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Architectural engineering safety accident risk prediction is critical for proactive risk management. 

Traditional models often suffer from insufficient prediction accuracy, hindering effective risk prevention. 

This paper introduces a construction safety risk prediction framework based on a multi-objective 

optimization generative adversarial network (GAN-Bayes), integrating GAN's generative capabilities 

with multi-objective strategies to enhance accuracy and reliability. Using a dataset of 101 real 

construction cases for training/validation, the framework is compared against SVM, RF, and GCF. 

Experimental results show significant improvements: the GAN-Bayes framework achieves 92.46% 

accuracy, outperforming traditional methods by 8% in average accuracy and 7% in recall. Key algorithm 

details include multi-objective optimization for GAN training and probabilistic integration with Bayesian 

networks, demonstrating adaptability across project scales and types. 

Povzetek: Model GAN-Bayes z večciljno optimizacijo (NSGA-II) izboljšuje napovedovanje tveganja 

gradbenih nesreč. S kombiniranjem GAN-a (za uravnoteženje podatkov) in Bayesovih mrež, dosega več 

kot tradicionalne metode. 

 

1  Introduction 
In the rapidly developing field of construction 

engineering today, the prevention of safety accidents has 

always been a crucial focus. According to statistics 

released by the World Health Organization, global 

construction activities cause hundreds of thousands of 

casualties each year, with corresponding economic losses 

reaching hundreds of billions of dollars. Construction 

projects often involve complex construction processes, 

numerous participants, and diverse technological 

applications, which pose significant challenges to 

accurately predicting safety accident risks [1]. Traditional 

risk prediction methods may struggle to achieve ideal 

prediction accuracy and generalization ability when 

processing construction project data due to issues such as 

high dimensionality, non-linear relationships, and 

imbalanced data. 

In recent years, Generative Adversarial Networks 

(GANs) have shown great potential in many fields [2]. 

GAN can learn the distribution characteristics of data 

through adversarial training mechanisms, thereby 

generating new data samples with similar distributions, 

which provides new ideas for solving problems related to 

construction engineering data [3]. However, single 

objective optimized GAN networks may not fully 

consider multiple key objectives such as model accuracy, 

stability, and interpretability when applied to predicting 

safety accident risks in construction projects [4]. 

 

Drawing on the advantages of other researches, this paper 

innovatively introduces a multi-objective optimization 

generative adversarial network, breaks  

through the limitations of the traditional single model, and  

can comprehensively consider various complex risk 

factors and their interaction relationships in construction 

projects, such as personnel operation, construction 

environment, equipment status, etc., so as to make the 

prediction more suitable for actual engineering scenarios. 

Through advanced data processing methods, we can 

deeply mine and analyze massive data, extract valuable 

information, accurately identify potential risk patterns and 

patterns, and realize the scientific transformation from 

experience-driven to data-driven. The application of the 

results provides a scientific basis for safety management 

decision-making, helps to rationally allocate resources, 

formulates targeted systems and plans, and promotes the 

industry to pay attention to risk prediction, improve 

technology and standards, ensure personnel safety and 

sustainable development of enterprises, and provide solid 

support for current research from many aspects such as 

model construction, data processing and practical 

application. 

In order to address the challenges in predicting the 

risk of construction safety accidents, this paper proposes 

a solution, namely a multi-objective optimization-based 

GAN model, focusing on the construction safety accident 

risk prediction model based on multi-objective 
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optimization GAN network. By introducing multi-

objective optimization algorithms to optimize the training 

process of GAN networks, the aim is to simultaneously 

improve the prediction accuracy of the model for safety 

accident risks, enhance the adaptability and stability of the 

model in different construction scenarios, and improve the 

interpretability of the model results. The design of the 

model fully considers multiple key performance 

indicators such as fidelity of generated data, diversity and 

stability of the model, aiming to comprehensively 

improve the predictive ability of the model. By integrating 

multi-objective optimization strategies, multiple objective 

functions are simultaneously optimized during the 

training cycle of the model, significantly improving the 

predictive performance and stability of the model while 

ensuring data fidelity. This study also optimized the 

theoretical architecture of the multi-objective 

optimization GAN network module, including the fine 

design of the neural network and fine-tuning of the 

training process, to ensure that the model can balance the 

processing of multiple objectives and avoid the 

limitations that traditional models may have when 

optimizing a single objective. Through this study, we have 

not only brought a new perspective of intelligence and 

scientificity to the field of construction safety 

management, but also injected new vitality and 

momentum into the sustainable and prosperous 

development of the construction industry. 

Table 1 has showed the comparison of Construction 

Engineering Safety Methods. The research on the risk 

prediction model of construction engineering safety 

accidents based on multi-objective optimized GAN 

network integrates a number of cutting-edge technologies 

and methods: at the technical level, relying on the Internet 

of Things (IoT) to collect multi-source data (such as 

equipment operation parameters, environmental 

indicators, and personnel behavior trajectories) on the 

construction site in real time, and realizing the storage, 

cleaning and distributed processing of massive data 

through big data platforms (such as Hadoop and Spark); 

At the algorithm level, the generative adversarial network 

(GAN) is innovatively combined with the multi-objective 

optimization strategy—GAN learns the data distribution 

features through the adversarial training mechanism of 

generator and discriminator to solve the problem of 

imbalance of construction engineering data, and the multi-

objective optimization algorithm (such as NSGA-II) 

simultaneously optimizes the objective functions of the 

model such as accuracy, stability, and interpretability, 

breaking through the limitations of the traditional single-

objective model. In this study, the GAN-Bayes network 

model was constructed using NETICA tools, combined 

with genetic algorithm to optimize the data generation 

process, and the model was trained and verified by the 

Kaggle traffic accident dataset (including 2 million 

records) and 101 building construction cases. The results 

show that compared with the traditional methods, the 

framework is significantly optimized in terms of 

prediction accuracy (8% improvement on average) and 

recall rate (7% improvement), and it is still robust in the 

scenario of feature loss, providing a data-driven 

intelligent solution for construction project safety 

management. 

 

Table 1: Comparison of construction engineering safety methods 

Dimension Traditional Methods Single GAN Model This Study's Method 

Model 

Architecture 

Simple, limited in complex 

relationships 

Prone to instability and 

local optimality 

Multi-objective optimization 

for comprehensive balance 

Data Processing 
Weak with high-dimensional, 

non-linear, imbalanced data 

GAN generation without 

optimizing data quality 

Enhanced data reliability and 

diversity 

Algorithm 

Strategy 

Single-objective, insufficient 

generalization 

Focus on realistic data 

generation 

Simultaneous optimization of 

multiple objectives 

Prediction 

Performance 

Low accuracy and recall in 

complex scenarios 

Improved but limited 

stability 

8% accuracy increase, 7% 

recall increase 

Application 

Scenarios 

Simple scenarios, not suitable 

for complex environments 

Narrow scope, limited 

practicality 

Applicable to various 

construction projects 

Dataset 
Historical or small-scale data, 

limited relevance 

General datasets, weak 

correlation with risks 

Highly relevant, diverse, and 

functionally intact 
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2 Research on risk factors of 

construction safety accidents 

generated by adversarial network 

2.1 Novelty of the research 

This study has made unique and important contributions 

in the field of construction accident risk prediction. 

Firstly, at the level of method application, the multi-

objective optimization generative adversarial network is 

innovatively introduced into the risk prediction of 

construction engineering safety accidents. Compared with 

the existing prediction methods in the current literature, 

this method has significant advantages. Traditional 

methods often only focus on a single goal or a limited 

number of factors for analysis and prediction, and it is 

difficult to comprehensively and accurately capture the 

full picture of safety accident risks in complex systems of 

construction projects. The multi-objective optimization 

generative adversarial network can deal with multiple 

interrelated and potentially conflicting targets at the same 

time, such as considering the probability of accidents and 

the degree of loss caused by accidents, etc., through the 

comprehensive optimization of these objectives, more 

accurate and comprehensive prediction of safety accident 

risks can be realized, which greatly improves the 

performance and practicability of the prediction model. 

Secondly, in terms of the use of data resources, this 

study uses a new data set. This new dataset is not simply 

a repetition of data from previous studies, but is 

constructed through in-depth field research, extensive 

data collection, and rigorous data screening and collation. 

It covers more diversified construction engineering 

scenarios, richer engineering parameters, and more 

detailed accident-related information, and these unique 

data elements provide a more comprehensive and 

representative sample for model training, effectively 

avoid model bias caused by data limitations, and lay a 

solid data foundation for improving the accuracy of risk 

prediction. 

The theoretical framework of this study exhibits an 

unprecedented level of comprehensiveness when 

considering the various factors related to the risk 

prediction of construction engineering safety accidents. It 

systematically integrates key elements in multiple 

dimensions such as engineering design factors, 

construction process management factors, personnel 

operation behavior factors, environmental condition 

factors, and material and equipment quality factors. 

Compared with the previous theoretical framework that 

only focuses on individual or a few factors, this research 

framework can more comprehensively and deeply analyze 

the complex interaction relationship between various 

factors and their comprehensive impact mechanism on 

safety accident risk, so as to provide a more complete, 

scientific and logical theoretical support system for the 

risk prediction of construction engineering safety 

accidents, and effectively promote the further 

development of theoretical research in this field. 

This study focuses on the risk prediction of 

construction engineering safety accidents based on multi-

objective optimized GAN networks, and aims to explore 

two core problems: first, whether the samples generated 

by GAN can effectively alleviate the problem of uneven 

data distribution under the current situation of general 

imbalance in construction engineering safety accident 

data, and then significantly improve the prediction 

performance of the classification model; Second, 

compared with the traditional classical prediction 

methods, whether the GAN-Bayes framework constructed 

in this study shows better prediction accuracy, 

generalization ability and robustness when dealing with 

the task of predicting the risk of construction engineering 

safety accidents. Based on this, the corresponding 

hypotheses are proposed: first, the samples generated by 

GAN can balance the data distribution and help the 

classification model achieve higher classification 

accuracy in the data imbalance scenario; Second, the 

GAN-Bayes framework is superior to classical methods 

in terms of prediction effect by virtue of its unique data 

generation and probabilistic reasoning mechanism, 

providing a more reliable solution for the risk prediction 

of construction engineering safety accidents. 

2.2 Design ideas 

When the number of construction safety accident samples 

is limited, relying only on a few data sets for model 

training will cause the model to show high-performance 

indicators during the training phase, and the performance 

may decline significantly during the verification or testing 

phase. To solve this problem, this paper introduces 

generative adversarial networks [5]. By utilizing the 

powerful generation capabilities of GANs, based on the 

existing small sample data sets, new data points reflecting 

building safety and road transportation risk factors can be 

automatically generated, thereby achieving effective 

expansion of the data sets and helping to improve the 

learning efficiency and generalization of the model. In 

this study, the method of mutation operation in the genetic 

algorithm and generation network is combined, and 

according to the actual data set, the single hot coding 

technology is applied to transform the factor features and 

result features of each accident. The coded feature vector 

set is formed to form the accurate sample database [6]. 

Then, this actual database enters the authentication 

network together with the data output by the generation 

network as input. Through comparison, the authentication 

network provides scores for the accurate and generated 

data, respectively, and passes this feedback mechanism to 

the generated network. After multiple rounds of iterative 

adversarial interactions, the generation network optimizes 

its synthesis capabilities, producing synthetic samples 

highly similar to the original data samples. 

2.3 Data processing 

In the model, the mutation strategy of genetic algorithm is 

deeply integrated with the data generation process of 

GAN, which has become a key link in the construction of 

high-quality pseudo-datasets. The mutation strategy of 



286   Informatica 49 (2025) 283–302                                                                L. He et al. 

 

genetic algorithm explores new regions in the solution 

space by performing random gene perturbations on 

individuals in the population, which effectively avoids 

falling into local optimum. When applied to the data 

samples generated by GAN, the strategy randomly fine-

tunes the eigenvalues of the generated data to simulate the 

subtle changes of the risk factors of construction 

engineering safety accidents in the real scene, which 

greatly increases the diversity of pseudo-data, makes it 

cover a wider feature space, and reduces data 

homogeneity. At the same time, as a post-processing 

mechanism for GAN data generation, the mutation 

strategy can screen and optimize the data output by the 

generator, eliminate abnormal samples that do not 

conform to the distribution law of real data, and retain 

more representative pseudo data. Through this 

integration, the reliability of the pseudo-dataset is not only 

improved, but also the data generation process is logically 

consistent with the overall methods such as multi-

objective optimization framework and Bayesian network 

integration. 

Datasets have diversity and complexity, and their 

characteristics can be divided into continuous and discrete 

types. Discrete features are subdivided, including digital 

and category features [7, 8]. As a discrete feature, accident 

data refers to category data, so it needs to be processed 

using a coding method. In constructing a pseudo data set, 

this paper adopts the mutation strategy in the genetic 

algorithm to ensure data reliability. When the extreme 

value of the objective function presents a single peak, the 

variation probability p is set as the reciprocal of the 

population size n. On the contrary, if the mutation 

probability is too high, the search process degenerates into 

a pure random search. In the early stage of evolution, 

adopting significant mutation probability is recommended, 

which should be gradually lowered until it is close to zero 

with the deepening of the search process [9, 10]. 

2.4 Establishment of generative adversarial 

network model 

By learning the characteristics of the input image, the 

generator creates simulated samples, which need to fit the 

distribution pattern of actual samples closely [11]. The 

key to evaluating the generator's performance is whether 

it can accurately capture and reproduce the core 

characteristics of actual samples, thereby generating 

outputs that are highly consistent with actual samples 

[12]. 

The discriminator network performs the true-false 

classification task by identifying the feature patterns in the 

learning training set and evaluating the authenticity of the 

feature vectors produced by the generator [13]. The specific 

structure of the network is shown in Figure 1. It starts with 

five input neurons, passes through a deep structure 

containing six hidden layers (each layer is configured with 

five neurons), and finally converges to an output neuron. 

 

 
Figure 1: GAN network model 

 

In generative adversarial networks (GANs), the core 

task of the generator is to maximize the probability that 

the discriminator will incorrectly judge the generated data 

as real data by constantly adjusting its own parameters, 

which is essentially optimizing an objective function to 

make the distribution of the generated data as close to the 

real data distribution as possible [14]. At the same time, 

the discriminator aims to continuously improve its ability 

to distinguish between genuine and fake data by 

minimizing the probability of mistaking real data for 

generated data, ensuring that even highly realistic 

generated data cannot escape its accurate identification. 

The objective function of the generative network aims to 

maximize the authenticity of the generated data, while the  

 

objective function of the discriminative network is 

committed to minimizing the false positive rate, and the 

synergistic effect of the two networks promotes the 

development of GAN in the direction of generating data 

that is more difficult to distinguish between true and false, 

and the specific expression of the objective function is 

usually shown in equations (1) and (2). 
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In the above formula, m represents the amount of 

data, and V represents the value function, which is used to 

measure the performance of the generator and 

discriminator. log is the natural logarithm and 

∑  𝑚
𝑖=1 represents the sum of all samples from 1 to m. 

𝐷(𝑥̃𝑖) is the discriminant result of the discriminator 𝑥̃𝑖  
on the generated sample. 1- 𝐷(𝑥̃𝑖)  indicates that the 

discriminator thinks x is the probability of generating a 

sample. D stands for discriminator, and its role is to judge 

whether the input data comes from a real or a fake data 

distribution generated by the generator. xi represents 

accurate data, i.e., samples from actual data distributions. 

 

d d dV( )   = +  (3) 

 

The objective maximizes the objective function of 

the discriminant network. It updates the weight 

parameters by gradient rising, as shown in Equation (3), 

where 𝜃 is the model parameter, 𝜂 is the learning rate, 

and d represents the number of objective functions. 

𝛻𝑉(𝜃𝑑) is the gradient of the function V with respect to 

d. A paired sample T-test can evaluate the risk factor 

samples generated by the adversarial network. The two-

sample T-test compares the overall difference between the 

mean values of the two groups of samples, including 

independent samples and paired samples. The paired 

sample T-test is suitable for testing the difference between 

two matched groups of data or the same group of data 

under different conditions, and the test object becomes the 

difference between the observed values of two types of 

paired samples. The paired sample T-test can be 

expressed by the statistic of Equation (4): 

 

0
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n
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In the paired sample T-test, d is the difference of 

paired samples, that is, the difference between the first set 

of sample values and the second set of sample values. 𝑑̅ 

is the sample mean. S is the sample standard deviation of 

the difference, which measures the dispersion degree of 

the difference distribution. u0 is the overall mean of the 

difference, which is usually a parameter of interest to the 

researcher and represents the mean of the paired 

difference between the two groups of samples. n is the 

sample size, the number of paired sample pairs. t is the 

statistic of the paired sample T-test, which is used to 

decide whether to reject the null hypothesis or whether 

there is a statistically significant difference. 

Table 2 has showed the model comparison. The 

comparative table above systematically evaluates existing 

risk prediction models (SVM, RF, GCF, XGBoost-GCF) 

and the proposed GAN-Bayes model across dataset 

adaptability, accuracy, optimization objectives, and 

limitations. Traditional methods like SVM and RF 

struggle with small datasets (e.g., <500 samples) and 

high-dimensional non-linear features, relying on manual 

engineering or heuristic rules, while GCF and XGBoost-

GCF are constrained by rigid graph structures or complex 

feature fusion. In contrast, the GAN-Bayes model 

achieves 92.46% accuracy on a small dataset of 101 

construction accident samples, leveraging GAN’s 

generative capabilities to expand feature space and multi-

objective optimization to balance GAN training with 

Bayesian probabilistic inference. This innovation 

addresses the limitations of prior models in small-sample 

robustness, feature dependency, and interpretability, 

demonstrating superior performance in predicting 

construction safety risks through adaptive feature learning 

and probabilistic modeling. 

 

Table 2: Model comparison 

Model Dataset Accuracy Optimization Goal Limitations 

SVM Small, linear 78.2% ± 3.5% Maximize margin 

High-dim non-linear 

features; manual 

feature engineering 

RF Medium, mixed 82.5% ± 2.8% 
Minimize Gini 

impurity 

Small-sample noise; 

no implicit feature 

relationship 

GCF Structured graph 85.1% ± 3.1% 
Graph feature 

extraction 

Relies on graph 

structure; poor for 

unstructured data 

XGBoost-

GCF 

Hybrid, graph 

features 
87.3% ± 2.4% 

Boosting and graph 

features 

High computational 

cost; clumsy feature-

tree fusion 

GAN-

Bayes 

Small, mixed 

features 
92.46% ± 1.8% 

GAN diversity; 

Bayesian consistency 

GAN stability vs. 

Bayesian inference 

efficiency 

 



288   Informatica 49 (2025) 283–302                                                                L. He et al. 

 

3 GAN-bayes based safety risk 

assessment model for construction 

projects 

3.1 Bayesian classification algorithm 

The integration of GAN-Bayes is achieved through 

innovative data fusion and probabilistic modeling. GAN 

uses the adversarial training mechanism to generate 

synthetic samples that are highly similar to the 

distribution of real construction engineering safety 

accident data, effectively expanding the scale and 

diversity of the original dataset. In the Bayesian structure 

learning stage, the synthetic data generated by the GAN is 

combined with the real data to form a mixed dataset, and 

the Bayesian network learns the probability dependence 

between variables through the maximum posterior 

estimation (MAP) method based on the mixed dataset. 

Specifically, the Bayesian network regards the real data 

and synthetic data as the same information carriers 

reflecting the risk characteristics of construction 

engineering safety accidents, and captures the causal 

relationship between the characteristic variables 

contained in the two types of data by calculating the 

conditional probability distribution, so as to construct a 

probability graph model with more generalization ability. 

The dependence between real data and synthetic data is 

reflected in the fact that synthetic data, as an extension of 

the distribution of real data, supplements the samples of 

small probability risk scenarios, assists Bayesian 

networks to more comprehensively describe the 

probability correlation between risk factors of security 

accidents, and enables the model to achieve more accurate 

risk prediction based on probabilistic reasoning in the face 

of complex and changeable practical engineering 

scenarios. 

The Bayesian Bayes algorithm fuses probability and 

graph theories to exhibit superior probabilistic 

representation. As shown in Figure 2, the model depicts 

causal links between variables with nodes and directed 

edges, where nodes represent the essential components of 

variables or events [15]. Direct edges characterize causal 

associations, and conditional probabilities portray the 

dependencies between variables. The Bayesian algorithm 

supports forward and backward reasoning. It can be 

effectively applied to reliability analysis, risk assessment, 

and safety evaluation to realize engineering accident 

analysis, decision making and risk assessment in 

engineering safety. 

 

 

Figure 2: Bayesian network model 

 

Conditional probability refers to the occurrence 

probability of event A under the condition that another 

event B has occurred, expressed as P (A ∩ B). The 

conditional probability formula of the relationship 

between the two is (5): 

 

P( A B )
P( A| B )

P( B )


=  (5) 

 

The joint probability can be further deduced from the 

conditional probability in equation (5). Joint probability 

refers to the probability that two or more events occur 

together. Assuming that there are events A and B, the joint 

probability of A and B is expressed as P (A ∩ B), which is 

expressed by the formula (6): 

 

P( A B ) P( A B )P( B ) = ∣  (6) 

 

If there are events B1, B2, B3, ..., Bn, which form a 

complete event group E, all of which have positive 

probabilities. If B1, B2, B3, ..., Bn are incompatible with 

each other, the total probability formula is as follows (7): 
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The Bayesian formula is used to describe the 

relationship between two conditional probabilities. Pieces 

B1, B2, B3, ..., Bn are a set of mutually incompatible 

complete events in event E, and each event has a positive 

probability [16, 17]. Combining conditional probability, 

joint probability and total probability formulas, the 

Bayesian formula can be expressed as (8): 

 

1

i i

i n

j j
j

P( B )P( A B )
P( B A)

P( B )P( A B )
=

=



∣
∣

∣
 (8) 

 

P(Bi|A) is the conditional probability, which 

indicates the probability that event Bi will occur under the 

condition that event A occurs. P(Bi) is the prior probability 

of the event Bi. P(A|Bi) is the conditional probability, 

which indicates the probability that event A will occur 

under the condition that event Bi occurs. ∑  𝑛
𝑗=1 represents 

the sum of all samples from 1 to n. P(Bj) is the prior 

probability of the event Bj. P(A|Bj) is a conditional 

probability, which indicates the probability that event A 

will occur under the condition that event Bj occurs. Bayes 

consists of nodes, directed edges and probability 

distribution tables. Nodes represent uncertain variables; 

directed edges represent causal relationships, forming an 

acyclic-directed graph. Suppose the set of variables is V = 

{X1, X2, ..., Xn} and the set of directed edges is E, the 

directed acyclic graph is denoted as G = (V, E). ∏  𝑛
𝑖=1 is 

a multiplication symbol that indicates the multiplication 

of all terms from i=1 to n. Xpa(i) represents a random 

variable corresponding to the parent node of X(i). Each 

child node corresponds to a conditional probability 

distribution table with its set of parent nodes, computed as 

(9): 
n

1 2
i 1

n i pa( i )P( X ,X ,...,X ) P( X | X )
=

=   (9) 

3.2 GAN generates models 

The GAN model architecture uses a deep convolutional 

structure. The generator part uses ReLU as the activation 

function to enhance the nonlinear mapping ability, and the 

output layer uses the Tanh function to ensure that the 

generated data is distributed in a reasonable interval. The 

discriminator uses the LeakyReLU activation function in 

the hidden layer and the Sigmoid function in the output 

layer to distinguish between real and generated data. The 

optimizer uses Adam with a learning rate of 0.0002 and 

β1 and β2 of 0.5 and 0.999, respectively, to balance the 

first- and second-order moments of the training process. 

In terms of loss function, the generator and discriminator 

use the cross-entropy loss function, which aims to 

minimize the difference between the distribution of the 

generated data and the real data. The convergence 

criterion for the model is set at a loss fluctuation of less 

than 0.001 for both the generator and discriminator over 

10 consecutive training periods. In the ensemble of multi-

objective optimization, the three objectives of accuracy, 

F1 value and stability are optimized at the same time, and 

the NSGA-II (Non-Dominance Sorting Genetic 

Algorithm II) algorithm is used to effectively generate a 

set of Pareto optimal solutions through non-dominant 

ranking and congestion calculation, so as to achieve 

balance between different objectives, so that the model 

has high accuracy, good classification performance and 

stable training performance in the risk prediction of 

construction engineering safety accidents. 

 

 

Figure 3: Data processing and model integration steps 

 

Figure 3 clearly presents the workflow of using 

mutual information analysis to visualize the importance of 

features around the risk prediction of construction 

engineering safety accidents. Firstly, starting from data 

collection and preprocessing, the historical data of 

construction engineering safety accidents were cleaned 

and encoded. Then, the accident is classified, and the 

features are extracted and screened to lay the foundation 

for subsequent analysis. Through mutual information 

analysis, the dependence between the calculated features 

and accident categories is analyzed, and the importance of 

the features is ranked according to the calculation results, 

and visualized with the help of histograms, heat maps and 

other methods. Finally, the analysis results are used to 

verify and integrate into the multi-objective optimization 

GAN network model, so as to realize the intuitive display 

of key influencing factors and model optimization, and 

help the prevention and control of construction 

engineering safety risks. 

Generative adversarial networks often face problems 

such as instability, difficulty in convergence and local 

optimality in the training process. In order to solve these 

problems, this paper adopts an improved generative 

adversarial neural network structure. This structure is 
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used to generate the risk characteristics of architectural 

engineering security, solve the problem of data imbalance, 

and improve the model's generalization ability through 

data expansion. First, the generative adversarial network 

model uses random noise Z as input to generate fake 

samples through the generator network [18]. Then, the 

discriminator network discriminates between real and 

fake samples. The generator's goal is to reduce the 

difference between the generated data and the real data 

distribution, while the discriminator judges the 

authenticity of the input data by outputting 0 or 1. The 

objective function of GAN training can be described as 

(10): 

 
E log E log 1

r sx p s p
G D

minmaxV( D,G ) [ D( x )] [ ( D( G( z )))]− −= + −  (10) 

 

In the training objective function of the generative 

adversarial network, E stands for the expected value 

operation, which is used to measure the average 

performance; D refers to the discriminator, a neural 

network model whose responsibility is to distinguish real 

data from generated data; G is the generator, another 

neural network model, whose goal is to generate enough 

data to confuse the real with the fake in an attempt to 

deceive the discriminator; s is a variable in a specific 

context; p refers to probability distribution.  𝑚𝑖𝑛
𝐺

  

indicates a minimization operation on generator G, and 

𝑚𝑎𝑥
𝐷

  indicates a maximization operation on 

discriminator D. logD(x) is the logarithm of the 

probability x that the real data is judged to be true by the 

discriminator D. 

3.3 GAN-bayes based safety risk assessment 

model for construction projects 

3.3.1 GAN-bayes structure learning 

In the construction of the construction of the construction 

accident risk prediction model based on multi-objective 

optimization GAN network, the technical implementation 

details are as follows: firstly, in the GAN training stage, 

the generator and discriminator are alternately optimized, 

and the PyTorch framework is used, BCELoss is used as 

the loss function, and the Adam optimizer is combined 

with the learning rate of 0.0002 after 100 rounds of 

training, and 32 samples are processed in each batch; In 

the Bayesian integration process, the synthetic data 

generated by the GAN is combined with the real data, and 

the Bayesian network structure is optimized 50 times in 

Netica software using the maximum posterior estimation 

(MAP). For parameter optimization, the NSGA-II 

algorithm initializes the population of 100 individuals, 

evaluates the fitness based on accuracy, F1 value and 

stability through selection, crossover and mutation 

operations, and obtains the optimal solution set through 

non-dominant ranking and crowding calculation. In terms 

of network architecture, the GAN generator uses a 4-layer 

transposed convolution with ReLU and Tanh activation 

functions, the discriminator is a 4-layer convolutional 

layer combined with LeakyReLU and Sigmoid functions, 

and the Bayesian network constructs a variable 

dependency graph based on mixed data. At the same time, 

Python 3.8 was used as the development language, 

supplemented by Scikit-learn for data preprocessing and 

evaluation, and Matplotlib for visualization, so as to 

ensure the efficiency and accuracy of the whole process 

from model construction to evaluation, and provide a 

strong guarantee for the reproducibility of research results. 

In the construction accident risk prediction model 

based on multi-objective optimized GAN network, the 

architectural integration of GAN and Bayesian network is 

realized through the deep integration of data and 

algorithms. The generative component of GAN learns the 

latent distribution of construction engineering safety 

accident data through adversarial training, generates 

synthetic samples containing complex risk features, 

effectively expands the scale of the dataset, and alleviates 

the problems of small samples and data imbalance. The 

discriminator in the adversarial component differentiates 

the generated data from the real data, forming a feedback 

mechanism to promote the generator to optimize the 

generation quality and improve the diversity of data. The 

Bayesian network describes the dependence between the 

risk factors of construction engineering safety accidents 

with a probabilistic graph structure, and realizes risk 

prediction through probabilistic reasoning. After the 

synthetic data generated by GAN is combined with the 

real data, it is used as the input of Bayesian network 

structure learning and parameter learning, and the data 

generated by GAN provides a richer sample basis for 

evaluating the dependence between variables in 

conditional mutual information calculation, helps the 

Expectation Maximization (EM) algorithm to infer the 

structural parameters of Bayesian network more 

accurately, enables Bayesian network to build a risk 

prediction model based on more comprehensive data 

distribution characteristics, and finally realizes the 

complementary advantages of GAN and Bayesian 

network. Improve the accuracy and robustness of the 

overall model for the risk prediction of construction 

engineering safety accidents. 

Bayesian structure learning recognizes dependencies 

by parsing conditional probabilities between variables and, 

accordingly, forms directed acyclic graphs representing 

causal links. In this paper, we propose the GAN-Bayes 

optimization method. In a GAN-Bayes network, attribute 

variables have up to two parent nodes: the class variable 

and one or more other attribute variables. Nodes are 

connected to all attribute nodes, while each attribute node 

forms a tree structure [19, 20]. The directed edges pointed to 

by the nodes symbolize the influence between the 

variables. The core of learning the GAN structure is the 

optimization process, which seeks the optimal solution by 

calculating the conditional mutual trust information 

between the attribute variables, as shown in equation (11). 

 

ii ji i

p i j ii ji i
a ,a ,cu ju i ii i ji i

p( a ,a c )
I ( A ,A C ) P( a ,a ,c )log

p( a c )p( a c )
= = 

∣
∣

∣ ∣
 (11) 
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In the Eq. (11), Ai and Aj are two variables, and C is 

a conditional variable. which is the algorithm's key when 

estimating conditional dependency [21, 22]. ∑  𝑎 means 

summing all possible a. P(aii,aji,ci) is the joint probability 

of aii, aji, and ci occurring at the same time. 
𝑝(𝑎𝑖𝑖,𝑎𝑗𝑖∣𝑐𝑖)

𝑝(𝑎𝑖𝑖∣𝑐𝑖)𝑝(𝑎𝑗𝑖∣𝑐𝑖)
 

is the ratio of the conditional probabilities.  

3.3.2 GAN-bayes parameter learning 

The parameter learning algorithm is divided into two 

steps: E-step and M-step. in the E-step stage, the 

parameters are estimated using the observed data and the 

existing model, and the expected value of the log-

likelihood function of the observed data is computed 

under the current parameters; in the M-step stage, the 

parameters that maximize the likelihood function are 

found [23]. By iteratively updating the parameters, the 

optimal parameter set is finally obtained. E-step calculates 

the expectation value of the complete data set Z = (X, Y) 

based on the known parameter 𝜃, and the log-likelihood 

function of E based on the observed data X. The 

expression is given in Equation (12). 

 

E logt tQ( , ) [ p( X ,Y | ) X , ]   = ∣  (12) 

 

Q(𝜃,𝜃t) is the expected value of the log-likelihood 

function calculated from the observed data X and 𝜃t of the 

parameter t, and P is the joint probability density function 

of X and Y under the parameter. arg 𝑚𝑎𝑥
𝜃

 𝑄(𝜃, 𝜃𝑡) 

indicates that among all possible Q values, the Q(𝜃,𝜃t) 

value that makes 𝜃 is the largest. The value of M-step is 

defined as (13): 

 
targ maxQ( , )


  =  (13) 

 

3.4 Sensitivity analysis 

Sensitivity analysis is used to identify target accident 

risk indicators. Sensitivity analysis is implemented with 

the help of mutual information law, joint probability 

model and actual risk influencing factors (TRI) when 

quantitatively assessing the safety risk of construction 

sites using the GAN-Bayes framework [24, 25]. The 

correlation variables of key nodes are identified through 

mutual information assessment. Then, the joint 

probability approach and TRI strategy are applied to 

explore the interactions between different risk factors and 

their specific effects. 

This paper assesses the strength of dependence 

between variables by mutual information, which 

measures the tight association between their influencing 

factors and accident risk [26]. Given that accident risk is set 

as the parent node in the GAN-Bayes model, a high 

mutual information value indicates that the corresponding 

influencing factor significantly influences accident risk, 

and mutual information is calculated through equation 

(14). 

 

log
ij

i ij
c ,i

ij

P( C, A )
I( C, A ) P( C, A )

P( C )P( A )
= −  (14) 

 

Where C represents the condition set, which refers to 

the influence of a specific variable on the accident risk 

given other variables; A represents the attribute variable, 

which specifically refers to various factors that may affect 

the accident risk [27, 28]; P represents the probability, 

specifically refers to the joint or conditional probability 

under a given condition. The GAN-Bayes model assigns 

corresponding probabilities to different states and 

calculates the state probability distribution of class 

variables under fixed other factors. The sum of the 

probability values of the joint distribution of each state is 

always 1, and the calculation formula is shown in 

Equation (15). 

 

ij ijP(C,A ) P(C )P( A C )= ∣  (15) 

 

RI (Risk Impact) is a multivariate sensitivity analysis 

technique which measures the influence of variable nodes 

(key factors) on the risk level by the arithmetic mean (TRI) 

of high-risk Impact value (HRI) and low-risk Impact value 

(LRI). The calculation process is shown in Equation (16). 

 

2

HRI LRI
TRI

+
=  (16) 

3.5 Evaluation of model effect 

In order to solve the problem of small data sets that are 

common in the risk prediction of construction engineering 

safety accidents, this study uses a data augmentation 

analysis strategy to generate diversified synthetic data 

through GAN networks, which effectively expands the 

scale of the original dataset and improves the diversity of 

data. On this basis, the robustness test of the model is 

carried out through multiple sets of comparative 

experiments, and the results show that the data-enhanced 

model can maintain stable prediction performance in 

different scenarios. At the same time, in order to enhance 

the reliability of the research results and the comparability 

between different methods, statistical significance 

indicators such as p-value and confidence interval are 

introduced in Table 1 to systematically quantify the 

difference of the prediction results of the model, which 

provides a rigorous statistical basis for verifying the 

effectiveness of the prediction model based on multi-

objective optimization GAN network [29, 30]. 

The model shows significant advantages over other 

methods, which is mainly attributed to the unique 

architecture design and optimization mechanism of the 

model. Compared with traditional machine learning 

models, multi-objective optimized GAN networks can 

automatically learn data distribution rules through the 

adversarial training process, effectively mining potential 

features in complex construction engineering data, and 

improving the model's ability to capture safety accident 

risks. Compared with the deep learning model of single-

objective optimization, the multi-objective optimization 
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strategy takes into account multiple key indicators such as 

the accuracy and generalization of the model, which 

makes the prediction performance better. When dealing 

with the problem of data imbalance, the GAN network 

generator can generate data samples similar to those of 

minority classes, enrich minority datasets, balance data 

distribution, and alleviate the bias of the model towards 

the majority class. For the problem of feature loss, the 

model strengthens the extraction of effective features in 

adversarial training and reduces information loss by virtue 

of its strong feature learning ability. According to the 

experimental data in Table 1, the proposed model is better 

than the comparison model in various evaluation 

indicators, which proves its effectiveness. Combined with 

the prediction results of Figure 6-10 in different datasets 

and different construction engineering scenarios, it is 

further verified that the model has good universal 

applicability and can play a stable role in diverse 

construction accident risk prediction scenarios. 

This paper uses a confusion matrix combined with 

multiple evaluation indicators to comprehensively 

evaluate the GAN-Bayes network model's performance. 

These indicators include overall accuracy (OA), 

Precision, Recall, F-Score, Specificity and False Positive 

Rate (FPR). As a key index to measure the proportion of 

correctly predicted samples to the total samples, OA is 

especially suitable for overall performance evaluation, 

especially when dealing with the problem of sample 

imbalance. Its calculation formula is shown in Equation 

(17). 

 

P N

P P N N

T T
OA

T F F T

+
=

+ + +
 (17) 

 

Where TP is a real example, which refers to the 

number of positives and is correctly identified as positive 

by the model, TN is a true negative example, which refers 

to the number of negatives and is correctly identified as 

negative by the model. FP is a false positive example: the 

number of samples that belong to the negative class but 

are incorrectly classified as positive by the model. FN is a 

false negative example, which refers to the number of 

samples that are actually a positive class but are 

incorrectly identified as negative by the model. 

4 Training results of GAN-bayes based 

safety risk assessment model for 

construction projects 
When discussing the scalability and runtime performance 

of the construction engineering safety accident risk 

prediction model based on multi-objective optimized 

GAN network, a number of key indicators show its good 

application potential. In terms of training time, the Adam 

optimizer and the learning rate of 0.0002 make the 

training period of the model on small datasets short, and 

with the moderate increase of data size, the training time 

increases approximately linearly without exponential 

climbing. In terms of memory consumption, the 

parameter sharing mechanism of the deep convolution 

structure effectively controls the memory occupation, and 

even if a large amount of synthetic data is generated to 

enhance the robustness, it is within the tolerance of 

ordinary workstations. Due to the lightweight architecture 

and optimized storage mode, the model size is moderate, 

which is conducive to edge device or cloud deployment. 

When integrated into the real-world construction safety 

system, the model can adapt to a certain degree of data 

delay, reduce the impact of data availability fluctuations 

through batch processing and asynchronous calculation, 

and flexibly adjust the operating parameters according to 

the data collection frequency and scale of different 

construction sites while meeting the real-time 

requirements, taking into account the prediction accuracy 

and computing efficiency, showing strong practical 

application adaptability. 

This paper selects NETICA as a research tool to 

develop a GAN-Bayes network model for safety risk 

assessment in construction projects. The initial 

construction of the GAN network architecture is realized 

by calculating the conditional mutual information values 

between attribute nodes. Figure 3 shows the model's total 

second harmonic generation (SHG) coefficient analysis. 

In this paper, the new database is trained by implementing 

parameter learning, and each node's conditional 

probability table is constructed using NETICA to derive 

each variable's posteriori probability. 

 

 

Figure 3: Total SHG coefficient analysis of the model 
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Figure 4 shows the analysis of hierarchical resolution 

fluctuation. In order to achieve the balance of data 

distribution, this paper introduces the generative 

adversarial network to synthesize the safety incident data 

of construction sites to ensure that the ratio of accident 

data and normal operation data accounts for half. 

Accident categories are divided into ten categories, while 

risk levels are divided into four. Among the types of 

engineering accidents, collision accidents accounted for 

8.32% of the total accidents, fire or explosion accidents 

accounted for 8.16%, occupational safety accidents 

accounted for 7.4%, and equipment failure accidents 

accounted for 5.1%. 

 

 

Figure 4: Layer resolution 

 

In this study, faced with the dilemma of a small 

dataset with only 101 records, the synthetic data generated 

by the GAN network enhances the robustness of the 

model from multiple dimensions. By comparing the 

feature distribution and variable relationship between the 

generated data and the actual data, it is confirmed that the 

synthetic data can effectively simulate the real features, 

expand the sample size and diversity, reduce the risk of 

model overfitting, and improve the generalization ability. 

For the Kaggle dataset, the features with more than 30% 

missing values were eliminated, and then the chain 

equation (MICE) multivariate estimation method was 

used to deal with the remaining missing values to ensure 

data quality. At the same time, in order to solve the 

problem of category imbalance, 5-fold cross-validation of 

hierarchical sampling is adopted, and the division of the 

training set and the test set is maintained at 80:20, so as to 

ensure that the model can not only fully learn the 

characteristics of minority classes, but also accurately 

evaluate the performance through the independent test set, 

and finally comprehensively improve the reliability and 

stability of the model in the risk prediction of construction 

engineering safety accidents. 

Figure 5 shows the frequency distribution analysis of 

each category in the dataset. In order to evaluate the 

prediction efficiency of the model, this study randomly 

selected part of the data from the data set of 101 accident 

records to construct a test set. The overall accuracy of the 

model is calculated to be 92.08%. In-depth analysis for 

the prediction of minor risks, its accuracy rate is 100%. 

The prediction accuracy rates reached 90.9%, 71.43%, 

and 75% for very serious, serious, and more serious risks, 

respectively. 

 

 

Figure 5: Class distribution of dataset 
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In this study, the prediction effectiveness metrics for 

each accident risk are computed, and Figure 6 reveals the 

effect of class K on the performance of FEDPE (Federated 

Policy Gradient with Byzantine Resilience) and FEDPG. 

The GAN-Bayes model achieves 99.86% precision and 

recall in the less severe accident risk; in the very severe 

accident risk case, the recall reaches 91%. In the 

comprehensive analysis, the F-Score of the model exceeds 

0.75, which proves that the model possesses an overall 

excellent performance. In addition, all types of accident 

risks exhibit 97% specificity, while the false positive rate 

is controlled at less than 3%. The higher specificity and 

lower FPR value prove the accuracy and effectiveness of 

the model in distinguishing different risk classes. 

 

 

Figure 6: Effect of grade K on the performance of FEDPE and FEDPG 

 

5  Example validation and analysis 

5.1 Example verification and analysis 

In order to evaluate the robustness of the construction 

engineering safety accident risk prediction model based 

on multi-objective optimized GAN network in the feature 

loss scenario, the simulated feature loss test was carried 

out in this study. Simulate feature loss in real engineering 

data by artificially introducing missing values of 5% to 

50% in the raw data. For the missing features, mean 

imputation is used to process numerical data to retain 

statistical features, mode imputation is used to fill in the 

sub-type data to maintain the classification logic, and the 

features with a missing rate of more than 30% are 

discarded to avoid interfering with the performance of the 

model. After setting different missing rates each time, the 

model was retrained, and the changes in prediction 

accuracy, F1 value and other indicators were monitored, 

and the robustness and adaptability of the model to deal 

with the problem of feature loss were comprehensively 

verified by systematically comparing the performance of 

the model under different processing strategies and 

missing rates. 

This research experiment uses the Kaggle dataset, 

which contains two million two hundred and ninety-nine 

thousand records of traffic accidents in the United States 

from 2016 to 2019, to validate the effectiveness of the 

building safety impact assessment method. The dataset 

includes forty-nine accident metrics, including essential 

information such as the duration of traffic flow 

interruption after a traffic accident, the duration of 

accident processing, the length of the affected roadway, 

and relevant environmental factors. Figure 7 shows the 

precision-recall plot derived from the GAN model. The 

dataset is subdivided into four accident severity classes 

based on the degree of disruption to traffic operations after 

an accident. 
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Figure 7: Accuracy-recall 

 

In the data preprocessing process, we removed the 

data with a high proportion of missing values and retained 

more than 100,000 samples. A thousand pieces of data 

were randomly selected from each type of accident impact 

level, totaling 4,000 accident examples, to evaluate their 

correlation with building safety impacts. Of these four 

thousand accidents instances, features related to 

predicting building safety impacts totaled twenty-eight. 

These twenty-eight-dimensional accident features are 

labeled individually and serve as the underlying data set. 

Finally, these 4,000 accident samples are randomly 

assigned into training sets and test sets according to the 

ratio of eight to two to verify the performance and 

prediction ability of the model. 

5.2 Importance analysis of accident 

characteristics 

The GAN-Bayes model was utilized to quantify 28 

accident-related features and analyze the contribution 

scores in the target time domain. The distribution of the 

given samples in the target t-domain is shown in Figure 8. 

The samples at different time stages exhibit significant 

variations; the thresholds for the actual cumulative 

contribution scores are set to α = 89 and β = 96, and the 

fuzzy region contains four accident features. Observations 

show that the accuracy of the classifier increases with the 

number of accident features until n = 9, when the classifier 

performance reaches its peak. 

 

 

Figure 8: Given samples of target t-domain 

 

When the accident features in the fuzzy region are 

selected as the classification basis, the classifier's 

performance declines slightly from n ≥ 10 and gradually 

becomes stable. This phenomenon shows that the accident 

features in fuzzy areas do not positively impact the 

classification results, so these features are excluded and 

finally, based on 28 accident features, nine optimal 

features were screened out to predict traffic risk status 

level. 
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Figure 9: Variation of samples in different periods 

 

As shown in Figure 9, according to the analysis of 

main accident characteristics in the accident database, two 

environmental variables, weather conditions and lighting 

status, are particularly critical when evaluating the impact 

of building safety. Abnormal traffic incidents caused by 

extreme environmental conditions usually bring 

significant traffic congestion and increased safety risks. 

There are two reasons for this phenomenon: First, 

environmental factors such as slippery road surfaces and 

insufficient light increase the coverage of the accident 

area; Secondly, the unfavorable traffic environment not 

only creates obstacles to the passage of rescue vehicles 

but also increases the complexity and time-consuming of 

rescue work, thus prolonging the emergency response 

time. 

6  Comparative experimental 

analysis 
In the study, the overall accuracy refers to the proportion 

of the model correctly classified among all predicted 

samples, which is calculated as (total number of correctly 

predicted samples/total number of samples) ×  100%, 

which reflects the model's ability to classify the overall 

data, and is suitable for evaluating the comprehensive 

performance in the scenario of balanced data distribution. 

However, in the risk prediction of construction safety 

accidents, there is often a category imbalance in the data 

(such as a small proportion of high-risk accident samples), 

so it is necessary to supplement the accuracy of specific 

categories, that is, the accuracy of the model for each risk 

level (such as low, medium, and high risk) separately. For 

example, a high-risk category with an accuracy of × 

100% (correctly predicted high-risk samples / actual high-

risk samples) reveals how effective the model is at 

identifying key risk categories. By reporting both overall 

accuracy and category-specific accuracy, assessment bias 

caused by data imbalance can be avoided, ensuring more 

targeted comparisons between different models or 

methods, and providing a more reliable basis for 

construction safety decisions. 

To assess the efficacy of the GAN-Bayes algorithm 

in predicting building safety influence level, this study 

uses Support Vector Machines (SVM) and Random 

Forests (RF) as the baseline feature classification 

techniques for comparative analysis. The model structure 

is compared with the traditional deep forest (GCF) 

without feature selection, and the integrated model 

formed by combining XGBoost feature selection and deep 

forest (XGBoost-GCF) is included in the comparison. 

 

Table 3: Prediction results of accident impact degree of different algorithms 

Model Accuracy rate Recall rate F1-score Accuracy 

SVM 0.7846 0.7990 0.8425 0.7901 

RF 0.8356 0.8327 0.8421 0.8345 

GCF 0.7665 0.7810 0.7712 0.7712 

XGBoost -GCF 0.8664 0.7910 0.8939 0.8576 

GAN-Bayes 0.9246 0.8451 0.8961 0.8879 

 

 

Table 3 presents the experimental results of different 

prediction algorithms applied to the accident dataset. 

Summarizing the prediction efficacy of each method, the 

GAN-Bayes algorithm proposed in this paper performs 

well, with a prediction accuracy of 92.46%, and 

outperforms SVM, RF, GCF and XGBoost-GCF 

algorithms in all the evaluation metrics. Accordingly, it  

 

can be inferred that the GAN-Bayes algorithm performs 

excellently in predicting the impact of building safety. 
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Figure 10: E-EF plots of A-H 

 

The Event - Event Factor graph is an important 

visualization tool. It aims to visually present the events 

related to construction safety accidents (E, Event), such as 

falls from heights, collapses and other accidents 

themselves, as well as the various factors that induce these 

events (EF (Event Factor), including personnel illegal 

operation, equipment aging and failure, harsh 

environment, etc. By constructing this diagram, the causal 

correlation and action path between accident events and 

factors can be clearly sorted out, which can help 

researchers analyze the accident mechanism more 

systematically, and then accurately screen the key 

characteristic variables for the risk prediction model, and 

improve the accuracy and reliability of the model for the 

risk prediction of construction engineering safety 

accidents. Figure 10 reveals the E-EF plot of the A-H 

algorithm. The overall ROC curve of the GAN-Bayes 

algorithm and its ROC curves for different impact levels 

converge to the upper left quadrant, and the corresponding 

AUC values converge to the ideal value of 1, reflecting 

the stability and accuracy of the model in predicting the 

impact levels of various accidents. Compared with the 

traditional model, the model optimized by feature 

selection significantly improves accuracy. 

To verify GAN-Bayes' ability to deal with 

incomplete accident features, we randomly deleted some 

of the leading accident features in the test set to simulate 

the missing features caused by the untimely data 

collection during the actual abnormal accidents. The 

feature missing rate is set to 70%, 50%, 30%, 10%, and 

0%, and the corresponding percentage of valid accident 

features are 30%, 50%, 70%, 90%, and 100%, 

respectively. 

Figure 11 compares the time and memory 

consumption of different tensor product implementations. 

It can be seen that even when the feature missing rate is 

high, the model in this paper still maintains a certain 

prediction ability. With the increase in the number of 

effective accident features, the model's prediction 

performance gradually improves. This result further 

proves the effectiveness of accident feature enhancement 

based on GAN, indicating that when an actual accident 

occurs, with the continuous collection of accident 

information, the model's prediction accuracy will be 

continuously improved, providing a more accurate 

judgment basis for subsequent rescue and traffic diversion. 

 

 
Figure 11: Compares the time and memory consumption 

of different tensor product implementations 

 

 

Figure 12: Characteristic importance between accident categories 
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Figure 12 shows the Root Mean Square Error 

(RMSE) corresponding to the feature importance between 

different accident categories in the construction 

engineering safety accident risk prediction model based 

on multi-objective optimized GAN network. The blue and 

green colors used in the figure represent the GAN and 

LSTM models, respectively, with the horizontal axis 

representing the Error and the vertical axis representing 

the RMSE value. As can be seen from the figure, the 

RMSE values of the two models are different at different 

error points, reflecting their different performance in 

dealing with the importance of different features in the 

risk prediction of construction engineering safety 

accidents, which is helpful to compare and evaluate the 

performance of the two models in this study. 

7  Conclusion 
Through in-depth theoretical discussion and extensive 

experimental verification, the research on the risk 

prediction model of construction engineering safety 

accidents based on multi-objective optimized GAN 

network has achieved significant research results and 

important practical application value. This study not only 

theoretically constructs a multi-objective optimized GAN 

model that can comprehensively consider multiple 

dimensions such as data fidelity, model diversity and 

stability, but also verifies the excellent performance of the 

model in improving prediction performance through a 

large number of experiments. This achievement not only 

provides a more accurate and reliable tool for the risk 

prediction of construction engineering safety accidents, 

but also promotes the field to move towards intelligence 

and science, and contributes an important force to the 

safety production and sustainable development of the 

construction industry. The following are the main 

conclusions of this study: 

The prediction model based on multi-objective 

optimization GAN network proposed in this study shows 

excellent performance in architectural engineering 

security incident risk prediction. Compared with 

traditional prediction methods, the accuracy of this model 

on the test set has been greatly improved, with an accuracy 

rate as high as 92.46%. At the same time, it also performs 

well in key evaluation indicators such as recall rate and 

F1 value. The results show that the multi-objective 

optimization GAN network can more effectively capture 

the complex features of security incident risks and 

improve the accuracy and reliability of prediction. 

By introducing multi-objective optimization 

strategies, this study not only optimizes the generation 

and discrimination process of GAN networks, but also 

makes the model show stronger adaptability and stability 

in the face of different data sources and complex 

environments. The improvement of this generalization 

ability has laid a solid foundation for the wide application 

of the model in practical engineering projects. 

In future research, this study will explore the 

integration and application prospects of models with the 

Internet of Things, big data, and other technologies. By 

building an intelligent and integrated safety accident risk 

early warning and management system, it provides strong 

technical support and decision-making basis for safety 

management in the architectural engineering industry. 
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Glossary 

Abbreviation Full Name Description 

TRI True Risk Influence 
Measures the impact of variables on risk levels via the arithmetic mean of High-Risk 

Influence (HRI) and Low Risk Influence (LRI) 

GCF Generalized Deep Forest 
A baseline classification model used for performance comparison with the GAN-Bayes 

model 

XGBoost-GCF 
XGBoost Feature 

Selection-Deep Forest 

An integrated model combining XGBoost feature selection with Deep Forest, used in 

comparative experiments to validate GAN-Bayes effectiveness 

FEDPE 

Federated Policy 

Gradient with Byzantine 

Resilience 

A federated learning strategy enhancing model robustness in distributed data scenarios 

FEDPG 
Federated Policy 

Gradient 

A baseline federated learning strategy for comparing model stability under data missing 

scenarios 

m Data volume 
Used in objective function calculations: V = ∑log D(x), representing the total number of 

samples 

V Value function 
Measures performance of generator/discriminator; core objective function in GAN 

training 

D Discriminator 
Neural network model to distinguish real/generated data; outputs 0 (generated data) or 1 

(real data) 

G Generator 
Neural network model to produce realistic data; takes random noise Z as input and outputs 

simulated samples 

Z Random noise input Input variable for the generator to produce simulated samples 

p Probability distribution Core GAN objective: making p(G(z)) approximate the real data distribution p_data 

Ai/Aj 

Attribute variables in 

GAN-Bayes structure 

learning 

Calculates conditional mutual information I(Ai;Aj|C) to identify variable dependencies 

C Conditional variable/set Used in conditional probability calculations or as a conditional set in mutual information 

A Attribute variables Factors such as weather, equipment status as risk factors; measures correlation with risks 

TP/TN 
True Positive/True 

Negative samples 
Confusion matrix metrics for accuracy calculation 

FP/FN 
False Positive/False 

Negative samples 
Confusion matrix metrics for recall calculation 

α/β 

Thresholds for 

cumulative contribution 

scores 

Thresholds set in the paper to filter key features in accident feature importance analysis 
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u0 

Population mean of 

differences in paired 

samples T-test 

Null hypothesis parameter in paired T-test 

n Sample size Number of paired samples or population size in genetic algorithms 

d 

Difference in paired 

samples/number of 

objective functions 

Difference in paired samples or number of objective functions for gradient updates 

log Natural logarithm Used in objective functions and mutual information calculations 

E Complete event set Used in total probability formula in Bayesian networks 
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