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This paper relates two prominent models of concurrent computation, namely Actors and the π-calculus.
We build on a thesis that proclaims – Actors enact the role of a coordinating model of computation. We
enrich the Actor model by defining a mechanism for achieving a higher level of abstraction. This helps in
reasoning with collections of Actors termed Actor Troupes. We identify a notion of interaction equivalence
between Actor Troupes; and provide a semantic foundation for the enriched Actor model, in terms of the
π-calculus – which has emerged as the canonical process calculus for the semantic analysis of object-
based concurrent systems. Furthermore, we show that the algebraic notion of barbed bisimilarity in the
π-calculus, corresponds precisely to interaction equivalence of the corresponding Actor Troupes.

Povzetek: Predstavljena sta dva računska modela - z akterji in π-računi.

1 Introduction

There has been an exponential increase in the number of
new paradigms that are being proposed to model concur-
rent distributed computation. This number far exceeds the
corresponding figure for sequential computation. (This
is understandable as the basic sequential architecture, the
von Neumann model, has essentially remained unchanged.)
Despite this fact, concurrency is less well understood than
sequential computation. It would be an understatement to
say that there is an urgent need for a coordinating model
of computation which can interconnect and unify the var-
ied paradigms. The solution to the problem of finding such
a model should commence with a search among the exist-
ing models, rather than in the immediate proposal of yet
another novel paradigm. The factors guiding us in this
search should be at least threefold – expressive power of the
model; relative efficiency of execution of the model with
respect to paradigms based on orthogonal features; and the
demonstrated existence of a sound semantic basis for the
model.

This paper is based on a thesis that proclaims, Actors
enact the role of a coordinating model of computation. Ex-
isting evidence corroborating such a thesis is the following:
Actors have been shown to be an expressive medium which
can easily mimic other paradigms [2, 3]; and the execution
efficiency of Actors has been shown to be as efficient [7]
as the shared memory models (which are orthogonal to the
message passing paradigm of Actors). The only factor that
remains is the provision of a semantic foundation. This pa-
per aims to further the above thesis by taking a step in the
direction of providing a semantic basis to Actors.

Among the various process-calculus approaches to the

algebraic analysis of concurrency, the π-calculus is con-
spicuous by its success. With a well-developed body of
theoretical work supporting it, the π-calculus has attained
a canonical status in the semantic frameworks of object-
based concurrent systems, analogous to the λ-calculus in
sequential programming. The semantic power of the π-
calculus has been demonstrated in many ways – by en-
coding the λ-calculus [26]; by embedding various data-
types [23]; by translating higher-order primitives [23]; and
by using it as a semantic domain for various object-based
concurrent languages [31]. All these facts provide a com-
pelling basis to choose the π-calculus as a semantic foun-
dation for Actors.

This paper relates two prominent models of concurrent
computation – Actors and the π-calculus – in a precise way,
and has the following significant contributions:

1. It argues that Actors can play the role of a coordinat-
ing model of computation, due to the simplicity and
inherent flexibility of the Actor primitives.

2. It enriches the Actor model by defining the notion of
an Actor Troupe – which is a mechanism to achieve a
higher level of abstraction – by restricting the visibil-
ity of some Actors.

3. It provides a semantic foundation to the enriched Ac-
tor model by mapping it to the π-calculus – which has
emerged as the canonical process calculus for the se-
mantic analysis of object-based concurrent systems.

4. It identifies an equivalence relation, interaction equiv-
alence on Actor Troupes, and shows that under the
translation this corresponds to the algebraic notion of
barbed bisimilarity in the π-calculus semantics.
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The rest of this paper is organized as follows: Section
2 gives an introduction to the Actor model of computa-
tion; Section 3 introduces the basic π-calculus notions re-
quired for the purposes of this paper; Section 4 develops a
higher level of abstraction called Actor Troupe and defines
a notion of equivalence between them; Section 5 demon-
strates the translation process from actor systems to the π-
calculus; Section 6 shows that the embedding is semantics
preserving; Section 7 reviews related work; and finally Sec-
tion 8 examines avenues for further research.

2 Actor Model of Computation

Actors [15] form one of the earliest proposed models of
concurrent distributed computation. They include very few
primitive constructs, but serve as a framework for studying
various issues in computation. An actor system consists of
a finite set of three basic entities – actors, messages, and
behavior definitions.

The formal abstract syntax is shown in Figure 1.
(Note that in Figure 1 the following non-terminals: <
actorName>,< behaviorName>, <method>, and <
var> are all identifiers for which there are no correspond-
ing production rules. Furthermore, although < acqList >
and < parameters > are defined by the same production
rule, they are distinguished for the sake of clarity of expo-
sition.)

Actors embody the spirit of objects. Every actor has a
unique name, and a unique mailbox address which remains
unaltered throughout the lifetime of the actor. In other
words, there is an implicit injective function mapping actor
names to mailbox addresses. (We shall make this function
explicit in the translation we provide.) It is at this address
that the actor receives messages. The body of an actor con-
sists of a state, an acquaintance list, and a collection of
methods with relevant actions. The state – encapsulated,
persistent, and private – is made up of variables, which in
turn contain references to other actors. The acquaintance
list is a collection of names of actors which are known to
the present actor at the time of its creation. It is important
to note that, the name of an actor may not be known to all
other actors in the system. Conversely, an actor may not be
aware of the names of all the other actors. Messages can be
sent only to those actors whose addresses are known. Apart
from the addresses that make up the acquaintance list ini-
tially, an actor might receive the addresses of more actors
through the contents of incoming messages. Furthermore,
every actor is also aware of its own mailbox address. Thus
every actor can send messages to itself. The address of an
actor is contained in its own acquaintance list. In partic-
ular, we stipulate that it occurs as the last element of its
acquaintance list. Thus the acquaintance list of an actor is
never empty, and always contains at least a single element
namely its own address. Each method has a set of param-
eters, which is received along with the method name to be
serviced. Corresponding to each method, is a set of actions

that the actor performs. We shall explain the actions after
we deal with behavior definitions.

Behavior definitions are parametric actor definitions,
parameterized over the state variables and acquaintance
names. Behavior definitions by themselves are not actors
– they provide templates for the creation of new actors.
The parameters corresponding to the state and the acquain-
tances have to be specified and instantiated at the time of
creating new actors.

Messages are the driving force of an actor system. This
is due to the fact that computation in an actor system is car-
ried out in response to messages received by the actors of
the system. Every message has two distinct parts – destina-
tion address and message contents. The destination address
is the mailbox address of an actor in the system to which the
message is to be delivered. The message content comprises
a method name and corresponding parameters. The actor
at the destination is known to respond to this method name.
The parameters comprise names of other actors. Message
passing in actors is point to point and asynchronous. Mes-
sage delivery is guaranteed but the despatch order need not
be preserved even when we consider the arrival order of
a sequence of messages addressed to the same actor. The
guarantee of message delivery forms a type of fairness as-
sumption [2].

Each instance of an actor can receive only one message.
In response to a message received, which requires one of
the methods of an actor to be processed, an actor may
change its state, and may also perform a finite number of
the following actions:

Send a message to another actor whose mail address is
known;

Create a new actor using a behavior template, by provid-
ing all the parameters required for initialization;

Become an actor, which specifies the replacement behav-
ior to come into effect, when the next message is pro-
cessed.

It may be noted that the next incoming message at the
same mail address is processed by another instance of the
actor with the specified replacement behavior. The process-
ing of the current message need not be completed before
the replacement is specified. During start up time, an ac-
tor system consists of a collection of behavior definitions,
together with a declaration of initial actors and messages.
The actor system evolves in response to the messages sent
to the system.

Example 2.1 (Actor R). Actor R has an empty state, an
acquaintance list comprising three actor names, and it pro-
cesses the method name f . It takes requests for possibly
transforming data by the method name f , and sends the re-
sult to the first actor on its acquaintance list by the method
name g. It specifies an identical replacement behavior to
replace itself. The template of actor R is given by the fol-
lowing behavior definition, which is parametrized by the
two actor names on its acquaintance list:
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< System > ::= {< actorName > ← < behaviorDef >}∗
< behaviorDef > ::= Bdef < behaviorName > with < state > and < acqList >

< method > (< parameters >) → {< actions >}∗
...

endBdef
< state > ::= {< var > ← < actorname >}∗

< acqList > ::= {< actorName >}∗
< parameters > ::= {< actorName >}∗

< actions > ::= become < behaviorName > with < state > and < acqList >
| create < behaviorName > with < state > and < acqList >
| send < method > (< parameters >) to < actorName >

where < actorName >∈< acqList >

Figure 1: An Abstract Syntax for a System of Actors.

Bdef
R with <> and a′, x′, r′

f(d) → send g(d) to a′

become R with <> and a′, x′, r′

endBdef
An instance of actor R can be created by the following mes-
sage:
create R with <> and a′, x′, r′

As mentioned before, the state is made up of variables
which in turn are represented by actors. The state may con-
tain integers or other data-types. However for the sake of
simplicity we consider only empty state configurations in
the examples in this paper.

Example 2.2 (Actor A). Actor A has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name g. It takes requests for possibly
transforming data by the method name g, and sends the re-
sult to the first actor on its acquaintance list by the method
name h. It specifies an identical replacement behavior to
replace itself. The template of actor A is given by the fol-
lowing behavior definition, which is parametrized by the
actor name on its acquaintance list:
Bdef
A with <> and b′, a′

g(d) → send h(d) to b′

become A with <> and b′, a′

endBdef
An instance of actor A can be created by the following mes-
sage:
create A with <> and b′, a′

Example 2.3 (Actor A1). Actor A1 has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name g. It accepts requests for possibly
transforming data by the method name g, and sends the re-
sult to the first actor on its acquaintance list by the method

name m. It specifies an identical replacement behavior to
replace itself. The template of actor A1 is given by the fol-
lowing behavior definition, which is parametrized by the
two actor names on its acquaintance list:
Bdef
A1 with <> and x′, a′

g(d) → send m(d) to x′

become A′ with <> and x′, a′

endBdef
An instance of actor A1 can be created by the following
message:
create A1 with <> and x′, a′

Example 2.4 (Actor B). Actor B has an empty state, an
acquaintance list comprising two actor names, and it pro-
cesses the method name h. It accepts data by the method
name h, and sends the untransformed data to the first actor
on its acquaintance list by the method name m. It speci-
fies an identical replacement behavior to replace itself. The
template of actor B is given by the following behavior def-
inition, which is parametrized by the two actor names on
its acquaintance list:
Bdef
B with <> and x′, b′

h(d) → send m(d) to x′

become B with <> and x′, b′

endBdef
An instance of actor B can be created by the following
message:
create B with <> and x′, b′

Example 2.5 (Actor X). Actor X has an empty state,
an acquaintance list comprising two actor names, and re-
sponds to the method name m. It accepts data by the
method name m, does nothing with the data, and speci-
fies an identical replacement behavior to replace itself. The
template of actor X is given by the following behavior def-
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inition, which is parametrized by the two actor names on
its acquaintance list:
Bdef
X with <> and r′, x′

m(d) → become X with <> and r′, x′

endBdef
An instance of actor X can be created by the following
message:
create X with <> and r′, x′

3 The Polyadic π-calculus
In this section, we include a brief review of the polyadic π-
calculus (PPC) [24, 23, 25] and also introduce the specific
syntax that we use for it in this paper.

Following Milner’s idea [22], a number of calculi for
concurrent computation have been proposed, where the
communication mechanisms are similar. Communication
consists of synchronously sending and receiving messages
through a shared labeled channel. PPC [23, 25, 9] is a model
of concurrent computation that supports process mobility
by naming and passing channels. It consciously forbids the
transmission of processes as messages. One of its goals is
to demonstrate that in some sense it is sufficiently powerful
to allow only channel names to be the content of communi-
cations. PPC has two kinds of entities – names (channels)
and processes (agents).

Definition 3.1 (Names and Processes). Names (x, y, . . . ∈
X ) are atomic entities while Processes (P,Q, . . . ∈ P)
have the following structure:

P ::= N | (P |Q) | !P | (νx)P

where, Normal Processes (M,N, · · · ∈ N ) are defined as:

N ::= π.P | 0 | M + N

and, the Prefix (π), is given by:

π ::= x(ỹ) | x[ỹ]

where, ỹ refers to a finite sequence of names.
The term 0 represents an inactive process, which cannot

perform any action. We shall omit the trailing “.0” from
process terms. Basic actions in PPC constitute sending or
receiving names on channels. The construct x(y) (called
an input prefix) represents an atomic action, where name x
binds name y. The process term x(y).P waits for a name
to be transmitted along channel x, substitutes the received
name for all free occurrences of y in P , and then triggers P .
The construct x[y] (representing an atomic action) outputs
the name y along x, but does not bind name y. The form
P |Q denotes that P and Q are concurrently active, inde-
pendent, and can communicate. The form M + N means
that the process can indulge in precisely one of the alterna-
tives, given by M and N , for communication. Operator “!”

is called replication, and !P denotes P |!P . Finally, (νx)P
restricts the use of name x to P . Apart from input prefix,
“ν” is another mechanism for binding names within a pro-
cess term in API. Operator “ν” may also be thought of as
creating new channels. As both mechanisms – input prefix
and ν – bind names, we define BoundNames(P ) as those
names with a bound occurrence in P , and FreeNames(P )
as those with a not bound occurrence in P . The basic rule
of computation in PPC is provided by the parallel composi-
tion of processes which communicate along the same chan-
nel.

The operational semantics of PPC is given in two stages.
A structural congruence is first defined over processes, as
shown below; and then a reduction relation is defined as
shown in Figure 2. Note that the rules do not allow reduc-
tion under prefix, sum, or replication.

Definition 3.2 (Structural Congruence). The relation ‘≡’
is the smallest congruence relation over processes such that
the following laws hold:

1. Processes are identified if they only differ by a change
of bound names.

2. (N/ ≡,+, 0) is an abelian monoid.

3. (P/ ≡, |, 0) is an abelian monoid.

4. !P ≡ P |!P
5. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P

6. If x 6∈ FreeNames(P ) then (νx)(P |Q) ≡ P |(νx)Q

Furthermore, the synchronous π-calculus outlined
above, can be suitably modified to yield the asynchronous
π-calculus [10, 17]. The word ‘asynchrony’ in this calcu-
lus, means that message output is non-blocking. This is
ensured by restricting the formation of a term x[ỹ].P in the
π-calculus to the case where P is a ‘nil’ process. However,
it has been shown that under certain natural assumptions,
the asynchronous version is strictly less expressive than the
synchronous one [29].

PPC allows for the definition of a variety of equivalences
between processes. Following Milner [27, 23], we define
the notion of barbed bisimulation for PPC:

Definition 3.4 (Unguarded Process). A process Q occurs
unguarded in P if it has some occurrence in P which is not
under a prefix.

Definition 3.5 (Observable Action). A process P can per-
form an observable action at x, written P ↓x, if for some
x, ỹ, either the input prefix x(ỹ).Q or the output pre-
fix x[ỹ].Q occurs unguarded in P with x unrestricted.

Let “→∗” denote the transitive reflexive closure of “→”.
We shall use Q →∗↓x to denote “Q →∗ Q′ for some Q′,
and Q′ ↓x”.

Definition 3.6 (Barbed Bisimulation). A relation Rw over
processes, is a barbed simulation, if P Rw Q implies:



ACTORS AS A COORDINATING MODEL. . . Informatica 30 (2006) 233–244 237

Definition 3.3 (Reduction Relation). The reduction relation → over processes is the smallest relation satisfying the
following rules:

Comm (. . . + x(ỹ).P ) | (. . . + x[z̃].Q) → P{ỹ ← z̃} | Q

Par P→P ′
(P |Q)→(P ′|Q)

Struct Q≡P P→P ′ P ′≡Q′
Q→Q′

Res P→P ′
(νx)P→(νx)P ′

Figure 2: Reduction Relation in PPC

1. For each x, P ↓x implies Q →∗↓x.

2. If P → P ′ then Q →∗ Q′ and P ′ Rw Q′;

The relation Rw is a barbed bisimulation if R and R−1

are barbed simulations. Processes P and Q are barbed-
bisimilar, if P Rw Q for some barbed bisimulation Rw.

4 Actor Troupes: A Higher Level of
Abstraction

An important requirement of a potential coordinating
paradigm, which seeks to unify diverse models of concur-
rent computation, is the inherent support for various levels
of abstraction. A desirable level of abstraction would be
one which helps in dealing with bigger collections of Ac-
tors as if they were a single unit. Such a higher level of
abstraction on actor systems can be defined by restricting
and specifying the interface of actor systems (rather than
individual actors) with the external world. We introduce
the abstraction of Actor Troupes and also formally define a
notion of Interaction Equivalence with respect to this ab-
straction.

Definition 4.1 (Actor Troupe). An Actor Troupe comprises
actors, behavior definitions, and messages which satisfy
the following conditions:

1. Certain actors within the troupe, declared Reception-
ists, are the only components whose existence is visi-
ble to the external world. Furthermore, only the mail
addresses and the method names of Receptionists are
visible outside.

2. Conversely, the components comprising the troupe are
aware of the mail addresses and method names of a

certain collection of External actors (fixed a priori)
which are not members of the troupe. (Actor A is said
to be aware of Actor B, if the acquaintance list of A
contains the mail address of B).

The notion of Actor Troupes helps in the modular devel-
opment and composition of Actor programs, since it speci-
fies the interface of a collection of actors with the external
world. This can be observed by the fact that in any Ac-
tor Troupe only the Receptionists are capable of receiving
messages from the external world. Furthermore, the Exter-
nal Actors are the only ones which can potentially receive
messages from any member comprising the Actor Troupe.
By adapting Milner’s idea of experiments [22], we define a
notion of Interaction Equivalence between actor troupes.

Definition 4.2 (Interaction Equivalence). Actor Troupes
T1 and T2 are said to be interaction equivalent, when there
is a nonempty relation Ra over Actor Troupes such that
T1 Ra T2 implies:

1. The Receptionists of T1 and T2 have the same loca-
tions, and respond to the same set of messages.

2. The External Actors that are known to T1 and T2 have
the same locations, and respond to the same set of
messages. (An external actor X is said to be known
to Troupe T if the mail address of X is contained in
the acquaintance list of any of the actors comprising
Troupe T ).

3. For every input message I sent to T1 and T2, where
the message content of I does not contain the mail
address of any component external to the troupe; the
set of output messages O emanating from T1 and T2

are the same, and the message contents of O do not
contain the mail address of any component internal to
the troupe.
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4. The Actor Troupes T ′1 and T ′2 which result from T1

and T2 respectively after they process message I , are
in the relation T ′1 Ra T ′2.

The purpose of the definition is to ensure that if the above
notion of equivalence is satisfied by the Actor Troupes T
and T ′, then any occurrences of the Troupe T in an Actor
program, may be replaced by the Troupe T ′ without any
change in the meaning of the program. The above notion
of equivalence does not permit the mail addresses of com-
ponents to be carried in the messages because such com-
munications violate and destroy the encapsulation of Actor
Troupes.

Example 4.1 (Troupe T ). Comprises actors – R, A, and
B, where R is the Receptionist – with a reference to an
External Actor X . Actor R takes requests for transforming
data by the message f , and sends the result to actor A by
the message g. Actor A transforms the data further and
sends the result to B by the message h. Actor B passes it
on unchanged to the external actor X by the message m.

Example 4.2 (Troupe T1). Similar to Troupe T except for
actor A which is replaced by actor A1, which returns its
results directly to the external actor.

5 Semantic Foundation for Actors
In this section, we present a semantic foundation for Actors
in terms of the polyadic π-calculus (PPC). We shall con-
centrate on constructs that are unique to the Actor model.
The translation uses, for each syntactic category, a map-
ping [[.]] from the Actor grammar to PPC process-terms.
The translation also employs a set of auxiliary functions
for “book-keeping” purposes, namely for maintaining cor-
respondences between entities in the Actor formalism and
PPC-names. Figure 3 is a formal description of the seman-
tic function. The translation is explained in detail below.

Recall that in actor systems, behavior definitions are not
actors. They are templates which enable creating actors.
However, in the translation, we shall associate PPC pro-
cesses with behavior definitions, and also with actors. The
translation of Behavior definitions is given by:

[[BehaviorDef]] = ! l(~s,~a, i).([[Actor]])

Behavior definitions are mapped to process terms contain-
ing the Bang operator, in order to model a resource which
can create a new actor instance, every time it is requested.
The PPC name l represents the location of the process term,
and is statically determined by the function

β : BehaviourName −→ PPC-Name

However, the association of actor addresses with PPC-
names will be modeled by a dynamic mechanism. The
tuples ~s and ~a are formal place holders for the state and
acquaintance parameters which are supplied with each

create and become request. The parameter i, again sup-
plied by incoming requests, represents the address at which
the newly created actor instance (or the replacement behav-
ior) is to be located.

In the actor model the create primitive is endowed
with an implicit capability of generating globally unique
actor addresses on a purely local basis. This mechanism is
modeled using the properties of the operator “ν” of PPC:

[[create BehaviorName with state and acqList]]

= (ν i)(l[~s,~a, i])

The PPC-name l represents the location of the process term
corresponding to the behavior definition which receives
and services the create action. It is given as before by
β(BehaviourName) = l. The function

σ : state −→ PPC-Names

which maintains the correspondence between the state and
PPC-names, gives σ(state) = ~s. Similarly the correspon-
dence between acqList and PPC-names is maintained by the
function

τ : acqList −→ PPC-Names

which gives τ(acqList) = ~a.
The newly generated name i is guaranteed to be globally

unique by the semantics of PPC [25, 23]. This can be ex-
plained as follows. Consider a PPC process term, (νy) Q,
where the name y is bound by the restriction operator. The
restriction mechanism combines two distinct roles in one
operator. Firstly, it hides all interactions on the name y
within Q, thus preventing external processes from inter-
fering on communications along channel y. In effect, it
declares a local name y, for use exclusively within Q. In
this role it is similar to the ‘let-in’ construct in program-
ming languages, and the hiding mechanism of CCS. Sec-
ondly, the restriction operator also ensures that the name
y is distinct from all external names too [25, 23]. This
follows from the fact that PPC allows local names to be
communicated to external processes. A term of the form
(νy)(x[y].Q) can be viewed as simultaneously creating and
transmitting a new name. The name y is at first local to Q
and becomes active after the transmission. Thus the op-
erator “ν” is a mechanism which creates globally unique
channel names.

The “book-keeping” associated with the dynamic cre-
ation of addresses is managed in the semantic domain by
the function

α : Actor −→ PPC-Name

whose definition enlarges after every creation of an actor
instance.

The onus of providing a globally unique address for the
newly created actor lies with the actor which issues the cre-
ate command. This feature of the semantics guarantees the
requirement of actor systems that at first the location of a
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newly created actor is known only to its parent. Any other
actor in the system becomes aware of the new arrival only
on receiving the address of the newcomer. As we shall see
later, this is a powerful mechanism to achieve modularity
in actor systems by keeping certain actors hidden from the
view of certain other actors.

The translation of become action is similar to that of
create action:

[[become BehaviorName with state and acqList]]

= l[~s,~a, i]

but more simple. In the case of become, no new actor
address needs to be generated because, the replacement is
to be at the same location as its parent (namely ‘i’), even
though both may exist concurrently. However, the parent
cannot accept messages any longer. It is worthwhile to
point out that we have modeled the become action exactly
as envisaged by the pioneering work on Actors [15]. We
place absolutely no restriction on the type of replacement
behavior an actor instance might specify. For example, an
actor instance created from a behavior definition A could
specify its replacement to be created from the behavior def-
inition Z.

The translation of the actor instance created by the be-
havior definition is:

[[Actor]] = (ν ~s)(ν ~m)(i[~m].Σ~m(~p)[[actions]])

The actor instance resides at location i, and its state ~s is en-
capsulated as shown by the restriction operator. The actor
instance creates a tuple of channels ~m – which has as many
elements as the number of messages the actor responds to.
The newly created channel names are accessible at its loca-
tion i, and are used for receiving parameters corresponding
to each of the messages that are available. However, a sin-
gle instance of an actor can service only one message – as
indicated by the summation operator of PPC. The transla-
tion of the send action:

[[send method (parameters) to Actor]]

= i(~m).mj [~p]

shows that in order to execute the method mj of actor i, the
parameters ~p have to be sent on the corresponding channel
name. The function

µi : methods −→ PPC-Name

which maintains the correspondence between the methods
and PPC-names of actor i, gives µi(method) = mj . Also
~m is a list of all the PPC-names which can be used to access
the different methods provided by the actor. Quite naturally
we have mj ∈ ~m. Similarly the correspondence between
parameters and PPC-names is maintained by the function

ρ : parameters −→ PPC-Names

which gives ρ(parameters) = ~p. Notice that the send
action is serviced by actor instances, while the create
and become actions are serviced by the behavior defini-
tions.

In the pure actor formalism that we have considered, the
entities state, acqList, and parameters refer to sequences of
Actor Names. The translation of these entities is provided
by the functions σ, τ , and ρ respectively. As explained ear-
lier, these functions map the Actor Names pointed to by
these entities to the corresponding PPC-names. Note that
it is possible to add integers and other data-types to the ac-
tor formalism and translate them to PPC-processes [23, 26].
However, for the sake of simplicity we shall not consider
the encoding of data-types in this paper.

Actor Troupes correspond to Systems of actors which sat-
isfy the additional constraints imposed by Definition 4.1.
These constraints can be easily imposed and verified by
monitoring the messages from the troupe to the external
world, and vice versa. The translation of Actor Troupes is
then very similar to the translation of the System of actors
explained till now in this section.

Example 5.1 (Translation of Troupe T ). Consider the
Troupe T of example 4.1. Suppose that the templates of the
actors A, B,R, and X are located at a, b, r, and x respec-
tively. The PPC translations of the templates are as follows:

A ≡!a(b′, a′).(νg)(a′[g].g(d).b′(h).h[d].a[b′, a′])

B ≡!b(x′, b′).(νh)(b′[h].h(d).x′(m).m[d].b[x′, b′])

R ≡!r(a′, x′, r′).

(νf)(r′[f ].f(d).a′(g).g[d].r[a′, x′, r′])

X ≡!x(r′, x′).(νm)(x′[m].m(d).x[r′, x′])

The translations of the create operations which ini-
tialize the troupe T are as follows:

[[create A with <> and b′, a′]] = (ν a′)a[b′, a′]

[[create B with <> and x′, b′]] = (ν b′)b[x′, b′]

[[create R with <> and a′, x′, r′]]

= (ν r′)r[a′, x′, r′]

[[create X with <> and r′, x′]] = (ν x′)x[r′, x′]

As all the above four create operations are meant to
initialize the same troupe T in the example under consid-
eration, they can be combined with the translation of the
behaviour definitions using parallel composition. Further
evolution of the troupe is given in later examples.

Example 5.2 (Translation of Troupe T1). Consider the
Troupe T1 of example 4.2. The Troupe T1 has been built
by modifying Troupe T of example 4.1. The template A
is replaced by the template A1 at the same location as A;
the template B is discarded; and the templates of R and X
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[[System]] = [[BehaviourDef1]] | . . . | [[BehaviourDefn]]
with the auxiliary functions (α, β, µ, ρ, σ and τ)

[[BehaviourDef]] = ! l(~s,~a, i).[[Actor]]
where β(BehaviourName) = l

[[Actor]] = (ν ~s)(ν ~m)(i[~m].Σ~m(~p)[[actions]])

[[create BehaviourName with state and acqList]] = (νi)(l[~s,~a, i])
where β(BehaviourName) = l; σ(state) = ~s; τ(acqList) = ~a

[[become BehaviourName with state and acqList]] = l[~s,~a, i]
where β(BehaviourName) = l; σ(state) = ~s; τ(acqList) = ~a

[[send method (parameters) to Actor]] = i(~m).mj[~p], where
α(Actor) = i; µi(method) = mj, mj ∈ ~m; ρ(parameters) = ~p

Figure 3: Mapping Actors to PPC.

remain the same. The PPC process term corresponding to
the template A1 is given by

A1 ≡!a(x′, a′).(νg)(a′[g].g(d).x′(m).m[d].a[x′, a′])

The translation of the creation of an instance of actor A1 is
given by:
[[create A1 with <> and x′, a′]] = (νa′)a[x′, a′]

5.1 Preserving fairness on message delivery
As we mentioned before, the guarantee of message deliv-
ery in the Actor model forms a type of fairness assumption
[2]. Message delivery is guaranteed but the despatch or-
der need not be preserved. In the semantic domain, the
corresponding property which provides the means to pre-
serve fairness, is given by the fact that the reduction rules
of π-calculus ensure that allowed reductions do take place
within an unbounded but finite number of reduction steps.

The semantics ensures the fairness condition on mes-
sage delivery. This can be seen from the fact that the only
cases where the bang (“!”) operators arise in the semantic
mapping are from the translations of behaviour definitions.
Such infinitely replicating terms are always guarded by in-
put prefix operators. However, infinitely replicating terms
that are guarded by matching output prefixes never arise.

This suffices to rule out the occurrence of situations like
the following:

P = (a(x).Q | a[w]) | (!b(x) | !b[z])

Situations similar to the above will never arise from our
semantic mappings. It is important to note that if the trans-
lation allowed processes with behaviors similar to those

above, then fairness is not ensured, since there is no guar-
antee that in the above process the following allowed re-
duction:

a(x).Q | a[w]

would ever take place.

6 Semantic Correspondence
In this section we demonstrate that our embedding is a se-
mantic preserving mapping from actor troupes to PPC pro-
cesses. In particular, the semantic function defined by our
embedding maps interaction equivalence of actor troupes
to barbed bisimilarity of PPC processes.

Consider actor troupes T and T1 whose definitions are
given in examples 4.1, and 5.1 respectively. Not surpris-
ingly, it turns out that Troupe T is interaction equivalent
to Troupe T1 (A detailed evolution of Troupes T and T1 is
provided in examples 6.1 and 6.2). So an actor program
containing Troupe T can be transformed into an actor pro-
gram which has Troupe T1 in place of T . In the semantic
domain this would correspond to the replacement of one
PPC process with another. Such an operation would make
sense only if the PPC processes corresponding to T and T1

are equivalent in some way. In fact, our semantic mapping
has precisely the required property of equivalence preserva-
tion. The equivalence in the semantic domain corresponds
to barbed bisimilarity [23] of PPC processes (defined in
Section 3).

The following theorem establishes that the seman-
tic function preserves interaction equivalence of Actor
Troupes.
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Lemma 6.1. If T1, T2 denote arbitrary actor troupes
which are interaction equivalent, and [[T1]], [[T2]] de-
note their corresponding semantic mappings in PPC, then:
[[T1]] ↓x implies [[T2]] →∗↓x

Proof: By simple induction over reduction rules.

Lemma 6.2. If T1, T2 denote arbitrary actor troupes
which are interaction equivalent, and [[T1]], [[T2]] de-
note their corresponding semantic mappings in PPC, then:
[[T1]] →∗↓x implies [[T2]] →∗↓x

Proof: By simple induction over reduction rules.

Theorem 6.3 (Semantic Correspondence). For any two Ac-
tor Troupes T1, T2 and their corresponding semantic map-
pings [[T1]], [[T2]] in PPC, we have the following: If T1 Ra T2

where Ra is an interaction equivalence, then [[T1]] Rw [[T2]]
where Rw is a barbed bisimulation.

Proof: From the definition of Actor Troupes and from
the definition of the semantic mapping it is easy to see
that there is a one-to-one correspondence between the set
comprising ‘Receptionists and method names’ and a cer-
tain ‘subset of PPC channel names’. The channel names on
which actions are observable, belong to this subset. Ac-
tions on all other channel names which do not correspond
either to the Receptionists or their methods, are unobserv-
able since they are bound by the restriction operator. By
Lemma 6.1, for all x, [[T1]] ↓x implies [[T2]] →∗↓x. Fur-
thermore if [[T1]] reaches a state [[T1]]′ through an unobserv-
able action, then [[T2]] can also reach a state [[T2]]′ through a
series of unobservable actions such that the observable ac-
tions of [[T1]]′ and [[T2]]′ coincide (by Lemma 6.2) (where
[[T1]]′ and [[T2]]′ denote PPC processes). Thus the semantic
mapping preserves interaction equivalence by transforming
it to bisimilarity. 2

The following examples provide a concrete and detailed
illustration of the fact that the troupes T and T1 (of exam-
ples 4.1 and 4.2) are equivalent.

Example 6.1 (Evolution of Troupe T ). Consider the
Troupe T of examples 4.1 and 5.1. In the following we
shall use A,B, R, and X as abbreviations for the PPC terms
of the corresponding templates. In the beginning, the con-
figuration is

(ν a, b, r)(R | A | B) | X
When the create messages are introduced for the sake of
initializing troupe T , and the external actor X , we get
(ν a, b, r, a′, b′, r′)(R | A | B | r[a′, x′, r′]
| a[b′, a′] | b[x′, b′]) | X | x[r′, x′]

This causes transitions to occur on r, a, b, and x to give rise
to
(ν a, b, r, a′, b′, r′)

(R | A | B | R′ | A′| B′) | X ′ | X
where R, A, B and X are as before; while

R′ ≡ (ν f)(r′[f ]. f(d).a′(g).g[d′]. r[a′, x′, r′])

A′ ≡ (ν g)(a′[g].g(d′).b′(h).h[d′′]. a[b′, a′])

B′ ≡ (ν h)(b′[h].h(d′′).x′(m).m[d′′]. b[x′, b′])

X ′ ≡ (ν m)(x′[m].m(d′′). x[r′, x′])

R′, A′, B′ and X ′ correspond to particular instances of ac-
tors, with addresses r′, a′, b′, and x′ respectively. They are
created from the templates R,A, B and X respectively.

The next step of the evolution is caused as the result of
the message, send f(d) to r′, being sent to the troupe.
The above send operation translates to the PPC expression
r′(f).f [d] which is placed in parallel with the existing con-
figuration.

Thus we now have
(ν a, b, r, a′, b′, r′)(R | A | B | R′ | A′ | B′)

| X | X ′ | r′(f).f [d]
→ (ν a, b, r, a′, b′, r′)(R | A | B
| a′(g).g[d′].r[a′, x′, r′] | A′ | B′) | X ′ | X

→ (ν a, b, r, a′, b′, r′)(R | A | B | r[a′, x′, r′]
| b′(h).h[d′′].a[b′, a′] | B′) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B | R′
| a[b′, a′] | x′(m).m[d′′].b[x′, b′]) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | x′(m).m[d′′].b[x′, b′]) | X ′ | X
→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | b[x′, b′]) | x[x′] | X

→ (ν a, b, r, a′, b′, r′)(R | A | B
| R′ | A′ | B′) | X ′ | X

Example 6.2 (Evolution of Troupe T1). Consider the
Troupe T1 of examples 4.2 and 5.2. The troupe T1 has been
built by modifying Troupe T , by replacing the template A
by the template A1 at the same location as A; the template
B has been discarded; while the templates of R and X re-
main the same. The PPC process term corresponding to the
template A1 is given by
A1 ≡ (ν g)(!a(x′, a′).a′[g].

g(d′).x′(m).m[d′′].a[x′, a′])
After the appropriate create messages have been

sent to the troupe, the configuration is as follows:
(ν a, r, a′, r′)(R | A1 | R′ | A′1) | X ′ | X
where R,X, R′, X ′ are as before; while
A′1 ≡ (ν g)(a′[g].g(d′).x′(m).m[d′′].a[x′, a′])

We follow the changes in the troupe resulting from the
arrival of the message, send f(d) to r′, which translates
to r′(f).f [d].

Thus we now have
(ν a, r, a′, r′)(R | A1 | R′ | A′1)
| X ′ | X | r′(f).f [d]

→ (ν a, r, a′, r′)(R | A1

| a′(g).g[d′].r[a′, x′, r′] | A′1) | X ′ | X
→ (ν a, r, a′, r′)(R | A1 | r[a′, x′, r′]
| x′(m).m[d′′].a[x′, a′]) | X ′ | X

→ (ν a, r, a′, r′)(R | A1 | R′
| x′(m).m[d′′].a[x′, a′]) | X ′ | X

→ (ν a, r, a′, r′)(R | A1 | R′
| a[x′, a′]) | x[x′] | X

→ (ν a, r, a′, r′)(R | A1 | R′ | A′1) | X ′ | X
Notice that the PPC processes corresponding to the Actor
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Troupes T and T1, are barbed bisimilar. Thus, the replace-
ment is valid in the semantic domain as well.

7 Related Work and Comparisons
The Actor model is one of the earliest proposed paradigms
of object-based concurrent computation. It has been treated
in a rather informal fashion by most of the papers which
originally proposed the model [15][14]. There have been
a few attempts to give a formal semantics to Actors, in
the decades that have passed since it was proposed [15].
Research work related to formulating a semantic basis for
Actors may be broadly classified under three main sub-
headings, as explained in detail in the following three sub-
sections.

7.1 Process-Algebraic Semantics for
(Non-Actor) Object-Based Systems

Work that has used process algebras to give semantics to
object-based systems can in turn be classified into two ma-
jor groups depending on the type of process algebra they
use – higher-order or first-order. Higher-order process al-
gebras like CHOCS [37] allow only processes to be trans-
mitted as messages. First-order process algebras like the
π-calculus [25] allow only channels to be passed in com-
munication.

Among papers that use first order process algebras are
those by – Walker [40] who maps POOL to the π-calculus;
Jones [19] who maps on object-based design notation
called πoβλ to the π-calculus; Pierce and Turner [31] who
use the π-calculus for the design of concurrent object-
based programming languages; Vaandrager [38] who maps
POOL to the process algebra ACP [8]; and Honda and
Tokoro [16] who map an object-based calculus to the pro-
cess calculus reported in [17].

Researchers who use higher-order process algebras are:
Nierstrasz [28] who uses the higher-order π-calculus to
model his object-based calculus; Sangiorgi [34] proposes
the higher-order π-calculus as a rival semantic domain to
the π-calculus. But Papathomas [30] and Walker [41] show
that the higher-order calculi provide no more conceptual
advantages over the first-order process calculi, while mod-
eling object-based systems.

7.2 Non Process-Algebraic Semantics for
Actors

The work reported in [13], [12], and [39], model only the
concurrent execution of Actors while completely ignoring
the object-based features of Actors like persistent state, en-
capsulation, dynamic creation and reconfigurability. He-
witt and Baker [13] define the notion of an activation or-
der, which is a partial order on events. An event x is said to
activate an event y when y is related to some message cre-
ated by x. They also define an arrival order on messages

(for each actor), which is a linear order. The linear order
arises from the condition that the mailing queue associated
with an actor can receive only one message at a time. Con-
currency is modeled by the history order which is defined
as the transitive closure of the activation and arrival orders.
Clinger [12] develops the above work by creating event di-
agrams from the activation order. An event diagram is a
historical record of all the computations right from the ini-
tial stage. The event diagram together with the set of pend-
ing messages is said to form a powerdomain which is used
to describe the concurrency of Actors. Vasconcelos and
Tokoro [39] refine this work further by weakening the con-
dition on activation orders which no longer requires each
event to have at most one immediate predecessor. Thus
they use the notion of traces to model concurrent execu-
tions where an event might be immediately be preceded by
many events.

The papers [5, 36] deal with the object-based features
of Actors as well as with the concurrency notions, Agha
et al. [5] formulates an Actor language as an extension of
a simple functional language, and employs transition sys-
tems to provide an operational semantics for Actors. It
further demonstrates that in the presence of fairness as-
sumptions, the three notions of equivalences (testing, may,
and must), collapse into two classes. Talcott [36] char-
acterizes actor languages by defining a notion of abstract
actor structure, and provides a semantics for them using
transition rules that use properties of concurrent rewriting
systems. Janssens and Rozenberg [18] model a restricted
version of actors using graph grammars, and introduce the
notion of an abstract actor structure. Kahn and Saraswat
[20] model actors as a special case of concurrent constraint
programming.

7.3 Process-Algebraic Semantics for Actors

The only other paper in this category, apart from our work,
is by Agha [2]. It is a preliminary attempt using CCS [22]
to provide a semantics for Actors. However, only the con-
currency features of Actors is modeled, while key aspects
like encapsulation, dynamic creation, and unrestricted re-
placement behaviors are completely ignored. This is be-
cause of the limitations in the expressive power of CCS –
which deals with synchronous agents having a static inter-
connection topology, and lacks dynamic creation of new
channels and processes.

In contrast with all the related work on Actors, our ap-
proach gives a comprehensive process-algebraic interpreta-
tion of all the basic features of the Actor Model for the first
time. Also noteworthy is the fact that we use π-calculus
– which is synchronous – to simulate an asynchronous
system like Actors. This is possible due to the power of
the Bang (!) operator of the π-calculus, which allows un-
bounded replication of processes and thereby provides the
capability to model asynchronous behavior. This particu-
lar feature of the π-calculus has been recognized by other
researchers in a different setting [10, 17, 33].
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8 Conclusion

We have related two prominent models of concurrent com-
putation, namely Actors and the π-calculus, by present-
ing an elegant semantic mapping of all the fundamental
constructs of actors in terms of the polyadic π-calculus.
We have enriched the Actor model by defining a higher
level of abstraction, and also have provided a notion of
equivalence between them. There are several interesting
avenues which present themselves for further exploration.
The object-based nature of the primitive constructs of ac-
tors, should be extended to include other object-oriented
notions as well. In particular the varieties of inheritance
[21, 42, 11], like self-based inheritance, and delegation-
based inheritance, and also the notion of subtyping should
be studied in this setting. The actor model allows various
levels of granularity and abstraction. This flexibility of the
actor model should be explored further by encompassing
the framework given by [6]. A sound basis for typed object-
based computing [1], can be explored using extensions to
the formalism of this paper. Such extensions should in-
clude the notion of types in the setting of Actors. The Ac-
tor model has been extended in a different way by [4], using
constructs which seem to have strong connections with the
paradigm of concurrent constraint programming. It would
be meaningful to explore connections between ActorSpace
[4] and the model proposed in this paper.
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