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Addressing the issues of noise interference, inadequate modeling of nonlinear characteristics, and
computational inefficiency in ship trajectory planning, this study introduces a multi-stage joint
optimization model. The model is built upon Automatic Identification System (AIS) data cleaning, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), and a Siamese Neural Network (SNN).
The operation of the AIS Data and DBSCAN-Based Ship Route Planning Model (ADSRP) involves the
following steps: First, AIS data is cleansed by employing a dynamic neighborhood radius and linear
interpolation with a sliding window. Key steering points are then extracted by integrating the Douglas-
Peucker (DP) algorithm, resulting in an 85.4% reduction in trajectory redundancy. Subsequently,
DBSCAN is utilized for density-based clustering of trajectory endpoints, achieving a 93.6% filtering
accuracy for noise points. Finally, a symmetric-weight SNN architecture (comprising a 4-layer
Transformer encoder and multi-head attention) is designed to filter high-density routes based on cosine
similarity.Experimental results demonstrate that, in comparison to the traditional genetic algorithm-
based Whole Process Route Planning (WPRP), ADSRP enhances trajectory fitting in the simulation
environment by 21% (with an average cosine similarity of 0.86 for ADSRP and 0.71 for WPRP) and
shortens the planning time by 67.8% (8.11s for ADSRP and 25.24s for WPRP). In real-world port
scenarios, ADSRP reduces voyage deviation by 36.8% (0.98nmi for ADSRP and 1.55nmi for WPRP), cuts
fuel consumption by 20.8% (362.58L for ADSRP and 457.89L for WPRP), and optimizes memory usage
to 27.5% (compared to the benchmark's 42.5%). Parameter sensitivity analysis verifies the significant
impact of key parameters on clustering fragmentation and port identification accuracy (F1-score
difference of 22%). The model is co-optimized by data-driven clustering and deep metric learning,
providing a high-accuracy, low-energy solution for dynamic path planning in complex sea areas and
supporting edge device deployment.

Povzetek: Pomorsko nacrtovanje poti je narejeno s tristanénim okvirjem (¢isc¢enje AIS + DBSCAN +
SNN/Transformer). V simulacijah in praksi izboljsa poti, cas, odklon, porabo goriva in potrosnjo

pomnilnika.

1 Introduction

Ship route planning, as a core component of the maritime
transportation system, directly affects shipping efficiency
and safety. Ship route planning methods are divided into
mathematical model-based planning methods and data-
driven planning methods. The former solves the shortest
path or minimum cost in a static environment through
graph theory, dynamic programming, and other methods
[1]. The latter processes dynamic multi-objective
optimization and complex constraint problems through
evolutionary algorithms, reinforcement learning, and
other methods [2]. However, against the backdrop of
intensified climate change and surging competition in
shipping, traditional methods are unable to meet the
comprehensive needs of modern shipping. For example,
sequential decision-making methods face the "curse of
dimensionality”, and when the number of ship state
variables increases, the computational complexity grows

exponentially, making it difficult to meet real-time
requirements [3].The linear programming method needs to
simplify multi-objective conflicts into a single objective
function, resulting in distorted trade-offs between
economy and safety in practical scenarios [4].Genetic
algorithms are prone to premature convergence problems,
and the design of crossover/mutation operators relies on
prior knowledge, resulting in insufficient adaptability
under complex constraints [5].

In summary, traditional ship route planning methods
mainly rely on crew experience for manual design, which
has the problems of low efficiency and strong subjectivity.
The Automatic ldentification System (AIS) data can
accurately record ship status parameters and support
trajectory mining and pattern analysis [6]. The Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm can automatically identify high-
density core points, boundary points, and noise points
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through density accessibility [7]. However, AlS data has
missing trajectories and noise, and there are more
abnormal drift points and duplicate records at high
sampling intervals. Moreover, the DBSCAN algorithm is
sensitive to parameters and difficult to adaptively handle
trajectory clusters with significant density differences.
Therefore, the research focuses on the advantages and
disadvantages of AIS data and DBSCAN, and makes
improvements to ultimately construct an AIS Data and
DBSCAN-based Ship Route Planning  Model
(ADSRP).To assess the viability of integrating the
aforementioned techniques, the study poses the following
question: Can the amalgamation of density clustering and
metric learning enable achieving a trajectory deviation of
less than 1 nmi while concurrently cutting computational
requirements by over 60%? Subsequently, the study
undertakes the task of validating this proposition. The
research aims to solve the problem of delayed dynamic
environmental response in traditional ship route planning
by utilizing the multidimensional spatiotemporal
characteristics of AIS shipping big data and the density
adaptive clustering ability of DBSCAN algorithm. The
innovation of the research lies in deeply coupling the
DBSCAN algorithm with AIS data characteristics,
constructing a dynamic parameter framework, and
achieving multi-scale density clustering of ship trajectory
endpoints. Meanwhile, a trajectory similarity weighting
mechanism is designed to enhance the robustness of
trajectory clustering through AIS data-driven DBSCAN
noise filtering and cluster merging strategies.

The research is divided into four sections. The first section
introduces the current research on the logic and algorithms
of ship route planning worldwide, and clarifies the
shortcomings of existing research. The second section
starts from AIS data processing, Douglas-Peucker (DP)
algorithm, etc., establishes accurate and efficient
trajectory feature extraction methods, and combines
DBSCAN and Siamese Neural Networks (SNN) to
construct trajectory planning methods, establishing an
ADSRP model. The third section provides numerical
examples and practical application analysis of the
proposed model to verify its reliability. The fourth section
provides a comprehensive summary and analysis of the
article.

2 Related works

In the process of intelligentization and greening of the
global shipping industry, ship route planning faces
dynamic environmental challenges. Traditional methods
rely on static data, which makes it difficult to cope with
real-time risks, prompting researchers to explore new
methods. In response to the harsh environment and
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insufficient sea ice information in the Arctic ice zone, Wu
et al. proposed an online interactive system based on big
earth data, combined with reinforcement learning and
synthetic aperture radar data, to improve route safety and
accuracy through dynamic path calculation and real-time
ice water classification [8].Zhao et al. improved the
artificial fish swarm algorithm to address the low path
efficiency, local optimization, and insufficient smoothness
of autonomous surface vessels. They introduced
directional operators to enhance search efficiency,
designed probability weight factors to reduce the risk of
local optima, and combined adaptive convergence
strategies and smoothing mechanisms to enhance
practicality in complex sea conditions [9]. Zhao et al.
constructed a multi-objective meteorological routing
framework to address issues such as high fuel
consumption and high risks in ships. They used particle
swarm optimization and non-dominated sorting
techniques to optimize fuel consumption, risk, and route
coordination models through mutation operations and elite
selection [10].In response to the lack of dynamic obstacle
avoidance and rule coordination in unmanned ships, Li et
al. proposed a multi-layer adaptive search tree method that
integrated the speed obstacle method to predict collision
domains, and combined rolling window modeling and
path optimization strategies to improve dynamic response
capabilities [11].

In addition, in response to the problem of weak multi-
objective collaboration and trajectory adaptability,
Hongjie et al. designed a phased trajectory optimization
framework, which usedDBSCAN clustering to extract
turning points and generate a global route network,
balancing safety and economy [12].1n response to the lack
of AIS data mining leading to planning disconnection,
Gao et al. constructed a framework for ship navigable
routes, using manifold distance to generate high-density
search networks, and driving topology generation with
real trajectories to reduce path deviation rates [13].Kim et
al. proposed a nested trajectory reconstruction framework
to address the low accuracy of AIS spatiotemporal bias
and destination prediction. The framework extracted
spatiotemporal ~ features  through multi-channel
vectorization and attention mechanisms, and combined
gradient dropout techniques to improve long-term
prediction accuracy [14]. In response to the lack of neutron
trajectories in traditional trajectory partitioning, Cui et al.
developed a multi-attribute  DBSCAN method that
integrated parameters such as speed and heading to
achieve adaptive partitioning and enhance anomaly
detection capabilities in complex scenarios [15]. A
comprehensive comparison of these methods is shown in
Table 1.
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Methods Model type Datasets ;Igug:ﬁﬂrq]g Key features Results References
Reinforcement learning
Online Reinforceme | Sea ice and based_ dynam!c Enhancing northeast
. - . planning of arctic
Interactive nt learning | meteorological .~ | waterway safety and
. - . routes +synthetic | . -
Route Planning | integrated data + synthetic | - . improving [8]
- aperture radar with | . .
System with  deep | aperture radar . information
. . deep learning for real- .
(RouteView) learning data time sea ce extraction methods.
classification
Improved - . . Directional operators, Algorithm effluenpy

e . Population Simulation  of N - and path quality

Artificial  Fish | . . A probabilistic  weight o

intelligence navigation data : outperform  existing
Swarm L2 . - factors, adaptive [9]

- optimization | in the south methods, and model

Algorithm . . convergence and path - -

algorithm china sea . ship tests verify
(IAFSA) smoothing. Lo

applicability.
Mutation manipulation

Multi-Objective . and elite  selection -

h Multi- . Realization of low-
Particle Swarm I . . balancing convergence | .

L objective Container  ship 9 risk, low-fuel-
Optimization S imulation d - speed and diversity, . h [10]
Routing System olptlmlﬁatlon simulation data pareto optimal solution c_onsumpt|or|1, short-
(MOPSO-RS) algorithm recommendation time route planning.

criterion.
The trajectory
Trajectory  smoothing | similarity is
(polynomial improved by 36.53%,
Whole Process Trajectory Hierarchical approximation with | the compression rate
Route Plannin clustering Vessel trajectory | gpscan exponential kernel) — | is >92%, the [12]
(WPRP) 9 | and network | data hdbscan) compression (douglas- | clustering profile
optimization peucker) — clustering | coefficient is 0.9032,
(hdbscan) —  road | and the road network
network construction. contains 299 key
nodes.
Solve the problem of
Hioh  Densit Ship navigable route | disconnection
Segrchin Y Ais big data- framework based on ais | between traditional
9 driven . big data to support | route planning and
Framework K Global ais data - | T I saili habi [13]
Extraction network - actua navigation | real sailing habits,
(HDS-FE) construction distance calculationand | and enhance the
route planning. feasibility of route
application.

As can be seen from Table 1, although existing
research has made progress, it mostly relies on static data
and manual experience, lacks in-depth exploration of
historical navigation patterns, and has low clustering
efficiency and insufficient feature extraction for massive
AIS data, making it difficult to meet the personalized
needs of multiple ship types. Therefore, the study aims to
optimize the efficiency of trajectory feature extraction and
clustering through AIS data and DBSCAN, improve the
robustness and dynamic adaptability of the model, and
construct an ADSRP ship route planning model to provide
efficient and accurate solutions for practical scenarios.

3 Methods and material

This section is divided into two parts. The first part
provides a detailed explanation of AIS data categories, DP
algorithms, and other methods, preprocesses AlS data, and
extracts trajectory features. The second part combines
DBSCAN and SNN to construct a clustering method for
trajectory endpoints (starting and ending points), proposes

an ADSRP model, improves the accuracy of trajectory
planning and noise robustness of the model, and enhances
its dynamic environmental adaptability.

3.1 AIS data preprocessing and trajectory
feature extraction

Ship trajectory feature extraction is the core foundation of
intelligent navigation. However, traditional feature
extraction methods are difficult to effectively handle the
nonlinear characteristics of ship motion, which can easily
lead to the loss of key turning points and trajectory
segmentation fractures. AIS data can provide high-
resolution spatiotemporal sequences and
multidimensional motion parameters, thus reducing
trajectory distortion and key node omissions in feature
extraction [16]. Therefore, the study establishes a
trajectory feature extraction method based on AIS data.
The study first preprocesses AlS data, as shown in Figure
1.
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Figure 1: AIS data preprocessing flow

As shown in Figure 1, data preprocessing is divided
into two stages: outlier cleaning and missing data
interpolation. Among them, the outlier cleaning adopts the
dynamic farthest point cleaning method in the
neighborhood, which  dynamically  adjusts the
neighborhood radius based on the real-time speed of the
ship, and detects and removes outlier trajectory points
through deviation threshold [17]. The study first performs
dynamic radius calculation, based on the real-time ship
speed v, and time interval At, defines the neighborhood
radius as shown in equation (1).

r:f = max(rmin ’Vt *At*a) (l)

In equation (1), r,,, is the minimum radius (set to
100m). « is the safety factor (set to 1.2), based on
historical AlIS data statistics, balancing noise filtering with
trajectory fidelity. Afterwards, the spatial deviation
between the current point p, and its neighboring points

{p._;: P...} is calculated, as shown in equation (2).

ddev _ max(" pt B pt—l" , " pt B pH—l"] (2)

r‘t—l r‘t+1

In equation (2), d,,, represents the spatial deviation
of the current point p,. When d, >2.0, the point is

marked as an outlier and cleared from the planning data.
The dynamic neighborhood farthest point cleaning
method can adapt to different navigation states, effectively
balancing  trajectory  smoothness and  keypoint
preservation. In the stage of missing data interpolation, the
sliding window linear interpolation method is studied,
which is based on the spatiotemporal continuity of
adjacent points within the time window, and calculates the
position and motion parameters of missing points through
linear weighting [18]. It first performs a window
partitioning operation, with the missing points as the

P1

center, expanding the time window At (At is set to 10
minutes, the linear model needs only 2 neighbors in this
window, reducing the interpolation time consuming)
before and after.Moreover, the effective point set
{B - Py Prygs s Proictis extracted within the window.

Afterwards, the interpolation weight W is calculated
based on the time difference between the missing point t
and the adjacent point, as shown in equation (3).

w=—"1 wepo] @)

In equation (3), t_, and t_, are the most recent valid

timestamps before and after the missing point. Finally,
linear interpolation is performed based on the effective
point set {p, ..., Py Pyrs - Pt @nd the interpolation

weight w, as shown in equation (4).
ptﬂ" =[1-w)* Py + W Py (4)

In equation (4), p™ is the interpolation point, which

refers to the latitude, longitude, speed, and heading data of
a certain point. Dynamic neighborhood radius is adjusted
by speed-driven adjustment (Egs. 1-2) to ensure that the
detection range is enlarged to avoid missing detection
when sailing at high speeds, and the radius is contracted to
suppress overfitting when sailing at low speeds. Sliding
window interpolation (Eq. 3-4) fills in the missing based
on spatio-temporal continuity and reduces the
computational overhead compared with traditional cubic
spline interpolation. After completing data preprocessing,
the DP algorithmis used to extract key node features such
as ship trajectory turning points and anchorage areas.
Through high fidelity simplification, the key geometric
features of the trajectoryare preserved, significantly
reducing data redundancy, as shown in Figure 2.

Py P1
Pz P, P2
N N
o
n Pn n

Figure 2: Feature extraction process of DP algorithm
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Figure 3: Clustering principle of DBSCAN

As shown in Figure 2, the black line is the original
trajectory and the last blue line is the optimized and
simplified trajectory. The red dots represent key feature
nodes, while the white dots represent uncalculated or non
key feature points. The study first inputs the preprocessed
trajectory point sequence P={p,, p,,..., p,} and sets a

simplified threshold ¢ (Optimized by grid search to
ensure simplification error <5%). Afterwards, the
algorithm connects the starting point p, and the ending

point p, to generate the head tail baseline, and calculates
the vertical distance d, from the midpoint p; to the

baseline. The algorithm selects the maximum distance
point p ., if d_.>¢&, uses p_ as the feature point,

divides the trajectory into [p, p,,J] and [p,.. pP,]. and

recursively processes the sub segments [19]. It retains all
feature points that satisfy d>& and generates a

simplified trajectory P’. The DP algorithm simplifies the
trajectory accuracy by controlling the geometric deviation
threshold, while retaining key features such as turning
points and anchoring areas, and reducing computational
complexity.

3.2 DBSCAN-based trajectory endpoint
clustering and establishment of adsrp
model

The data preprocessing and trajectory feature
extraction methods proposed in the study can improve the
quality of trajectory data and accurately capture ship
maneuvering  behavior  characteristics. ~ However,
traditional trajectory planning methods lack robustness to
the heterogeneity of trajectory endpoint spatial
distribution and multi-scale density changes, which can
easily lead to misjudgment of trajectory boundaries and
failure of anchorage identification. DBSCAN can
adaptively identify multi-scale spatial clusters based on
density accessibility, effectively distinguishing noise
points from low-density anchorage areas. Therefore, the
study uses DBSCAN to cluster and determine trajectory
endpoints (starting and ending points), as shown in Figure
3.

As shown in Figure 3, DBSCAN conducts clustering
based on density reachability. It begins by calculating the
number of samples within the e-neighborhood of each data
point. If a point has at least MinPts samples in its
neighborhood, it is designated as a core point. The

algorithm then expands the neighborhood around this core
point to group all density-connected points into the same
cluster. Points that do not meet the criteria for core points
or density-connected points are classified as noisy [20].
DBSCAN  clustering of trajectory  endpoints
(origin/destination)  corresponds to actual port
coordinates. Port recognition accuracy measures the
algorithm's capability to capture high-frequency berthing
areas. High-precision clustering ensures that the
origin/destination points of planned routes align with real
port locations, providing a geographic reference for global
route generation.The clustering process is as follows:
First, the network inputs dataset P={p,, p,,..., p,}. Sets

the neighborhood radius o and the minimum number of
neighborhood points MINPIS (set to 5 in the study).The

process dynamically adjusts parameter O based on real-
time sea condition data (o =500 x [1 + 0.2 x (wind speed

/10)] meters). For each point p,, it calculates the number
of points in its 6 neighborhood, as shown in equation (5).
N,(p) ={p; € DI dist(p;, p;) <&} ()
In equation (5), if [N,(p;)| > MinPts, p, is marked as
the core point. Afterwards, the neighborhood is expanded,
starting from the unvisited core point p_, the queue
Q={p.} is initialized, and p, is assigned to cluster C, .
Each point p, in Q is traversed, and if p, is the core
point, the unvisited points in its © neighborhood are added
to Q .The traversal update process is shown in equation
(6).
Q < QU(N,(P)KP,D) (6)
In equation (6), p, is a point in Q; N, denotes a
point in the o neighborhood; p, represents the visited
point. p,is marked as visited, and if p, does not belong

to any cluster, it is added to C, . Other points that cannot

be reached from any core point density are marked as
noise [21]. Noise points are directly excluded after
clustering and are not involved in trajectory similarity
screening and route generation to avoid low-density
abnormal trajectories interfering with the planning results,
and their spatial distribution is used for subsequent route
optimization in sparse regions. In addition, based on the
endpoint clustering results, it is necessary to screen
trajectory patterns with high spatiotemporal consistency to
extract key routes and support the generation of
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recommended routes. As a deep metric learning method in
machine learning, SNN effectively measures the
spatiotemporal similarity of variable length trajectories
through shared weights and feature encoding, with strong
noise resistance and adaptability to complex patterns [22].
Therefore, the study utilizes SNN to efficiently measure
the spatiotemporal similarity of trajectories between
DBSCAN clustering endpoints, accurately screen key
routes to support recommendation generation, and its
structure is shown in Figure 4.

As shown in Figure 4, SNN consists of a deep encoder
(Transformer) with shared weights between two towers, a
fully connected layer, and a similarity calculation module,
which symmetrically processes input trajectory pairs. The
encoder adopts a 4-layer Transformer with 512 hidden
units, 8 multi-head attention heads, a dropout rate of 0.1,
and GELU activation function. The 4-layer design was
chosen to balance model depth and computational
efficiency; the 512-dimensional hidden units match
trajectory feature dimensions; the 8 attention heads
capture multi-scale spatiotemporal relationships; and the
0.1 dropout prevents overfitting. The operation process of
SNNis as follows: First, inputs the trajectory pair (T,,T,)

X2} and T, ={x’,...
X, € R? incorporates dynamic feature channels including
position, speed, heading, meteorological, and ocean
current parameters, enabling similarity computation to
integrate real-time environmental constraints and achieve
path generation combining historical patterns with
dynamic feedback. Afterwards, feature encoding is
performed, which is divided into positional encoding and
self attention encoding. In the position encoding stage,
SNN adds position encoding P, € R to the trajectory
points to generate an input vector, as shown in equation

().

, where T, ={x,..., X2} .Each point

e =x%+R @
In equation (7), e, is the encoded input vector. In the
self attention encoding stage, SNN extracts global features

Hidden

Input
layer
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through multi-head self attention layers, as shown in
equation (8)
{HA =TE(E,) H, eR™ -
Hy = TE(E,) H, e R™
In equation (8), E, and E, are input sequence
er], E, =[e’,...e’]. H, and
H, are the encoded trajectory feature matrices. TE is the

encoding operation. Afterwards, the encoded features are
subjected to temporal average pooling to generate
trajectory level vectors, as shown in equation (9).

matrices, and E, =[e],...,

j—
hy = m Zt:lH i\t)
! ©
- "
hy = n t:lH B

In equation (9), h, and h, are trajectory level
feature vectors. Next, SNN calculates the cosine similarity
between the two, as shown in equation (10).

h, *hg
§=—>~r L
[0l * I,

In equation (10), s is the cosine similarity score of
the trajectory pair, which measures the similarity between
two trajectories. The cosine similarity score s e[-11],
where a larger s indicates a more similar trajectory, was
set to a threshold of 0.85 in the study [23]. During this
process, SNN uses triplet loss to train the model, as shown
in equation (11).

L =max(0,s

(10)

neg (11)
represents the similarity

— S, +Margin)
In equation (11), S

neg
between positive sample pairs (similar trajectories). s, is
pairs

the similarity between negative

margin

sample

(heterogeneous trajectories). is the similarity
difference threshold (set to 0.5 in the study). In summary,
the proposed ADSRP model architecture is shown in
Figure 5.

Distance
layer

Output
layer

Figure 4: Network structure of SNN
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Figure 5: ADSRP model architecture

Table 2: Development environment and experimental parameters

Configurations and parameters Details
Hardware NVIDIA RTX'GOOO Ada 48GB
AMD Threadripper 7960X
Configurations QGIS 3.28
Software PyTorch 2.0
scikit-learn 1.2
Missing hours 15min

Neighborhood radius(NR)

500m (port area)
4

Encoder layers

Parameters Learning rate 0.001
Training round 50
Confidence interval 95%

As shown in Figure 5, the ADSRP model first uses the
DP algorithm to geometrically simplify the preprocessed
AIS data trajectory, extract key node features such as
turning points and anchoring areas, and solve the problem
of nonlinear motion modeling.Afterwards, the model
combines DBSCAN to perform density clustering on the
trajectory endpoints, adaptively distinguishing noise
points from multi-scale anchor areas.Finally, a symmetric
deep network based on SNN is designed to screen key
flight path patterns with high spatiotemporal consistency
through trajectory feature encoding and cosine similarity
measurement.By integrating a three-stage process —
comprising fidelity compression via the DP algorithm,
noise-resistant clustering using DBSCAN, and depth
measurement through an SNN—this model attains both
high accuracy and robust adaptability in route planning
within complex and dynamic environments.

After filtering trajectories based on high
spatiotemporal  consistency, the model facilitates
trajectory recombination by leveraging real-time

environmental data (e.g., meteorological conditions and
obstacle locations). It dynamically adjusts segment
connection priorities using similarity weights derived
from an SNN, integrates the A* algorithm to identify an
optimal path that balances safety and efficiency across
clustered regions, and employs receding horizon control
to iteratively refine the path in dynamic environments.

4 Results

The study aimed to verify the superiority of the ADSRP
ship route planning model through dual dimensional
experiments of  simulation and real-world
scenarios.Simulation experiments verify the basic
effectiveness and theoretical advantages of the algorithm
in a controllable environment, while actual experiments
evaluate dynamic adaptability based on complex channel
data.The former focuses on the robustness verification of
the core mechanism of the model, while the latter tests the
practical application potential under multi-source
interference.

4.1 Simulation operation experiment

In the simulation operation experiment, the application
environment of the ship route planning model was studied
and adapted to the development environment and
experimental parameters, as shown in Table2.

According to Table 2, the simulation application
environment for route planning using the QGIS 3.28
platform was studied. SNN module was trained using
PyTorch 2.0. DBSCAN clusteringwas implemented
through scikit-learn 1.2. Other model parameters were
subject to the settings in the research method. Moreover,
the study used the Marine Cadastre AIS dataset as the
training and testing sets (with a ratio of 8:2).This dataset
contains AlS data for the entire year of 2021 in US waters,
covering 1.2 million ship trajectories and a port area



404  Informatica 49 (2025) 397-410

trajectory density of 50 trajectories per square
kilometer[24].The training and test sets were divided
using stratified sampling based on vessel types (e.g., cargo
ships/passenger vessels) and route areas (coastal/open-
ocean) to ensure consistent class distribution between sets
and prevent evaluation bias from regional or vessel-type
differences. For vessel types and route frequencies with
low occurrence (e.g., research vessels), temporal
oversampling was applied, and a class-weighted loss
function was introduced to reduce the impact of long-tail
distribution on similarity measurement. All between-
group comparisons (e.g., range deviation, fuel
consumption) were performed using a two-sample t-test
(normal distribution) with a significance level of o = 0.05;
confidence intervals (95% CI) were calculated by
Bootstrap method.

In addition, the study selected the methods used in
references [12]-[15] as comparative models, including
Whole Process Route Planning (WPRP), High Density
Searching Framework Extraction (HDS-FE), Waypoint
Analysis-based Destination Estimation (WAY), and
Multi-Attribute DBSCAN Optimization (MA-DBSCAN).
The ADSRP model proposed in the study was taken as the
research object. The study first evaluated the feasibility of
model trajectory planning by comparing the cosine
similarity between trajectories planned by different

Y. Deng et al.

methods and historical high-frequency trajectories, as
shown in Figure 6.

From Figure 6 (a) and Figure 6 (b), the ADSRP
model, based on DBSCAN and spatiotemporal feature
fusion mechanism,achieved an average cosine similarityof
0.86in 30 experiments,significantly  higher than
comparisonmodels such as WPRP (0.71) and HDS-FE
(0.64) (p<0.001), with a 95% confidence interval of [0.83,
0.89], covering historical high-frequency trajectory
patterns.However, WPRP lost temporal continuity due to
segmented clustering (range 0.13), while HDS-FE relied
on kernel density estimation, resulting in spatial over
smoothing. The cosine similarity deviation standard
deviation of ADSRP was 0.05 (95% CI+0.10), with a
significantly smaller fluctuation range than WAY (0.12)
and MA-DBSCAN (0.07), attributed to its encoder's self
attention weight dynamic allocation mechanism that
suppresses AlS noise interference. There was a significant
difference (p<0.01) between the ADSRP deviation
distribution and the comparison model, with a confidence
interval half width (0.025) of only 31.3% of WPRP.
Subsequently, the study evaluated the computational
efficiency of the model by comparing the time taken from
input data to output planned routes using different
methods, as shown in Figure 7.

® ADSRP A WPRP < HDS-FE 5] ADSRP O WPRP [ HDS-FE
WAY MA-DBSCAN EHWAY &= MA-DBSCAN
1r 1r
09-0 '.. ° '.. ° '.. ° '.. ° °.. 09y _
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0.6 L L ! 0.6 . ﬂ ; ;
0 10 20 30 1 2 3 4 5
Trajectorys Methods
(a) cosine similarity (b) Average value
Figure 6: Differences in trajectory cosine similarity
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As shown in Figure 7 (a), the ADSRP model relied on
the parallel multi-head self attention mechanism of SNN
and took an average of 8.11 seconds (95% CI [7.89, 8.33])
in 30 experiments, which as 67.8% -80.7% lower than
WPRP (25.24 seconds) and MA-DBSCAN (42.08
seconds)(p<0.001).However, the complexity of MA-
DBSCAN increased significantly due to the calculation of
multi-attribute distance matrix (speed/heading/position),
and HDS-FE relied on iterative kernel density search to
further drag down efficiency.According to Figure 7 (b),
the standard deviation of ADSRP time was 0.18s (95% CI
+ 0.35), and the volatility was only 52.9% of the WAY
model and 40% of the MA-DBSCAN.Moreover,there was
a significant difference (P<0.01) between the deviation
distribution of ADSRP and the comparison model, with a
confidence interval half width of 0.22s, which was 57.7%
narrower than WPRP (0.52s). This proved the stability of
the SNN architecture in processing long sequence
trajectories (>1000 points) and met the real-time threshold
of port scheduling (<10s). Furthermore, to verify the
influence of DBSCAN algorithm  parameters
(neighborhood radius €, minimum point number MinPts)
on model performance, ADSRP model parameter
sensitivity experiments were conducted, as shown in
Table 3.

According to Table 3, when €=300m and MinPts=3,
the excessively small neighborhood radius led to the
fragmentation of the port trajectory into 34 clusters, with
noise points accounting for 12.5% and a port recognition
accuracy of only 72.3% (95% CI [68.1,76.5]). However,
the combination of €=700m and MinPts=7 caused
neighboring ports to merge incorrectly due to the large
neighborhood, resulting in an accuracy rate of 84.3% (Cl
[79.6, 89.0]).The optimal parameter combination of
€=500m and MinPts=5 achieved a balance between the
number of clusters (15), the proportion of noise points
(3.8%), and accuracy (93.6%, CI [90.5, 96.7]), and its
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performancewas significantly  better than other
combinations (p<0.01).Analysis showed that MinPts
determined the strength of noise filtering by controlling
the spatial density perception granularity: When e<400m,
the trajectory segmentation was too fine, and when
MinPts<5, temporary anchor interference was introduced.
Both would destroy the topological consistency of the
origin and destination clustering, thereby reducing the
reliability of route planning. Moreover, to investigate the
effectiveness of the methodology module introduced in
the study, the study conducted ablation experiments, the
results of which are shown in Table 4.

In Table 4, removing the dynamic neighborhood
cleaning module resulted in a decrease in model noise
suppression (cosine similarity 0.71+0.07, 17.4% lower
than the full model, p=0.003) and an increase in range
deviation to 1.82 +0.33 nautical miles. Removing the
sliding window interpolation resulted in a distortion of the
data’'s localized trend (deviation 1.95+0.37 nautical miles,
p=0.008). Without DP trajectory simplification,
computational elapsed time increased to 9.8+0.9 seconds
(+20.9%) and voyage bias rose to 1.47 £0.29 nautical
miles (p=0.012). Replacing DBSCAN clustering with K-
means resulted in a significant reduction in port
identification accuracy (deviation 1.24 + 0.25 nautical
miles, p=0.021). Fuel consumption increased to 467.5+
37.9L (+28.9%, p=0.004) when the SNN similarity metric
was disabled. The full ADSRP model incorporated all
modules to validate the need for multi-stage co-
optimization with a cosine similarity of 0.86+0.05, a range
deviation of 0.98+0.12 nautical miles and a low fuel
consumption of 362.6L. For the feasibility verification of
the cosine similarity threshold s in SNN, the study further
conducted sensitivity experiments as shown in Table 5.

Table 3: The sensitivity of DBSCAN parameters

Parameter combinations Percentage of | Port recognition | Accuracy
Number of clusters : AP o o

e (m) Minpts Average number of ports noise points (%) | accuracy (%) (95% CI)
3 36.1 34 125 72.3 [68.1, 76.5]

300 5 29.7 28 8.9 78.5 [74.0, 83.0]
7 22.2 21 6.3 82.1 [77.5, 86.7]
3 23.1 22 8.1 85.4 [81.2, 89.6]

500 5 155 15 3.8 93.6 [90.5, 96.7]
7 12.6 12 4.9 89.7 [85.4, 94.0]
3 16.9 16 10.7 80.2 [75.8, 84.6]

700 5 9.5 9 6.5 87.9 [83.3,92.5]
7 7.4 7 5.1 84.3 [79.6, 89.0]

Table 4: Ablation experiments

Ablated Modules/Full | Average  cosine | Range deviation . - Memory usage | p-value (vs.

model similarity (hmi) Fuel consumption (L) Planning time (s) (%) ADSRP)

Dynamic  Neighborhood | 7, , ¢ o7 1.82+0.33 4983+ 387 72405 30.6+2.8 0.003

Cleaning

Sliding window | 4 68+ 0,08 1.95 +0.37 527.4+41.1 75+07 421+30 0.008

interpolation

DP trajectory simplification | 0.75 + 0.06 1.47 £0.29 432.9+35.6 9.8+0.9 35.7+25 0.012

DBSCAN clustering 0.78 £ 0.05 1.24+0.25 398.2 +32.4 123+1.1 31.9+22 0.021

SNN similarity metric 0.72£0.07 1.68+0.31 467.5 + 37.9 8.1+08 37427 0.004

Full ADSRP model 0.86 + 0.05 0.98 +0.12 362.6 + 28.3 8.1+0.7 27520 -
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Table 5: Sensitivity experiments for threshold s
Percentage of high | Mean range deviation | Average fuel L p-value (vs.

Threshold (s) similarity routes (%) (nmi) consumption (L) Planning time (s) 5=0.85)

0.75 98.1+12 1.54 +0.23 452.8 + 395 6.5+05 <0.001

0.8 923+21 1.22 +0.18 402.5 + 31.7 78+06 0.004

0.85 785+18 0.98 + 0.12 362.6 + 28.3 8.1+07 -

0.9 58.6 + 3.2 0.89 + 0.09 340.1 + 25.9 94+09 0.018

0.95 342 +45 0.82 + 0.07 328.7+24.1 126 +1.3 0.033

In Table 5, when the threshold s=0.85, the range
deviation (0.98+0.12 nm) and fuel consumption (362.6+
28.3L) were reduced by 19.7% and 9.9%, respectively,
compared to $=0.80 (p=0.004), and the planning elapsed
time was stabilized at 8.1 seconds. s=0.75 had a high
coverage rate of 98.1% but the deviation spiked to 1.54
nm (p<0.001). s=0.95 had the lowest deviation (0.82+0.07
nm) but the elapsed time increased to 12.6 seconds and
only 34.2% (p=0.033). 0.001). s=0.95 had the lowest
deviation (0.82+0.07 nautical miles), but the elapsed time
increased to 12.6 seconds and the coverage was only
34.2% (p=0.033). s=0.85 achieved the optimal balance of
quality, efficiency, and economy, which validated its
reliability as a recommended threshold. After that, in order
to visualize, the convergence performance of the study
model, the study conducted iterative training and the
results are shown in Figure 8.

The combination of Figure 8(a) and Figure 8(b) shows
that the training loss of each method decreased
significantly with rounds, with ADSRP decreasing the
most (1.25—0.2, A=1.05), followed by MA-DBSCAN
(1.3 — 0.36, A =0.94). WPRP, HDS-FE and WAY
converged at 0.68, 0.55, and 0.75, respectively, with
ADSRP having the highest initial loss but fastest
convergence after round 30 (0.25—0.2), and significantly

better than WAY (0.45—0.35). The loss of ADSRP was
stable after the 30th round (0.25 —0.2), which was
significantly better than that of WAY (0.45—0.35). MA-

DBSCAN had the highest initial loss but fast convergence,
and had the lowest loss at the 50th round (0.36). The

stability and convergence efficiency of ADSRP validated
its advantage as a recommended model.

4.2 Actual model performance experiment

Although simulation environments could idealize the
control of variables, they could not reproduce the dynamic
environmental disturbances in real sea areas.Actual model
testing could verify the dynamic adaptability and anti-
interference ability of the model through real ship
interaction scenarios, ensuring the navigation safety and
economy of the planned path.Therefore, the study selected
Port A and Port B as the endpoints of the trajectory, and
chose MA-DBSCAN and WPRP, which performed well
in simulation experiments, as the comparative models,
while ADSRP was still used as the research object.The
embedded edge deployment testing was based on NVIDIA
Jetson AGX Xavier (Ubuntu 18.04 LTS, ARMvS8.2
architecture), Jetson Nano 4GB (Maxwell architecture
with  128-core  GPU), and STM32H743VIT6
microcontroller (ARM Cortex-M7 core, 480MH2z),
covering hardware verification needs from high-
performance edge computing to low-power embedded
scenarios.The experimental parameters were strictly kept
consistent with the simulation run experiment, and the
training set used the measured trajectory of Marine
Cadastre AIS to ensure comparability of results and
support the closed-loop of the model from theoretical
verification to practical application.Firstly, the study used
different methods to plan the trajectory between A and B,
and compared the trajectory with historical high-
frequency trajectories, as shown in Figure9.
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(a) Training convergence plots
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Figure 8: Comparison of model convergence performance differences
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Figure 9: Comparison of different trajectories

According to Figure 9, the ADSRP trajectory closely
followed the dashed reference line throughout the entire
process (maximum lateral deviation < 10% of the lkm
scale). However, due to probability estimation bias, WAY
formed redundant curved detours in the nearshore area
(with a lateral offset of 30% from the reference line).
Although MA-DBSCAN conformed to the reference line
at key turning points, it generated serrated trajectories
(curvature radius < 0.3km) due to multi-attribute
segmentation clustering. ADSRP minimized range
deviation while maintaining heading continuity (actual
range was only 2.3% longer than the reference line), while
the comparative method required frequent adjustment of
speed due to path redundancy or abrupt changes (WAY
range extension 8.7%, MA-DBSCAN extension 5.1%).
To quantify the reliability of trajectory planning using
different methods, a study was conducted to compare the
path smoothness deviation and range deviation of different
trajectories, as shown in Figure 10.

According to Figure 10 (a), ADSRP optimized
heading continuity through spatiotemporal feature fusion,
and its average path smoothness deviationwas 0.07 rad/s2
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(95% CI [0.05,0.09]), significantly lower thanMA-
DBSCAN (0.14rad/s2,P=0.002) and WPRP (0.24 rad/s2,
P<0.001).This model utilized multi-head attention
weighted speed heading coupling features at route turning
points to suppress sudden turns and verify the
enhancement effect of SNN structure on trajectory
smoothness.According to Figure 10 (b), ADSRP
constrained path global consistency through trajectory
similarity threshold (s > 0.85), resulting in a total range
deviation of 0.98nmi (95% CI [0.92, 1.04]), which was
36.8% lowerthan MA-DBSCAN (1.55,p=0.013).Its
encoder effectively captured the inertial characteristics of
ship motion along the A-B diagonal main route, reducing
redundant evasive maneuvers, and achieving a statistically
significant difference in the cumulative deviation growth
rate (0.011 nmi/min) of the voyage (p<0.01). Finally, the
study compared the fuel consumption and hardware
resource utilization of different trajectories to evaluate the
actual deployment potential of different planning
methods, as shown in Figure 11.
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Figure 10: Actual trajectory planning reliability
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Figure 11: Analysis of actual deployment potential
Table 6: Comparison of environmental validation of historical data
Year of data | Methods ;’crzﬁlr(ac;ndpomt recognition Processing delay (ms) Prediction error (nmi)
ADSRP 93.20% 182+19 0.91+0.11
2021 MA-DBSCAN 84.50% 295+38 1.32+0.23
WPRP 78.70% 258+31 1.49+0.30
ADSRP 91.60% 189+22 0.95+0.13
2022 MA-DBSCAN 81.30% 308+42 1.38+0.26
WPRP 73.40% 271435 1.57+0.33
ADSRP 89.80% 196+25 1.03+0.15
2023 MA-DBSCAN 78.10% 322+47 1.45+0.29
WPRP 69.50% 285+39 1.68+0.37
Safety threshold =85% <200ms <12nmi

According to Figure 11 (a), ADSRP utilized trajectory
similarity constraints (s > 0.85) and SNN feature fusion to
dynamically optimize the ship's power curve. The average
fuel consumptionwas 362.58L (95%CI [355.2369.9]),
which was 20.8% and 38.8% lowerthan MA-DBSCAN
(457.89L, p=0.003) and WPRP (592.98L, p<0.001),
respectively. The speed heading coupling attention
mechanism effectively suppressed redundant steering,
with a fuel efficiency standard deviation of only 12.7L. As
shown in Figure 11 (b), the average memory occupancy of
ADSRPwas 27.5% (95%CI[25.1, 29.9]), significantly
lower than that of MA-DBSCAN (36.5%,p=0.008) and
WPRP (42.5%, p<0.001).DBSCAN in ADSRP could
reduce intermediate state storage requirements, with a
memory usage growth rate (0.43%/min) that was 14%
lower than traditional clustering algorithms (0.5%/min),
making it suitable for edge device deployment.In addition,
the study used the historical AIS data from the endpoints
of this port from 2021-2023 to validate the generalization
performance across years and test the real-time processing
capability, and the results are shown in Table 6.

In Table 6, the accuracy of ADSRP for trajectory
endpoint identification in three years of data was 93.20%,
91.60%, and 89.80%, respectively, which was always
above the 85% safety threshold, and the prediction error
(0.91-1.03 nmi) was better than that of the comparison

methods. The processing latency gradually increased from
182ms (2021) to 196ms (2023), which still met the <
200ms real-time requirement. The latency of both MA-
DBSCAN and WPRP exceeded the thresholds (up to
322ms/285ms in 2023) and the prediction error broke
through 1.45 nmi/1.68 nmi, which indicated that the
performance of the traditional methods declined in the
presence of interannual data significantly.

5 Discussion

In response to the insufficient performance of traditional
trajectory planning methods, an ADSRP model was
proposed to clean AIS shipping big data and implement
trajectory endpoint clustering and similarity screening
based on methods such as DBSCAN.Experimentsshowed
that in simulation, the average cosine similarity of ADSRP
reached 0.86 (95% CI[0.83, 0.89]), which was 12% -34%
higher than the comparison model(p<0.001), attributed to
the accuracy of DBSCAN in port endpoint clustering
(93.6% accuracy at €=500m and MinPts=5) and the
spatiotemporal feature fusion of SNN.In actual scenarios,
the range deviation of ADSRP was only 0.98nmi (36.8%
lower than MA-DBSCAN), fuel consumption was
362.58L (20.8% lower), and the average memory usage
was 27.5% (24.7% lower than traditional methods),



ADSRP: A DBSCAN-SNN Framework for AlS-Based...

verifying its dynamic adaptability and deployment
potential. The result metrics demonstrated that range
deviation and fuel consumption directly reflected the
global optimality of generated routes, smoothness
validated dynamic obstacle avoidance capability, while
trajectory fit served only as auxiliary validation of
historical pattern learning. Collectively, they proved the
comprehensive optimization of generated paths in safety,
economy, and dynamic adaptability. From the above,
DBSCAN accurately recognized the port area based on
density sensing and avoided the limitation of the number
of preset clusters. Multi-attribute clustering fused
speed/heading to enhance the feature correlation, but the
high-dimensional distance computation exacerbated the
complexity, and the sparse sea area was susceptible to the
interference of redundant dimensions. The sliding window
interpolation retained the local trend but ignored the
nonlinear motion, which may introduce smoothing bias.
DP algorithm compressed the trajectory through
geometric thresholding, which required dynamic trade-
offs between the retention of the key steering points and
computational efficiency. SNN suppressed the noise
interference by dynamically weighting the spatiotemporal
features through multi-attention; and the shared weight
encoding with ternary loss enhances the learning ability of
the metrics. In practical applications, the model relied on
AIS real-time/historical data, and real-time computing
resources limited edge deployment.

6 Conclusion

In summary, A route planning framework for multi-scale
density trajectories was developed, which solved the
contradiction between traditional methods in terms of
noise robustness, computational efficiency, and trajectory
fit. The proposed method achieved some results in ship
route planning, however, there are still limitations. First,
DBSCAN's parameter sensitivity and neglect of multi-
attribute  correlations limited clustering robustness.
Second, sliding-window interpolation induced nonlinear
motion smoothing bias, and DP over-compression
sacrificed critical steering points. Third, traditional
models failed to capture spatiotemporal dependencies, and
SNN's computational demanded hinder edge deployment.
Fourth, reliance on AIS data quality, manual parameter
tuning, and dynamic response lagged constrain practical
applications.

Aiming at the above problems, the future work of the
research lies in: First, develop a hybrid clustering
framework integrating DBSCAN density-awareness with
multi-attribute  weighting and  Bayesian-optimized
parameter tuning (maximizing Silhouette Score), to
improve the robustness of clustering in sparse sea area and
high-dimensional data. Second, design LSTM-based
adaptive interpolation for nonlinear patterns and
curvature-constrained DP algorithms to balance key-point
retention. Third, optimize SNN via lightweight attention
modules and knowledge distillation while enhancing
small-sample generalization through contrastive learning.
Fourth, integrate meteorological/bathymetric data fusion
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and deploy edge-end lightweight ADSRP via federated
learning for real-time distributed planning.
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