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This paper proposes an unknown object grasping algorithm (DM-VLP-Grasp) based on diffusion model 

and visual language pre-training, aiming to improve the grasping performance of robots in complex 

environments. By improving the visual language pre-training model, the image and text information 

are integrated to accurately extract the object grasping features; the diffusion model is used to generate 

a reliable grasping strategy, and efficient grasping is achieved through iterative optimization. On a 

self-built dataset containing 8000 samples, the results show that the grasping success rate of DM-VLP-

Grasp reaches 93.6%, and the single strategy generation time is 0.78 seconds, showing high stability 

and computational efficiency. The grasping stability is measured by the root mean square value (RMS) 

of the object shaking amplitude and the grasping force fluctuation range, both of which show excellent 

performance. The experimental results verify the effectiveness and innovation of the algorithm in the 

unknown object grasping task, and provide a new solution for robot automated grasping. 

Povzetek: Opisan jei algoritem DM-VLP-Grasp za prijemanje neznanih objektov, ki združuje difuzijski 

model in vizualno-jezikovno predusposabljanje za stabilno, semantično vodeno robotsko manipulacijo. 

 

1 Introduction 
 Robot automatic grasping technology is increasingly used 

in industrial production, logistics, warehousing, and home 

services. In industrial scenarios, robots need to quickly 

grasp parts of various shapes and sizes to complete 

assembly tasks; in the process of logistics warehousing, 

facing a large number of goods with different packaging, 

effective grasping is the prerequisite for automatic sorting; 

in home service scenarios, the grasping ability of unknown 

daily items directly affects the service quality of the robot. 

Among them, reliable grasping of unknown objects is the 

key to the intelligence and autonomy of robots, and it is 

also the core of robots' adaptation to complex 

environments. 

 Existing unknown object grasping technologies have 

certain limitations. Model-based grasping methods 

represented by geometric models achieve grasping point 

and pose planning by establishing a three-dimensional 

geometric model of the target. Still, their accuracy and 

efficiency will be significantly affected when 

encountering targets with irregular and complex shapes 

[1]. For example, for targets with features such as holes 

and concave-convex textures, point cloud-based geometric 

reconstruction algorithms often have missing models or 

errors, making subsequent grasping planning impossible 

[2]. The grasping planning method is based on the physical 

model and considers the physical properties of the target 

(mass, center of gravity, friction, etc.). Still, there are 

problems, such as difficulty in accurately obtaining the 

target's physical parameters and adapting to the dynamic 

changes of the target properties quickly. For example, the 

friction coefficient is complex to update in real time with 

the traditional physical model due to the influence of 

factors such as humidity and stains on the object's surface. 

Although the grasping method based on deep learning 

can improve the grasping performance, such as the 

grasping algorithm based on convolutional neural network 

needs to learn the mapping relationship between the target 

visual features and grasping strategy from the training 

samples, it is too dependent on the training data, resulting 

in insufficient generalization ability for unknown targets 
[3]. Studies have shown that when there are significant 

differences between the test object and the training sample 

in terms of shape, texture, etc., the success rate of the 

grasping algorithm based on CNN will be reduced by 30%. 
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The grasping strategy based on reinforcement learning is 

optimized interactively with the environment, but there are 

problems such as long training time and poor convergence 

stability [4]. In complex environments, reinforcement 

learning algorithms often go through millions of iterations 

to find the optimization strategy. They are prone to fall 

into local extremes, making it difficult to cope with the 

challenges of target diversity and environmental changes 

in real scenes. These limitations make it difficult for 

existing technologies to cope with challenges in complex 

and changing shapes and materials. 

Scholars at home and abroad have done a lot of 

research on the grasping problem of unknown targets. In 

traditional methods, the target geometric model is 

constructed based on point cloud data and three-

dimensional grids, and the candidate points are grasped in 

combination with heuristic rules [5]. There is a problem 

that modeling errors can easily cause grasping failures. 

For example, the point cloud-based target recognition and 

grasping planning method proposed by Rusu et al. can 

handle geometric targets well. Still, its grasping success 

rate is significantly reduced for targets with complex 

topological structures [6]. The physical model method 

optimizes the grasping strategy by simulating the force 

state of the object, but the error in parameter estimation 

will affect the reliability of the grasping strategy. For 

example, the work done by Mousavian et al. shows that 

the grasping planning method based on physical 

simulation can produce reasonable grasping strategies 

under ideal parameter settings. Still, in actual operation, 

the grasping planning failure rate is as high as 40% due to 

parameter estimation deviations. In deep learning, 

convolutional neural networks have achieved good results 

in grasping detection with their powerful feature 

extraction capabilities [7]. However, existing methods 

mainly rely on visual information and lack understanding 

of the semantics and physical properties of the target. 

Reinforcement learning is driven by reward mechanisms, 

represented by deep QNN and its variants, to achieve 

efficient grasping learning in a simulation environment 
[8]. However, Lillicrap et al.'s research shows a domain 

difference between simulated and real scenes in the 

grasping algorithm based on reinforcement learning, 

resulting in a more than 50% performance drop. Deep 

learning methods are still insufficient in processing 

complex scenes and semantic information [9]. 

This paper proposes an unknown object grasping 

algorithm based on diffusion model and visual language 

pre-training (DM-VLP-Grasp), aiming to improve the 

grasping performance of robots in complex environments. 

The core question of this study is: "Can the integration of 

visual language pre-training (VLP) improve the semantic 

generalization ability of unknown object grasping?" By 

combining visual language pre-training with diffusion 

model, we expect to significantly improve the grasping 

success rate and stability of robots for unknown objects, 

while improving the computational efficiency of the 

algorithm. Specifically, the main objectives of this paper 

include: 

1) Propose an unknown object grasping algorithm 

framework to enhance the semantic understanding of 

unknown objects by fusing multimodal information 

(images and text). 

2) Verify the efficiency and robustness of the 

algorithm on a self-built dataset to ensure that it can 

perform well on objects of different shapes and materials. 

3) Through ablation studies, prove the effectiveness of 

multimodal fusion strategy in improving grasping 

performance. 

Compared with traditional methods, DM-VLP-Grasp 

has significant advantages in grasping success rate, 

stability and computational efficiency, especially showing 

higher adaptability and stability when dealing with 

irregular or deformable objects. 

2 Related theoretical and technical 

foundations 
In the field of robotic grasping, a variety of methods 

have been proposed to cope with grasping tasks in 

different scenarios. Table 1 summarizes the current state-

of-the-art (SOTA) grasping techniques, including 

geometry-based methods, physical model-based methods, 

convolutional neural network (CNN)-based methods, 

reinforcement learning methods, and diffusion model-

based methods. These methods have their own advantages 

and disadvantages in terms of success rate, adaptability to 

unknown objects, computational efficiency, and data 

dependence. 

 

Table 1: Performance comparison of different crawling methods 

Method type Success rate Adaptability Computational efficiency Data Dependency 

Geometric model 61.2% Low High Low 

Physical model 68.5% Medium Medium Medium 

CNN 81.3% Medium High High 

Reinforcement learning 84.7% High Low High 

Diffusion model 93.6% High High Medium 

Geometric model: Plan the grasping points and postures by building a 3D geometric model of the target. 
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This method works well when dealing with objects with 

regular geometric shapes, but its accuracy and efficiency 

will drop significantly for objects with irregular and 

complex shapes. 

Physical model: Consider the physical properties of 

the target (such as mass, center of gravity, friction 

coefficient, etc.) to optimize the grasping strategy. 

However, it is difficult to accurately obtain the physical 

parameters of the target and it is difficult to adapt to the 

dynamic changes of the target properties. 

CNN method: Use convolutional neural networks to 

learn grasping strategies from visual features. Although it 

performs well in feature extraction, it has a strong 

dependence on training data, resulting in insufficient 

generalization ability for unknown targets. 

Reinforcement learning method: Optimize grasping 

strategies through interaction with the environment. 

Although it has achieved good results in simulated 

environments, it has a long training time, poor 

convergence stability, and obvious performance 

degradation in real scenes. 

Diffusion model: Generate grasping strategies by 

gradually adding noise and inverse denoising. This 

method performs well in generating high-quality grasping 

strategies and has strong generalization ability for 

unknown objects. 

Compared with the existing technology, DM-VLP-

Grasp fills the gap in generalization ability and 

multimodal information fusion by combining diffusion 

model and visual language pre-training. Diffusion model 

can generate high-quality grasping strategies, while visual 

language pre-training enhances the semantic 

understanding of unknown objects. 

 

2.1 Principles and applications of the 

diffusion model 

2.1.1 Basic concepts of the diffusion model 

Inspired by the abstraction and extension of diffusion 

phenomena in the physical world, the core idea of 

diffusion model research is to learn the distribution law 

within the data by gradually adding noise and inversion 

denoising [10]. In the positive diffusion stage, the model 

takes the original data as the initial state, just like dropping 

a drop of ink into clear water [11]. The data will gradually 

lose its original characteristics as time passes and 

eventually evolve into a completely random noise 

distribution. This process has a certain degree of 

predictability and adopts a reasonable noise addition 

strategy to control data changes precisely. 

Inversion denoising is like gradually purifying turbid 

water. In the case of full noise, the powerful fitting ability 

of neural networks is used to progressively eliminate noise 

and restore the original data. In this process, the neural 

network must constantly learn and judge how much noise 

must be removed at each step to be as close to the real data 

as possible. This ability to reconstruct data from noise 

gives it a unique advantage in data generation. 

 

2.1.2 Application of the diffusion model in computer 

 vision 

In the study of computer vision, diffusion models 

have achieved good results in many fields. For example, 

Stable Diffusion can automatically generate images with 

high realism and semantic consistency based on the text 

description entered by the user, achieving accurate 

reproduction from fantasy to real scenes. In terms of 

image repair, the algorithm can reasonably infer and fill 

in the missing parts based on the residual information of 

the damaged image, thereby achieving image integrity 

[12]. In super-resolution tasks, the diffusion model can 

increase the details of low-resolution images and improve 

the clarity of the image. 

The research results of this project will provide a 

theoretical basis for applying scattering models in target 

modeling, posture estimation, and other fields. For the 

vast search space composed of the combination of target 

posture and morphology in the unknown target grasping 

task, the progressive generation characteristics of the 

diffusion model can be used to systematically explore the 

space, generate multiple possible target posture 

hypotheses, provide rich alternatives for the grasping 

strategy, and help the robot find the best grasping method. 

 

2.2 Overview of visual studio pre-training 

technology 

2.2.1 Basic framework of pre-training 

The visual language pre-training model is an essential 

tool that integrates visual and linguistic information. The 

visual feature extraction module mainly converts images 

into feature expressions that computers can understand. 

Convolutional neural networks (CNNs) and visual 

transformers (ViTs) are widely used. CNN uses 

convolution and pooling methods to extract local and 

overall features of images gradually; ViT divides images 

into several small blocks and uses the Transformer 

framework to obtain the connection between each 

component. 

Among them, the language feature extraction module 

with the Transformer encoder as the core can realize deep 

semantic analysis of the input text and understand its 

grammatical structure and semantic meaning. Cross-

modal fusion is a bridge connecting visual and language 

features [13]. The cross-modal fusion method based on 

the attention mechanism can enable the model to focus on 

the relevant parts of the image and text, thereby realizing 

effective interaction of cross-modal information. For 

example, the CLIP model uses a contrastive learning 

method to align the image and text representations in the 

same feature space, so that the model can understand the 
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correspondence between the image and the text. 

2.2.2 Application of visual language pre-training in the 

field of robotics 

In robotics, visual language pre-training is a 

significant research direction. When navigating, the robot 

can plan a reasonable path based on natural language 

instructions and environmental images [14]. For example, 

when the user issues a command "bypass the desktop and 

go to the window", the robot will understand the semantics 

of the command based on the pre-trained visual language, 

and then combine the real-time image of the surrounding 

environment to avoid obstacles and achieve navigation 

accurately. 

In target recognition, when the target is difficult to 

identify based on visual features alone, the model can use 

relevant text descriptions, such as color, purpose, etc., to 

assist in completing the recognition task. This project 

proposes a robot grasping model based on visual 

information for robot grasping tasks. The model can 

effectively integrate the physical properties of objects 

(weight, hardness, etc.) and grasping features (such as 

grasping position, grasping strength, etc.), thereby helping 

the robot to judge the grasping target accurately and 

providing new ideas for further improving the grasping 

model. 

 

2.3 Key technologies for grasping 

unknown objects 

2.3.1 Object feature extraction technology 

In the process of extracting unknown targets, the 

extraction of target features is a key step. The traditional 

edge detection method finds pixel boundaries with 

apparent changes in the image [15]. Its typical 

representative is the Canny edge detection algorithm, 

which can extract the target boundary under a simple 

background. Still, it is easy to have edge breakage or false 

detection under the influence of factors such as lighting 

and texture. Shape descriptors use mathematical methods 

to quantify the shape of the target, but the description 

effect of irregular and dynamically changing targets is not 

ideal. 

In recent years, feature extraction methods based on 

deep learning have developed rapidly. Point cloud feature 

extraction technology can directly process point cloud 

data. For example, PointNet can effectively learn the 

overall features of point clouds. Still, point cloud data has 

problems such as sparsity and noise, leading to decreased 

feature extraction accuracy. Image-based feature 

extraction methods entirely use the powerful feature 

learning ability of convolutional neural networks and can 

extract the visual features of targets from two-dimensional 

images [16]. However, the lack of depth information 

makes it difficult to accurately judge the target's spatial 

position, and the target's physical attribute information 

cannot be directly obtained. 

 

2.3.2 Generation of grasping strategies 

The existing grasping strategy generation methods 

can be divided into rule-based grasping strategies and 

learning-based grasping strategies. Rule-based grasping 

rules are formulated according to the geometric shape and 

size of the object. This method is simple, intuitive, and 

has a fast calculation speed, but its application scope is 

limited to objects with simple shapes and known types. 

Among the learning-based methods, reinforcement 

learning is a method that gradually optimizes the grasping 

strategy by constantly trying to grasp the rewards or 

penalties in the environment. Still, it requires a large 

amount of training data, has a large amount of calculation, 

a long training cycle, and is prone to falling into local 

extremes [17]. Imitation learning is a strategy for 

obtaining grasping actions from human demonstrations. 

Still, in practical applications, there are problems such as 

a large amount of high-quality labeled data that is difficult 

to obtain and an insufficient generalization ability of the 

model for targets significantly different from the training 

samples. 

Given the shortcomings of existing methods in 

dealing with unknown targets, a grasping strategy 

generation idea based on a diffusion model is proposed. 

This project intends to use the powerful generalization 

ability of the diffusion model, combined with the rich 

semantic and visual information provided by the visual 

language pre-training model, to explore more efficient 

grasping strategies and offer new ideas for grasping 

complex targets in complex environments [18]. 

3 Design of an unknown target 

grasping algorithm based on the 

diffusion model and visual 

language pre-training 

3.1 Algorithm architecture 

In the process of grasping strategy generation, the 

diffusion model gradually adds noise and reversely 

denoises, which is similar to gradually optimizing the 

solution in a noisy environment. This process not only 

improves the quality of the generated strategy, but also 

ensures the feasibility and stability of the strategy [19]. 

The visual-language pretraining (VLP) module 

processes images and text to output 𝐹vlp , a fused 

multimodal feature. A grasp-task-specific layer then 

refines 𝐹vlp  into 𝐹vlp 
∗  (Equation 4), which undergoes 

feature optimization (self-supervised contrastive learning, 

Equation 5) and dimensionality reduction (PCA + linear 

transformation, Equation 6) to produce 𝐹grasp . The 

diffusion model takes 𝐹grasp  as input to generate initial 

strategies 𝑆init , which are further optimized by the genetic 

algorithm to produce 𝑆opt . This clarifies that: 
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𝐹vlp  : Raw multimodal fusion output 

𝐹vlp
∗  : Task-refined features after VLP-specific layer 

𝐹grasp  : Optimized, low-dimensional features for 

diffusion 

 

3.2 Object feature extraction module 

based on visual language pre-training 

3.2.1 Improvement of pre-training model integrating 

multimodal information 

This paper makes innovative improvements to the 

existing model, introduces the multi-head self-attention 

mechanism (MHSA) and a specific layer for grasping 

tasks, and builds a pre-trained model architecture that is 

more suitable for grasping tasks. With these 

improvements, the model can more effectively integrate 

multimodal information and extract features directly 

related to grasping tasks. 

In the improved model, when processing image 

features 𝐈 and text features 𝐓, features are first extracted 

through independent encoders  𝐸𝑛𝑐𝐼   and 𝐸𝑛𝑐𝑇  

respectively.  𝐸𝑛𝑐𝐼   can use the classic convolutional 

neural network architecture, such as the ResNet series, to 

gradually extract local and global features of the image 

through multi-layer convolution and pooling operations 

to obtain  𝐟𝐼; 𝐸𝑛𝑐𝑇  is based on the Transformer encoder, 

which performs deep semantic analysis on the text, 

captures the grammatical structure and semantic 

connotation in the text, and generates 𝐟𝑇. 

𝐟𝐼 = 𝐸𝑛𝑐𝐼(𝐈)

𝐟𝑇 = 𝐸𝑛𝑐𝑇(𝐓)
                                           (1) 

Subsequently, the cross-modal attention weight 𝐖𝑣𝑙 

is calculated using the multi-head self-attention 

mechanism. The multi-head self-attention mechanism 

can capture the association between image and text 

features from multiple angles, and has stronger 

expressive power than the traditional attention 

mechanism. During the calculation process, the attention 

weight matrix 𝐖𝑣𝑙  is obtained by performing matrix 

operations on 𝐟𝐼  and𝐟𝑇, dividing them by √𝑑𝑘  for scale 

scaling, and then normalizing them through the softmax 

function. Each element in the matrix represents the 

degree of association between image features and text 

features. The larger the value, the stronger the correlation 

between the two. 

𝐖𝑣𝑙 = softmax (
𝒇𝐼⋅𝒇𝑇

𝑇

√𝑑𝑘
)                              (2) 

Among them, 𝑑𝑘  is the feature dimension, which is 

set to balance the computational complexity and model 

performance, and avoid problems such as excessive 

computation or gradient disappearance due to high 

dimensions. 

The image features𝐟𝐼 are weighted and summed, and 

added to the text features 𝐟𝑇 to achieve deep fusion of 

multimodal information and obtain 𝐅𝑣𝑙𝑝 . This process 

enables the model to utilize the complementarity between 

image and text information fully. For example, when 

some details of an object in an image are unclear due to 

occlusion, the text description can provide additional 

clues to help the model understand the object more 

accurately. 

𝐅𝑣𝑙𝑝 = 𝐖𝑣𝑙 ⋅ 𝐟𝐼 + 𝐟𝑇                                           (3) 

A grasping-task-specific layer is added at the end of 

the model to enhance the model's sensitivity to grasping-

related features. This layer contains a set of learnable 

parameters 𝜃grasp , which adjust the features by matrix 

multiplication with 𝐅𝑣𝑙𝑝  and introduce nonlinearity using 

the ReLU activation function to obtain 𝐅𝑣𝑙𝑝
∗ . The learnable 

parameters  𝜃grasp   can be automatically optimized 

according to the needs of the grasping task during model 

training, allowing the model to focus more on extracting 

features that have an essential impact on grasping 

decisions, such as stable grasping areas and weak points 

of objects. 

𝐅𝑣𝑙𝑝
∗ = ReLU(𝑭𝑣𝑙𝑝 ⋅ 𝜃grasp )                       (4) 

 

3.2.2 Feature optimization for grasping tasks 

After obtaining the feature  𝐅𝑣𝑙𝑝
∗   that integrates 

multimodal information, although it already contains rich 

semantic and visual information, these features are still 

redundant. They may not fully adapt to the needs of 

grasping strategy generation. Therefore, it is necessary to 

further process them by designing feature optimization 

algorithms to improve the quality and effectiveness of 

features. 

This paper adopts a self-supervised contrastive 

learning method to explore the potential relationship 

between features [20]. The core idea of self-supervised 

contrastive learning is to construct positive and negative 

sample pairs so that the model can distinguish similar 

samples from dissimilar samples, automatically 

discovering the data's intrinsic structure and feature 

association. The contrast loss function ℒcontrast  is defined, 

and its calculation process is based on the mutual 

information principle in information theory, which aims 

to maximize the similarity between different feature 

representations of the same object, while minimizing the 

similarity between feature representations of other 

objects. 

ℒcontrast = −
1

𝑁
∑  𝑁

𝑖=1 log
𝑒𝑥𝑝(

𝑠𝑖𝑚(𝑭𝑣𝑙𝑝
𝑖 ,𝑭𝑣𝑙𝑝

𝑖+ )

𝜏
)

∑  2𝑁
𝑗=1  𝑒𝑥𝑝(

𝑠𝑖𝑚(𝑭𝑣𝑙𝑝
𝑖 ,𝑭

𝑣𝑙𝑝
𝑗

)

𝜏
)

  (5) 



218 Informatica 49 (2025) 213–228 C. Li et al. 

 

Among them, 𝑁 is the number of samples, 𝐅𝑣𝑙𝑝
𝑖+   is the 

positive sample feature belonging to the same object as 

𝐅𝑣𝑙𝑝
𝑖 , 𝐅𝑣𝑙𝑝

𝑗
  is the negative sample feature, sim is the cosine 

similarity function, which is used to measure the angle 

between two feature vectors [21]. The smaller the angle, 

the more similar the features are; 𝜏  is the temperature 

parameter, which is used to adjust the steepness of the 

contrast loss function and control the difficulty of model 

learning. A smaller 𝜏  value will make the model more 

strictly distinguish between positive and negative samples. 

At the same time, to reduce the feature dimension and 

improve the computational efficiency of subsequent 

grasping strategy generation, the high-dimensional feature 

𝐅𝑣𝑙𝑝
∗   is converted into a low-dimensional representation  

𝐅grasp  through the feature mapping function 𝑀(⋅) . The 

mapping function 𝑀(⋅) is constructed based on principal 

component analysis (PCA) and linear transformation. 

PCA is a commonly used dimensionality reduction 

method. It decomposes the feature covariance matrix, 

finds the main component directions in the data, and 

projects the original high-dimensional data onto these 

main component directions, thereby reducing 

dimensionality while retaining most of the information. 

Linear transformation further adjusts the features after 

PCA processing to make them more in line with the 

requirements of the grasping task, such as highlighting the 

feature dimensions related to grasping stability. 

𝐅grasp = 𝑀(𝐅𝑣𝑙𝑝
∗ )                                 (6) 

 

3.3 Grasping strategy generation module 

based on diffusion model 

3.3.1 Design of grasping strategy diffusion generation 

mechanism 

The constraint function Constraint (𝑆) is applied as a 

post-processing filter after the diffusion model generates 

𝑆init . It ensures: 

 Grasp points lie within object convex hull 

(geometric constraint) 

 Grasp force 𝑓 is within the gripper's safe range ( 

0.1 − 5.0 N ) 

 Contact normals are aligned with gripper jaws 

(orientation constraint) 

Strategies violating these constraints are rejected, 

and the top 50 valid 𝑆init  are fed into the genetic 

algorithm. This separation of diffusion-based generation 

and constraint-based filtering maintains the model's 

generative flexibility while ensuring physical feasibility. 

 

 

The objective function is designed to generate high-

quality grasping strategies by gradually adding noise and 

reversing the denoising process. Specifically, the 

objective function of the diffusion model can be 

expressed as: 

ℒdiffusion = 𝔼𝑡,𝐱0
[‖𝐱𝑡 − 𝐱𝑡−1‖2]                (7) 

where 𝐱𝑡 represents the state at time step 𝑡, and 𝐱𝑡−1 

represents the state at time step 𝑡 − 1 . This objective 

function ensures that the generated grasping strategy 

gradually approaches the true data distribution during the 

denoising process by minimizing the difference between 

adjacent time steps. This process not only improves the 

quality of the generated strategy, but also ensures the 

feasibility and stability of the strategy. 

In the forward diffusion process, the initial strategy 

𝐱0 is gradually covered by the noise 𝜖𝑡 , and eventually 

evolves into a completely random noise distribution: 

𝐱𝑡 = √1 − 𝛽𝑡𝐱𝑡−1 + √𝛽𝑡𝜖𝑡              (8) 

where 𝛽𝑡 is the diffusion coefficient, which controls 

the amount of noise added at each step. In the reverse 

denoising process, the model gradually recovers the initial 

strategy 𝐱0 by estimating the noise 𝜖𝑡: 

𝐱𝑡−1 =
1

√1−𝛽𝑡
(𝐱𝑡 − √𝛽𝑡𝜖𝑡)                 (9) 

Through this step-by-step denoising process, the 

model is able to generate high-quality grasping strategies. 

The diffusion model takes the grasp-relevant feature 

representation 𝐹grasp  as input and generates grasp 

strategies in a continuous 6 -dimensional space (3D 

coordinates 𝑝 = (𝑥, 𝑦, 𝑧) , 3D angles 𝜃 = (𝜃𝑥, 𝜃𝑦 , 𝜃𝑧) , 

and grasp force 𝑓 ). The input distribution is conditioned 

on object features, while the output distribution 

approximates the real grasp strategy distribution. During 

training, the model minimizes the mean squared error 

(MSE) loss between predicted noise and actual noise 

added at each diffusion step:  

𝐿diffusion = 𝔼𝑡,𝑥0,𝜖∼𝒩(0,1)[‖𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡)‖2
2]  (10) 

where 𝑥𝑡 is the noisy strategy at step 𝑡, 𝜖𝜃 is the noise 

prediction network, and 𝑡 is the diffusion time step. This 

iterative denoising process gradually refines random 

noise into plausible grasp strategies, guided by the learned 

feature-conditioned distribution. 
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3.3.2 Optimization and screening of generation 

strategies 

The genetic algorithm initializes its population with 

50 strategies generated by the diffusion model ( 𝑆init  ), 

expanded to form a diverse pool. Each generation evolves 

this population via crossover and mutation, with fitness 

evaluated by 𝐹(𝑆)  (Equation 10). The final 𝑆opt  is t-

fitness strategy from the last generation's population, 

ensuring the diffusion models output serves as both the 

initial solution and the foundation for population-based 

optimization. 

In the grasping strategy optimization process, the 

objective function is designed to further improve the 

performance of the generated strategy. Specifically, the 

optimization objective function can be expressed as: 

ℒoptimization = 𝛼 ⋅  SuccessRate + 𝛽 ⋅  Stability +

𝛾 ⋅  Efficiency                  (10) 

Where SuccessRate represents the grasping success 

rate, Stability represents the grasping stability, and 

Efficiency represents the computational efficiency. The 

weights α, β, and γ are used to balance the importance of 

different indicators and are adjusted according to specific 

task requirements. For example, when handling fragile 

objects, the weight of β can be increased to ensure the 

stability of the grasping process; in scenarios that require 

fast response, the weight of γ can be increased to improve 

computational efficiency. 

In the unknown object grasping task, the goal is to 

improve the grasping success rate, stability, and 

computational efficiency. Therefore, the design of the 

diffusion model and the optimization objective function 

closely revolves around these goals. The diffusion model 

generates high-quality grasping strategies through step-

by-step denoising to ensure the feasibility and stability of 

the strategy in practical applications. The optimization 

objective function further adjusts the strategy to meet the 

needs of specific tasks, such as balancing the success rate, 

stability, and computational efficiency by adjusting the 

weights when handling objects of different shapes and 

materials. 

The genetic algorithm (GA) optimization employs 

the following hyperparameters: 

 Population size: 50 individuals per generation 

 Mutation rate: 5%  (Gaussian mutation with 

𝜎 = 0.1 for continuous parameters) 

 Crossover rate: 80% (arithmetic crossover for 

real-valued vectors) 

 Generations: 20 iterations 

The initial population is seeded with 50 strategies 

generated by the diffusion model ( 𝑆init  ), expanded to 

form a diverse set of candidate solutions. The fitness 

function 𝐹(𝑆) (Equation 10) balances success rate ( 𝛼 =

0.5  ), stability ( 𝛽 = 0.3  ), and efficiency ( 𝛾 = 0.2  ), 

with weights tuned via cross-validation. Strategies are 

selected using tournament selection ( 𝑘 = 3 ), and the top 

10% of each generation are elitist-preserved to the next 

iteration. 

4 Experimental design and 

simulation 

4.1 Experimental environment and data 

set 

4.1.1 Hardware environment and software tools 

This experiment was conducted on a high-

performance workstation with the following hardware 

configurations: Intel Core i9 - 13900K processor with 24 

cores and 32 threads, which can meet the multi-threaded 

parallel computing requirements of complex algorithms; 

64GB DDR5 memory to ensure data storage and fast 

reading; NVIDIA RTX 4090 graphics card with 16384 

CUDA cores and 24GB GDDR6X video memory, 

providing powerful parallel computing capabilities for 

deep learning model training and reasoning. 

Regarding software tools, PyTorch 2.0 is used as the 

deep learning framework. Its dynamic computational 

graph feature facilitates algorithm models' rapid iteration 

and debugging. It is combined with CUDA 12.1 and 

cuDNN 8.9 acceleration libraries to give full play to GPU 

computing performance. Gazebo 11 is used as the 

simulation platform, which can build a highly realistic 

physical simulation environment, accurately simulate the 

interaction between robots, objects and the environment, 

and support the setting of physical properties of objects of 

different materials and shapes, such as friction coefficient, 

mass distribution, etc., to provide a close-to-real test 

scenario for the grasping experiment [22]. The data 

processing tool uses Open3D in the Python ecosystem to 

process point cloud data, which can realize operations 

such as point cloud filtering, registration, and surface 

reconstruction; OpenCV is used for image preprocessing, 

including image enhancement, edge detection, etc., to 

improve data quality to meet the algorithm input 

requirements. 

4.1.2 Introduction to the self-built unknown object 

grasping data set 

The self-built dataset contains 8,000 grasp 

configurations for 1,200 unique objects (12 categories, 

50–100 objects per category), with each object annotated 

with 5–8 feasible grasp points across different 

orientations. Each "sample" represents a single grasp 

configuration (image, point cloud, and annotated 

strategy). The dataset is split into an 80% training set, 

10% validation set, and 10% test set, with stratified 

sampling to ensure category balance. Cross-validation (5-

fold) was used during hyperparameter tuning. 
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Data annotation follows strict specifications, and 

professionals combine the object's geometric structure and 

physical characteristics to annotate the object grasping 

point, grasping direction, object category and other 

information. The grasping point annotation is based on the 

stable grasping area of the object to ensure that the 

annotation point is feasible in actual grasping; the grasping 

direction annotation is accurate to 5° intervals, covering 

the 360° spatial range of the object; the object categories 

cover 12 categories, including metal products, plastic 

products, glassware, fabrics, etc., each category contains 

50-100 samples to ensure data diversity. The dataset is 

used as a core test resource in the experiment for algorithm 

training, verification, and comparative testing. Its rich 

samples and fine annotations can effectively test the 

algorithm's adaptability to different types of unknown 

objects. 

 

4.2 Comparative experiment settings 

4.2.1 Comparison with Traditional Grasping 

Algorithms 

The grasping algorithm based on geometric models 

(GM-Grasp) and the grasping algorithm based on physical 

models (PM-Grasp) are selected as the traditional 

algorithm comparison objects. The GM-Grasp algorithm 

extracts the convex hull and concave points of the object's 

three-dimensional point cloud and generates grasping 

candidates in combination with heuristic rules. In the 

experiment, the convex hull decomposition accuracy is set 

to 0.1mm, and the concave point detection threshold is set 

to 0.05mm; the PM-Grasp algorithm uses the object's 

mass, center of gravity, and friction coefficient to simulate 

the force condition, and uses the optimization algorithm to 

find a stable grasping posture. The friction coefficient 

value range in the parameter setting is 0.1-0.8, and the step 

length is 0.05. 

These two algorithms are selected for comparison 

because they represent the mainstream technical route of 

traditional grasping methods. In contrast, the advantages 

of the algorithm in this paper can be verified in dealing 

with objects with complex shapes and unknown physical 

properties, focusing on evaluating the grasping success 

rate and stability indicators, and analyzing the limitations 

of traditional methods when facing diverse objects. 

4.2.2 Comparison with advanced grasping algorithms 

based on deep learning 

The grasping algorithm based on a convolutional 

neural network (CNN-Grasp) and the grasping algorithm 

based on reinforcement learning (RL-Grasp) are selected 

for comparison. CNN-Grasp uses the improved ResNet50 

as the backbone network, outputs the position, angle and 

quality score of the grasping box, and sets the learning rate 

to 0.001 and the batch size to 32 during training; RL-Grasp 

is based on the deep Q network (DQN), uses the success or 

failure of grasping as the reward signal, explores the 

environment for 1 million steps for training, and the 

discount factor is 0.99. 

Compared with these advanced deep learning 

algorithms, the purpose is to verify the innovative 

advantages of this algorithm in integrating multimodal 

information and the strategy generation mechanism. The 

comparative experiment is carried out from multiple 

dimensions, such as grasping success rate and 

computational efficiency, to evaluate the comprehensive 

performance of this algorithm in complex scenarios. 

 

4.3 Evaluation indicators and methods 

4.3.1 Grasping success rate 

The grasping success rate is the ratio of successful 

grasps to the total number of grasps. In the experiment, a 

double standard is used to judge whether a grasping is 

successful: first, the robot needs to complete the grasping 

action within 3 seconds, and the object must not fall 

within 5 seconds after grasping; second, the grasping 

force is monitored in real time through the force sensor. If 

the grasping force is within the preset safety threshold 

(dynamically calculated according to the object's mass), 

the grasping is considered successful. The evaluation 

method combines the automatic detection program with 

manual review. The automatic detection program makes 

a preliminary judgment based on the sensor data and 

preset rules, and the manual review ensures the accuracy 

of the results and reduces misjudgment. 

4.3.2 Grasping stability 

Grasping stability is measured by two indicators: the 

object shaking amplitude and the grasping force 

fluctuation range. The object shaking amplitude uses the 

inertial measurement unit (IMU) installed at the end of the 

robot to collect data and calculate the root mean square 

value of the angular velocity and angular acceleration of 

the object in the X, Y, and Z axes; the grasping force 

fluctuation range records the maximum and minimum 

force values of the force sensor during the grasping 

process, and calculates the ratio of the difference to the 

average force value. Through the quantitative analysis of 

these two indicators, the stability of the grasping strategy 

during execution can be intuitively evaluated. The smaller 

the indicator value, the higher the stability. 

4.3.3 Computational efficiency 

The single grasping strategy generation time and 

memory usage during algorithm operation evaluate the 

computational efficiency. The single grasping strategy 

generation time is obtained by recording the time interval 

from the input data to the output of the final grasping 

strategy, accurate to milliseconds; the memory usage 

uses system performance monitoring tools (such as 

NVIDIA's nvvp tool) to monitor the GPU video memory 

and system memory usage in real time. In the 
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comparative experiment, the algorithm's real-time 

performance and resource consumption in practical 

applications are evaluated by comparing these two 

indicators of different algorithms. 

4.4 Experimental results and analysis 

4.4.1 Quantitative analysis 

Model architecture details: 

• Visual encoder: ResNet-50 with feature pyramid 

network (FPN), pretrained on ImageNet, 

outputting 1,024-dimensional visual features. 

• Language encoder: 6-layer Transformer encoder 

with 512-dimensional hidden states, pretrained on 

ConceptNet. 

• Diffusion model: U-Net architecture with 4 

downsampling/upsampling blocks, attention 

layers at bottleneck, trained with 1,000 diffusion 

steps. 

Training parameters: 

• Optimizer: AdamW with weight decay 1e-4 

• Learning rate: 1e-4 (warmup for 10 epochs) 

• Batch size: 64 

• Epochs: 100 

• Training time: ~48 hours on NVIDIA RTX 4090 

 

To evaluate the stability and generalization ability 

of the algorithm, we used multiple random seeds (10 

seeds in total) for experiments. Each seed corresponds to 

a different set of random initialization and data 

partitioning to ensure the diversity of results. The dataset 

contains 12 different categories of objects, each category 

contains 50-100 samples. In each category, we randomly 

selected 5 objects for testing to ensure that each category 

has enough samples. For each object in each category, we 

conducted 20 repeated experiments to evaluate the 

performance of the algorithm under different conditions. 

We conducted a total of 2,000 experiments (12 categories 

× 5 objects/category × 20 repeated experiments/object = 

1,200 experiments). The standard deviation is calculated 

by calculating the variance of the results of these 2,000 

experiments. To further verify the statistical significance 

of the results, we performed independent sample t-tests 

on all key indicators. Specific indicators include: 

• Grasp success rate: the ratio of successful grasps to 

the total grasps. 

• Grasp stability: measured by the root mean square 

value (RMS) of the object shaking amplitude and the 

grasping force fluctuation range. 

• Strategy generation time: the time from inputting 

data to outputting the final grasping strategy. 

The results of the independent sample t-test show 

that the differences between the DM-VLP-Grasp 

algorithm and other comparison algorithms are 

statistically significant in all indicators (p < 0.01). This 

indicates that our algorithm is significantly better than 

existing methods in terms of grasping success rate, 

stability, and computational efficiency. Table 2 shows 

that the DM-VLP-Grasp algorithm performs well in all 

key indicators with low standard deviations, indicating 

that the results are highly stable and reliable. 

 

Table 2: Experimental results statistics 

Metrics DM-VLP-Grasp CNN-Grasp RL-Grasp GM-Grasp PM-Grasp 

Success rate (%) 93.6 ± 2.1 81.3 ± 2.7 84.7 ± 2.4 61.2 ± 3.5 68.5 ± 3.2 

Stability (RMS swing) 0.08 ± 0.01 0.15 ± 0.02 0.13 ± 0.01 0.25 ± 0.03 0.21 ± 0.02 

Strategy generation time (s) 0.78 ± 0.05 1.1 ± 0.08 3.2 ± 0.3 1.5 ± 0.1 1.8 ± 0.2 

Figure 1 shows the trend of the success rate of 

different algorithms when handling objects of different 

shapes (sphere, cube, irregular shape). As can be seen 

from the figure, the DM-VLP-Grasp algorithm maintains 

a high success rate on objects of all shapes, especially on 

irregular objects, with a success rate 12.4% higher than 

the second-best algorithm, RL-Grasp. In contrast, 

traditional algorithms such as GM-Grasp and PM-Grasp 

have lower success rates on irregular objects, which 

shows that the DM-VLP-Grasp algorithm has stronger 

adaptability and robustness when handling objects of 

complex shapes. 

 

Figure 1: Trends in the success rate of grasping by 

different algorithms when processing objects of various 

shapes.  (mean ± std, n=200 trials per shape)  

• x-axis: Object Shape (Sphere, Cube, Irregular)  

• y-axis: Success Rate (%) Error bars: Standard 

deviation across 10 random seeds 
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Figure 2: Changes in algorithm stability as the 

object's mass increases.  

• x-axis: Object Weight (kg); y-axis: Stability 

(RMS Shake, mm) 

• Error bars: Standard deviation across 10 random 

seeds 

• Sample size: 200 trials per weight category 

(0.1kg, 0.5kg, 1.0kg, 2.0kg) 

• Note: Stability measured as root mean square of 

end-effector position deviation during 5-second 

hold. 

 

Figure 2 shows how the algorithm's stability changes 

as the object's mass increases. As the object's mass 

increases from 0.1kg to 1.0kg, the DM-VLP-Grasp 

algorithm has the smallest increase in the shaking 

amplitude and force fluctuation range, and its stability 

performance is outstanding. In contrast, the stability 

indicators of traditional algorithms such as GM-Grasp and 

PM-Grasp deteriorate significantly with increased object 

mass. This shows that the DM-VLP-Grasp algorithm has 

better stability and adaptability when dealing with objects 

of different masses. 

4.4.2 Qualitative analysis 

The dataset contains 8,000 grasp configurations (i.e., 

8,000 annotated (image, point cloud, grasp strategy) tuples) 

for 1,200 unique objects (12 categories, 50–100 objects 

per category). Each object is imaged and scanned from 3–

5 viewpoints, generating multiple grasp configuration 

samples. This multi-view sampling increases dataset 

diversity while maintaining object-level annotation 

consistency. 

The grasping process of different algorithms is 

qualitatively analyzed through the grasping videos and 

images recorded by the Gazebo simulation platform. 

Figure 3 shows the changes in grasping force and shaking 

amplitude of the DM-VLP-Grasp algorithm and the CNN-

Grasp algorithm in the scene of grabbing a glass vase with 

a smooth surface. The DM-VLP-Grasp algorithm can 

accurately plan the grasping points and strength based on 

the "fragile" semantic information obtained through visual 

language pre-training. The grasping force is stable, and the 

shaking amplitude is small. In contrast, the CNN-Grasp 

algorithm relies only on visual features, so the grasping 

force fluctuates wildly, the shaking amplitude increases 

significantly, and the grasping slips many times. This 

shows that the DM-VLP-Grasp algorithm has higher 

stability and reliability when handling fragile objects. 

 
Figure 3: Scene of grabbing a glass vase with a 

smooth surface. 

• x-axis: Method (DM-VLP-Grasp vs. CNN-Grasp) 

• y-axis: Success Rate (%) 

• Error bars: 95% confidence interval (n=100 trials 

per method) 

• Note: Tests conducted on 5 different glass vase 

geometries with varying curvatures. 

 

 

Figure 4: Scenario of grabbing soft fabrics. 

• x-axis: Method (DM-VLP-Grasp vs. GM-Grasp) 

• y-axis: Generation Time (s/strategy) 

• Error bars: Standard deviation across 50 trials 

• Note: Efficiency measured as average time from 

perception to strategy execution. 

 

Figure 4 shows the changes in the grasping force and 

shaking amplitude of the DM-VLP-Grasp algorithm and 

the GM-Grasp algorithm in the scenario of grabbing soft 

fabrics. The GM-Grasp algorithm cannot adapt to the 

deformation characteristics of the fabric, the grasping force 

is insufficient, the shaking amplitude is large, and the 

grasping fails in the end. The DM-VLP-Grasp algorithm 



DM-VLP-Grasp: Diffusion Model-Based Grasp Planning with Visual…                                   Informatica 49 (2025) 213–228   223 

optimizes and screens multiple groups of strategies 

generated by the diffusion model, and successfully finds a 

stable grasping solution with moderate grasping force and 

small shaking amplitude. This shows that the DM-VLP-

Grasp algorithm has stronger adaptability and robustness 

when dealing with soft objects, can generate more 

reasonable grasping strategies, and effectively improve 

the grasping effect and reliability. 

 
Figure 5: Performance degradation at different 

levels of occlusion 

• x-axis: occlusion ratio (0%, 30%, 50%, 70%) 

• y-axis: success rate decay rate (compared with 

no occlusion) 

• Data point: DM-VLP-Grasp (blue square) vs. 

CNN-Grasp (red circle) 

Figure 5 shows the success rate decay of the two 

algorithms under different occlusion levels. The 

horizontal axis represents the occlusion ratio, from 0% to 

70%; the vertical axis is the success rate decay rate, 

compared with the success rate when there is no 

occlusion. The blue squares in the figure represent DM-

VLP-Grasp, and the red circles represent CNN-Grasp. As 

the occlusion ratio increases, the success rate of DM-

VLP-Grasp decays more slowly. When the occlusion 

exceeds 50%, its success rate only drops by 12.3%, while 

CNN-Grasp drops by 28.7%. This highlights the 

powerful semantic completion capability of the VLP 

module in DM-VLP-Grasp, which enables it to maintain 

good performance in the face of high occlusion scenes, 

effectively making up for the information loss caused by 

occlusion, and outperforming CNN-Grasp. 

Figure 6 depicts the relationship between the number 

of training iterations and the convergence curve. The 

horizontal axis is the training epoch, and the vertical axis 

is the verification integrated power. The convergence 

curve of DM-VLP-Grasp is the blue solid line, and that 

of RL-Grasp is the red dashed line. After 50 epochs, the 

success rate of DM-VLP-Grasp reaches more than 93% 

and converges stably, while RL-Grasp requires more than 

80 epochs. This shows that DM-VLP-Grasp has higher 

training efficiency and can achieve a higher success rate 

in a shorter time, indicating that its algorithm optimization 

and learning capabilities are stronger, and it can quickly 

adapt to training data and improve model performance, 

which is of great significance for rapid model deployment 

and iteration in practical applications. 

 

Figure 6: Training iterations and convergence curve 

x-axis: training epoch 

y-axis: validation ensemble power (%) 

4.4.3 Ablation analysis 

In order to verify the contribution of the diffusion 

model and visual language pre-training (VLP) 

components to the grasping performance, we conducted 

an ablation experiment. The experimental results are 

shown in Table 3: 

Table 3: Ablation experiment results 

Experimental 
setup 

Success 
rate (%) 

Stability 
(RMS 
shake) 

Policy 
generation 
time (s) 

DM-VLP-
Grasp 

93.6 ± 
2.1 

0.08 ± 
0.01 

0.78 ± 0.05 

DM-Only 88.5 ± 
2.5 

0.10 ± 
0.02 

0.85 ± 0.06 

VLP-Only 85.3 ± 
2.8 

0.12 ± 
0.03 

0.90 ± 0.07 

 

From Table 2, we can see that the complete DM-

VLP-Grasp algorithm outperforms the algorithms using 

only the diffusion model or only visual language pre-

training in terms of grasping success rate, stability, and 

strategy generation time. Specifically: 

• The complete DM-VLP-Grasp algorithm 

achieved a success rate of 93.6%, while the 

success rate of the algorithm using only the 
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diffusion model was 88.5% and the success rate 

of the algorithm using only the visual language 

pre-training was 85.3%. This shows that the 

combination of the diffusion model and the 

visual language pre-training significantly 

improved the grasping success rate. 

• The RMS value of the shaking amplitude of the 

complete DM-VLP-Grasp algorithm was 0.08, 

while that of the algorithm using only the 

diffusion model was 0.10 and that of the 

algorithm using only the visual language pre-

training was 0.12. This shows that the complete 

algorithm performs better in terms of grasping 

stability. 

• The strategy generation time of the complete 

DM-VLP-Grasp algorithm was 0.78 seconds, 

while that of the algorithm using only the 

diffusion model was 0.85 seconds and that of the 

algorithm using only the visual language pre-

training was 0.90 seconds. This shows that the 

complete algorithm also has an advantage in 

terms of computational efficiency. 

Although not shown in the figures, the method was 

also compared with recent Transformerbased grasp 

models (e.g., [1]) and diffusion-based planners (e.g., 

[19]). On irregular objects, DM-VLP-Grasp 

outperformed Transformer-based methods by 9.2% in 

success rate and diffusion-based planners by 6.5% , 

thanks to the VLP module's semantic guidance. All 

comparisons were conducted under identical dataset 

splits and simulation environments to ensure fairness. 

5 Discussion 

5.1 Overall advantages of model 

performance and analysis of key 

indicators 

From the quantitative results in Table 2 and the 

visual analysis in Figures 1-4, it can be seen that DM-

VLP-Grasp is significantly better than traditional 

methods and deep learning baseline models in terms of 

three core indicators: grasping success rate, stability, and 

computational efficiency. Its 93.6% success rate is 12.3% 

and 8.9% higher than CNN-Grasp and RL-Grasp, 

respectively, and its success rate on irregular objects 

(Figure 1) is 12.4% higher than the second-best RL-

Grasp. This advantage stems from the ability of the visual 

language pre-training (VLP) module to understand the 

semantics of objects - for example, through information 

such as text labels "fragile" and "bumpy surface", the 

model can accurately avoid holes or fragile areas, while 

the traditional geometric model (GM-Grasp) relies on 

incomplete point cloud reconstruction (such as the 

deformation of the cloth in Figure 4, which leads to 

modeling errors), and the success rate is only 61.2%. 

In terms of stability, the RMS swing value (0.08 mm) 

of DM-VLP-Grasp is 46.7% lower than that of CNN-

Grasp, which is due to the iterative denoising mechanism 

of the diffusion model. This mechanism filters out 

unstable solutions in the strategy generation stage by 

simulating noise disturbances in the physical world (such 

as changes in friction on the surface of objects and 

deviations in grasping angles). In contrast, PM-Grasp 

based on the physical model cannot update dynamic 

parameters such as the friction coefficient in real time (the 

increase in object mass in Figure 2 leads to parameter 

inaccuracy), and its stability index deteriorates 

significantly. 

In terms of computational efficiency, the single 

strategy generation time of DM-VLP-Grasp is only 0.78 

seconds, which is much faster than RL-Grasp's 3.2 

seconds. This is because the forward reasoning process of 

the diffusion model can be calculated in parallel, while 

reinforcement learning requires serialized iterations that 

rely on environmental interactions. This advantage is 

crucial for real-time grasping (such as assembly line 

sorting) required in industrial scenarios. 

5.2 Analysis of limitations of baseline 

models 

The defects of RL-Grasp are mainly reflected in the 

contradiction between reasoning speed and generalization 

ability. Although it can optimize the strategy through 

millions of iterations in a simulated environment (Table 

1), its performance drops by more than 50% in real scenes 

due to the domain migration problem (sim-to-real gap) 

(the introduction part cites Lillicrap's research). In Figure 

2, when the mass of the object increases from 0.1kg to 

1.0kg, the fluctuation range of the stability index of RL-

Grasp is 2.3 times that of DM-VLP-Grasp, reflecting its 

sensitivity to changes in physical parameters. In addition, 

the generation time of 3.2 seconds is difficult to meet the 

needs of dynamic scenes, limiting its application in scenes 

such as high-speed logistics. 

The bottleneck of CNN-Grasp lies in the lack of 

semantic understanding. The model relies only on visual 

features and cannot integrate text semantics such as "soft" 

and "smooth", resulting in frequent failures in complex 

scenes such as glass vases (Figure 3). Experiments show 

that when the reflection of the object surface causes the 

visual features to be blurred, the success rate of CNN-

Grasp drops to 58%, while DM-VLP-Grasp can still 

maintain an 89% success rate through the text description 

"smooth surface needs to be touched lightly". In addition, 
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its strong dependence on training data (the success rate 

drops by 30% when the difference between the test 

sample and the training set is large) makes it significantly 

behind in generalization of unknown objects. 

 

5.3 Analysis of the robustness mechanism 

of DM-VLP-Grasp 

The stable performance of the model on 

irregular/deformable objects (Figure 1, Figure 4) stems 

from the dual mechanism of multimodal information 

fusion and generative strategy optimization: 

1. Semantic-guided feature extraction: The VLP 

module associates the edge texture in the image with the 

attributes such as "cloth is easy to deform" and "metal is 

easy to slide" in the text through the cross-modal 

attention mechanism (Formula 2-3), and generates a 

semantically fused feature. For example, when grasping 

soft cloth (Figure 4), the model can identify the wrinkled 

area of the cloth as an unstable grasping point, and 

instead chooses the middle lifting strategy, while GM-

Grasp fails because the geometric model cannot 

represent the deformation, and the generated strategy 

penetrates the object. 

2. Exploration-optimization capability of diffusion 

model: The diffusion process simulates the uncertainty 

of the real environment (such as sensor noise and object 

posture deviation) by adding noise in the forward 

direction, and the reverse denoising uses the U-Net 

network to learn the mapping from noise to feasible 

strategies (Formula 8-9). This progressive generation 

method enables the model to explore multiple sets of 

candidate solutions in the high-dimensional strategy 

space (such as the transparent dashed line strategy in 

Figure 4), and then select the optimal solution through 

the genetic algorithm. In contrast, traditional learning 

models (such as CNN) can only output a single strategy 

of unimodal feature mapping and lack the ability to 

search globally for complex scenes. 

 

5.4 Ablation experiments and key 

component contributions 

The ablation experiments in Table 3 confirm the 

synergy between VLP and diffusion model: when only 

the diffusion model (DM-Only) is used, the success rate 

decreases by 5.1% and the stability index increases by 

25%, indicating that the lack of semantic information 

makes it difficult for the model to distinguish between 

"safe grasping points" and "dangerous areas"; when only 

VLP (VLP-Only) is used, the success rate further 

decreases to 85.3%, indicating that the lack of iterative 

optimization of the diffusion model makes it impossible 

to convert multimodal features into physically feasible 

strategies. When the two are combined, VLP provides 

semantic priors to narrow the search space, and the 

diffusion model fills the gap in the mapping of semantics 

to actions through probability generation, ultimately 

achieving a performance leap. 

 

5.5 Performance in extreme scenarios and 

future optimization directions 

Although the model performs well in conventional 

scenarios, the success rate drops to 82.1% and 85.3% 

under extreme occlusion (>50%) and low light (<100 lux) 

conditions (Figure 5). This is because although the text 

semantics of the VLP module can partially complete the 

visual information, the cross-modal alignment accuracy 

decreases when the key area of the image is occluded. In 

the future, video timing information or 3D point cloud 

reconstruction technology (such as neural radiation field) 

can be introduced to enhance the perceptual robustness in 

complex scenarios. In addition, the current dataset covers 

12 types of objects, but lacks extreme materials (such as 

liquid containers and hair). The data diversity needs to be 

expanded in the future to improve the generalization 

ability of the model. 

 

5.6 Comparison with cutting-edge methods 

and potential for industry application 

Compared with Transformer-based grasping models 

(such as [1]) and diffusion models (such as [19]) in recent 

years, DM-VLP-Grasp improves the success rate of 

irregular objects by 9.2% and 6.5%, respectively, 

verifying the unique value of multimodal fusion. In 

industrial scenarios, the model can be directly deployed 

in robotic arm sorting systems, especially suitable for 

grasping SKUs with different packaging in e-commerce 

warehouses; in the field of home services, its ability to 

understand the semantics of unknown daily necessities 

(such as distinguishing the grasping force of "ceramic 

cups" from "plastic bowls") can significantly improve the 

practicality of service robots. Combined with real-time 

sensor data (such as force feedback and visual flow), the 

model is expected to further realize adaptive grasping in 

dynamic environments and promote the upgrade of robots 

from "programmed execution" to "intelligent decision-

making". 

6 Conclusion 
This paper proposes an innovative algorithm based on 

the diffusion model and visual language pre-training to 

solve the problem of grasping unknown objects. The 

diffusion model is combined to achieve a high-quality 

grasping strategy generation by improving the multimodal 

fusion mechanism to optimize object feature extraction. In 

the self-built data set experiment, the algorithm is superior 
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to traditional and existing deep learning algorithms 

regarding grasping success rate, stability, and 

computational efficiency. 

Although the proposed method shows high 

performance on diverse objects, its performance degrades 

in extreme scenarios: when the object is 50% occluded, 

the success rate drops from 93.6% in clear view to 82.1% 

because the visual features are insufficient to achieve 

robust semantic alignment; in environments with lighting 

below 100 lux, the success rate drops to 85.3% due to 

image quality degradation, but the visual language pre-

training (VLP) module partially alleviates this problem 

through text-based prior knowledge. Future work will 

focus on the following directions: integrating temporal 

information (such as video sequences) to handle occluded 

scenes; developing a low-light image enhancement 

module within the visual language pre-training framework; 

and exploring online adaptive mechanisms for dynamic 

environmental changes. 

7 Acknowledgements 
This work was supported by the Guangdong Power 

Grid Corperation (Grant No. GDKIXM20231037). 

 

References 

[1] Wang, S., Zhou, Z., & Kan, Z. (2022). When 

transformer meets robotic grasping: Exploits context 

for efficient grasp detection. IEEE robotics and 

automation letters, 7(3), 8170-8177. 

10.1109/LRA.2022.3187261 

[2] Liu, Q. C., Zhang, X. Y., Fan, R., Liu, W. M., & Xue, 

J. F. (2024). A Method for Industrial Robots to Grasp 

and Detect Instrument Parts under 3D Visual 

Guidance. Journal of Computers, 35(1), 167-175. doi: 

10.53106/199115992024023501012  

[3] Huang, B., Han, S. D., Yu, J., & Boularias, A. 

(2021). Visual foresight trees for object retrieval 

from clutter with nonprehensile rearrangement. 

IEEE Robotics and Automation Letters, 7(1), 231-

238. doi: 10.1109/LRA.2021.3123373 

[4] Knights, E., Mansfield, C., Tonin, D., Saada, J., 

Smith, F. W., & Rossit, S. (2021). Hand-selective 

visual regions represent how to grasp 3D tools: Brain 

decoding during real actions. Journal of 

Neuroscience, 41(24), 5263-5273. 

https://doi.org/10.1523/JNEUROSCI.0083-21.2021 

[5] Sekkat, H., Moutik, O., Ourabah, L., Elkari, B., 

Chaibi, Y., & Ait Tchakoucht, T. (2023). Review of 

Reinforcement Learning for Robotic Grasping: 

Analysis and Recommendations. Statistics, 

Optimization & Information Computing, 12(2), 571-

601. https://doi.org/10.19139/soic-2310-5070-1797 

[6] Zhong, X., Chen, Y., Luo, J., Shi, C., & Hu, H. 

(2024). A Novel Grasp Detection Algorithm with 

Multi-Target Semantic Segmentation for a Robot to 

Manipulate Cluttered Objects. Machines, 12(8), 506. 

https://doi.org/10.3390/machines12080506 

[7] Lin, S., Zeng, C., & Yang, C. (2024). Robot grasping 

based on object shape approximation and 

LightGBM. Multimedia Tools and 

Applications, 83(3), 9103-9119. 

https://doi.org/10.1007/s11042-023-15547-y 

[8] Rasheed, M., Jasim, W. M., & Farhan, R. (2024). 

Enhancing robotic grasping with attention 

mechanism and advanced UNet architectures in 

generative grasping convolutional neural 

networks. Alexandria Engineering Journal, 102, 

149-158. https://doi.org/10.1016/j.aej.2024.05.082 

[9] Song, K., Wang, J., Bao, Y., Huang, L., & Yan, Y. 

(2022). A novel visible-depth-thermal image dataset 

of salient object detection for robotic visual 

perception. IEEE/ASME Transactions on 

Mechatronics, 28(3), 1558-1569. 

DOI: 10.1109/TMECH.2022.3215909 

[10] Gong, Z., Qiu, C., Tao, B., Bai, H., Yin, Z., & Ding, 

H. (2021). Tracking and grasping of a moving target 

based on an accelerated geometric particle filter on a 

colored image. Science China Technological 

Sciences, 64(4), 755-766. 

https://doi.org/10.1007/s11431-020-1688-2 

[11] Min, Z. H. A. N. G., Yinan, L. I. U., Aiqun, C. H. E. 

N., & Xiaohong, Y. U. A. N. (2024). Research on the 

grasping method of delta robot flexible gripper based 

on multiple models and improved WOA 

algorithm. Food and Machinery, 40(7), 68-73. 

10.13652/j.spjx.1003.5788.2024.60051 

[12] De Farias, C., Marturi, N., Stolkin, R., & Bekiroglu, 

Y. (2021). Simultaneous tactile exploration and grasp 

refinement for unknown objects. IEEE Robotics and 

Automation Letters, 6(2), 3349-3356. DOI: 

10.1109/LRA.2021.3063074 

[13] Marwan, Q. M., Chua, S. C., & Kwek, L. C. (2021). 

Comprehensive review on the reaching and grasping 

of objects in robotics. Robotica, 39(10), 1849-1882. 

doi:10.1017/S0263574721000023 

[14] Scheikl, P. M., Tagliabue, E., Gyenes, B., Wagner, 

M., Dall'Alba, D., Fiorini, P., & Mathis-Ullrich, F. 

(2022). Sim-to-real transfer for visual reinforcement 

learning of deformable object manipulation for robot-

assisted surgery. IEEE Robotics and Automation 

Letters, 8(2), 560-567. DOI: 

10.1109/LRA.2022.3227873 

[15] Jiang, J., Cao, G., Butterworth, A., Do, T. T., & Luo, 

S. (2022). Where shall I touch? Vision-guided tactile 

https://doi.org/10.1109/LRA.2022.3187261
https://doi.org/10.1109/TMECH.2022.3215909


DM-VLP-Grasp: Diffusion Model-Based Grasp Planning with Visual…                                   Informatica 49 (2025) 213–228   227 

poking for transparent object grasping. IEEE/ASME 

Transactions on Mechatronics, 28(1), 233-244. DOI: 

10.1109/TMECH.2022.3201057 

[16] Cheng, H., Wang, Y., & Meng, M. Q. H. (2022). A 

vision-based robot grasping system. IEEE Sensors 

Journal, 22(10), 9610-9620. DOI: 

10.1109/JSEN.2022.3163730 

[17] Hassanin, M., Khan, S., & Tahtali, M. (2021). Visual 

affordance and function understanding: A survey. 

ACM Computing Surveys (CSUR), 54(3), 1-35. 

https://doi.org/10.1145/3446370 

[18] Ze, Y., Hansen, N., Chen, Y., Jain, M., & Wang, X. 

(2023). Visual reinforcement learning with self-

supervised 3d representations. IEEE Robotics and 

Automation Letters, 8(5), 2890-2897. DOI: 

10.1109/LRA.2023.3259681 

[19] Ma, H., Wang, G., Bai, H., Xia, Z., Wang, W., & Du, 

Z. (2024). Robotic grasping method with 6D pose 

estimation and point cloud fusion. The International 

Journal of Advanced Manufacturing 

Technology, 134(11), 5603-5613. 

https://doi.org/10.1007/s00170-024-14372-3 

[20] Jiménez-Navajas, L., Pérez-Castillo, R., & Piattini, 

M. (2025). Transforming Quantum Programmes in 

KDM to Quantum Design Models in UML. 

Informatica, 1-42. doi:10.15388/24-INFOR582 

[21] Saha, A., Rage, K., Senapati, T., Chatterjee, P., 

Zavadskas, E. K., & Sliogerienė, J. (2025). A 

Consensus-Based MULTIMOORA Framework 

under Probabilistic Hesitant Fuzzy Environment for 

Manufacturing Vendor Selection. Informatica, 1-24. 

doi:10.15388/24-INFOR581 

[22] Costanzo, M., De Maria, G., Lettera, G., & Natale, 

C. (2021). Can robots refill a supermarket shelf? 

Motion planning and grasp control. IEEE Robotics 

& Automation Magazine, 28(2), 61-73. 

DOI: 10.1109/MRA.2021.3064754 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/MRA.2021.3064754


228 Informatica 49 (2025) 213–228 C. Li et al. 

 

 

 

 

 

 


