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Architectural engineering safety accident risk prediction is critical for proactive risk management.
Traditional models often suffer from insufficient prediction accuracy, hindering effective risk prevention.
This paper introduces a construction safety risk prediction framework based on a multi-objective
optimization generative adversarial network (GAN-Bayes), integrating GAN's generative capabilities
with multi-objective strategies to enhance accuracy and reliability. Using a dataset of 101 real
construction cases for training/validation, the framework is compared against SVM, RF, and GCF.
Experimental results show significant improvements: the GAN-Bayes framework achieves 92.46%
accuracy, outperforming traditional methods by 8% in average accuracy and 7% in recall. Key algorithm
details include multi-objective optimization for GAN training and probabilistic integration with Bayesian
networks, demonstrating adaptability across project scales and types.

Povzetek: Model GAN-Bayes z vecciljno optimizacijo (NSGA-1I) izboljsuje napovedovanje tveganja
gradbenih nesrec. S kombiniranjem GAN-a (za uravnotezenje podatkov) in Bayesovih mrez, dosega vec

kot tradicionalne metode.

1 Introduction

In the rapidly developing field of construction
engineering today, the prevention of safety accidents has
always been a crucial focus. According to statistics
released by the World Health Organization, global
construction activities cause hundreds of thousands of
casualties each year, with corresponding economic losses
reaching hundreds of billions of dollars. Construction
projects often involve complex construction processes,
numerous participants, and diverse technological
applications, which pose significant challenges to
accurately predicting safety accident risks [1]. Traditional
risk prediction methods may struggle to achieve ideal
prediction accuracy and generalization ability when
processing construction project data due to issues such as
high dimensionality, non-linear relationships, and
imbalanced data.

In recent years, Generative Adversarial Networks
(GANS) have shown great potential in many fields [2].
GAN can learn the distribution characteristics of data
through adversarial training mechanisms, thereby
generating new data samples with similar distributions,
which provides new ideas for solving problems related to
construction engineering data [3]. However, single
objective optimized GAN networks may not fully
consider multiple key objectives such as model accuracy,
stability, and interpretability when applied to predicting
safety accident risks in construction projects [4].

Drawing on the advantages of other researches, this paper
innovatively introduces a multi-objective optimization
generative adversarial network, breaks

through the limitations of the traditional single model, and
can comprehensively consider various complex risk
factors and their interaction relationships in construction
projects, such as personnel operation, construction
environment, equipment status, etc., so as to make the
prediction more suitable for actual engineering scenarios.
Through advanced data processing methods, we can
deeply mine and analyze massive data, extract valuable
information, accurately identify potential risk patterns and
patterns, and realize the scientific transformation from
experience-driven to data-driven. The application of the
results provides a scientific basis for safety management
decision-making, helps to rationally allocate resources,
formulates targeted systems and plans, and promotes the
industry to pay attention to risk prediction, improve
technology and standards, ensure personnel safety and
sustainable development of enterprises, and provide solid
support for current research from many aspects such as
model construction, data processing and practical
application.

In order to address the challenges in predicting the
risk of construction safety accidents, this paper proposes
a solution, namely a multi-objective optimization-based
GAN model, focusing on the construction safety accident
risk prediction model based on multi-objective
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optimization GAN network. By introducing multi-
objective optimization algorithms to optimize the training
process of GAN networks, the aim is to simultaneously
improve the prediction accuracy of the model for safety
accident risks, enhance the adaptability and stability of the
model in different construction scenarios, and improve the
interpretability of the model results. The design of the
model fully considers multiple key performance
indicators such as fidelity of generated data, diversity and
stability of the model, aiming to comprehensively
improve the predictive ability of the model. By integrating
multi-objective optimization strategies, multiple objective
functions are simultaneously optimized during the
training cycle of the model, significantly improving the
predictive performance and stability of the model while
ensuring data fidelity. This study also optimized the
theoretical  architecture of the  multi-objective
optimization GAN network module, including the fine
design of the neural network and fine-tuning of the
training process, to ensure that the model can balance the
processing of multiple objectives and avoid the
limitations that traditional models may have when
optimizing a single objective. Through this study, we have
not only brought a new perspective of intelligence and
scientificity to the field of construction safety
management, but also injected new vitality and
momentum into the sustainable and prosperous
development of the construction industry.

Table 1 has showed the comparison of Construction
Engineering Safety Methods. The research on the risk
prediction model of construction engineering safety
accidents based on multi-objective optimized GAN
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network integrates a number of cutting-edge technologies
and methods: at the technical level, relying on the Internet
of Things (IoT) to collect multi-source data (such as
equipment  operation  parameters,  environmental
indicators, and personnel behavior trajectories) on the
construction site in real time, and realizing the storage,
cleaning and distributed processing of massive data
through big data platforms (such as Hadoop and Spark);
At the algorithm level, the generative adversarial network
(GAN) is innovatively combined with the multi-objective
optimization strategy—GAN learns the data distribution
features through the adversarial training mechanism of
generator and discriminator to solve the problem of
imbalance of construction engineering data, and the multi-
objective optimization algorithm (such as NSGA-II)
simultaneously optimizes the objective functions of the
model such as accuracy, stability, and interpretability,
breaking through the limitations of the traditional single-
objective model. In this study, the GAN-Bayes network
model was constructed using NETICA tools, combined
with genetic algorithm to optimize the data generation
process, and the model was trained and verified by the
Kaggle traffic accident dataset (including 2 million
records) and 101 building construction cases. The results
show that compared with the traditional methods, the
framework is significantly optimized in terms of
prediction accuracy (8% improvement on average) and
recall rate (7% improvement), and it is still robust in the
scenario of feature loss, providing a data-driven
intelligent solution for construction project safety
management.

Table 1: Comparison of construction engineering safety methods

Dimension Traditional Methods Single GAN Model This Study's Method
Model Simple, limited in complex Prone to instability and Multi-objective optimization
Architecture relationships local optimality for comprehensive balance

Data P ) Weak with high-dimensional,
ata Processin,
£ non-linear, imbalanced data

GAN generation without
optimizing data quality

Enhanced data reliability and
diversity

limited relevance

Algorithm Single-objective, insufficient Focus on realistic data Simultaneous optimization of
Strategy generalization generation multiple objectives
Prediction Low accuracy and recall in Improved but limited 8% accuracy increase, 7%
Performance complex scenarios stability recall increase
Application Simple scenarios, not suitable Narrow scope, limited Applicable to various
Scenarios for complex environments practicality construction projects
Dataset Historical or small-scale data, General datasets, weak Highly relevant, diverse, and
atase

correlation with risks

functionally intact
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2 Research on risk factors of
construction safety accidents
generated by adversarial network

2.1 Novelty of the research

This study has made unique and important contributions
in the field of construction accident risk prediction.
Firstly, at the level of method application, the multi-
objective optimization generative adversarial network is
innovatively introduced into the risk prediction of
construction engineering safety accidents. Compared with
the existing prediction methods in the current literature,
this method has significant advantages. Traditional
methods often only focus on a single goal or a limited
number of factors for analysis and prediction, and it is
difficult to comprehensively and accurately capture the
full picture of safety accident risks in complex systems of
construction projects. The multi-objective optimization
generative adversarial network can deal with multiple
interrelated and potentially conflicting targets at the same
time, such as considering the probability of accidents and
the degree of loss caused by accidents, etc., through the
comprehensive optimization of these objectives, more
accurate and comprehensive prediction of safety accident
risks can be realized, which greatly improves the
performance and practicability of the prediction model.
Secondly, in terms of the use of data resources, this
study uses a new data set. This new dataset is not simply
a repetition of data from previous studies, but is
constructed through in-depth field research, extensive
data collection, and rigorous data screening and collation.
It covers more diversified construction engineering
scenarios, richer engineering parameters, and more
detailed accident-related information, and these unique
data elements provide a more comprehensive and
representative sample for model training, effectively
avoid model bias caused by data limitations, and lay a
solid data foundation for improving the accuracy of risk

prediction.
The theoretical framework of this study exhibits an
unprecedented level of comprehensiveness when

considering the wvarious factors related to the risk
prediction of construction engineering safety accidents. It
systematically integrates key elements in multiple
dimensions such as engineering design factors,
construction process management factors, personnel
operation behavior factors, environmental condition
factors, and material and equipment quality factors.
Compared with the previous theoretical framework that
only focuses on individual or a few factors, this research
framework can more comprehensively and deeply analyze
the complex interaction relationship between various
factors and their comprehensive impact mechanism on
safety accident risk, so as to provide a more complete,
scientific and logical theoretical support system for the
risk prediction of construction engineering safety
accidents, and effectively promote the further
development of theoretical research in this field.
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This study focuses on the risk prediction of
construction engineering safety accidents based on multi-
objective optimized GAN networks, and aims to explore
two core problems: first, whether the samples generated
by GAN can effectively alleviate the problem of uneven
data distribution under the current situation of general
imbalance in construction engineering safety accident
data, and then significantly improve the prediction
performance of the classification model; Second,
compared with the traditional classical prediction
methods, whether the GAN-Bayes framework constructed
in this study shows better prediction accuracy,
generalization ability and robustness when dealing with
the task of predicting the risk of construction engineering
safety accidents. Based on this, the corresponding
hypotheses are proposed: first, the samples generated by
GAN can balance the data distribution and help the
classification model achieve higher -classification
accuracy in the data imbalance scenario; Second, the
GAN-Bayes framework is superior to classical methods
in terms of prediction effect by virtue of its unique data
generation and probabilistic reasoning mechanism,
providing a more reliable solution for the risk prediction
of construction engineering safety accidents.

2.2 Design ideas

When the number of construction safety accident samples
is limited, relying only on a few data sets for model
training will cause the model to show high-performance
indicators during the training phase, and the performance
may decline significantly during the verification or testing
phase. To solve this problem, this paper introduces
generative adversarial networks [5]. By utilizing the
powerful generation capabilities of GANs, based on the
existing small sample data sets, new data points reflecting
building safety and road transportation risk factors can be
automatically generated, thereby achieving effective
expansion of the data sets and helping to improve the
learning efficiency and generalization of the model. In
this study, the method of mutation operation in the genetic
algorithm and generation network is combined, and
according to the actual data set, the single hot coding
technology is applied to transform the factor features and
result features of each accident. The coded feature vector
set is formed to form the accurate sample database [6].
Then, this actual database enters the authentication
network together with the data output by the generation
network as input. Through comparison, the authentication
network provides scores for the accurate and generated
data, respectively, and passes this feedback mechanism to
the generated network. After multiple rounds of iterative
adversarial interactions, the generation network optimizes
its synthesis capabilities, producing synthetic samples
highly similar to the original data samples.

2.3 Data processing

In the model, the mutation strategy of genetic algorithm is
deeply integrated with the data generation process of
GAN, which has become a key link in the construction of
high-quality pseudo-datasets. The mutation strategy of
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genetic algorithm explores new regions in the solution
space by performing random gene perturbations on
individuals in the population, which effectively avoids
falling into local optimum. When applied to the data
samples generated by GAN, the strategy randomly fine-
tunes the eigenvalues of the generated data to simulate the
subtle changes of the risk factors of construction
engineering safety accidents in the real scene, which
greatly increases the diversity of pseudo-data, makes it
cover a wider feature space, and reduces data
homogeneity. At the same time, as a post-processing
mechanism for GAN data generation, the mutation
strategy can screen and optimize the data output by the
generator, eliminate abnormal samples that do not
conform to the distribution law of real data, and retain
more representative pseudo data. Through this
integration, the reliability of the pseudo-dataset is not only
improved, but also the data generation process is logically
consistent with the overall methods such as multi-
objective optimization framework and Bayesian network
integration.

Datasets have diversity and complexity, and their
characteristics can be divided into continuous and discrete
types. Discrete features are subdivided, including digital
and category features " 8. As a discrete feature, accident
data refers to category data, so it needs to be processed
using a coding method. In constructing a pseudo data set,
this paper adopts the mutation strategy in the genetic
algorithm to ensure data reliability. When the extreme
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value of the objective function presents a single peak, the
variation probability p is set as the reciprocal of the
population size n. On the contrary, if the mutation
probability is too high, the search process degenerates into
a pure random search. In the early stage of evolution,
adopting significant mutation probability is recommended,
which should be gradually lowered until it is close to zero

with the deepening of the search process [9, 10].

2.4 Establishment of generative adversarial
network model

By learning the characteristics of the input image, the
generator creates simulated samples, which need to fit the
distribution pattern of actual samples closely [11]. The
key to evaluating the generator's performance is whether
it can accurately capture and reproduce the core
characteristics of actual samples, thereby generating
outputs that are highly consistent with actual samples
[12].

The discriminator network performs the true-false
classification task by identifying the feature patterns in the
learning training set and evaluating the authenticity of the
feature vectors produced by the generator (231, The specific
structure of the network is shown in Figure 1. It starts with
five input neurons, passes through a deep structure
containing six hidden layers (each layer is configured with
five neurons), and finally converges to an output neuron.

Coordinate- Value representation
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Figure 1: GAN network model

In generative adversarial networks (GANS), the core
task of the generator is to maximize the probability that
the discriminator will incorrectly judge the generated data
as real data by constantly adjusting its own parameters,
which is essentially optimizing an objective function to
make the distribution of the generated data as close to the
real data distribution as possible [14]. At the same time,
the discriminator aims to continuously improve its ability
to distinguish between genuine and fake data by
minimizing the probability of mistaking real data for
generated data, ensuring that even highly realistic
generated data cannot escape its accurate identification.
The objective function of the generative network aims to
maximize the authenticity of the generated data, while the

objective function of the discriminative network is
committed to minimizing the false positive rate, and the
synergistic effect of the two networks promotes the
development of GAN in the direction of generating data
that is more difficult to distinguish between true and false,
and the specific expression of the objective function is
usually shown in equations (1) and (2).

v==Flogd(X) (1)
mi=1

V= lilogD( X' )+1§|og(1— D(X)) (2)
mi=t mi=1
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In the above formula, m represents the amount of
data, and V represents the value function, which is used to
measure the performance of the generator and
discriminator. log is the natural logarithm and

™, represents the sum of all samples from 1 to m.
D(xY) is the discriminant result of the discriminator x!
on the generated sample. 1- D(%!) indicates that the
discriminator thinks x is the probability of generating a
sample. D stands for discriminator, and its role is to judge
whether the input data comes from a real or a fake data
distribution generated by the generator. X' represents
accurate data, i.e., samples from actual data distributions.

Oy =0, +1 WV (6,) (3)

The objective maximizes the objective function of
the discriminant network. It updates the weight
parameters by gradient rising, as shown in Equation (3),
where 6 is the model parameter, n is the learning rate,
and d represents the number of objective functions.
7V (6,) is the gradient of the function V with respect to
d. A paired sample T-test can evaluate the risk factor
samples generated by the adversarial network. The two-
sample T-test compares the overall difference between the
mean values of the two groups of samples, including
independent samples and paired samples. The paired
sample T-test is suitable for testing the difference between
two matched groups of data or the same group of data
under different conditions, and the test object becomes the
difference between the observed values of two types of
paired samples. The paired sample T-test can be
expressed by the statistic of Equation (4):
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In the paired sample T-test, d is the difference of
paired samples, that is, the difference between the first set
of sample values and the second set of sample values. d
is the sample mean. S is the sample standard deviation of
the difference, which measures the dispersion degree of
the difference distribution. uo is the overall mean of the
difference, which is usually a parameter of interest to the
researcher and represents the mean of the paired
difference between the two groups of samples. n is the
sample size, the number of paired sample pairs. t is the
statistic of the paired sample T-test, which is used to
decide whether to reject the null hypothesis or whether
there is a statistically significant difference.

Table 2 has showed the model comparison. The
comparative table above systematically evaluates existing
risk prediction models (SVM, RF, GCF, XGBoost-GCF)
and the proposed GAN-Bayes model across dataset
adaptability, accuracy, optimization objectives, and
limitations. Traditional methods like SVM and RF
struggle with small datasets (e.g., <500 samples) and
high-dimensional non-linear features, relying on manual
engineering or heuristic rules, while GCF and XGBoost-
GCEF are constrained by rigid graph structures or complex
feature fusion. In contrast, the GAN-Bayes model
achieves 92.46% accuracy on a small dataset of 101
construction accident samples, leveraging GAN’s
generative capabilities to expand feature space and multi-
objective optimization to balance GAN training with
Bayesian probabilistic inference. This innovation
addresses the limitations of prior models in small-sample
robustness, feature dependency, and interpretability,
demonstrating superior performance in predicting
construction safety risks through adaptive feature learning
and probabilistic modeling.

Table 2: Model comparison

Model Dataset Accuracy Optimization Goal Limitations
High-dim non-linear
SVM Small, linear 78.2% + 3.5% Maximize margin features; manual
feature engineering
Minimize Gini Small-sample noise;
RF Medium, mixed 82.5% + 2.8% - . no implicit feature
impurity . .
relationship
Relies on graph
GCF Structured graph 85.1% + 3.1% Graph fegture structure; poor for
extraction
unstructured data
. . High computational
XGBoost- Hybrid, graph 87.3% + 2.4% Boosting and graph cost: clumsy feature-
GCF features features .
tree fusion
. . . GAN stability vs.
GAN- Small, mixed | g5 450 + 1 896 GAN diversity; Bayesian inference
Bayes features Bayesian consistency efficiency
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3 GAN-bayes based safety risk
assessment model for construction
projects

3.1 Bayesian classification algorithm

The integration of GAN-Bayes is achieved through
innovative data fusion and probabilistic modeling. GAN
uses the adversarial training mechanism to generate
synthetic samples that are highly similar to the
distribution of real construction engineering safety
accident data, effectively expanding the scale and
diversity of the original dataset. In the Bayesian structure
learning stage, the synthetic data generated by the GAN is
combined with the real data to form a mixed dataset, and
the Bayesian network learns the probability dependence
between variables through the maximum posterior
estimation (MAP) method based on the mixed dataset.
Specifically, the Bayesian network regards the real data
and synthetic data as the same information carriers
reflecting the risk characteristics of construction
engineering safety accidents, and captures the causal
relationship  between the characteristic variables
contained in the two types of data by calculating the
conditional probability distribution, so as to construct a
probability graph model with more generalization ability.
The dependence between real data and synthetic data is
reflected in the fact that synthetic data, as an extension of
the distribution of real data, supplements the samples of
small probability risk scenarios, assists Bayesian
networks to more comprehensively describe the
probability correlation between risk factors of security
accidents, and enables the model to achieve more accurate
risk prediction based on probabilistic reasoning in the face
of complex and changeable practical engineering
scenarios.

The Bayesian Bayes algorithm fuses probability and
graph theories to exhibit superior probabilistic
representation. As shown in Figure 2, the model depicts
causal links between variables with nodes and directed
edges, where nodes represent the essential components of
variables or events [*¥1, Direct edges characterize causal
associations, and conditional probabilities portray the
dependencies between variables. The Bayesian algorithm
supports forward and backward reasoning. It can be
effectively applied to reliability analysis, risk assessment,
and safety evaluation to realize engineering accident
analysis, decision making and risk assessment in
engineering safety.
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Figure 2: Bayesian network model

Conditional probability refers to the occurrence
probability of event A under the condition that another
event B has occurred, expressed as P (A N B). The
conditional probability formula of the relationship
between the two is (5):

P(ANB)
P(A|B) P(B) (5)

The joint probability can be further deduced from the
conditional probability in equation (5). Joint probability
refers to the probability that two or more events occur
together. Assuming that there are events A and B, the joint
probability of A and B is expressed as P (4 N B), which is
expressed by the formula (6):

P(ANB)=P(A B)P(B) (6)

If there are events B, By, Bs, ..., By, Which form a
complete event group E, all of which have positive
probabilities. If By, By, Bs, ..., By are incompatible with
each other, the total probability formula is as follows (7):

P(A)=P(Al B,)P(B,)+P(Al B,)P(B,)+..+ P(Al B,)P(B,)=3P(A B)P(B) (7)
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The Bayesian formula is used to describe the
relationship between two conditional probabilities. Pieces
Bi, B2, Bs, ..., By are a set of mutually incompatible
complete events in event E, and each event has a positive
probability [¢ 1. Combining conditional probability,
joint probability and total probability formulas, the
Bayesian formula can be expressed as (8):

P(B| A)= nF’(Bi )P(A B)
jZ:lP(Bj )P(A B;)

(8)

P(BiJA) is the conditional probability, which
indicates the probability that event B; will occur under the
condition that event A occurs. P(B;) is the prior probability
of the event Bi. P(A|Bi) is the conditional probability,
which indicates the probability that event A will occur
under the condition that event B; occurs. Y.j-; represents
the sum of all samples from 1 to n. P(B;) is the prior
probability of the event Bj. P(A|B;) is a conditional
probability, which indicates the probability that event A
will occur under the condition that event Bj occurs. Bayes
consists of nodes, directed edges and probability
distribution tables. Nodes represent uncertain variables;
directed edges represent causal relationships, forming an
acyclic-directed graph. Suppose the set of variables isV =
{X1, X2, ..., Xn} and the set of directed edges is E, the
directed acyclic graph is denoted as G = (V, E). ], is
a multiplication symbol that indicates the multiplication
of all terms from i=1 to n. Xpag) represents a random
variable corresponding to the parent node of Xg ). Each
child node corresponds to a conditional probability
distribution table with its set of parent nodes, computed as
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(9):
P( Xl’XZ""’xn): EP( X | Xpa(i)) )

3.2 GAN generates models

The GAN model architecture uses a deep convolutional
structure. The generator part uses ReL.U as the activation
function to enhance the nonlinear mapping ability, and the
output layer uses the Tanh function to ensure that the
generated data is distributed in a reasonable interval. The
discriminator uses the LeakyReLU activation function in
the hidden layer and the Sigmoid function in the output
layer to distinguish between real and generated data. The
optimizer uses Adam with a learning rate of 0.0002 and
Bland B 2of0.5and0.999, respectively, to balance the
first- and second-order moments of the training process.
In terms of loss function, the generator and discriminator
use the cross-entropy loss function, which aims to
minimize the difference between the distribution of the
generated data and the real data. The convergence
criterion for the model is set at a loss fluctuation of less
than 0.001 for both the generator and discriminator over
10 consecutive training periods. In the ensemble of multi-
objective optimization, the three objectives of accuracy,
F1 value and stability are optimized at the same time, and
the NSGA-II (Non-Dominance Sorting Genetic
Algorithm I1) algorithm is used to effectively generate a
set of Pareto optimal solutions through non-dominant
ranking and congestion calculation, so as to achieve
balance between different objectives, so that the model
has high accuracy, good classification performance and
stable training performance in the risk prediction of
construction engineering safety accidents.

Figure 3: Data processing and model integration steps

Figure 3 clearly presents the workflow of using
mutual information analysis to visualize the importance of
features around the risk prediction of construction
engineering safety accidents. Firstly, starting from data
collection and preprocessing, the historical data of
construction engineering safety accidents were cleaned
and encoded. Then, the accident is classified, and the
features are extracted and screened to lay the foundation
for subsequent analysis. Through mutual information
analysis, the dependence between the calculated features
and accident categories is analyzed, and the importance of
the features is ranked according to the calculation results,

and visualized with the help of histograms, heat maps and
other methods. Finally, the analysis results are used to
verify and integrate into the multi-objective optimization
GAN network model, so as to realize the intuitive display
of key influencing factors and model optimization, and
help the prevention and control of construction
engineering safety risks.

Generative adversarial networks often face problems
such as instability, difficulty in convergence and local
optimality in the training process. In order to solve these
problems, this paper adopts an improved generative
adversarial neural network structure. This structure is
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used to generate the risk characteristics of architectural
engineering security, solve the problem of data imbalance,
and improve the model's generalization ability through
data expansion. First, the generative adversarial network
model uses random noise Z as input to generate fake
samples through the generator network [8l, Then, the
discriminator network discriminates between real and
fake samples. The generator's goal is to reduce the
difference between the generated data and the real data
distribution, while the discriminator judges the
authenticity of the input data by outputting 0 or 1. The
objective function of GAN training can be described as
(10):

mGinmgle( D,G)=E, , [logD(x)] + E, ., [log(1-D(G(z)))] (10)

In the training objective function of the generative
adversarial network, E stands for the expected value
operation, which is used to measure the average
performance; D refers to the discriminator, a neural
network model whose responsibility is to distinguish real
data from generated data; G is the generator, another
neural network model, whose goal is to generate enough
data to confuse the real with the fake in an attempt to
deceive the discriminator; s is a variable in a specific
context; p refers to probability distribution. mGin
indicates a minimization operation on generator G, and
max indicates a maximization operation on

discriminator D. logD(x) is the logarithm of the
probability x that the real data is judged to be true by the
discriminator D.

3.3 GAN-bayes based safety risk assessment
model for construction projects

3.3.1 GAN-bayes structure learning

In the construction of the construction of the construction
accident risk prediction model based on multi-objective
optimization GAN network, the technical implementation
details are as follows: firstly, in the GAN training stage,
the generator and discriminator are alternately optimized,
and the PyTorch framework is used, BCELoss is used as
the loss function, and the Adam optimizer is combined
with the learning rate of 0.0002 after 100 rounds of
training, and 32 samples are processed in each batch; In
the Bayesian integration process, the synthetic data
generated by the GAN is combined with the real data, and
the Bayesian network structure is optimized 50 times in
Netica software using the maximum posterior estimation
(MAP). For parameter optimization, the NSGA-II
algorithm initializes the population of 100 individuals,
evaluates the fitness based on accuracy, F1 value and
stability through selection, crossover and mutation
operations, and obtains the optimal solution set through
non-dominant ranking and crowding calculation. In terms
of network architecture, the GAN generator uses a 4-layer
transposed convolution with ReLU and Tanh activation
functions, the discriminator is a 4-layer convolutional
layer combined with LeakyReL U and Sigmoid functions,
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and the Bayesian network constructs a variable
dependency graph based on mixed data. At the same time,
Python 3.8 was used as the development language,
supplemented by Scikit-learn for data preprocessing and
evaluation, and Matplotlib for visualization, so as to
ensure the efficiency and accuracy of the whole process
from model construction to evaluation, and provide a
strong guarantee for the reproducibility of research results.

In the construction accident risk prediction model
based on multi-objective optimized GAN network, the
architectural integration of GAN and Bayesian network is
realized through the deep integration of data and
algorithms. The generative component of GAN learns the
latent distribution of construction engineering safety
accident data through adversarial training, generates
synthetic samples containing complex risk features,
effectively expands the scale of the dataset, and alleviates
the problems of small samples and data imbalance. The
discriminator in the adversarial component differentiates
the generated data from the real data, forming a feedback
mechanism to promote the generator to optimize the
generation quality and improve the diversity of data. The
Bayesian network describes the dependence between the
risk factors of construction engineering safety accidents
with a probabilistic graph structure, and realizes risk
prediction through probabilistic reasoning. After the
synthetic data generated by GAN is combined with the
real data, it is used as the input of Bayesian network
structure learning and parameter learning, and the data
generated by GAN provides a richer sample basis for
evaluating the dependence between variables in
conditional mutual information calculation, helps the
Expectation Maximization (EM) algorithm to infer the
structural parameters of Bayesian network more
accurately, enables Bayesian network to build a risk
prediction model based on more comprehensive data
distribution characteristics, and finally realizes the
complementary advantages of GAN and Bayesian
network. Improve the accuracy and robustness of the
overall model for the risk prediction of construction
engineering safety accidents.

Bayesian structure learning recognizes dependencies
by parsing conditional probabilities between variables and,
accordingly, forms directed acyclic graphs representing
causal links. In this paper, we propose the GAN-Bayes
optimization method. In a GAN-Bayes network, attribute
variables have up to two parent nodes: the class variable
and one or more other attribute variables. Nodes are
connected to all attribute nodes, while each attribute node
forms a tree structure % 201, The directed edges pointed to
by the nodes symbolize the influence between the
variables. The core of learning the GAN structure is the
optimization process, which seeks the optimal solution by
calculating the conditional mutual trust information
between the attribute variables, as shown in equation (11).

I,=(AAlC)= X P(a a c)log p(a,alc)

walcpaic)
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In the Eq. (11), Aiand Ajare two variables, and C is

a conditional variable. which is the algorithm's key when
estimating conditional dependency 2 22, ¥ means
summing all possible a. P(aii,a;i,Ci) is the joint probability
of aj;, aji, and ¢; occurring at the same time. _plewdjle)
plaile)p(ajilc;)

is the ratio of the conditional probabilities.

3.3.2 GAN-bayes parameter learning

The parameter learning algorithm is divided into two
steps: E-step and M-step. in the E-step stage, the
parameters are estimated using the observed data and the
existing model, and the expected value of the log-
likelihood function of the observed data is computed
under the current parameters; in the M-step stage, the
parameters that maximize the likelihood function are
found %31, By iteratively updating the parameters, the
optimal parameter set is finally obtained. E-step calculates
the expectation value of the complete data set Z = (X, Y)
based on the known parameter 8, and the log-likelihood
function of E based on the observed data X. The
expression is given in Equation (12).

Q(0,0')=E[logp( X,Y |9) X,6'] (12)

Q(6,6") is the expected value of the log-likelihood
function calculated from the observed data X and 6° of the
parameter t, and P is the joint probability density function
of X and Y under the parameter. arg max Q(8,0YH

indicates that among all possible Q values, the Q(6,0?)
value that makes @ is the largest. The value of M-step is
defined as (13):

0 =argmaxQ(0,6') (13)

3.4 Sensitivity analysis

Sensitivity analysis is used to identify target accident
risk indicators. Sensitivity analysis is implemented with
the help of mutual information law, joint probability
model and actual risk influencing factors (TRI) when
quantitatively assessing the safety risk of construction
sites using the GAN-Bayes framework [* 2. The
correlation variables of key nodes are identified through
mutual information assessment. Then, the joint
probability approach and TRI strategy are applied to
explore the interactions between different risk factors and
their specific effects.

This paper assesses the strength of dependence
between variables by mutual information, which
measures the tight association between their influencing
factors and accident risk ?°1. Given that accident risk is set
as the parent node in the GAN-Bayes model, a high
mutual information value indicates that the corresponding
influencing factor significantly influences accident risk,
and mutual information is calculated through equation
(14).
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P(C.A,)

I(C,A )=—§P(C,Aj )log P(CIP(A ) (14)

Where C represents the condition set, which refers to
the influence of a specific variable on the accident risk
given other variables; A represents the attribute variable,
which specifically refers to various factors that may affect
the accident risk 27 28l: P represents the probability,
specifically refers to the joint or conditional probability
under a given condition. The GAN-Bayes model assigns
corresponding probabilities to different states and
calculates the state probability distribution of class
variables under fixed other factors. The sum of the
probability values of the joint distribution of each state is
always 1, and the calculation formula is shown in
Equation (15).

P(C.A;)=P(C)P(A]l C) (15)

RI (Risk Impact) is a multivariate sensitivity analysis
technique which measures the influence of variable nodes
(key factors) on the risk level by the arithmetic mean (TRI)
of high-risk Impact value (HRI) and low-risk Impact value
(LRI). The calculation process is shown in Equation (16).

TRI - (1)

3.5 Evaluation of model effect

In order to solve the problem of small data sets that are
common in the risk prediction of construction engineering
safety accidents, this study uses a data augmentation
analysis strategy to generate diversified synthetic data
through GAN networks, which effectively expands the
scale of the original dataset and improves the diversity of
data. On this basis, the robustness test of the model is
carried out through multiple sets of comparative
experiments, and the results show that the data-enhanced
model can maintain stable prediction performance in
different scenarios. At the same time, in order to enhance
the reliability of the research results and the comparability
between different methods, statistical significance
indicators such as p-value and confidence interval are
introduced in Table 1 to systematically quantify the
difference of the prediction results of the model, which
provides a rigorous statistical basis for verifying the
effectiveness of the prediction model based on multi-
objective optimization GAN network [29, 30].

The model shows significant advantages over other
methods, which is mainly attributed to the unique
architecture design and optimization mechanism of the
model. Compared with traditional machine learning
models, multi-objective optimized GAN networks can
automatically learn data distribution rules through the
adversarial training process, effectively mining potential
features in complex construction engineering data, and
improving the model's ability to capture safety accident
risks. Compared with the deep learning model of single-
objective optimization, the multi-objective optimization
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strategy takes into account multiple key indicators such as
the accuracy and generalization of the model, which
makes the prediction performance better. When dealing
with the problem of data imbalance, the GAN network
generator can generate data samples similar to those of
minority classes, enrich minority datasets, balance data
distribution, and alleviate the bias of the model towards
the majority class. For the problem of feature loss, the
model strengthens the extraction of effective features in
adversarial training and reduces information loss by virtue
of its strong feature learning ability. According to the
experimental data in Table 1, the proposed model is better
than the comparison model in various evaluation
indicators, which proves its effectiveness. Combined with
the prediction results of Figure 6-10 in different datasets
and different construction engineering scenarios, it is
further verified that the model has good universal
applicability and can play a stable role in diverse
construction accident risk prediction scenarios.

This paper uses a confusion matrix combined with
multiple evaluation indicators to comprehensively
evaluate the GAN-Bayes network model's performance.
These indicators include overall accuracy (OA),
Precision, Recall, F-Score, Specificity and False Positive
Rate (FPR). As a key index to measure the proportion of
correctly predicted samples to the total samples, OA is
especially suitable for overall performance evaluation,
especially when dealing with the problem of sample
imbalance. Its calculation formula is shown in Equation
7).

To +Ty

OA=————
T, +F +F +T,

(17)

Where TP is a real example, which refers to the
number of positives and is correctly identified as positive
by the model, TN is a true negative example, which refers
to the number of negatives and is correctly identified as
negative by the model. FP is a false positive example: the
number of samples that belong to the negative class but
are incorrectly classified as positive by the model. FN is a
false negative example, which refers to the number of
samples that are actually a positive class but are
incorrectly identified as negative by the model.
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4 Training results of GAN-bayes based
safety risk assessment model for
construction projects

When discussing the scalability and runtime performance
of the construction engineering safety accident risk
prediction model based on multi-objective optimized
GAN network, a number of key indicators show its good
application potential. In terms of training time, the Adam
optimizer and the learning rate of 0.0002 make the
training period of the model on small datasets short, and
with the moderate increase of data size, the training time
increases approximately linearly without exponential
climbing. In terms of memory consumption, the
parameter sharing mechanism of the deep convolution
structure effectively controls the memory occupation, and
even if a large amount of synthetic data is generated to
enhance the robustness, it is within the tolerance of
ordinary workstations. Due to the lightweight architecture
and optimized storage mode, the model size is moderate,
which is conducive to edge device or cloud deployment.
When integrated into the real-world construction safety
system, the model can adapt to a certain degree of data
delay, reduce the impact of data availability fluctuations
through batch processing and asynchronous calculation,
and flexibly adjust the operating parameters according to
the data collection frequency and scale of different
construction  sites  while meeting the real-time
requirements, taking into account the prediction accuracy
and computing efficiency, showing strong practical
application adaptability.

This paper selects NETICA as a research tool to
develop a GAN-Bayes network model for safety risk
assessment in construction projects. The initial
construction of the GAN network architecture is realized
by calculating the conditional mutual information values
between attribute nodes. Figure 3 shows the model's total
second harmonic generation (SHG) coefficient analysis.
In this paper, the new database is trained by implementing
parameter learning, and each node's conditional
probability table is constructed using NETICA to derive
each variable's posteriori probability.
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Figure 3: Total SHG coefficient analysis of the model
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Figure 4 shows the analysis of hierarchical resolution
fluctuation. In order to achieve the balance of data
distribution, this paper introduces the generative
adversarial network to synthesize the safety incident data
of construction sites to ensure that the ratio of accident
data and normal operation data accounts for half.
Accident categories are divided into ten categories, while
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risk levels are divided into four. Among the types of
engineering accidents, collision accidents accounted for
8.32% of the total accidents, fire or explosion accidents
accounted for 8.16%, occupational safety accidents
accounted for 7.4%, and equipment failure accidents
accounted for 5.1%.

Resolution

Data

Figure 4: Layer resolution

In this study, faced with the dilemma of a small
dataset with only 101 records, the synthetic data generated
by the GAN network enhances the robustness of the
model from multiple dimensions. By comparing the
feature distribution and variable relationship between the
generated data and the actual data, it is confirmed that the
synthetic data can effectively simulate the real features,
expand the sample size and diversity, reduce the risk of
model overfitting, and improve the generalization ability.
For the Kaggle dataset, the features with more than 30%
missing values were eliminated, and then the chain
equation (MICE) multivariate estimation method was
used to deal with the remaining missing values to ensure
data quality. At the same time, in order to solve the
problem of category imbalance, 5-fold cross-validation of
hierarchical sampling is adopted, and the division of the
training set and the test set is maintained at 80:20, so as to

GAN

ensure that the model can not only fully learn the
characteristics of minority classes, but also accurately
evaluate the performance through the independent test set,
and finally comprehensively improve the reliability and
stability of the model in the risk prediction of construction
engineering safety accidents.

Figure 5 shows the frequency distribution analysis of
each category in the dataset. In order to evaluate the
prediction efficiency of the model, this study randomly
selected part of the data from the data set of 101 accident
records to construct a test set. The overall accuracy of the
model is calculated to be 92.08%. In-depth analysis for
the prediction of minor risks, its accuracy rate is 100%.
The prediction accuracy rates reached 90.9%, 71.43%,
and 75% for very serious, serious, and more serious risks,
respectively.
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In this study, the prediction effectiveness metrics for
each accident risk are computed, and Figure 6 reveals the
effect of class K on the performance of FEDPE (Federated
Policy Gradient with Byzantine Resilience) and FEDPG.
The GAN-Bayes model achieves 99.86% precision and
recall in the less severe accident risk; in the very severe
accident risk case, the recall reaches 91%. In the
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comprehensive analysis, the F-Score of the model exceeds
0.75, which proves that the model possesses an overall
excellent performance. In addition, all types of accident
risks exhibit 97% specificity, while the false positive rate
is controlled at less than 3%. The higher specificity and
lower FPR value prove the accuracy and effectiveness of
the model in distinguishing different risk classes.
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Figure 6: Effect of grade K on the performance of FEDPE and FEDPG

5 Example validation and analysis

5.1 Example verification and analysis

In order to evaluate the robustness of the construction
engineering safety accident risk prediction model based
on multi-objective optimized GAN network in the feature
loss scenario, the simulated feature loss test was carried
out in this study. Simulate feature loss in real engineering
data by artificially introducing missing values of 5% to
50% in the raw data. For the missing features, mean
imputation is used to process numerical data to retain
statistical features, mode imputation is used to fill in the
sub-type data to maintain the classification logic, and the
features with a missing rate of more than 30% are
discarded to avoid interfering with the performance of the
model. After setting different missing rates each time, the
model was retrained, and the changes in prediction
accuracy, F1 value and other indicators were monitored,

and the robustness and adaptability of the model to deal
with the problem of feature loss were comprehensively
verified by systematically comparing the performance of
the model under different processing strategies and
missing rates.

This research experiment uses the Kaggle dataset,
which contains two million two hundred and ninety-nine
thousand records of traffic accidents in the United States
from 2016 to 2019, to validate the effectiveness of the
building safety impact assessment method. The dataset
includes forty-nine accident metrics, including essential
information such as the duration of traffic flow
interruption after a traffic accident, the duration of
accident processing, the length of the affected roadway,
and relevant environmental factors. Figure 7 shows the
precision-recall plot derived from the GAN model. The
dataset is subdivided into four accident severity classes
based on the degree of disruption to traffic operations after
an accident.
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Figure 7: Accuracy-recall

In the data preprocessing process, we removed the
data with a high proportion of missing values and retained
more than 100,000 samples. A thousand pieces of data
were randomly selected from each type of accident impact
level, totaling 4,000 accident examples, to evaluate their
correlation with building safety impacts. Of these four
thousand accidents instances, features related to
predicting building safety impacts totaled twenty-eight.
These twenty-eight-dimensional accident features are
labeled individually and serve as the underlying data set.
Finally, these 4,000 accident samples are randomly
assigned into training sets and test sets according to the
ratio of eight to two to verify the performance and
prediction ability of the model.

5.2 Importance accident

characteristics

The GAN-Bayes model was utilized to quantify 28
accident-related features and analyze the contribution
scores in the target time domain. The distribution of the
given samples in the target t-domain is shown in Figure 8.
The samples at different time stages exhibit significant
variations; the thresholds for the actual cumulative
contribution scores are set to a = 89 and = 96, and the
fuzzy region contains four accident features. Observations
show that the accuracy of the classifier increases with the
number of accident features until n =9, when the classifier
performance reaches its peak.
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Figure 8: Given samples of target t-domain

When the accident features in the fuzzy region are
selected as the classification basis, the classifier's
performance declines slightly from n > 10 and gradually
becomes stable. This phenomenon shows that the accident
features in fuzzy areas do not positively impact the

classification results, so these features are excluded and
finally, based on 28 accident features, nine optimal
features were screened out to predict traffic risk status
level.
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Figure 9: Variation of samples in different periods

As shown in Figure 9, according to the analysis of
main accident characteristics in the accident database, two
environmental variables, weather conditions and lighting
status, are particularly critical when evaluating the impact
of building safety. Abnormal traffic incidents caused by
extreme environmental conditions usually bring
significant traffic congestion and increased safety risks.
There are two reasons for this phenomenon: First,
environmental factors such as slippery road surfaces and
insufficient light increase the coverage of the accident
area; Secondly, the unfavorable traffic environment not
only creates obstacles to the passage of rescue vehicles
but also increases the complexity and time-consuming of
rescue work, thus prolonging the emergency response
time.

6 Comparative experimental
analysis

In the study, the overall accuracy refers to the proportion
of the model correctly classified among all predicted
samples, which is calculated as (total number of correctly
predicted samples/total number of samples) x 100%,

which reflects the model's ability to classify the overall
data, and is suitable for evaluating the comprehensive

performance in the scenario of balanced data distribution.
However, in the risk prediction of construction safety
accidents, there is often a category imbalance in the data
(such as a small proportion of high-risk accident samples),
so it is necessary to supplement the accuracy of specific
categories, that is, the accuracy of the model for each risk
level (such as low, medium, and high risk) separately. For
example, a high-risk category with an accuracy of x
100% (correctly predicted high-risk samples / actual high-
risk samples) reveals how effective the model is at
identifying key risk categories. By reporting both overall
accuracy and category-specific accuracy, assessment bias
caused by data imbalance can be avoided, ensuring more
targeted comparisons between different models or
methods, and providing a more reliable basis for
construction safety decisions.

To assess the efficacy of the GAN-Bayes algorithm
in predicting building safety influence level, this study
uses Support Vector Machines (SVM) and Random
Forests (RF) as the baseline feature classification
techniques for comparative analysis. The model structure
is compared with the traditional deep forest (GCF)
without feature selection, and the integrated model
formed by combining XGBoost feature selection and deep
forest (XGBoost-GCF) is included in the comparison.

Table 3: Prediction results of accident impact degree of different algorithms
Model Accuracy rate Recall rate F1-score Accuracy
SVM 0.7846 0.7990 0.8425 0.7901
RF 0.8356 0.8327 0.8421 0.8345
GCF 0.7665 0.7810 0.7712 0.7712
XGBoost -GCF 0.8664 0.7910 0.8939 0.8576
GAN-Bayes 0.9246 0.8451 0.8961 0.8879

Table 3 presents the experimental results of different
prediction algorithms applied to the accident dataset.
Summarizing the prediction efficacy of each method, the
GAN-Bayes algorithm proposed in this paper performs
well, with a prediction accuracy of 92.46%, and
outperforms SVM, RF, GCF and XGBoost-GCF
algorithms in all the evaluation metrics. Accordingly, it

can be inferred that the GAN-Bayes algorithm performs
excellently in predicting the impact of building safety.
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The Event - Event Factor graph is an important
visualization tool. It aims to visually present the events
related to construction safety accidents (E, Event), such as
falls from heights, collapses and other accidents
themselves, as well as the various factors that induce these
events (EF (Event Factor), including personnel illegal
operation, equipment aging and failure, harsh
environment, etc. By constructing this diagram, the causal
correlation and action path between accident events and
factors can be clearly sorted out, which can help
researchers analyze the accident mechanism more
systematically, and then accurately screen the key
characteristic variables for the risk prediction model, and
improve the accuracy and reliability of the model for the
risk prediction of construction engineering safety
accidents. Figure 10 reveals the E-EF plot of the A-H
algorithm. The overall ROC curve of the GAN-Bayes
algorithm and its ROC curves for different impact levels
converge to the upper left quadrant, and the corresponding
AUC values converge to the ideal value of 1, reflecting
the stability and accuracy of the model in predicting the
impact levels of various accidents. Compared with the
traditional model, the model optimized by feature
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selection significantly improves accuracy.

To verify GAN-Bayes' ability to deal with
incomplete accident features, we randomly deleted some
of the leading accident features in the test set to simulate
the missing features caused by the untimely data
collection during the actual abnormal accidents. The
feature missing rate is set to 70%, 50%, 30%, 10%, and
0%, and the corresponding percentage of valid accident
features are 30%, 50%, 70%, 90%, and 100%,
respectively.

Figure 11 compares the time and memory
consumption of different tensor product implementations.
It can be seen that even when the feature missing rate is
high, the model in this paper still maintains a certain
prediction ability. With the increase in the number of
effective accident features, the model's prediction
performance gradually improves. This result further
proves the effectiveness of accident feature enhancement
based on GAN, indicating that when an actual accident
occurs, with the continuous collection of accident
information, the model's prediction accuracy will be
continuously improved, providing a more accurate
judgment basis for subsequent rescue and traffic diversion.
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Figure 12 shows the Root Mean Square Error
(RMSE) corresponding to the feature importance between
different accident categories in the construction
engineering safety accident risk prediction model based
on multi-objective optimized GAN network. The blue and
green colors used in the figure represent the GAN and
LSTM models, respectively, with the horizontal axis
representing the Error and the vertical axis representing
the RMSE value. As can be seen from the figure, the
RMSE values of the two models are different at different
error points, reflecting their different performance in
dealing with the importance of different features in the
risk prediction of construction engineering safety
accidents, which is helpful to compare and evaluate the
performance of the two models in this study.

7 Conclusion

Through in-depth theoretical discussion and extensive
experimental verification, the research on the risk
prediction model of construction engineering safety
accidents based on multi-objective optimized GAN
network has achieved significant research results and
important practical application value. This study not only
theoretically constructs a multi-objective optimized GAN
model that can comprehensively consider multiple
dimensions such as data fidelity, model diversity and
stability, but also verifies the excellent performance of the
model in improving prediction performance through a
large number of experiments. This achievement not only
provides a more accurate and reliable tool for the risk
prediction of construction engineering safety accidents,
but also promotes the field to move towards intelligence
and science, and contributes an important force to the
safety production and sustainable development of the
construction industry. The following are the main
conclusions of this study:

The prediction model based on multi-objective
optimization GAN network proposed in this study shows
excellent performance in architectural engineering
security incident risk prediction. Compared with
traditional prediction methods, the accuracy of this model
on the test set has been greatly improved, with an accuracy
rate as high as 92.46%. At the same time, it also performs
well in key evaluation indicators such as recall rate and
F1 value. The results show that the multi-objective
optimization GAN network can more effectively capture
the complex features of security incident risks and
improve the accuracy and reliability of prediction.

By introducing multi-objective  optimization
strategies, this study not only optimizes the generation
and discrimination process of GAN networks, but also
makes the model show stronger adaptability and stability
in the face of different data sources and complex
environments. The improvement of this generalization
ability has laid a solid foundation for the wide application
of the model in practical engineering projects.

In future research, this study will explore the
integration and application prospects of models with the
Internet of Things, big data, and other technologies. By

L. He et al.

building an intelligent and integrated safety accident risk
early warning and management system, it provides strong
technical support and decision-making basis for safety
management in the architectural engineering industry.
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Glossary
Abbreviation Full Name Description
Measures the impact of variables on risk levels via the arithmetic mean of High-Risk
TRI True Risk Influence . P v v .v &
Influence (HRI) and Low Risk Influence (LRI)
. A baseline classification model used for performance comparison with the GAN-Bayes
GCF Generalized Deep Forest P P ¥
model
XGBoost-GCF XGBoost Feature An integrated model combining XGBoost feature selection with Deep Forest, used in
00st- . . . . .
Selection-Deep Forest comparative experiments to validate GAN-Bayes effectiveness
Federated Policy
FEDPE Gradient with Byzantine A federated learning strategy enhancing model robustness in distributed data scenarios
Resilience
FEDPG Federated Policy A baseline federated learning strategy for comparing model stability under data missing
Gradient scenarios
Used in objective function calculations: V = Y log D(x), representing the total number of
m Data volume
samples
. Measures performance of generator/discriminator; core objective function in GAN
14 Value function ..
training
D Discriminator Neural network model to distinguish real/generated data; outputs 0 (generated data) or 1
(real data)
Neural network model to produce realistic data; takes random noise Z as input and outputs
G Generator )
simulated samples
VA Random noise input Input variable for the generator to produce simulated samples
p Probability distribution Core GAN objective: making p(G(z)) approximate the real data distribution p_data
Attribute variables in
Ai/Aj GAN-Bayes structure Calculates conditional mutual information I(Ai;Aj|C) to identify variable dependencies
learning
C Conditional variable/set Used in conditional probability calculations or as a conditional set in mutual information
A Attribute variables Factors such as weather, equipment status as risk factors; measures correlation with risks
True Positive/True . . . .
TP/TN . Confusion matrix metrics for accuracy calculation
Negative samples
False Positive/Fal
FP/FN a1se ,OSI tveralse Confusion matrix metrics for recall calculation
Negative samples
Thresholds for
o/p cumulative contribution Thresholds set in the paper to filter key features in accident feature importance analysis
scores
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u0

Population mean of
differences in paired
samples T-test

Null hypothesis parameter in paired T-test

Sample size

Difference in paired

Number of paired samples or population size in genetic algorithms

log

samples/number of
objective functions

Difference in paired samples or number of objective functions for gradient updates

Natural logarithm

Used in objective functions and mutual information calculations

Complete event set

Used in total probability formula in Bayesian networks
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