limitations.

In LSOA, a candidate solution denotes the location of

a hypothetical "locust" within a search space, figuratively

a farm field. Every locust measures the quality of the "food

source" associated with its fitness value. The population

comprises locust agents with two modes of behaviors:

64 Informatica 49 (2025) 61–68 D. Tian

Individual Behavior (IB) and Social Behavior (SB). A

solution vector initially indicates every locust as follows:

𝑋𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,𝑛] (8)

Where 𝑋𝑘 is the position vector of the 𝑘th locust, 𝑥𝑘,𝑗 is the

position of locust 𝑘 in the 𝑗th dimension, 𝑛 denotes the

number of decision variables or dimensions. Each

dimension 𝑗 is bounded by lower and upper limits 𝐿𝑗 and

𝑈𝑗, respectively.

The movement of every locust relies upon a

mechanism of social attraction or repulsion, known as

Social Force (SF), that controls the influence between

locusts. The social influence factor leads locusts to keep a

proper distance and avoid early convergence. Individual

behavior position is updated using Eq. 9.

𝑆𝑘,𝑗
𝑡 = 𝑟 + 𝜌(𝑋𝑘

𝑡 , 𝑋𝑙
𝑡) × 𝑠(𝑑𝑘,𝑙

𝑡) × 𝑢𝑘,𝑙
𝑡 (9)

Where 𝑟 is a uniformly random number in the interval [-

1,1], 𝑋𝑘
𝑡 and 𝑋𝑙

𝑡 are positions of two distinct locusts 𝑘 and

𝑙, 𝑢𝑘,𝑙
𝑡 is the unit vector pointing from locust 𝑘 towards

locust 𝑙 at iteration 𝑡, and 𝑑𝑘,𝑙
𝑡 is the Euclidean distance

between locusts 𝑘 and 𝑙.
The social function is defined as follows:

𝑠(𝑑𝑘,𝑙
𝑡) = 𝐹 × 𝑒−

𝑑𝑘,𝑙
𝑡

𝐿 − 𝑒𝑑𝑘,𝑙
𝑡

 (10)

Where 𝐹 controls the attraction scale and 𝐿 adjusts the

attraction length.

The relative selection function between locusts is

calculated using Eq. 11, considering their fitness ranks.

𝜌(𝑋𝑘
𝑡 , 𝑋𝑙

𝑡)

= {
𝑒−5

𝑟𝑎𝑛𝑘(𝑋𝑙
𝑡)

𝑁 , 𝑖𝑓 𝑟𝑎𝑛𝑘(𝑋𝑙
𝑡) < 𝑟𝑎𝑛𝑘(𝑋𝑘

𝑡)

𝑒−5
𝑟𝑎𝑛𝑘(𝑋𝑘

𝑡)
𝑁 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

Where rank determines the locust's fitness rank (higher

fitness corresponds to a better rank) and 𝑁 is the total

number of locusts.

The cumulative social force acting on locust 𝑘 is the

sum of influences from all other locusts, calculated as

follows:

𝑆𝐹𝑘
𝑡 = ∑ 𝑆𝑘,𝑗

𝑡

𝑁

𝑗=1,𝑗≠𝑘

 (12)

The updated position of the locust 𝑘 is decided by

comparing the fitness values:

𝑋𝑘
𝑡+1 = {

𝑋𝑘
𝑛𝑒𝑤 , 𝑖𝑓 𝑓(𝑋𝑘

𝑛𝑒𝑤) < 𝑓(𝑋𝑘
𝑡)

𝑋𝑘
𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13)

Where 𝑓 denotes the fitness evaluation function and 𝑋𝑘
𝑛𝑒𝑤

represents the newly generated candidate position.

Social behavior encourages locusts in less optimal

regions (lower-ranked solutions) to explore better

solutions. A subset 𝐺 ⊆ 𝑃, consisting of weaker-

performing locusts, is identified, where 𝑃 represents the

entire population. The subset is bounded by the best-

performing locust 𝑋𝑏𝑒𝑠𝑡 and the worst-performing locust

𝑋𝑤𝑜𝑟𝑠𝑡 . A subgroup 𝑆𝐺 is formed, and the subgroup size

parameter is calculated using Eq. 14.

𝑒𝑠 =
𝛼 × ∑ (𝑈𝑗 − 𝐿𝑗)𝑛

𝑗=1

𝑛
 (14)

Where 𝛼 is an adjustable parameter between [0,1],

controlling subgroup exploration range, and 𝑛 is the

dimensionality of the optimization problem.

The subgroup constraints for each dimension are

updated as follows:

𝑈𝑗
𝑆𝐺 = 𝑏𝑗 + 𝑒𝑠, 𝐿𝑗

𝑆𝐺 = 𝑏𝑗 + 𝑒𝑠 (15)

Where 𝑏𝑗 denotes the central reference position in

dimension 𝑗.
Two significant enhancements are integrated into

LSOA to form the proposed ELSOA. The OBL technique

is employed to enhance population diversity and

accelerate convergence. Each candidate solution is

accompanied by its opposite solution, calculated using Eq.

16.

𝑋𝑘,𝑗
𝑜𝑝𝑝

= 𝑈𝑗 + 𝐿𝑗 − 𝑋𝑘,𝑗 (16)

Where 𝑋𝑘,𝑗
𝑜𝑝𝑝

 is the opposite position for locust 𝑘 in

dimension 𝑗 and 𝑋𝑘,𝑗 is the original position.

Chaotic sine maps are applied to generate pseudo-

random initial solutions and updates to ensure diverse

solution space exploration and avoid premature

convergence. The chaotic sequence is calculated using Eq.

17.

𝑧𝑡+1 =
𝜇

4
× 𝑠𝑖𝑛(𝜋𝑧𝑡) (17)

Where 𝑧𝑡 ∈ [0,1] is the chaotic variable at iteration 𝑡 and

𝜇 is a chaotic control parameter typically set to 4 for

maximum chaos.

The designed ELSOA addresses the task scheduling

issue in fog-cloud computing systems for IoT, utilizing a

systematic, step-by-step optimization technique. The

algorithm initially builds a diversified population of

potential solutions, each representing a possible

scheduling approach. It achieves this by leveraging the

OBL mechanism to generate both the initial and its

opposite points simultaneously, thereby doubling the

population coverage via opposition-based initialization

and mitigating premature convergence. The solutions are

evaluated with the assistance of a function that considers

both the execution time of the tasks (makespan) and the

power consumption, allowing the algorithm to test their

feasibility and efficiency in scheduling.

In the subsequent optimization steps, ELSOA

gradually improves the solution by balancing global

exploration and local exploitation. ELSOA refines each

locust’s position with the help of IB by tuning them

according to nearby solution interactions, subsequently

enhancing capability at the local search level. At the same

time, with SB, inferior-performing locusts systematically

venture to new areas with the help of top-performing

solutions and subgroup borders. Further, by applying

chaotic sine maps in solution updates, exploration

capability is improved, and the algorithm is not trapped in

local optima. The iterations continue until optimal or near-

optimal task allocation is obtained, reducing execution

time and energy consumption. Therefore, ELSOA offers a

reliable solution to efficiently schedule tasks, addressing

ELSOA: Enhanced Locust Swarm Optimization for IoT Task… Informatica 49 (2025) 61–68 65

performance and energy-efficiency requirements in

cloud–fog computing.

5 Experimental evaluation
This section outlines the details of the simulations,

including the parameter values, the employed simulation

framework, and the results achieved. In the cloud–fog

computing scenario utilized for simulation, each

computational resource (device) is characterized by

distinct specifications, including storage capability,

processing power, RAM capacity, and network

bandwidth. The most critical experimental parameter is

computational power, expressed in terms of MIPS. More

specifically, as shown in Table 2, our system comprises 15

fog nodes with limited computational power and five

cloud servers with higher computational resources.

Although cloud servers offer better computational power,

performing operations on them also incurs higher

operational costs than fog nodes.

We employed the well-known iFogSim simulator to

perform experiments and assess the proposed ELSOA

method against various metaheuristic algorithms,

incorporating real-world and simulated datasets. The

iFogSim simulator extends the CloudSim framework,

facilitating algorithm evaluation in cloud–fog computing

contexts. The parameter setups for our simulation

environment are detailed in Table 3, implemented using

Java programming within the Eclipse IDE environment

alongside iFogSim.

Table 2: Configuration details of simulation environment

components

Attributes Fog layer Cloud Layer
(Centralized)

Total nodes 15 5

Memory (RAM) Between 512 GB and

1000 GB

From 106 to 4*106

GB
Bandwidth 1*103 Megabytes per

second

1*102 Megabytes

per second

Storage capacity 0.5 to 1 Terabyte 100 Terabytes
Processing power 500–2000 MIPS 3000–4000 MIPS

Table 3: Configuration of the simulation platform

Hardware/software

component

Details

Operating system Windows 11 Pro, 64-bit architecture

Simulation tool used iFogSim framework

Installed RAM 16 Gigabytes
Processor model Intel® CoreTM i5-12400 @ 2.50 GHz

We conducted experiments on both real-life and

synthetic datasets to investigate the efficiency and

robustness of ELSOA. For synthetic datasets, we

randomly created 1000 tasks with lengths varying from

500 to 15,000 MI. For real-life datasets, we utilized a

Google cluster workload tracing dataset known as

GoCJDataset, which was generated by applying Monte

Carlo simulations commonly used in the literature. The set

contains 1000 tasks of varying lengths, spanning 15,000

to 900,000 MI. Tables 4 and 5 list details on real-world

and simulated datasets. Every experiment was run 100

times for consistent and reliable assessments, capturing

minimum, average, and maximum values.

The performance of ELSOA is evaluated against

some state-of-the-art metaheuristic algorithms, such as

Arithmetic Optimization Algorithm (AOA) [21], Whale

Optimization Algorithm (WOA) [22], HHO [23], PSO

[24], and Hunger Game Search (HGS) [25], which have

been shown to solve massive and complicated scheduling

issues efficiently. The algorithms were compared based on

several key performance parameters, including makespan

and energy utilization.

Table 4. Characteristics of the simulated workload dataset

Attribute Value range

Data size (I/O per task) 300 to 600 Megabytes
Execution duration From 1.29 to 11.94 minutes

Task computational size 500 to 15,000 MI

Total task count Between 200 and 1000 tasks

Table 5. Characteristics of the GoCJ real-world dataset

Attribute Value range

Data size (I/O per task) 400 to 700 Megabytes

Execution duration 1.6 to 16 minutes

Task computational size 15,000 to 900,000 MI
Number of job requests Between 200 and 1000 tasks

Figures 3 and 4 present a comparison of ELSOA's

performance with that of competitor algorithms based on

makespan values derived from both synthetic and actual

datasets. The horizontal axis in these figures represents

quantities of tasks, and the vertical axis displays mean

makespan times obtained. The experimental results

demonstrate the superiority of ELSOA, outperforming

competitor approaches across all task scales and datasets.

The reason is that ELSOA significantly outperforms the

established HGS algorithm, particularly in cases involving

large tasks.

Figure 3: Average makespan comparison of ELSOA and

baseline algorithms on simulated tasks

Figures 5 and 6 illustrate comparisons between

ELSOA and competing algorithms in terms of energy

utilization conducted on simulated and real-world

datasets. The values shown prove that ELSOA

consistently utilized less energy compared to all

competing algorithms, verifying its efficiency in terms of

energy usage in task scheduling.

66 Informatica 49 (2025) 61–68 D. Tian

Figure 4: Average makespan comparison of ELSOA and

baseline algorithms on GoCJ real-world tasks

Figure 5: Average energy usage comparison of ELSOA

and baseline algorithms on simulated tasks

Figure 6: Average energy usage comparison of ELSOA

and baseline algorithms on GoCJ real-world tasks

Figure 7: Mean optimal objective scores across varying

task counts using the simulated dataset

To validate the better performance and resilience of

the proposed ELSOA algorithm, Figures 7 and 8 illustrate

the mean optimal objective scores produced by ELSOA

compared to other algorithms. The results explicitly

demonstrate the exceptional performance of ELSOA,

highlighting its potential to handle large-scale job

scheduling cases in cloud efficiently–fog environments.

As such, the proposed ELSOA represents a considerable

advancement over job scheduling, consistently

outperforming rival metaheuristics and ensuring holistic

improvements in minimizing makespan and energy

efficiency in synthetic and real-life datasets.

Figure 8: Mean optimal objective scores across varying

task counts using the GoCJ real-world dataset

To verify the statistical robustness of ELSOA's

performance improvements, we conducted paired t-tests

between ELSOA and each baseline algorithm across both

makespan and energy consumption. Each test used the

results from 100 independent runs. The null hypothesis

(H₀) assumed no significant difference between the

compared algorithms. The results showed that all

comparisons between ELSOA and baseline methods were

statistically significant with p-values < 0.01, rejecting H₀

ELSOA: Enhanced Locust Swarm Optimization for IoT Task… Informatica 49 (2025) 61–68 67

at the 95% confidence level. A summary of the t-test

results is presented in Table 6.

Table 6. Paired t-test results comparing ELSOA with

baseline algorithms

Metric Baseline

algorithm

Mean

difference
(ELSOA –

Baseline)

p-

value

Significant

(p < 0.05)

Makespan

(Synthetic)

WOA -12.4% 0.0021 Yes

Makespan

(GoCJ)

HHO -14.1% 0.0008 Yes

Energy
(Synthetic)

AOA -16.7% 0.0043 Yes

Energy

(GoCJ)

PSO -17.2% 0.0016 Yes

6 Discussion
ELSOA demonstrated consistent superiority over

benchmark metaheuristics. This improved performance is

attributed to two key enhancements: OBL, which

broadens the initial search space, and chaotic sine

mapping, which prevents stagnation in local optima and

sustains global exploration throughout the search process.

WOA and PSO, while efficient in smaller task scenarios,

show limitations in maintaining solution quality as task

complexity increases. These methods often converge

prematurely or fail to refine solutions beyond early

iterations. In contrast, ELSOA effectively balances

exploration and exploitation, adapting well across varying

workloads. The use of subgroup-based search dynamics

helps ELSOA avoid crowding in suboptimal regions,

leading to higher-quality convergence.

ELSOA scales effectively under increasing task

volumes, maintaining stable optimization performance.

Unlike simpler swarm-based methods, which degrade

rapidly with task complexity, ELSOA dynamically adjusts

its exploration parameters to sustain effectiveness. This

scalability makes it suitable for large-scale IoT

environments where workloads can be highly variable and

heterogeneous. Additionally, the algorithm exhibits strong

adaptability in resource-constrained environments. For

instance, in configurations with limited fog node

availability, ELSOA’s resource-aware search improves

task allocation, optimizing both latency and energy use.

Competing algorithms often favor cloud-heavy scheduling

due to their global optimization tendencies, which results

in higher energy costs and longer makespan.

Despite its strengths, ELSOA has several limitations.

It does not currently incorporate deadline constraints or

priority classes, which are critical in real-time and latency-

sensitive IoT applications. The optimization framework

lacks explicit QoS controls, such as guarantees on jitter,

fairness, or throughput. The scheduling approach assumes

a static, pre-known workload rather than dynamic or

online task arrivals typical in real deployments. Security

and fault tolerance considerations, such as handling node

failures or malicious behavior, are beyond the present

scope.

7 Conclusion
The present study proposed ELSOA to deal with the task

scheduling problem in IoT-based cloud–fog

environments. Owing to the high complexity in optimising

energy consumption and task executing efficiency

(makespan), strategic improvements, specifically OBL for

better initial diversity in the solutions and chaos sine maps

for improved exploration ability, are incorporated into the

proposed algorithm. These capabilities enable ELSOA to

escape local optima and quickly converge to optimal

values.

We compared ELSOA's performance exhaustively

with both simulated and real-life scenarios in the iFogSim

simulation environment using established metaheuristic

methods, including HGS, WOA, HHO, PSO, and AOA.

Experimental outcomes have demonstrated that ELSOA

exhibits higher efficiency concerning makespan reduction

and energy efficiency than other competitor methods for

various workload values. Furthermore, convergence

analysis has also established ELSOA's efficiency in

achieving fast and stable convergence in complex

scenarios. The findings demonstrated that our proposed

ELSOA boosts computational efficiency in cloud–fog

computing environments and significantly contributes to

sustainable resource management.

References
[1] J. Zhao, "Intelligent Logistics Path Optimization

Algorithm Based on Internet of Things Sensing

Technology," Informatica, vol. 49, no. 19, 2025,

doi: https://doi.org/10.31449/inf.v49i19.7584.

[2] M. Ahmadi et al., "Optimal allocation of EVs

parking lots and DG in micro grid using two‐

stage GA‐PSO," The Journal of Engineering,

vol. 2023, no. 2, p. e12237, 2023, doi:

https://doi.org/10.1049/tje2.12237.

[3] A. Kermani et al., "Energy management system

for smart grid in the presence of energy storage

and photovoltaic systems," International Journal

of Photoenergy, vol. 2023, no. 1, p. 5749756,

2023, doi:

https://doi.org/10.1155/2023/5749756.

[4] T. Liu and Z. Zhang, "The Application Effect of

Improved CS-RBF Neural Network in Industrial

Internet of Things Node Localization,"

Informatica, vol. 48, no. 13, 2024, doi:

https://doi.org/10.31449/inf.v48i13.6004.

[5] M. B. Bagherabad, E. Rivandi, and M. J. Mehr,

"Machine Learning for Analyzing Effects of

Various Factors on Business Economic,"

Authorea Preprints, 2025, doi:

https://doi.org/10.36227/techrxiv.174429010.09

842200/v1.

[6] E. Rivandi, "FinTech and the Level of Its

Adoption in Different Countries Around the

World," Available at SSRN 5049827, 2024, doi:

https://dx.doi.org/10.2139/ssrn.5049827.

[7] R. A. Haraty and A. Amhaz, "A Secure and

Scalable Sidechain Model for Fog Computing in

https://doi.org/10.31449/inf.v49i19.7584
https://doi.org/10.1049/tje2.12237
https://doi.org/10.1155/2023/5749756
https://doi.org/10.31449/inf.v48i13.6004
https://doi.org/10.36227/techrxiv.174429010.09842200/v1
https://doi.org/10.36227/techrxiv.174429010.09842200/v1
https://dx.doi.org/10.2139/ssrn.5049827

68 Informatica 49 (2025) 61–68 D. Tian

Healthcare Systems," Informatica, vol. 49, no. 1,

2025, doi:

https://doi.org/10.31449/inf.v49i1.5580.

[8] S. Rostami, A. Broumandnia, and A.

Khademzadeh, "An energy-efficient task

scheduling method for heterogeneous cloud

computing systems using capuchin search and

inverted ant colony optimization algorithm," The

Journal of Supercomputing, vol. 80, no. 6, pp.

7812-7848, 2024, doi:

https://doi.org/10.1007/s11227-023-05725-y.

[9] D. Alsadie, "Advancements in heuristic task

scheduling for IoT applications in fog-cloud

computing: challenges and prospects," PeerJ

Computer Science, vol. 10, p. e2128, 2024, doi:

https://doi.org/10.7717/peerj-cs.2128.

[10] R. Stewart, A. Raith, and O. Sinnen, "Optimising

makespan and energy consumption in task

scheduling for parallel systems," Computers &

Operations Research, vol. 154, p. 106212, 2023,

doi: https://doi.org/10.1016/j.cor.2023.106212.

[11] O. Kesemen, E. Özkul, Ö. Tezel, and B. K.

Tiryaki, "Artificial locust swarm optimization

algorithm," Soft Computing, vol. 27, no. 9, pp.

5663-5701, 2023, doi:

https://doi.org/10.1007/s00500-022-07726-0.

[12] M. Abdel-Basset, D. El-Shahat, M. Elhoseny,

and H. Song, "Energy-aware metaheuristic

algorithm for industrial-Internet-of-Things task

scheduling problems in fog computing

applications," IEEE Internet of Things Journal,

vol. 8, no. 16, pp. 12638-12649, 2020, doi:

https://doi.org/10.1109/JIOT.2020.3012617.

[13] M. Abd Elaziz, L. Abualigah, and I. Attiya,

"Advanced optimization technique for

scheduling IoT tasks in cloud-fog computing

environments," Future Generation Computer

Systems, vol. 124, pp. 142-154, 2021, doi:

https://doi.org/10.1016/j.future.2021.05.026.

[14] S. Mousavi, S. E. Mood, A. Souri, and M. M.

Javidi, "Directed search: a new operator in

NSGA-II for task scheduling in IoT based on

cloud-fog computing," IEEE Transactions on

Cloud Computing, vol. 11, no. 2, pp. 2144-2157,

2022, doi:

https://doi.org/10.1109/TCC.2022.3188926.

[15] F. A. Saif, R. Latip, Z. M. Hanapi, and K.

Shafinah, "Multi-objective grey wolf optimizer

algorithm for task scheduling in cloud-fog

computing," IEEE Access, vol. 11, pp. 20635-

20646, 2023, doi:

https://doi.org/10.1109/ACCESS.2023.3241240.

[16] C. Yin, Q. Fang, H. Li, Y. Peng, X. Xu, and D.

Tang, "An optimized resource scheduling

algorithm based on GA and ACO algorithm in

fog computing," The Journal of Supercomputing,

vol. 80, no. 3, pp. 4248-4285, 2024, doi:

https://doi.org/10.1007/s11227-023-05571-y.

[17] M. Qasim and M. Sajid, "An efficient IoT task

scheduling algorithm in cloud environment using

modified Firefly algorithm," International

Journal of Information Technology, vol. 17, no.

1, pp. 179-188, 2025, doi:

https://doi.org/10.1007/s41870-024-01758-5.

[18] M. Qi, X. Wu, K. Li, and F. Yang, "IPAQ: a multi-

objective global optimal and time-aware task

scheduling algorithm for fog computing

environments," The Journal of Supercomputing,

vol. 81, no. 2, p. 377, 2025, doi:

https://doi.org/10.1007/s11227-024-06853-9.

[19] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and

M. Sadeghi, "A roadmap towards energy‐

efficient data fusion methods in the Internet of

Things," Concurrency and Computation:

Practice and Experience, vol. 34, no. 15, p.

e6959, 2022, doi:

https://doi.org/10.1002/cpe.6959.

[20] A. Ksentini, M. Jebalia, and S. Tabbane,

"IoT/Cloud‐enabled smart services: a review on

QoS requirements in fog environment and a

proposed approach based on priority

classification technique," International Journal

of Communication Systems, vol. 34, no. 2, p.

e4269, 2021, doi:

https://doi.org/10.1002/dac.4269.

[21] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd

Elaziz, and A. H. Gandomi, "The arithmetic

optimization algorithm," Computer methods in

applied mechanics and engineering, vol. 376, p.

113609, 2021, doi:

https://doi.org/10.1016/j.cma.2020.113609.

[22] S. Mirjalili and A. Lewis, "The whale

optimization algorithm," Advances in

engineering software, vol. 95, pp. 51-67, 2016,

doi:

https://doi.org/10.1016/j.advengsoft.2016.01.00

8.

[23] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M.

Mafarja, and H. Chen, "Harris hawks

optimization: Algorithm and applications,"

Future generation computer systems, vol. 97, pp.

849-872, 2019, doi:

https://doi.org/10.1016/j.future.2019.02.028.

[24] J. Kennedy and R. Eberhart, "Particle swarm

optimization," in Proceedings of ICNN'95-

international conference on neural networks,

1995, vol. 4: ieee, pp. 1942-1948, doi:

https://doi.org/10.1109/ICNN.1995.488968.

[25] Y. Yang, H. Chen, A. A. Heidari, and A. H.

Gandomi, "Hunger games search: Visions,

conception, implementation, deep analysis,

perspectives, and towards performance shifts,"

Expert Systems with Applications, vol. 177, p.

114864, 2021, doi:

https://doi.org/10.1016/j.eswa.2021.114864

https://doi.org/10.31449/inf.v49i1.5580
https://doi.org/10.1007/s11227-023-05725-y
https://doi.org/10.7717/peerj-cs.2128
https://doi.org/10.1016/j.cor.2023.106212
https://doi.org/10.1007/s00500-022-07726-0
https://doi.org/10.1109/JIOT.2020.3012617
https://doi.org/10.1016/j.future.2021.05.026
https://doi.org/10.1109/TCC.2022.3188926
https://doi.org/10.1109/ACCESS.2023.3241240
https://doi.org/10.1007/s11227-023-05571-y
https://doi.org/10.1007/s41870-024-01758-5
https://doi.org/10.1007/s11227-024-06853-9
https://doi.org/10.1002/cpe.6959
https://doi.org/10.1002/dac.4269
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.eswa.2021.114864

