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As a core component of the diversion tunnel in hydropower stations, the drainage pump is prone to 

blockage in its inlet filter due to severe water calcification inside the tunnel. In this study, the present 

study proposes a computer-vision-based detection method to assess the blockage degree of the inlet filter's 

pores. Specifically, the outline of the small pores in the inlet screen of the drainage pump unit was 

captured using the Canny edge detection algorithm. Then the pore and non-pore areas of the filter were 

distinguished with the HSV color model. Finally, the degree of blockage was determined by calculating 

the proportion of pore areas within the filter screen. When applied to a real hydropower station using 12 

images sampled at 15-day intervals, this developed computer vision technology achieved 13.6% average 

error against manual annotations and demonstrated real-time processing (<1s/image on 4-core/8GB 

edge devices) effective detection for the pores blockage degree of the drainage pump's inlet filter screen, 

by quantitatively assessing the blockage degree, it provides critical metrics that enable predictive 

maintenance scheduling and performance evaluation, thereby ensuring reliable hydraulic performance 

and minimizing downtime in the hydropower station's drainage system. 

Povzetek: Predstavljena je hibridno računalniško-vidna metoda s Canny robnim zaznavanjem in HSV 

segmentacijo za sprotno kvantifikacijo zamašitve por na črpalkah, ki omogoča prediktivno vzdrževanje 

hidroenergetskih sistemov.

 

1 Introduction 
As one of the most essential parts of drainage systems, 

drainage pump unit is widely used in hydropower stations, 

mines, rivers and other fields for water management [1]. 

Because of the special landform and the low terrain height 

in southwest region of China, the powerhouse for large 

hydropower station is mostly located in the riverside 

mountains. To deal with the accidents such as water 

seepage from the mountain and heavy rainfall, etc., which 

can lead to flooding of the powerhouse, the hydropower 

station is often equipped with a comprehensive drainage 

system to discharge the accumulated water. Usually, the 

seepage water from the mountain is diverted to the 

catchment area through the open channel, and then the 

water is discharged through the drainage pump unit. But 

drainage pump unit may be damaged during this process 

because of inhalation of debris from the mountain or water 

calcification. Water calcification stems from calcium 

carbonate (CaCO3) precipitation in groundwater, driven 

by temperature shifts and pH changes. Southwest China’s 

karst geology exacerbates mineral dissolution, while 

debris like silt combines with scales to form dense fouling 

layers, accelerating pore blockage. Such blockages  

 

 

significantly increase hydraulic resistance, forcing pumps 

to overwork, elevating energy consumption and  

overheating risks. Prolonged operation may cause motor 

burnout, while partial drainage raises flood risks during 

storms. Nowadays, people add a filter screen to the inlet 

channel of the drainage pump unit to avoid the damage but 

the small pores of the filter screen are still easily blocked 

by calcified debris, resulting in reduced hydraulic 

performance of the drainage pump unit and even leading 

to motor damage. Although the electrical submersible 

pump has been in use for many years, there are still many 

problems which can be summarized into three main 

categories: electrical problems, mechanical problems and 

operational problems. For operational problems, fluid with 

different nature would cause different problems with 

multi-phase fluids (liquids, solids and gases) causing more 

serious problems than others [2]. 

In drainage systems, traditional blockage detection 

methods such as pressure differential monitoring, vibration 

analysis, and acoustic emission sensing often lack spatial 

resolution, making it challenging to quantify pore-level 

obstructions. Recent advancements in computer vision 

have enabled non-invasive inspection techniques. For 

instance, an AIoT-based real-time visual detection solution 
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for culvert blockages integrates artificial intelligence, 

computer vision, and edge computing to effectively assess 

blockage status. However, these methods often rely on 

extensive training data or perform inadequately under 

dynamic environmental conditions, such as fluctuating 

illumination in enclosed hydropower tunnels. Notably, 

research addressing calcification-induced pore blockages 

in hydropower drainage systems is limited. One study 

applied impedance spectroscopy and tomography to 

monitor calcite deposits in drainage pipes, providing 

insights into the formation and detection of such blockages 

[3]. However, integrating real-time visual monitoring with 

predictive models remains underexplored. Traditional 

RGB-based vision systems often misclassify calcified 

deposits due to color similarities with filter materials. In 

contrast, utilizing alternative color spaces and edge 

detection algorithms has shown potential in distinguishing 

mineral deposits from metallic surfaces, yet their 

application in hydropower pump filters has not been fully 

investigated [4]. 

Moreover, existing methods-including manual 

inspections, predictive models, and traditional computer 

vision-face three key limitations: (1) labor-intensive 

periodic cleaning cannot address sudden blockages; (2) 

data-driven models require extensive datasets and 

calibration, hindering deployment in variable 

environments; and (3) conventional vision systems 

struggle with lighting fluctuations and color ambiguities 

between scale deposits and pores. To overcome these gaps, 

we propose a hybrid computer vision framework 

combining Canny edge detection and HSV segmentation. 

This approach bypasses the dependency on training data 

by directly quantifying pore geometry and color contrast, 

ensuring robustness in enclosed tunnels with dynamic 

conditions. Real-time porosity monitoring enables 

predictive maintenance, surpassing the reactive nature of 

traditional manual strategies. To contextualize our 

approach, Table 1 compares mainstream blockage 

detection methods across five critical dimensions: 

 

Table 1: Comparative analysis of blockage detection methods 

Method Required Data Resolution Robustness Cost 
Deployment 

Context 

Pressure 

differential  
Sensor readings Low 

Flow-

dependent 
Medium Pipe systems 

Impedance 

tomography 

Electrochemical 

signals 
Medium 

Contact-

required 
High Lab/small pipes 

AIoT vision 
Labeled image 

datasets 
High 

Lighting-

sensitive 
High Open culverts 

RGB analysis RGB images Medium 
Color-

ambiguous 
Low 

Controlled 

lighting 

Our method  
Single unlabeled 

image 
High 

Lighting-

adaptive 
Low 

Enclosed 

tunnels 

 

Currently, different preventive and control measures 

are adopted to solve the problem of flow channel blockage 

for actual working places. For example, for irrigation 

canals, pumping stations, inlet sluice, and other hydraulic 

structures, Singal et al. [5] added garbage racks in front of 

the water intakes to prevent floating and sinking objects 

from causing damage or running problems to the turbines 

and other components. Hribernik [6] used hydropower 

station flow and waste rack head losses to build rack 

clogging models to distinguish head losses caused by 

debris and rack structures. Cui et al. [7] found that 

groundwater along rivers and lakes showed a periodic 

change and then did relevant experiments to evaluate the 

effect of water level changes on the migratory depositional 

characteristics of particles in porous media. Tao et al. [8] 

designed a pre-pumped micro pressure filter to filter 

sediment particles through a stainless-steel filter and 

developed a prediction model for filter head loss. Liu et al. 

[9] developed a novel simulation model which coupled 

hydrodynamics and hydrochemistry for calculating the 

deposition rate of CaCO3 fouling in the pipeline surface. 

Ogie et al. [10] proposed a method for measuring and 

ranking the vulnerability of pumping stations to trash 

blockage, which makes it possible to point out the 

pumping stations that are most vulnerable to trash 

blockage. For instance, Rana et al. [11] found in the 

ultrafiltration analysis and comparison of produced water 

in the upstream oil and gas operations that the best 

membrane for treating produced water was zirconium 

oxide. Fujita et al. [12] tested the Fe removal capacity of 

three green filtration materials in deployed closed- and 

open-loop thermal systems using groundwater geothermal 

energy (GGE) to reduce clogging problems in open-loop 

ground source heat pump systems. Nallakukkala et al. [13] 

proposed three techniques for controlling scale formation: 

removal or decrease of Scale-forming species, water 

treatment for acidification of feed and degassing CO2 

generated from carbonates, and chemical treatment for 

descaling using acids or chelating agents. 

The above research focuses on analyzing the flow 

pattern, the clogging mechanism and flow channel 

structure design to cope with flow channel blockage. 

Although few studies have constructed predictive models 

for the blockage degree of flow channel, these methods are 

all built based on being able to accurately extract blockage-

related operation and environment variables, as well as 
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sufficient high-quality positive and negative blockage 

training sample data sets, which makes the modal hard to 

be applied in special work places such as the diversion 

tunnel’s catchment area of hydropower station, where the 

water calcification is unavoidable and the optimization of 

the inlet filter structure of the pump is limited. Therefore, 

it is necessary to detect the blockage in these work places 

in advance. In this study, the present study proposes a 

computer-vision-based detection method for the blockage 

degree in the inlet filter's pores. High-definition cameras 

were installed to collect images of drainage pump units 

periodically, and then Canny edge detection algorithm was 

used to extract the pores outline of the inlet filter screen in 

this image. Finally, the HSV color model was used to 

separate the pore space from the non-pores space 

(including limescale and filter screen body). The 

proportion of pore areas in the filter screen was calculated, 

and the remaining porosity ratio threshold alarm was set to 

notify the relevant personnel in advance to carry out the 

filter screen descaling treatment. 

To reliably quantify pore blockage in hydropower 

drainage pumps under dynamic tunnel conditions, our 

approach combines: 

(1) Canny edge detection for robust pore localization; 

(2) HSV segmentation to distinguish calcified 

deposits; 

(3) Pore-area calculation for blockage quantification; 

Compared with the manually annotated results, the 

accuracy of the algorithm model was verified through error 

comparison. 

Main Contributions: 

Hybrid vision framework: Combined Canny edge 

detection and HSV segmentation to quantify pore blockage, 

overcoming limitations of manual inspections and data-

driven models. 

Training-free real-time monitoring: Enabled robust 

pore detection in dynamic tunnel environments without 

requiring large datasets. 

Practical validation in hydropower stations: Tracked 

pore-area reduction over time, supporting predictive 

maintenance and downtime reduction. 

Enhanced robustness via HSV: Outperformed RGB 

methods in distinguishing pores from calcified deposits 

under variable lighting. 

 

1 Methods 
2.1 Canny edge detection 

As a general edge detection algorithm [14], the Canny 

algorithm can detect the edge in a very robust way. It can 

extract the image edges without disturbing the image 

features and separate the noise from the input image. It is 

one of the most practical and functional detection 

operators available. The basic idea of the Canny algorithm 

is to use a two-dimensional Gaussian filter template to 

smooth the image, then use the derivative algorithm to find 

the grayscale gradient of the pixel in the x and y direction 

and further calculates the gradient's magnitude. Then it 

carries out the ‘non-maximum suppression’ to find out the 

maximum value of the pixel in the gradient direction and 

determine whether the central pixel is tentatively set as an 

edge point. Finally, it conducted the double-threshold 

selection to make a final judgment on the tentative edge 

points obtained in the previous step and select the final 

edge. 

 

 

2.1.1 Gaussian filter 

In the data acquisition stage, the digital image 

acquired by the sensor is usually affected by noise, and 

image denoising can effectively preserve the image edge 

and get better expansion in the flat area [15]. Gaussian 

filters are good at removing normally distributed noise, 

which is usually found in cameras images produced 

through its digitization process. It is a natural phenomenon 

caused by the light-reflecting nature of the camera itself 

and the sensitivity of the optical sensor [16]. 

First, the image noise is removed by a filter through 

convolving with the image. The noise in the image 

corresponds to the high-frequency part of the image so that 

the noise can be removed in the frequency domain. 

However, edge detection and filtering usually conflict with 

each other because the filtered image is pixel-weighted 

averaged according to the template, which reduces noise 

but blurs the image edge simultaneously, resulting in 

increasing uncertainty of edge position. Hence, 

compromise between the two is necessary. The kernel 

determined by Gaussian function can resist noise 

interference while not affect the sensitivity of edge 

detection too much. That’s the reason why we choose 

Gaussian filter to remove the noise in the digital image. 

The 2D Gaussian kernel is defined as follows: 

𝐾 =
1

2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2
) (1) 

 

2.1.2 Intensity and direction of pixel gradient 

The image edge can be in any direction. The gradient 

(G) magnitude and the direction (θ) of each pixel point can 

be obtained by calculating the first derivative of the 

horizontal and vertical directions of each pixel point. The 

G and θ can be calculated as follows: 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (2) 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
) (3) 

 

The first derivative of the horizontal and vertical 

gradients can be calculated by operator filtering such as 

Roberts, Prewitt, and Sobel. Among them, the Sobel 

operator is particularly useful for image processing and 

edge computing [17]. Therefore, this paper used the Sobel 

operator instead of the traditional 2*2 template to reduce 

the generation of isolated edge points and pseudo-edge 

points. The Sobel operator gave more weight on the center 

coefficient, which can provide smoother images. The 

gradient operator of Sobel along the x and y directions are 

calculated as follows: 

𝑔𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] (4) 
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𝑔𝑦 = [
−1 −2 1
0 0 0
1 2 1

] (5) 

 

2.1.3 Non-Maximum Suppression 

The Non-maximum Suppression (NMS) was first 

created in edge detection field to improve a rough edge 

response to a thin line [18]. This oriented NMS operates in 

a one-dimensional (1-D) range perpendicular to the edge. 

Kitchen and Rosenfeld [19] extended this concept to 

isotropic NMS to locate two-dimensional (2-D) 

characteristic points of an image, which are selected as 

local maxima of an “Angle” image over a neighborhood. 

Non-maximum suppression searches for local 

gradient maxima of pixel points along the direction of the 

pixel gradient and sets the gray value of pixel points 

corresponding to local non-maxima to 0. Its function is to 

remove false edges and refine and precisely locate the 

image edges. 

2.1.4 Dual Threshold Selection 

By setting two thresholds TH1 and TH2 (TH1 > TH2), 

double threshold selection filters the local maximum pixel 

x generated in non-maximum suppression to realize noise 

reduction and edge continuity. In this process, the pixel 

points are filtered into three sets: the strong edge set 𝑆𝑠, the 

weak edge set 𝑆𝑤, and the abandoned edge set 𝑆𝑑, defined 

as follows: 

{𝑆𝑤|𝑇𝐻1 > 𝑥 > 𝑇𝐻2} (6) 

  
{𝑆𝑠|𝑥 > 𝑇𝐻1} (7) 
{𝑆𝑑|𝑇𝐻2 > 𝑥} (8) 

 

When its gradient is larger than TH1, the pixel point 

is classified as "definite edge" pixel and are retained. Pixel 

points with gradients smaller than TH2 are regarded not to 

be edges and are discarded. For those Pixel points whose 

gradient is between TH1 and TH2, they are considered to 

be part of the edge only if they are connected to a "definite 

edge" pixel point, otherwise they are discarded. 

 

2.2 HSV color space 
HSV (Hue, Saturation, Value) is created by graphic 

designers mimicking the process of artists creating colors 

[20-21]. H (hue) represents the hue of a pixel point, and is 

measured by Angle with value ranges from 0° to 360°. S 

(saturation) represents the saturation of the pixel point, and 

its saturation value ranges from 0 to 255. V (value) 

represents the brightness of the pixel point, reflecting the 

colorless concept of intensity. The value of V ranges 

between 0.0~1.0, with 0.0 representing black and 1.0 

denoting white.  

HSV aggregations are closer to human vision (as they 

reached highest F1 values) than the RGB aggregations, and 

HSV aggregations have lower standard deviations than 

RGBs, suggesting that the HSV methods are more robust 

[22]. As the HSV model is evolved from the RGB cube 

model, so the HSV color space can be converted from the 

RGB color space. Based on the principle of its conversion, 

the HSV color space can be calculated through the 

following formula: 

𝐻 =  

{
 
 

 
 𝑎𝑟𝑐𝑐𝑜𝑠(

(𝑅 − 𝐺) + (𝑅 − 𝐵)

2√(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)
) , 𝐵 ≤ 𝐺

2𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠(
(𝑅 − 𝐺) + (𝑅 − 𝐵)

2√(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)
) , 𝐵 > 𝐺 

 (9) 

𝑆 =
𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) − 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)

𝑚𝑎𝑥(𝑅, 𝐺, 𝐵)
 (10) 

𝑉 =
𝑚𝑎𝑥(𝑅, 𝐺, 𝐵)

255
 (11) 

 

where, R, G, and B are the three components of the 

RGB model, respectively. 

 

2 Results 
Applied this developed computer vision 

technology to the drainage pump of a real hydropower 

station. The pump was installed vertically with a filter 

screen at the inlet for filtering debris and calcified 

matter. A camera was installed on the wall of the 

catchment area closest to the pump. The pore blockage 

detection of the inlet filter included three steps: filter 

profile extraction, HSV separation of filter’s small 

pores and pore area calculation.  

 

 

 

 

2.1 Inlet filter profile extraction 
The extraction steps of the inlet filter are as 

follows: 

a. Marking the outline of inlet filter. The edge 

outline of the inlet filter was manually marked with 

Anylabeling tool to get the (x, y) coordinate of these 

pixel points. The image taken from the camera is shown 

in Fig. 1a. 

b. Transforming into mask area. Read the profile 

coordinates of the inlet filter in json file and transform 

them into masked regions based on OpenCV as shown 

in Fig. 1b. 

c. Filling the mask area. Actual pictures of the 

filter were used to fill the mask area obtained, and the 

area out of the profile was further filled with white 
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color. Finally, the complete outline picture of the filter 

screen was obtained, as shown in Fig. 1c.  

 
Figure 1: Extraction process of intake filter 

 

3.2 Identification of filter’s pores with HSV  

 

 
Figure 2: HSV result of RGB conversion of intake filter 

 

The RGB component of the inlet filter’ image was 

obtained first, and then they were converted into HSV 

component according to the Eq. (9-10). During the 

conversion process, the thresholds of hue, saturation, and 

brightness needed to be adjusted to enhance the filter 

screen pores’ characteristics. The conversion results are 

shown in Fig. 2. 

As can be seen from Fig. 2, the RGB component 

diagram cannot clearly distinguish the porous area of the 

inlet screen from other areas while the S-component map 

of HSV showed clearer pore areas. Based on the HSV 

color, the porous regions of the filter screen were extracted, 

and the outline of filter’s pores was further obtained 

through color region mask. The results are shown in Fig. 

3. 
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Figure 3: Mask image of filter pores 

 

3.3 Pore area calculation 
Based on the pore mask of the filter screen obtained 

through HSV color model, the edge of the pores was 

further detected by Canny algorithm. After grayscale 

treatment of the image, Canny operator was used to 

perform Gaussian filtering, gradient calculation, non-

maximum suppression processing and double threshold 

selection. As there were many irregular lines in the picture, 

the key of the algorithm was the selection of the double 

threshold. In this study, the trackbar of OpenCV was used 

to dynamically adjust the dual thresholds and select the 

appropriate threshold combination pattern. 

As there were some interference areas with similar 

color to the inlet screen pores, so it is necessary to further 

evaluate and select the pore areas obtained. In this paper, 

the box plot was adopted for screening. The anomalies of 

pore areas in the box plot were shown in Fig. 4. The y axis 

of the box plot represented the pixel area size, and the x 

axis represented the target pore area groups. 

 
(a) (b) 

Figure 4: Abnormal area box plot 

 

As shown in Fig. 4a, there were large values in the 

pore area aggregation, resulting in the bad performance of 

the boxplot. Moreover, these outliers belonged to the non-

porous area of the inlet filter screen, so they were supposed 

to be excluded. Fig. 4(b) showed the box plot with an area 

less than 1000 after excluding the outliers. The abnormal 

values in this box plot were the pore-connected regions, 

which should not be removed. There were also some small 

area values in the box plot which belonged to the non-pore 

areas as shown in Fig. 4, so further screening was required. 

The values indicating small pore area mostly 

appeared in the lower quartile of the box plot, and the 

lower quartile was calculated to be 14.5. Therefore, the 

pore area value less than or equal to 14.5 was extracted. 

The diagram of screen result for the specific pore area is 

shown in Fig. 5. 
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Figure 5: Area <= 14.5 pore set 

 

In Fig. 5, the red dot circled in green represented the 

non-porous area, indicating a lot of the non-porous regions 

having a pore area less than or equal to 14.5. Therefore, it 

is reasonable to use the lower quartile value for screening.  

Based on the area screening results of the box plot, 

the S-component distance between pixels in the image was 

further calculated, and all pixels can be classified into two 

types: the pixel corresponding to the filter screen pores (the 

white highlights in the image) and other black regions. By 

accumulating the area values of the first type of pixel 

points, the pixel area of the filter screen pores can be 

obtained as 11949.5 (Fig. 6). 

 
Figure 6: Exclusion of abnormal areas 

 

To quantify detection accuracy, a benchmark was 

established through manual annotation. Three images 

with maximal temporal spans were processed as 

follows: 

(1) Automated pore segmentation via ImageJ 

v1.54g Flood Fill (8-connected) failed due to region 

fragmentation caused by discontinuous intensity 

gradients; 

(2) Freehand Selections were subsequently 

employed to trace irregular pore boundaries; 

(3) Pixel areas were computed automatically using 

Analyze > Measure. An annotation example is shown 

in Fig. 7. 

 
Figure 7: Manual pore annotation using ImageJ Freehand Selections 

 

Comparing algorithmic outputs against manual 

benchmarks, the mean error rate of the HSV-S 

component reached 13.6% (Table 2), confirming 

detection reliability. 
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Table 2: Error rates (%) of pore area between manual annotation and algorithmic detection across three sample images 

Sample Date HSV-H HSV-S HSV-V RGB-R RGB-G RGB-B 

2024-01-07 24.7 12.3 19.8 18.6 19.1 19 

2024-04-06 27.1 14.5 23.6 24.1 23.8 23.8 

2024-06-20 29.4 13.9 25.1 24.2 22.1 23.9 

Mean Error 27.1 13.6 22.8 22.3 21.7 22.2 

 

3.4 Time variation of pore area 
To verify the practicability of this study, the 

changes of the inlet filter over time were tracked. Real 

pictures of the pump unit were taken every 15 days 

within half a year, and the area of the inlet filter was 

extracted. The specific changes of the inlet filter over 

time are shown in Fig. 8. 

 
Figure 8: Changes in intake filter over time 

 

Extract the small pore areas of the inlet filter 

screen in each time and figure out the small pore area. 

In this paper, the extraction result in different time 

periods was shown in the form of mask pictures to see 

its changes more clearly. The specific changes of the 

pore areas of the inlet filter screen over time are shown 

in Fig. 9. 

 
Figure 9: Intake filter pore areas over time 
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In Fig. 9, higher degree of blockage of the small pores 

were seen in the lower region of the intake filter screen 

than that of the upper part, which was because the 

impurities in the water were gathered in the lower region 

after precipitation, resulting in the easy blockage of the 

pores below the intake filter screen. The change of pore 

area of the filter over time can be shown clearly by plotting 

the curve of pore area versus time. The specific inlet filter 

screen pore area with time change curve is shown in Fig. 

10. It’s clear that the pore area of the inlet filter screen was 

getting smaller and smaller over time leading to the pore 

blockage of the inlet filter later, which would affect the 

running of the pump unit. This study realizes the real-time 

monitoring of the inlet filter screen’s pore areas, providing 

a basis for the reasonable arrangement of cleaning work, 

and timely reflecting the serious blockage of the pump unit. 

 
Figure 10: Intake filter pore area versus time curve 

 

3 Discussion  
This study aimed to provide a set of low-cost practical 

scheme for monitoring the blockage of the inlet filter 

screen of the drainage pump unit of the diversion tunnel of 

the hydropower station. This study comprehensively 

analyzed the previous research and practice solutions, such 

as the use of garbage racks and the improvement of 

filtering devices, but they were still needed to be cleaned 

regularly to prevent blockage. This study results also have 

some reference value for similar engineering applications. 

First, the computer vision technology was applied to 

optimize the manual regular cleaning plan. As the water 

calcification and the remote location of diversion tunnel 

which was far away from the management area, the regular 

cleaning program was still used. This program resulted in 

unable to clean the sudden blockage problem timely and 

multiple failures of the pump unit. Compared with regular 

cleaning programs, computer vision technology can 

monitor abnormal conditions timely such as sudden 

blockage and accelerated scaling. Moreover, it offers 

advantages including simple operation, low cost, and 

attractive performance [23]. Although the severe 

calcification of water in diversion tunnel, the calcified 

matter would precipitate to the bottom, so the water 

surface above is relatively clear. Besides, the diversion 

tunnel is enclosed space and is illuminated by searchlights 

throughout the year, which ensures that the brightness of 

the light is constant and the camera provides consistent 

imaging the inlet filter under the water. The camera is 

waterproof and dustproof with IP66 and above to prevent 

water from flooding the camera. 

For the recognition object of computer vision, instead 

of direct recognition of the scaling region of inlet filter, we 

choose to recognize the small pore region of inlet filter. 

While the former enables intuitive assessment of blockage 

scale on the inlet filter, it achieves substantially reduced 

computational complexity, this does not effectively 

represent the blockage degree of the filter screen in 

drainage pump because serious scaling in other non-

porous areas of the inlet filter does not mean that the pump 

unit is in a blocked state. If the staff only cleans the 

blockage of the small pore of the water inlet filter, the 

former would still determine that the pump unit is in a 

blocked state, leading to the erroneous diagnostics. In our 

study, we combine Canny algorithm with HSV color 

model to extract a clear image of the porous area of the 

inlet filter screen. Canny has excellent performance in 

edge detection and has been practically applied in many 

business fields [24-26]. We adopted the HSV model rather 

than the RGB model as the color extraction scheme 

because the extraction of the RGB scheme in the small 

pore area of the inlet filter is not ideal and the HSV color 

extraction scheme provides superior stability. 

Future research mainly focuses on the in-depth 

analysis of the anomaly problem and further development 

of this study. Several practical limitations require 

consideration:  

(1) Lighting stability in enclosed tunnels may affect 

edge detection consistency;  

(2) Manual mask initialization is currently required 

for filter localization;  

(3) Water turbulence could introduce transient noise 

in pore identification; 

(4) With water level changes, light refraction 

variations may influence pore area measurements;  

(5) Potential color similarity between scale deposits 

and pore areas may challenge extraction accuracy. 
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4 Conclusions 
In this study, the profile mask of the inlet filter screen 

of the pump was selected with manual marks to extract the 

complete profile picture of the filter screen. Then, HSV 

color model was used to extract the S component which 

can separate the pores of the filter from non-porous areas. 

Finally, the pixels of the S-component map of the filter 

screen were classified by color Euclide distance, and the 

non-porous regions of the inlet filter screen were removed 

so that the pore pixel area was obtained by summing up the 

pixels representing the pores of the filter screen. By 

calculating the pore pixel area of the filter screen regularly 

and sending the result to the control room of the 

hydropower station, the dynamic tracking and monitoring 

of the blockage degree of the inlet filter screen of the pump 

can be realized. 
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