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Addressing the issues of noise interference, inadequate modeling of nonlinear characteristics, and 

computational inefficiency in ship trajectory planning, this study introduces a multi-stage joint 

optimization model. The model is built upon Automatic Identification System (AIS) data cleaning, Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), and a Siamese Neural Network (SNN). 

The operation of the AIS Data and DBSCAN-Based Ship Route Planning Model (ADSRP) involves the 

following steps: First, AIS data is cleansed by employing a dynamic neighborhood radius and linear 

interpolation with a sliding window. Key steering points are then extracted by integrating the Douglas-

Peucker (DP) algorithm, resulting in an 85.4% reduction in trajectory redundancy. Subsequently, 

DBSCAN is utilized for density-based clustering of trajectory endpoints, achieving a 93.6% filtering 

accuracy for noise points. Finally, a symmetric-weight SNN architecture (comprising a 4-layer 

Transformer encoder and multi-head attention) is designed to filter high-density routes based on cosine 

similarity.Experimental results demonstrate that, in comparison to the traditional genetic algorithm-

based Whole Process Route Planning (WPRP), ADSRP enhances trajectory fitting in the simulation 

environment by 21% (with an average cosine similarity of 0.86 for ADSRP and 0.71 for WPRP) and 

shortens the planning time by 67.8% (8.11s for ADSRP and 25.24s for WPRP). In real-world port 

scenarios, ADSRP reduces voyage deviation by 36.8% (0.98nmi for ADSRP and 1.55nmi for WPRP), cuts 

fuel consumption by 20.8% (362.58L for ADSRP and 457.89L for WPRP), and optimizes memory usage 

to 27.5% (compared to the benchmark's 42.5%). Parameter sensitivity analysis verifies the significant 

impact of key parameters on clustering fragmentation and port identification accuracy (F1-score 

difference of 22%). The model is co-optimized by data-driven clustering and deep metric learning, 

providing a high-accuracy, low-energy solution for dynamic path planning in complex sea areas and 

supporting edge device deployment. 

Povzetek: Pomorsko načrtovanje poti je narejeno s tristančnim okvirjem (čiščenje AIS + DBSCAN + 

SNN/Transformer). V simulacijah in praksi izboljša poti, čas, odklon, porabo goriva in potrošnjo 

pomnilnika. 

 

1 Introduction 
Ship route planning, as a core component of the maritime 

transportation system, directly affects shipping efficiency 

and safety. Ship route planning methods are divided into 

mathematical model-based planning methods and data-

driven planning methods. The former solves the shortest 

path or minimum cost in a static environment through 

graph theory, dynamic programming, and other methods 

[1]. The latter processes dynamic multi-objective 

optimization and complex constraint problems through 

evolutionary algorithms, reinforcement learning, and 

other methods [2]. However, against the backdrop of 

intensified climate change and surging competition in 

shipping, traditional methods are unable to meet the 

comprehensive needs of modern shipping. For example, 

sequential decision-making methods face the "curse of 

dimensionality", and when the number of ship state 

variables increases, the computational complexity grows  

 

exponentially, making it difficult to meet real-time 

requirements [3].The linear programming method needs to 

simplify multi-objective conflicts into a single objective 

function, resulting in distorted trade-offs between 

economy and safety in practical scenarios [4].Genetic 

algorithms are prone to premature convergence problems, 

and the design of crossover/mutation operators relies on 

prior knowledge, resulting in insufficient adaptability 

under complex constraints [5]. 

In summary, traditional ship route planning methods 

mainly rely on crew experience for manual design, which 

has the problems of low efficiency and strong subjectivity. 

The Automatic Identification System (AIS) data can 

accurately record ship status parameters and support 

trajectory mining and pattern analysis [6]. The Density-

Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm can automatically identify high-

density core points, boundary points, and noise points 
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through density accessibility [7]. However, AIS data has 

missing trajectories and noise, and there are more 

abnormal drift points and duplicate records at high 

sampling intervals. Moreover, the DBSCAN algorithm is 

sensitive to parameters and difficult to adaptively handle 

trajectory clusters with significant density differences. 

Therefore, the research focuses on the advantages and 

disadvantages of AIS data and DBSCAN, and makes 

improvements to ultimately construct an AIS Data and 

DBSCAN-based Ship Route Planning Model 

(ADSRP).To assess the viability of integrating the 

aforementioned techniques, the study poses the following 

question: Can the amalgamation of density clustering and 

metric learning enable achieving a trajectory deviation of 

less than 1 nmi while concurrently cutting computational 

requirements by over 60%? Subsequently, the study 

undertakes the task of validating this proposition. The 

research aims to solve the problem of delayed dynamic 

environmental response in traditional ship route planning 

by utilizing the multidimensional spatiotemporal 

characteristics of AIS shipping big data and the density 

adaptive clustering ability of DBSCAN algorithm. The 

innovation of the research lies in deeply coupling the 

DBSCAN algorithm with AIS data characteristics, 

constructing a dynamic parameter framework, and 

achieving multi-scale density clustering of ship trajectory 

endpoints. Meanwhile, a trajectory similarity weighting 

mechanism is designed to enhance the robustness of 

trajectory clustering through AIS data-driven DBSCAN 

noise filtering and cluster merging strategies. 

The research is divided into four sections. The first section 

introduces the current research on the logic and algorithms 

of ship route planning worldwide, and clarifies the 

shortcomings of existing research. The second section 

starts from AIS data processing, Douglas-Peucker (DP) 

algorithm, etc., establishes accurate and efficient 

trajectory feature extraction methods, and combines 

DBSCAN and Siamese Neural Networks (SNN) to 

construct trajectory planning methods, establishing an 

ADSRP model. The third section provides numerical 

examples and practical application analysis of the 

proposed model to verify its reliability. The fourth section 

provides a comprehensive summary and analysis of the 

article. 

2 Related works 
In the process of intelligentization and greening of the 

global shipping industry, ship route planning faces 

dynamic environmental challenges. Traditional methods 

rely on static data, which makes it difficult to cope with 

real-time risks, prompting researchers to explore new 

methods. In response to the harsh environment and 

insufficient sea ice information in the Arctic ice zone, Wu 

et al. proposed an online interactive system based on big 

earth data, combined with reinforcement learning and 

synthetic aperture radar data, to improve route safety and 

accuracy through dynamic path calculation and real-time 

ice water classification [8].Zhao et al. improved the 

artificial fish swarm algorithm to address the low path 

efficiency, local optimization, and insufficient smoothness 

of autonomous surface vessels. They introduced 

directional operators to enhance search efficiency, 

designed probability weight factors to reduce the risk of 

local optima, and combined adaptive convergence 

strategies and smoothing mechanisms to enhance 

practicality in complex sea conditions [9]. Zhao et al. 

constructed a multi-objective meteorological routing 

framework to address issues such as high fuel 

consumption and high risks in ships. They used particle 

swarm optimization and non-dominated sorting 

techniques to optimize fuel consumption, risk, and route 

coordination models through mutation operations and elite 

selection [10].In response to the lack of dynamic obstacle 

avoidance and rule coordination in unmanned ships, Li et 

al. proposed a multi-layer adaptive search tree method that 

integrated the speed obstacle method to predict collision 

domains, and combined rolling window modeling and 

path optimization strategies to improve dynamic response 

capabilities [11]. 

In addition, in response to the problem of weak multi-

objective collaboration and trajectory adaptability, 

Hongjie et al. designed a phased trajectory optimization 

framework, which usedDBSCAN clustering to extract 

turning points and generate a global route network, 

balancing safety and economy [12].In response to the lack 

of AIS data mining leading to planning disconnection, 

Gao et al. constructed a framework for ship navigable 

routes, using manifold distance to generate high-density 

search networks, and driving topology generation with 

real trajectories to reduce path deviation rates [13].Kim et 

al. proposed a nested trajectory reconstruction framework 

to address the low accuracy of AIS spatiotemporal bias 

and destination prediction. The framework extracted 

spatiotemporal features through multi-channel 

vectorization and attention mechanisms, and combined 

gradient dropout techniques to improve long-term 

prediction accuracy [14]. In response to the lack of neutron 

trajectories in traditional trajectory partitioning, Cui et al. 

developed a multi-attribute DBSCAN method that 

integrated parameters such as speed and heading to 

achieve adaptive partitioning and enhance anomaly 

detection capabilities in complex scenarios [15]. A 

comprehensive comparison of these methods is shown in 

Table 1. 
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Table 1: Recent advances in ship route planning 

Methods Model type Datasets 
Clustering 
algorithm 

Key features Results References 

Online 

Interactive 

Route Planning 
System 

(RouteView) 

Reinforceme

nt learning 

integrated 
with deep 

learning 

Sea ice and 

meteorological 

data + synthetic 
aperture radar 

data 

- 

Reinforcement learning 

based dynamic 

planning of arctic 
routes +synthetic 

aperture radar with 

deep learning for real-
time sea ice 

classification 

Enhancing northeast 

waterway safety and 

improving 
information 

extraction methods. 

[8] 

Improved 

Artificial Fish 

Swarm 
Algorithm 

(IAFSA) 

Population 
intelligence 

optimization 

algorithm 

Simulation of 
navigation data 

in the south 

china sea 

- 

Directional operators, 

probabilistic weight 

factors, adaptive 
convergence and path 

smoothing. 

Algorithm efficiency 

and path quality 
outperform existing 

methods, and model 

ship tests verify 
applicability. 

[9] 

Multi-Objective 
Particle Swarm 

Optimization 

Routing System 
(MOPSO-RS) 

Multi-

objective 
optimization 

algorithm 

Container ship 
simulation data 

- 

Mutation manipulation 

and elite selection 
balancing convergence 

speed and diversity, 

pareto optimal solution 
recommendation 

criterion. 

Realization of low-

risk, low-fuel-
consumption, short-

time route planning. 

[10] 

Whole Process 

Route Planning 
(WPRP) 

Trajectory 
clustering 

and network 

optimization 

Vessel trajectory 

data 

Hierarchical 

dbscan （

hdbscan） 

Trajectory smoothing 

(polynomial 

approximation with 
exponential kernel) → 

compression (douglas-

peucker) → clustering 
(hdbscan) → road 

network construction. 

The trajectory 
similarity is 

improved by 36.53%, 

the compression rate 
is >92%, the 

clustering profile 

coefficient is 0.9032, 
and the road network 

contains 299 key 

nodes. 

[12] 

High Density 
Searching 

Framework 

Extraction 
(HDS-FE) 

Ais big data-

driven 
network 

construction 

Global ais data - 

Ship navigable route 

framework based on ais 

big data to support 
actual navigation 

distance calculation and 

route planning. 

Solve the problem of 
disconnection 

between traditional 

route planning and 
real sailing habits, 

and enhance the 

feasibility of route 
application. 

[13] 

 

As can be seen from Table 1, although existing 

research has made progress, it mostly relies on static data 

and manual experience, lacks in-depth exploration of 

historical navigation patterns, and has low clustering 

efficiency and insufficient feature extraction for massive 

AIS data, making it difficult to meet the personalized 

needs of multiple ship types. Therefore, the study aims to 

optimize the efficiency of trajectory feature extraction and 

clustering through AIS data and DBSCAN, improve the 

robustness and dynamic adaptability of the model, and 

construct an ADSRP ship route planning model to provide 

efficient and accurate solutions for practical scenarios. 

3 Methods and material 
This section is divided into two parts. The first part 

provides a detailed explanation of AIS data categories, DP 

algorithms, and other methods, preprocesses AIS data, and 

extracts trajectory features. The second part combines 

DBSCAN and SNN to construct a clustering method for 

trajectory endpoints (starting and ending points), proposes 

an ADSRP model, improves the accuracy of trajectory 

planning and noise robustness of the model, and enhances 

its dynamic environmental adaptability. 

3.1 AIS data preprocessing and trajectory 

feature extraction 

Ship trajectory feature extraction is the core foundation of 

intelligent navigation. However, traditional feature 

extraction methods are difficult to effectively handle the 

nonlinear characteristics of ship motion, which can easily 

lead to the loss of key turning points and trajectory 

segmentation fractures. AIS data can provide high-

resolution spatiotemporal sequences and 

multidimensional motion parameters, thus reducing 

trajectory distortion and key node omissions in feature 

extraction [16]. Therefore, the study establishes a 

trajectory feature extraction method based on AIS data. 

The study first preprocesses AIS data, as shown in Figure 

1. 
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AIS shipping 

big data

Missing data interpolationAnomaly cleanup

 

Figure 1: AIS data preprocessing flow 

As shown in Figure 1, data preprocessing is divided 

into two stages: outlier cleaning and missing data 

interpolation. Among them, the outlier cleaning adopts the 

dynamic farthest point cleaning method in the 

neighborhood, which dynamically adjusts the 

neighborhood radius based on the real-time speed of the 

ship, and detects and removes outlier trajectory points 

through deviation threshold [17]. The study first performs 

dynamic radius calculation, based on the real-time ship 

speed 
tv  and time interval t , defines the neighborhood 

radius as shown in equation (1). 

,  * *( )t min tr max r v t =                 (1) 

In equation (1), 
minr  is the minimum radius (set to 

100m).   is the safety factor (set to 1.2), based on 

historical AIS data statistics, balancing noise filtering with 

trajectory fidelity. Afterwards, the spatial deviation 

between the current point 
tp  and its neighboring points 

1 1,{ }t tp p− +
 is calculated, as shown in equation (2). 

1 1

1 1

,
t t t t

dev

t t

p p p p
d max

r r

− +

− +

 − − 
=  

 
            (2) 

In equation (2), 
devd  represents the spatial deviation 

of the current point 
tp . When 2.0devd  , the point is 

marked as an outlier and cleared from the planning data. 

The dynamic neighborhood farthest point cleaning 

method can adapt to different navigation states, effectively 

balancing trajectory smoothness and keypoint 

preservation. In the stage of missing data interpolation, the 

sliding window linear interpolation method is studied, 

which is based on the spatiotemporal continuity of 

adjacent points within the time window, and calculates the 

position and motion parameters of missing points through 

linear weighting [18]. It first performs a window 

partitioning operation, with the missing points as the 

center, expanding the time window t  ( t  is set to 10 

minutes, the linear model needs only 2 neighbors in this 

window, reducing the interpolation time consuming) 

before and after.Moreover, the effective point set 

1 1,..., ,{ ,..., }t k t t t kp p p p− − + +
is extracted within the window. 

Afterwards, the interpolation weight w  is calculated 

based on the time difference between the missing point t 

and the adjacent point, as shown in equation (3). 

1

1 1

 0,1[ ] t

t t

t t
w w

t t

−

+ −

−
= 

−
                        (3) 

In equation (3), 
1tt −
 and 

1tt +
 are the most recent valid 

timestamps before and after the missing point. Finally, 

linear interpolation is performed based on the effective 

point set 
1 1,..., ,{ ,..., }t k t t t kp p p p− − + +

 and the interpolation 

weight w, as shown in equation (4). 

1 11 * *( )fill

t t tp w p w p− += − +               (4) 

In equation (4), 
fill

tp  is the interpolation point, which 

refers to the latitude, longitude, speed, and heading data of 

a certain point. Dynamic neighborhood radius is adjusted 

by speed-driven adjustment (Eqs. 1-2) to ensure that the 

detection range is enlarged to avoid missing detection 

when sailing at high speeds, and the radius is contracted to 

suppress overfitting when sailing at low speeds. Sliding 

window interpolation (Eq. 3-4) fills in the missing based 

on spatio-temporal continuity and reduces the 

computational overhead compared with traditional cubic 

spline interpolation. After completing data preprocessing, 

the DP algorithmis used to extract key node features such 

as ship trajectory turning points and anchorage areas. 

Through high fidelity simplification, the key geometric 

features of the trajectoryare preserved, significantly 

reducing data redundancy, as shown in Figure 2. 

P1

P2

Pn

P1 P1 P1

P2 P2 P2

Pn Pn Pn
 

Figure 2: Feature extraction process of DP algorithm 
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Figure 3: Clustering principle of DBSCAN 

 

As shown in Figure 2, the black line is the original 

trajectory and the last blue line is the optimized and 

simplified trajectory. The red dots represent key feature 

nodes, while the white dots represent uncalculated or non 

key feature points. The study first inputs the preprocessed 

trajectory point sequence 
1 2, ,...,{ }nP p p p=  and sets a 

simplified threshold   (Optimized by grid search to 

ensure simplification error <5%). Afterwards, the 

algorithm connects the starting point 
1p  and the ending 

point 
np  to generate the head tail baseline, and calculates 

the vertical distance 
id  from the midpoint ip  to the 

baseline. The algorithm selects the maximum distance 

point 
maxp , if 

maxd  , uses
maxp  as the feature point, 

divides the trajectory into 
1[ ], maxp p  and ,[ ]max np p , and 

recursively processes the sub segments [19]. It retains all 

feature points that satisfy 
id   and generates a 

simplified trajectory P . The DP algorithm simplifies the 

trajectory accuracy by controlling the geometric deviation 

threshold, while retaining key features such as turning 

points and anchoring areas, and reducing computational 

complexity. 

3.2 DBSCAN-based trajectory endpoint 

clustering and establishment of adsrp 

model 

The data preprocessing and trajectory feature 

extraction methods proposed in the study can improve the 

quality of trajectory data and accurately capture ship 

maneuvering behavior characteristics. However, 

traditional trajectory planning methods lack robustness to 

the heterogeneity of trajectory endpoint spatial 

distribution and multi-scale density changes, which can 

easily lead to misjudgment of trajectory boundaries and 

failure of anchorage identification. DBSCAN can 

adaptively identify multi-scale spatial clusters based on 

density accessibility, effectively distinguishing noise 

points from low-density anchorage areas. Therefore, the 

study uses DBSCAN to cluster and determine trajectory 

endpoints (starting and ending points), as shown in Figure 

3. 

As shown in Figure 3, DBSCAN conducts clustering 

based on density reachability. It begins by calculating the 

number of samples within the ε-neighborhood of each data 

point. If a point has at least MinPts samples in its 

neighborhood, it is designated as a core point. The 

algorithm then expands the neighborhood around this core 

point to group all density-connected points into the same 

cluster. Points that do not meet the criteria for core points 

or density-connected points are classified as noisy [20]. 

DBSCAN clustering of trajectory endpoints 

(origin/destination) corresponds to actual port 

coordinates. Port recognition accuracy measures the 

algorithm's capability to capture high-frequency berthing 

areas. High-precision clustering ensures that the 

origin/destination points of planned routes align with real 

port locations, providing a geographic reference for global 

route generation.The clustering process is as follows: 

First, the network inputs dataset 
1 2, ,...,{ }nP p p p= , sets 

the neighborhood radius ò  and the minimum number of 

neighborhood points MinPts  (set to 5 in the study).The 

process dynamically adjusts parameter ò  based on real-

time sea condition data (ò  = 500 × [1 + 0.2 × (wind speed 

/ 10)] meters). For each point 
ip , it calculates the number 

of points in its ò  neighborhood, as shown in equation (5). 

( ) { ,( ) }i j i jN p p D dist p p=  ∣ò ò              (5) 

In equation (5), if ( )iN p MinPtsò , 
ip  is marked as 

the core point. Afterwards, the neighborhood is expanded, 

starting from the unvisited core point 
cp , the queue 

{ }cQ p=  is initialized, and 
cp  is assigned to cluster   kC . 

Each point qp  in Q  is traversed, and if qp  is the core 

point, the unvisited points in its ò  neighborhood are added 

to Q .The traversal update process is shown in equation 

(6). 

( ( ) { })q vQ Q N p p  ò /                     (6) 

In equation (6), qp  is a point in Q; Nò
 denotes a 

point in the ò neighborhood; 
vp  represents the visited 

point. qp is marked as visited, and if qp  does not belong 

to any cluster, it is added to 
kC . Other points that cannot 

be reached from any core point density are marked as 

noise [21]. Noise points are directly excluded after 

clustering and are not involved in trajectory similarity 

screening and route generation to avoid low-density 

abnormal trajectories interfering with the planning results, 

and their spatial distribution is used for subsequent route 

optimization in sparse regions. In addition, based on the 

endpoint clustering results, it is necessary to screen 

trajectory patterns with high spatiotemporal consistency to 

extract key routes and support the generation of 
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recommended routes. As a deep metric learning method in 

machine learning, SNN effectively measures the 

spatiotemporal similarity of variable length trajectories 

through shared weights and feature encoding, with strong 

noise resistance and adaptability to complex patterns [22]. 

Therefore, the study utilizes SNN to efficiently measure 

the spatiotemporal similarity of trajectories between 

DBSCAN clustering endpoints, accurately screen key 

routes to support recommendation generation, and its 

structure is shown in Figure 4. 

As shown in Figure 4, SNN consists of a deep encoder 

(Transformer) with shared weights between two towers, a 

fully connected layer, and a similarity calculation module, 

which symmetrically processes input trajectory pairs. The 

encoder adopts a 4-layer Transformer with 512 hidden 

units, 8 multi-head attention heads, a dropout rate of 0.1, 

and GELU activation function. The 4-layer design was 

chosen to balance model depth and computational 

efficiency; the 512-dimensional hidden units match 

trajectory feature dimensions; the 8 attention heads 

capture multi-scale spatiotemporal relationships; and the 

0.1 dropout prevents overfitting.The operation process of 

SNNis as follows: First, inputs the trajectory pair ( , )A BT T

, where 1{ ,..., }A A

A mT x x=  and 1{ ,..., }B B

B nT x x= .Each point 

d

tx R  incorporates dynamic feature channels including 

position, speed, heading, meteorological, and ocean 

current parameters, enabling similarity computation to 

integrate real-time environmental constraints and achieve 

path generation combining historical patterns with 

dynamic feedback. Afterwards, feature encoding is 

performed, which is divided into positional encoding and 

self attention encoding. In the position encoding stage, 

SNN adds position encoding 
d

tP R  to the trajectory 

points to generate an input vector, as shown in equation 

(7). 

t t te x P= +                                 (7) 

In equation (7), 
te  is the encoded input vector. In the 

self attention encoding stage, SNN extracts global features 

through multi-head self attention layers, as shown in 

equation (8) 

TE( )  

TE( )  

m d

A A A

n d

B B B

H E H R

H E H R





 = 


= 

                   (8) 

In equation (8), 
AE  and 

BE  are input sequence 

matrices, and 1[ ,..., ]A A

A mE e e= , 1[ ,..., ]B B

B nE e e= .
AH  and 

BH  are the encoded trajectory feature matrices. TE  is the 

encoding operation. Afterwards, the encoded features are 

subjected to temporal average pooling to generate 

trajectory level vectors, as shown in equation (9). 

( )

1

( )

1

1

1

m t

A At

n t

B Bt

h H
m

h H
n

=

=


=


 =





                            (9) 

In equation (9), 
Ah  and 

Bh  are trajectory level 

feature vectors. Next, SNN calculates the cosine similarity 

between the two, as shown in equation (10). 

2 2

*

*

A B

A B

h h
s

h h
=                               (10) 

In equation (10), s  is the cosine similarity score of 

the trajectory pair, which measures the similarity between 

two trajectories. The cosine similarity score [ 1,1]s − , 

where a larger s  indicates a more similar trajectory, was 

set to a threshold of 0.85 in the study [23]. During this 

process, SNN uses triplet loss to train the model, as shown 

in equation (11). 

neg posmax(0, margin)s s= − +L         (11) 

In equation (11), negs  represents the similarity 

between positive sample pairs (similar trajectories). poss  is 

the similarity between negative sample pairs 

(heterogeneous trajectories).
margin

 is the similarity 

difference threshold (set to 0.5 in the study). In summary, 

the proposed ADSRP model architecture is shown in 

Figure 5. 
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Figure 4: Network structure of SNN 
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Figure 5: ADSRP model architecture 

Table 2: Development environment and experimental parameters 

Configurations and parameters Details 

Configurations 

Hardware 
NVIDIA RTX 6000 Ada 48GB 

AMD Threadripper 7960X 

Software 

QGIS 3.28 

PyTorch 2.0 

scikit-learn 1.2 

Parameters 

Missing hours 15min 

Neighborhood radius(NR) 500m (port area) 

Encoder layers 4 

Learning rate 0.001 

Training round 50 

Confidence interval 95% 

As shown in Figure 5, the ADSRP model first uses the 

DP algorithm to geometrically simplify the preprocessed 

AIS data trajectory, extract key node features such as 

turning points and anchoring areas, and solve the problem 

of nonlinear motion modeling.Afterwards, the model 

combines DBSCAN to perform density clustering on the 

trajectory endpoints, adaptively distinguishing noise 

points from multi-scale anchor areas.Finally, a symmetric 

deep network based on SNN is designed to screen key 

flight path patterns with high spatiotemporal consistency 

through trajectory feature encoding and cosine similarity 

measurement.By integrating a three-stage process —

comprising fidelity compression via the DP algorithm, 

noise-resistant clustering using DBSCAN, and depth 

measurement through an SNN—this model attains both 

high accuracy and robust adaptability in route planning 

within complex and dynamic environments. 

After filtering trajectories based on high 

spatiotemporal consistency, the model facilitates 

trajectory recombination by leveraging real-time 

environmental data (e.g., meteorological conditions and 

obstacle locations). It dynamically adjusts segment 

connection priorities using similarity weights derived 

from an SNN, integrates the A* algorithm to identify an 

optimal path that balances safety and efficiency across 

clustered regions, and employs receding horizon control 

to iteratively refine the path in dynamic environments. 

4 Results 
The study aimed to verify the superiority of the ADSRP 

ship route planning model through dual dimensional 

experiments of simulation and real-world 

scenarios.Simulation experiments verify the basic 

effectiveness and theoretical advantages of the algorithm 

in a controllable environment, while actual experiments 

evaluate dynamic adaptability based on complex channel 

data.The former focuses on the robustness verification of 

the core mechanism of the model, while the latter tests the 

practical application potential under multi-source 

interference. 

4.1 Simulation operation experiment 

In the simulation operation experiment, the application 

environment of the ship route planning model was studied 

and adapted to the development environment and 

experimental parameters, as shown in Table2. 

According to Table 2, the simulation application 

environment for route planning using the QGIS 3.28 

platform was studied. SNN module was trained using 

PyTorch 2.0. DBSCAN clusteringwas implemented 

through scikit-learn 1.2. Other model parameters were 

subject to the settings in the research method. Moreover, 

the study used the Marine Cadastre AIS dataset as the 

training and testing sets (with a ratio of 8:2).This dataset 

contains AIS data for the entire year of 2021 in US waters, 

covering 1.2 million ship trajectories and a port area 
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trajectory density of 50 trajectories per square 

kilometer[24].The training and test sets were divided 

using stratified sampling based on vessel types (e.g., cargo 

ships/passenger vessels) and route areas (coastal/open-

ocean) to ensure consistent class distribution between sets 

and prevent evaluation bias from regional or vessel-type 

differences. For vessel types and route frequencies with 

low occurrence (e.g., research vessels), temporal 

oversampling was applied, and a class-weighted loss 

function was introduced to reduce the impact of long-tail 

distribution on similarity measurement. All between-

group comparisons (e.g., range deviation, fuel 

consumption) were performed using a two-sample t-test 

(normal distribution) with a significance level of α = 0.05; 

confidence intervals (95% CI) were calculated by 

Bootstrap method. 

In addition, the study selected the methods used in 

references [12]-[15] as comparative models, including 

Whole Process Route Planning (WPRP), High Density 

Searching Framework Extraction (HDS-FE), Waypoint 

Analysis-based Destination Estimation (WAY), and 

Multi-Attribute DBSCAN Optimization (MA-DBSCAN). 

The ADSRP model proposed in the study was taken as the 

research object. The study first evaluated the feasibility of 

model trajectory planning by comparing the cosine 

similarity between trajectories planned by different 

methods and historical high-frequency trajectories, as 

shown in Figure 6. 

From Figure 6 (a) and Figure 6 (b), the ADSRP 

model, based on DBSCAN and spatiotemporal feature 

fusion mechanism,achieved an average cosine similarityof 

0.86in 30 experiments,significantly higher than 

comparisonmodels such as WPRP (0.71) and HDS-FE 

(0.64) (p<0.001), with a 95% confidence interval of [0.83, 

0.89], covering historical high-frequency trajectory 

patterns.However, WPRP lost temporal continuity due to 

segmented clustering (range 0.13), while HDS-FE relied 

on kernel density estimation, resulting in spatial over 

smoothing. The cosine similarity deviation standard 

deviation of ADSRP was 0.05 (95% CI±0.10), with a 

significantly smaller fluctuation range than WAY (0.12) 

and MA-DBSCAN (0.07), attributed to its encoder's self 

attention weight dynamic allocation mechanism that 

suppresses AIS noise interference. There was a significant 

difference (p<0.01) between the ADSRP deviation 

distribution and the comparison model, with a confidence 

interval half width (0.025) of only 31.3% of WPRP. 

Subsequently, the study evaluated the computational 

efficiency of the model by comparing the time taken from 

input data to output planned routes using different 

methods, as shown in Figure 7. 
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Figure 6: Differences in trajectory cosine similarity 
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Figure 7: Difference in time spent on planning routes 



ADSRP: A DBSCAN-SNN Framework for AIS-Based… Informatica 49 (2025) 397–410 405 

As shown in Figure 7 (a), the ADSRP model relied on 

the parallel multi-head self attention mechanism of SNN 

and took an average of 8.11 seconds (95% CI [7.89, 8.33]) 

in 30 experiments, which as 67.8% -80.7% lower than 

WPRP (25.24 seconds) and MA-DBSCAN (42.08 

seconds)(p<0.001).However, the complexity of MA-

DBSCAN increased significantly due to the calculation of 

multi-attribute distance matrix (speed/heading/position), 

and HDS-FE relied on iterative kernel density search to 

further drag down efficiency.According to Figure 7 (b), 

the standard deviation of ADSRP time was 0.18s (95% CI 

± 0.35), and the volatility was only 52.9% of the WAY 

model and 40% of the MA-DBSCAN.Moreover,there was 

a significant difference (P<0.01) between the deviation 

distribution of ADSRP and the comparison model, with a 

confidence interval half width of 0.22s, which was 57.7% 

narrower than WPRP (0.52s). This proved the stability of 

the SNN architecture in processing long sequence 

trajectories (>1000 points) and met the real-time threshold 

of port scheduling (<10s). Furthermore, to verify the 

influence of DBSCAN algorithm parameters 

(neighborhood radius ϵ, minimum point number MinPts) 

on model performance, ADSRP model parameter 

sensitivity experiments were conducted, as shown in 

Table 3. 

According to Table 3, when ϵ=300m and MinPts=3, 

the excessively small neighborhood radius led to the 

fragmentation of the port trajectory into 34 clusters, with 

noise points accounting for 12.5% and a port recognition 

accuracy of only 72.3% (95% CI [68.1,76.5]). However, 

the combination of ϵ=700m and MinPts=7 caused 

neighboring ports to merge incorrectly due to the large 

neighborhood, resulting in an accuracy rate of 84.3% (CI 

[79.6, 89.0]).The optimal parameter combination of 

ϵ=500m and MinPts=5 achieved a balance between the 

number of clusters (15), the proportion of noise points 

(3.8%), and accuracy (93.6%, CI [90.5, 96.7]), and its 

performancewas significantly better than other 

combinations (p<0.01).Analysis showed that MinPts 

determined the strength of noise filtering by controlling 

the spatial density perception granularity: When ϵ<400m, 

the trajectory segmentation was too fine, and when 

MinPts<5, temporary anchor interference was introduced. 

Both would destroy the topological consistency of the 

origin and destination clustering, thereby reducing the 

reliability of route planning. Moreover, to investigate the 

effectiveness of the methodology module introduced in 

the study, the study conducted ablation experiments, the 

results of which are shown in Table 4. 

In Table 4, removing the dynamic neighborhood 

cleaning module resulted in a decrease in model noise 

suppression (cosine similarity 0.71±0.07, 17.4% lower 

than the full model, p=0.003) and an increase in range 

deviation to 1.82± 0.33 nautical miles. Removing the 

sliding window interpolation resulted in a distortion of the 

data's localized trend (deviation 1.95±0.37 nautical miles, 

p=0.008). Without DP trajectory simplification, 

computational elapsed time increased to 9.8±0.9 seconds 

(+20.9%) and voyage bias rose to 1.47±0.29 nautical 

miles (p=0.012). Replacing DBSCAN clustering with K-

means resulted in a significant reduction in port 

identification accuracy (deviation 1.24 ± 0.25 nautical 

miles, p=0.021). Fuel consumption increased to 467.5±

37.9L (+28.9%, p=0.004) when the SNN similarity metric 

was disabled. The full ADSRP model incorporated all 

modules to validate the need for multi-stage co-

optimization with a cosine similarity of 0.86±0.05, a range 

deviation of 0.98±0.12 nautical miles and a low fuel 

consumption of 362.6L. For the feasibility verification of 

the cosine similarity threshold s in SNN, the study further 

conducted sensitivity experiments as shown in Table 5. 

 

Table 3: The sensitivity of DBSCAN parameters 

Parameter combinations 
Number of clusters 

Percentage of 

noise points (%) 

Port recognition 

accuracy (%) 

Accuracy 

(95% CI) ϵ (m) Minpts Average number of ports 

300 

3 36.1  34 12.5 72.3 [68.1, 76.5] 

5 29.7  28 8.9 78.5 [74.0, 83.0] 

7 22.2  21 6.3 82.1 [77.5, 86.7] 

500 

3 23.1  22 8.1 85.4 [81.2, 89.6] 

5 15.5  15 3.8 93.6 [90.5, 96.7] 

7 12.6  12 4.9 89.7 [85.4, 94.0] 

700 

3 16.9  16 10.7 80.2 [75.8, 84.6] 

5 9.5  9 6.5 87.9 [83.3, 92.5] 

7 7.4  7 5.1 84.3 [79.6, 89.0] 

Table 4: Ablation experiments 

Ablated Modules/Full 

model 

Average cosine 

similarity 

Range deviation 

(nmi) 
Fuel consumption (L) Planning time (s) 

Memory usage 

(%) 

p-value (vs. 

ADSRP) 

Dynamic Neighborhood 

Cleaning 
0.71 ± 0.07 1.82 ± 0.33 498.3 ± 38.7 7.2 ± 0.5 39.6 ± 2.8 0.003 

Sliding window 

interpolation 
0.68 ± 0.08 1.95 ± 0.37 527.4 ± 41.1 7.5 ± 0.7 42.1 ± 3.0 0.008 

DP trajectory simplification 0.75 ± 0.06 1.47 ± 0.29 432.9 ± 35.6 9.8 ± 0.9 35.7 ± 2.5 0.012 

DBSCAN clustering 0.78 ± 0.05 1.24 ± 0.25 398.2 ± 32.4 12.3 ± 1.1 31.9 ± 2.2 0.021 

SNN similarity metric 0.72 ± 0.07 1.68 ± 0.31 467.5 ± 37.9 8.1 ± 0.8 37.4 ± 2.7 0.004 

Full ADSRP model 0.86 ± 0.05 0.98 ± 0.12 362.6 ± 28.3 8.1 ± 0.7 27.5 ± 2.0 - 
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Table 5: Sensitivity experiments for threshold s 

Threshold (s) 
Percentage of high 
similarity routes (%) 

Mean range deviation 
(nmi) 

Average fuel 
consumption (L) 

Planning time (s) 
p-value (vs. 
s=0.85) 

0.75 98.1 ± 1.2 1.54 ± 0.23 452.8 ± 39.5 6.5 ± 0.5 <0.001 

0.8 92.3 ± 2.1 1.22 ± 0.18 402.5 ± 31.7 7.8 ± 0.6 0.004 

0.85 78.5 ± 1.8 0.98 ± 0.12 362.6 ± 28.3 8.1 ± 0.7 - 

0.9 58.6 ± 3.2 0.89 ± 0.09 340.1 ± 25.9 9.4 ± 0.9 0.018 

0.95 34.2 ± 4.5 0.82 ± 0.07 328.7 ± 24.1 12.6 ± 1.3 0.033 

 

In Table 5, when the threshold s=0.85, the range 

deviation (0.98±0.12 nm) and fuel consumption (362.6±

28.3L) were reduced by 19.7% and 9.9%, respectively, 

compared to s=0.80 (p=0.004), and the planning elapsed 

time was stabilized at 8.1 seconds. s=0.75 had a high 

coverage rate of 98.1% but the deviation spiked to 1.54 

nm (p<0.001). s=0.95 had the lowest deviation (0.82±0.07 

nm) but the elapsed time increased to 12.6 seconds and 

only 34.2% (p=0.033). 0.001). s=0.95 had the lowest 

deviation (0.82±0.07 nautical miles), but the elapsed time 

increased to 12.6 seconds and the coverage was only 

34.2% (p=0.033). s=0.85 achieved the optimal balance of 

quality, efficiency, and economy, which validated its 

reliability as a recommended threshold. After that, in order 

to visualize, the convergence performance of the study 

model, the study conducted iterative training and the 

results are shown in Figure 8. 

The combination of Figure 8(a) and Figure 8(b) shows 

that the training loss of each method decreased 

significantly with rounds, with ADSRP decreasing the 

most (1.25→0.2, Δ=1.05), followed by MA-DBSCAN 

(1.3 → 0.36, Δ =0.94). WPRP, HDS-FE and WAY 

converged at 0.68, 0.55, and 0.75, respectively, with 

ADSRP having the highest initial loss but fastest 

convergence after round 30 (0.25→0.2), and significantly 

better than WAY (0.45→0.35). The loss of ADSRP was 

stable after the 30th round (0.25 → 0.2), which was 

significantly better than that of WAY (0.45→0.35). MA-

DBSCAN had the highest initial loss but fast convergence, 

and had the lowest loss at the 50th round (0.36). The 

stability and convergence efficiency of ADSRP validated 

its advantage as a recommended model. 

4.2 Actual model performance experiment 

Although simulation environments could idealize the 

control of variables, they could not reproduce the dynamic 

environmental disturbances in real sea areas.Actual model 

testing could verify the dynamic adaptability and anti-

interference ability of the model through real ship 

interaction scenarios, ensuring the navigation safety and 

economy of the planned path.Therefore, the study selected 

Port A and Port B as the endpoints of the trajectory, and 

chose MA-DBSCAN and WPRP, which performed well 

in simulation experiments, as the comparative models, 

while ADSRP was still used as the research object.The 

embedded edge deployment testing was based on NVIDIA 

Jetson AGX Xavier (Ubuntu 18.04 LTS, ARMv8.2 

architecture), Jetson Nano 4GB (Maxwell architecture 

with 128-core GPU), and STM32H743VIT6 

microcontroller (ARM Cortex-M7 core, 480MHz), 

covering hardware verification needs from high-

performance edge computing to low-power embedded 

scenarios.The experimental parameters were strictly kept 

consistent with the simulation run experiment, and the 

training set used the measured trajectory of Marine 

Cadastre AIS to ensure comparability of results and 

support the closed-loop of the model from theoretical 

verification to practical application.Firstly, the study used 

different methods to plan the trajectory between A and B, 

and compared the trajectory with historical high-

frequency trajectories, as shown in Figure9. 
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Figure 8: Comparison of model convergence performance differences
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Figure 9: Comparison of different trajectories

According to Figure 9, the ADSRP trajectory closely 

followed the dashed reference line throughout the entire 

process (maximum lateral deviation ≤ 10% of the 1km 

scale). However, due to probability estimation bias, WAY 

formed redundant curved detours in the nearshore area 

(with a lateral offset of 30% from the reference line). 

Although MA-DBSCAN conformed to the reference line 

at key turning points, it generated serrated trajectories 

(curvature radius ≤ 0.3km) due to multi-attribute 

segmentation clustering. ADSRP minimized range 

deviation while maintaining heading continuity (actual 

range was only 2.3% longer than the reference line), while 

the comparative method required frequent adjustment of 

speed due to path redundancy or abrupt changes (WAY 

range extension 8.7%, MA-DBSCAN extension 5.1%). 

To quantify the reliability of trajectory planning using 

different methods, a study was conducted to compare the 

path smoothness deviation and range deviation of different 

trajectories, as shown in Figure 10. 

According to Figure 10 (a), ADSRP optimized 

heading continuity through spatiotemporal feature fusion, 

and its average path smoothness deviationwas 0.07 rad/s2 

(95% CI [0.05,0.09]), significantly lower thanMA-

DBSCAN (0.14rad/s2,P=0.002) and WPRP (0.24 rad/s2, 

P<0.001).This model utilized multi-head attention 

weighted speed heading coupling features at route turning 

points to suppress sudden turns and verify the 

enhancement effect of SNN structure on trajectory 

smoothness.According to Figure 10 (b), ADSRP 

constrained path global consistency through trajectory 

similarity threshold (s ≥ 0.85), resulting in a total range 

deviation of 0.98nmi (95% CI [0.92, 1.04]), which was 

36.8% lowerthan MA-DBSCAN (1.55,p=0.013).Its 

encoder effectively captured the inertial characteristics of 

ship motion along the A-B diagonal main route, reducing 

redundant evasive maneuvers, and achieving a statistically 

significant difference in the cumulative deviation growth 

rate (0.011 nmi/min) of the voyage (p<0.01). Finally, the 

study compared the fuel consumption and hardware 

resource utilization of different trajectories to evaluate the 

actual deployment potential of different planning 

methods, as shown in Figure 11. 
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Figure 11: Analysis of actual deployment potential 

 

Table 6: Comparison of environmental validation of historical data 

Year of data Methods 
Track endpoint recognition 

accuracy 
Processing delay (ms) Prediction error (nmi) 

2021 

ADSRP 93.20% 182±19 0.91±0.11 

MA-DBSCAN 84.50% 295±38 1.32±0.23 

WPRP 78.70% 258±31 1.49±0.30 

2022 

ADSRP 91.60% 189±22 0.95±0.13 

MA-DBSCAN 81.30% 308±42 1.38±0.26 

WPRP 73.40% 271±35 1.57±0.33 

2023 

ADSRP 89.80% 196±25 1.03±0.15 

MA-DBSCAN 78.10% 322±47 1.45±0.29 

WPRP 69.50% 285±39 1.68±0.37 

Safety threshold ≥85% ≤200ms ≤1.2 nmi 

 

According to Figure 11 (a), ADSRP utilized trajectory 

similarity constraints (s ≥ 0.85) and SNN feature fusion to 

dynamically optimize the ship's power curve. The average 

fuel consumptionwas 362.58L (95%CI [355.2369.9]), 

which was 20.8% and 38.8% lowerthan MA-DBSCAN 

(457.89L, p=0.003) and WPRP (592.98L, p<0.001), 

respectively. The speed heading coupling attention 

mechanism effectively suppressed redundant steering, 

with a fuel efficiency standard deviation of only 12.7L. As 

shown in Figure 11 (b), the average memory occupancy of 

ADSRPwas 27.5% (95%CI[25.1, 29.9]), significantly 

lower than that of MA-DBSCAN (36.5%,p=0.008) and 

WPRP (42.5%, p<0.001).DBSCAN in ADSRP could 

reduce intermediate state storage requirements, with a 

memory usage growth rate (0.43%/min) that was 14% 

lower than traditional clustering algorithms (0.5%/min), 

making it suitable for edge device deployment.In addition, 

the study used the historical AIS data from the endpoints 

of this port from 2021-2023 to validate the generalization 

performance across years and test the real-time processing 

capability, and the results are shown in Table 6. 

In Table 6, the accuracy of ADSRP for trajectory 

endpoint identification in three years of data was 93.20%, 

91.60%, and 89.80%, respectively, which was always 

above the 85% safety threshold, and the prediction error 

(0.91-1.03 nmi) was better than that of the comparison 

methods. The processing latency gradually increased from 

182ms (2021) to 196ms (2023), which still met the ≤

200ms real-time requirement. The latency of both MA-

DBSCAN and WPRP exceeded the thresholds (up to 

322ms/285ms in 2023) and the prediction error broke 

through 1.45 nmi/1.68 nmi, which indicated that the 

performance of the traditional methods declined in the 

presence of interannual data significantly. 

5 Discussion 
In response to the insufficient performance of traditional 

trajectory planning methods, an ADSRP model was 

proposed to clean AIS shipping big data and implement 

trajectory endpoint clustering and similarity screening 

based on methods such as DBSCAN.Experimentsshowed 

that in simulation, the average cosine similarity of ADSRP 

reached 0.86 (95% CI[0.83, 0.89]), which was 12% -34% 

higher than the comparison model(p<0.001), attributed to 

the accuracy of DBSCAN in port endpoint clustering 

(93.6% accuracy at ϵ=500m and MinPts=5) and the 

spatiotemporal feature fusion of SNN.In actual scenarios, 

the range deviation of ADSRP was only 0.98nmi (36.8% 

lower than MA-DBSCAN), fuel consumption was 

362.58L (20.8% lower), and the average memory usage 

was 27.5% (24.7% lower than traditional methods), 
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verifying its dynamic adaptability and deployment 

potential.The result metrics demonstrated that range 

deviation and fuel consumption directly reflected the 

global optimality of generated routes, smoothness 

validated dynamic obstacle avoidance capability, while 

trajectory fit served only as auxiliary validation of 

historical pattern learning. Collectively, they proved the 

comprehensive optimization of generated paths in safety, 

economy, and dynamic adaptability. From the above, 

DBSCAN accurately recognized the port area based on 

density sensing and avoided the limitation of the number 

of preset clusters. Multi-attribute clustering fused 

speed/heading to enhance the feature correlation, but the 

high-dimensional distance computation exacerbated the 

complexity, and the sparse sea area was susceptible to the 

interference of redundant dimensions. The sliding window 

interpolation retained the local trend but ignored the 

nonlinear motion, which may introduce smoothing bias. 

DP algorithm compressed the trajectory through 

geometric thresholding, which required dynamic trade-

offs between the retention of the key steering points and 

computational efficiency. SNN suppressed the noise 

interference by dynamically weighting the spatiotemporal 

features through multi-attention; and the shared weight 

encoding with ternary loss enhances the learning ability of 

the metrics. In practical applications, the model relied on 

AIS real-time/historical data, and real-time computing 

resources limited edge deployment. 

6 Conclusion 
In summary, A route planning framework for multi-scale 

density trajectories was developed, which solved the 

contradiction between traditional methods in terms of 

noise robustness, computational efficiency, and trajectory 

fit. The proposed method achieved some results in ship 

route planning, however, there are still limitations. First, 

DBSCAN's parameter sensitivity and neglect of multi-

attribute correlations limited clustering robustness. 

Second, sliding-window interpolation induced nonlinear 

motion smoothing bias, and DP over-compression 

sacrificed critical steering points. Third, traditional 

models failed to capture spatiotemporal dependencies, and 

SNN's computational demanded hinder edge deployment. 

Fourth, reliance on AIS data quality, manual parameter 

tuning, and dynamic response lagged constrain practical 

applications. 

Aiming at the above problems, the future work of the 

research lies in: First, develop a hybrid clustering 

framework integrating DBSCAN density-awareness with 

multi-attribute weighting and Bayesian-optimized 

parameter tuning (maximizing Silhouette Score), to 

improve the robustness of clustering in sparse sea area and 

high-dimensional data. Second, design LSTM-based 

adaptive interpolation for nonlinear patterns and 

curvature-constrained DP algorithms to balance key-point 

retention. Third, optimize SNN via lightweight attention 

modules and knowledge distillation while enhancing 

small-sample generalization through contrastive learning. 

Fourth, integrate meteorological/bathymetric data fusion 

and deploy edge-end lightweight ADSRP via federated 

learning for real-time distributed planning. 
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