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With the widespread application of unmanned systems in various fields, achieving high-precision
autonomous navigation of unmanned aerial vehicles has become a research hotspot. Therefore, a
navigation system that integrates vision, lidar, inertial sensor and barometer is designed in this study.
Based on the factor graph optimization structure, the effective fusion of multi-source information is
realized, thereby improving the consistency of positioning and mapping. Meanwhile, a probabilistic path
planning method based on curvature constraints is proposed to reduce trajectory discontinuity and
support dynamic feasibility requirements. The results show that the positioning error of the complete
system is 0.43 m and the mapping completeness is 98.7%. Compared with the traditional A* algorithm,
particle swarm optimization algorithm, and probabilistic rapid expansion random tree method, the
improved algorithm reduces the path length by about 17.04% and shortens the planning time by about
16.71%. In the simulation test, its average energy consumption is 3.42 J/m, the average path deviation is
0.65 m, and the number of obstacle avoidance re-planning is 2.4 times/task. The research results show
that the system has good operating performance in complex environments and has certain advantages
over the baseline method in terms of efficiency, stability and obstacle avoidance ability.

Povzetek: Predstavljena je avtonomna navigacija UAV. Uvaja faktor-grafno fuzijo podatkov (kamera,
LiDAR, IMU, barometer) z nacrtovanjem poti CO-PRE s krivinskimi omejitvami; 0,43 m RMSE, 98,7%
zemljevid, ~17% krajse/hitrejse poti.

integrated optimization model for path and control, along
with a metaheuristic solution framework, thereby
achieving a comprehensive enhancement in flight

1 Introduction
As intelligent unmanned systems continue to evolve,

quadcopter unmanned aerial vehicles (UAVSs) have gained
widespread application in diverse scenarios including
urban logistics, disaster search and rescue, and
environmental monitoring, thanks to their straightforward
design, agile maneuverability, and robust adaptability [1].
Particularly in enclosed settings like indoor structures,
underground corridors, and post-disaster debris where
satellite positioning is unreliable, the achievement of
autonomous UAV navigation has emerged as a critical
challenge demanding urgent attention. UAVs need to have
precise environmental perception and state estimation
capabilities in such scenarios to complete core tasks such
as positioning, mapping, and path planning, which puts
higher demands on the system's perception reliability and
computational efficiency [2-3]. In recent years, with the
development of sensor technology and computing
platforms, various sensors such as vision, LiDAR, inertial
measurement units (IMUs), etc. have been widely used in
autonomous navigation systems. Multi-sensor fusion has
become a key direction for improving localization
robustness and map accuracy [4-5].

Zhang et al. introduced an innovative modeling and
algorithmic approach that integrates the Internet of Things
with edge computing to address the limitations in
intelligence within the collaborative optimization of path
planning and control for UAVs. They developed an

efficiency and collaborative scheduling [6]. Tong et al.
introduced a novel optimization algorithm that integrates
a logarithmic spiral with an adaptive step size strategy.
This approach enhances population diversity through
hierarchical modeling and improvements in spatial search.
Simulation results demonstrated that the algorithm was
capable of generating high-quality, feasible paths while
satisfying time coordination constraints, thereby verifying
its effectiveness and advantages [7].

Shiri was inspired by attention mechanisms in natural
language processing and proposed an iterative single head
attention mechanism suitable for multi-UAV path control.
This method assigned individual scores through
communication assistants to strengthen the modeling of
multi-machine collaborative relationships in control. The
results indicated that this mechanism could improve flight
speed and reduce collision risk [8]. Bashir et al. proposed
a path planning method based on connectivity awareness
to address the risk of collision and communication
interruption between UAVs and obstacles in urban
environments. This method constructed a graph structured
path and combined it with fleet formation strategy to
ensure communication continuity and path safety [9].

In intricate environmental settings and task-oriented
scenarios, the autonomous path planning of UAVs
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necessitates a delicate equilibrium among flight
efficiency, the quality of task coverage, and the robustness
of obstacle avoidance. Researchers have proposed various
path optimization methods that integrate intelligent
algorithms and task models. Ko et al. proposed a UAV
visual coverage method that combines velocity function
and dynamic trajectory planning to meet the resolution
requirements of images in different regions. This method
optimized regional access by adjusting flight altitude and
path sequence, combined with auxiliary travel merchant
strategies [10]. Jayarajan N proposed a path planning
method that combines artificial bee colony algorithm and
fast exploration of random tree stars to address the low
efficiency of UAV path planning in complex obstacle
environments. This algorithm combined global search
capability with path optimization characteristics to
achieve efficient obstacle avoidance and path optimization
in obstacle environments [11].

Wu et al. proposed the Q-Learning algorithm with
adaptive transition speed to address the issues of low path
efficiency and unstable learning in UAV search and rescue
missions in unknown environments. This method involved
phased design and state space optimization, combined
with sensor information to initialize the learning process.
The simulation results showed that the algorithm had fast
learning speed, shorter path, and more stable convergence
[12]. Liu et al. proposed a collaborative path planning
model for UAVs and transport vehicles. Through multi-
objective optimization and boundary intersection
algorithm, UAV task scheduling and path optimization
were achieved under dynamic objectives and variable path
conditions [13]. Table 1 summarizes the main contents of
the related work section.

In summary, the current UAVs still face three key
problems in performing autonomous navigation tasks in
complex environments: First, there is heterogeneity in
multi-sensor observations, and the data fusion accuracy is
not high. Second, path planning lacks continuity and real-
time in dynamic environments. Third, the control system
does not respond sufficiently to disturbances, affecting
flight stability. Although existing studies have made some
progress in visual-inertial navigation mapping or path
planning, most of them have failed to achieve deep
integration of perception, planning and control under a
unified framework, and lack collaborative modeling of
path feasibility and consistency of multi-source
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observations. To this end, this study proposes a visual-
inertial navigation autonomous navigation system based
on multi-sensor fusion, constructs an integrated closed-
loop architecture of perception-planning-control, and aims
to provide efficient, accurate and adaptable solutions for
autonomous navigation and real-time decision-making of
UAVs in unknown environments. The study aims to
evaluate whether the proposed multi-sensor fusion
navigation framework can achieve reliable performance in
complex environments. The specific goals are to keep the
average path deviation below 0.7 meters and the energy
consumption below 3.5 J/m while ensuring a high success
rate and minimal re-planning during the navigation
mission.

The novelty of this research resides in the application
of the factor graph optimization method to achieve tight
coupling and fusion of multiple sensor data. Additionally,
to enhance the efficiency and precision of path planning,
a Curvature Optimized Probabilistic Path Rapid
Expansion Algorithm (CO-PRE) based on curvature
optimization is introduced. By incorporating curvature
smoothing techniques, this approach improves path
smoothness and computational efficiency, while
optimizing path feasibility and stability through the
integration of dynamic constraints. Furthermore, anti-
interference adaptive control methods are employed to
bolster the system's steady-state response and resistance to
disturbances.

2 Methods and materials

2.1 Autonomous positioning and mapping
methods for multi-source information
fusion

The autonomous localization and map construction of
UAVs in unknown and communication limited
environments rely on deep fusion of information from
multiple heterogeneous sensors [14-15]. A synchronous
positioning and mapping system based on tight coupling
of multi-source information was studied and designed,
which integrates observation information from laser radar,
IMU, optical flow sensor, and barometer. State estimation
and map construction were achieved through factor graph
optimization. The architecture is shown in Figure 1.

Table 1: Summary of related UAV navigation methods.

Reference Sensor Types Optimization Method Key Metrics
[6] Zhang X loT + Edge Metaheuristic Flight efficiency, scheduling improvement
[7] Tong H et al. IMU + Visual LASSA (log-spiral based) | Path feasibility, diversity, time coordination

[8] Shiri H et al. Communication modules ISHA

Flight speed, collision risk reduction

[9] Bashir N et al. Connectivity sensors

Graph-based with fleet

Connectivity, path safety

[13] Liu X et al. UAV + Vehicle sensors

technique

formation
[10] Ko Y Cetal. Camera I\Z’/Izlr?rfilr% Dynamic Coverage quality, task time
[11] Jayarajan N et al. General UAV sensors ABC-RRT* Path efficiency in obstacle environments
[12] Wu J et al. Sensor-driven learning ACSQL Path length, convergence stability
Penalty-based  boundary

intersection+Pareto

Efficiency, resource utilization
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Figure 1: Synchronous localization and mapping system architecture based on tight coupling of multi-source
information.
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Figure 2: Schematic diagram of factor graph optimization structure under multi-sensor constraint fusion.

As illustrated in Figure 1, the system incorporates
laser radar, IMU, optical flow sensors, and barometers to
gather multi-source observation data. After pre-
integration, filtering, and feature extraction, the data is
fused via a factor graph framework to enable accurate pose
estimation and dense map construction. The system's
front-end handles data association and loop closure
detection, while the back-end produces continuous
subgraphs and global maps, thereby establishing a closed-
loop process for autonomous positioning and mapping.

Initially, a systematic model of the quadcopter UAV's
state is developed. The complete state vector of UAV at

time t, is represented by equation (1).

X =[P Vi, a0 b L po, T @

In equation (1), p, represents the position vector of
the UAV in the world coordinate system W , and Vv,
represents the velocity. q, is a posture represented by
quaternions. b, and b, are the zero bias terms of the

accelerometer and gyroscope, respectively, and Po,

represents the position of the origin of the optical flow
coordinate system relative to the body coordinate system
B.

To achieve unified fusion of multi-source sensor
information, the system constructs a state estimation
framework based on factor graphs, in which each state
node represents the position of the UAV at a certain
moment, and the edges correspond to the observation
constraint factors of different sensors. The spatial
relationship between the body coordinate system B and

the optical flow coordinate system O is shown in Figure
2.

Figure 2 shows the composition of the multi-sensor
factor graph optimization structure, where each state node
represents the pose estimation of the UAV at a specific
moment, and the measurements from different sensors are
connected to the state nodes in the form of factors. The
data is modeled as four types of observation factors,
corresponding to inertial-visual pre-integration, lidar
mileage constraint, air pressure measurement, and loop
detection. Different information sources are embedded in
the state estimation graph in a unified form to provide a
high-precision initial state for subsequent pose
optimization and path planning.

To enhance the mathematical clarity and technical
operability of factor graph fusion modeling, a joint
residual function is introduced to characterize the
constraints of multi-source observation information on
state estimation. Let the UAV state vector be x, including
position, velocity, attitude quaternion and inertial sensor
bias, then the optimization objective function can be
expressed as equation (2).
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residuals, which are used to weight the errors of different
sensors. ||r[.. represents the Mahalanobis distance norm,

which is used to consider the noise uncertainty of each
residual. To clearly present the relationship between the
system state composition and sensor observations, Table
2 lists the state variables and their source sensors.

In addition, to improve the accuracy of LiDAR point
cloud registration and the global consistency of the
system, the study adopts an initial registration strategy
based on voxel filtering and KD tree matching, and
introduces an iterative closest point method for residual
refinement. In terms of system closed-loop detection, a
revisit detection module based on the scan context
descriptor is designed. Once the loop node is identified,
the pose graph optimization module is triggered to adjust
the global constraints, and the graph scale is controlled
through the node pruning mechanism to ensure real-time
operation efficiency.

Firstly, based on the pre integration factor of optical
flow and IMU, high-frequency constraints are established
using the continuous acceleration and angular velocity
information obtained by IMU, and combined with the
relative displacement observation of optical flow sensor
on the image plane. The IMU measurement model is
represented by equation (3).

W, =w, +b,+n,,

AN (3)

at _R\N(at_g)+ba+na

In equation (3), W, and &, respectively represent the
angular velocity and acceleration measured by IMU. b,

and b, are zero bias terms. n, and n, are for noises. Ry,
is for the rotation matrix and g is for the gravitational
acceleration. The optical flow method is based on the
assumption of constant image grayscale, and its
constraints are shown in equation (4).

I(X+AX, §+AY, t+At) = 1(X, §,1) 4)

In equation (4), 1(X, ¥,t) represents the grayscale of
the image attime t and (X, ) is the pixel coordinate. AX
and Ay are the displacement amounts, and At is the time

interval between frames.
A first-order Taylor expansion is performed on the

equation, the definitions of pixel velocities u ;, = % and
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dy . . .
w = are introduced, and linear system constraints

pix

are further constructed and then solved using the least
squares method, as shown in equation (5).

(®)
upix (A 1 A
=—(A"A)"ADb
Wpix

In equation (5), A is a matrix composed of image
gradients of multiple pixels, with each row representing
the gradient [I.,1,] of apointinthe X and § directions.

b corresponds to the time gradient I, of each pixel.
[, Wy, ] represents the average optical flow velocity

vector of pixels on the image plane. Pixel velocity is
converted to ground velocity and UVA camera installation
height H and scaling factor are introduced. When there
is a change in attitude of UVA, it is corrected based on the
gyroscope output, and the corrected velocity observation
is obtained as shown in equation (6).

v, =V, —Hw, +n, (6)

In equation (6), w, is the rotational speed around the
vertical axis. n, is the observation noise term.
Subsequently, in the factor graph optimization, a joint pre
integration model is constructed based on the observation
information of IMU and optical flow sensor to estimate
the state transition of UAV between two laser radar
keyframes. The prediction of the state between time t,

and t,, is described by the integral equation of equation
™).
P = Py + VAL +
Y 7 A
[7], Ri(& ~b,—n,)-g)drdr

Vi =

v+ [ R @ b, -n) - g)de

qk+1 =

()

te

a, ®EXp(; [ (RS (% b, ~n,)d7)

k

Table 2: UAV state elements, sensor observations, and factor addition time.

State Variable / Observation Sensor Source Factor Addition Time (ms)

UAV position in world frame LiDAR, IMU, Optical Flow, Barometer 0.4 (IMU), 1.8 (LiDAR), 0.6 (Flow), 0.2 (Baro)
UAV velocity IMU, Optical Flow 0.4 (IMU), 0.6 (Flow)

UAV orientation 2. IMU 0.4

Accelerometer bias IMU 0.4

Gyroscope bias IMU 0.4

Image-plane displacement observation Optical Flow 0.6

Altitude estimate Barometer 0.2

Point cloud geometric residuals LiDAR 1.8

Note: The listed factor addition times were measured on a system with Intel Core i7-12700H and 32GB RAM using ROS middleware. Values represent
average computation time per frame for inserting the corresponding factor into the graph optimization.



CO-PRE: A Multi-Sensor Fusion Framework with Visual-Inertial. ..

%

(k+1)th frame

@)

Plane feature

Informatica 49 (2025) 383-396 387

.- Distance error

kth frame

¥

Edge feature point

Plane feature point .,

Edge feature

Figure 3: Schematic diagram of laser radar feature extraction and inter-frame matching.

In equation (7), At, represents the time difference.
® is quaternion multiplication. Exp(-) represents

exponential mapping. Under the factor graph optimization
framework, all observation information is ultimately fused
through residual terms to construct the optimization
objective function.

Furthermore, in the joint optimization of LiDAR and
IMU, the feature points extracted by LiDAR are combined
with IMU data to estimate the relative motion of UAV.
The distance calculation in feature matching is shown in
equation (8).

e xe
d, = o~ 2 xe |,
Rl o
d = (PsP,)x(p,p,)
’ P,0

Inequation (8), e, and e, are the edge features of the
feature points. p,, p,, and p, are the coordinates of the

point cloud, and o is the origin of the beam. The
schematic diagram of LiDAR feature extraction and inter
frame matching is shown in Figure 3.

As shown in Figure 3, the feature points of the current
frame are compared with those of the previous frame by
rotating the matrix T, , to estimate the relative

displacement between the two frames. The calculated
distance is used to optimize the objective function, which
is shown in equation (9).

e=>d,+>.d, (9)
In equation (9), d, and d, are the distances from the

feature point matching point to the edge and from the point
to the surface, and e isthe residual. Finally, the barometer
is used to estimate the altitude of the UAV, but its
measurement is greatly affected by noise. Therefore, a
low-pass filter is used to smooth the barometer data. The
calculation of the measured value of the barometer is
shown in equation (10).
z, =bh +bh_, +b,h ,

(10)
+a12k—l + aZZk—Z + nh

In equation (10), h, is the raw measurement value of
the barometer, b, , b, b,, a , and a, are filter
coefficients, and n, is the noise term. As a result, the

measurement value of the barometer is smoothed and
corrected.

2.2 3D path planning algorithm integrating
smooth and constrained optimization

The integration of multi-source information and state
estimation has established a fundamental basis for the
autonomous positioning and mapping of UAVs. However,
to attain full closed-loop control within autonomous
navigation systems, it remains imperative to tackle the
pivotal challenges of path planning and dynamic obstacle
evasion. Therefore, in response to the practical application
requirements of quadcopter UAVs, a path planning
method based on Probabilistic Rapidly-exploring Random
Tree (P-RRT) algorithm is proposed. P-RRT quickly finds
feasible paths from the starting point to the target point by
randomly expanding the tree structure, which is suitable
for avoiding dynamic environments and complex
obstacles [16-17]. To further improve the smoothness and
computational efficiency of the path, curvature smoothing
technology will be introduced to reduce the randomness of
the planning.

After generating the local path, a sliding window is
first used to calculate the curvature smoothness of each
point in the path. In the path planning process, a sliding

window containing |S| path nodes is used to smooth the

current node x/, and the curvature smoothness of the path

nodes is calculated using equation (11).

= 2 -
|S| jes, j=i

In equation (11), ¢, represents the average position

deviation between the i th node and the nodes in its sliding
window neighborhood, which can be used to
approximately measure the local non-smoothness or
"sharpness" of the point, and thus serve as an heuristic

C (11)
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indicator of path smoothness. S represents a sliding
window set centered on the current path node x' and

containing |S| neighboring nodes. Based on the

calculation of curvature smoothness, the sliding window
method is used to optimize the path. According to the
calculated curvature smoothness, if the curvature of a node
is less than a predetermined threshold c, , the node is

deleted and the path is adjusted through interpolation
algorithm to achieve smoother path planning.

To further smooth the generated path, a B-spline-
based formulation is used as shown in equation (12),
which defines the trajectory parametrically through
control point interpolation

P(S(t)) = St+lMt+1qa (12)

In equation (12), P represents the path planning
result. g, is the speed of the path node. M,,, represents

the constraint matrix at the current time. This expression
serves as a structural representation of the path, providing
the basis for subsequent optimization. To enforce velocity
and acceleration limits during path execution, dynamic
constraints are incorporated into the optimization process
via the cost function defined in equation (13).

\

V_Qm+1_Qm' A_Zt
fo =2 (V)" +4,(A))
Inequation (13), V and A respectively represent the
velocity and acceleration of the path nodes. 4, and A, are
weight coefficients for adjusting speed and acceleration
limits, ensuring that the path satisfies dynamic constraints

simultaneously during the optimization process. This
designated objective function serves to mitigate abrupt

(13)
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fluctuations in both speed and acceleration throughout the
optimization procedure. Consequently, it facilitates the
attainment of dynamic feasibility and enables precise
control over the smoothness of the path.

To efficiently explore unknown environments, the
Frontier exploration strategy is introduced. By dividing
the environment into known and unknown areas,
quadcopter UAVSs continuously update the map to find the
boundaries of unknown areas and use them as new
exploration targets [18]. After completing the exploration
of a local area, the system calculates the unknown area
adjacent to the known area and uses it as the next target
for path planning. In three-dimensional space, considering
the limitation of computing resources, the study optimizes
the exploration area range through spatial segmentation to
reduce computational burden. The improved Frontier
exploration framework is shown in Figure 4.

As shown in Figure 4, the framework indicates the
division of known and unknown regions during the
exploration process. Quadcopter UAVs continuously
update the boundaries of known environments and use the
boundaries of unknown areas as new exploration targets
for path planning. Therefore, the process of combining the
improved exploration strategy with the path planning
algorithm is shown in Figure 5.

Figure 5 illustrates that during the path planning
process, the algorithm initially identifies the global path
objective. Subsequently, it constructs a three-dimensional
map utilizing the current position of the UAV and
environmental data. Following this, the algorithm
optimizes the three-dimensional path planning to generate
the most efficient route, ensuring a seamless navigation of
the UAV towards the target zone. Ultimately, the
algorithm refines the entire exploration and path planning
procedure through a hybrid path planning strategy.

Global exploration path

Current local subspace

Local exploration path

Figure 4: Improved Frontier exploration framework.
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Figure 6: UAV control framework based on ADSC.

Subsequently, to achieve precise navigation and
stable control, the research will adopt Active Disturbance
Rejection Control (ADRC) method. ADSC, as a powerful
control strategy, can effectively handle external
disturbances and internal model uncertainties in the
system [19-20]. Its core includes nonlinear state error
feedback control law and extended state observer (ESO).
Assuming that the current UAV system is a second-order
uncertain system, the internal dynamics and external
disturbances are uniformly modeled as generalized
disturbance terms, and the extended state observer is
constructed as shown in equation (14).

2, =1, _ﬁ1(21 -Y)
2, =2,-B,(z,-Y)
Z‘3 = —ﬂl(Zl - y)
In equation (14), z,, z,, and z, are the position,
velocity, and generalized disturbance estimates,

(14)

respectively. S isthe ESO and controller gain parameter.
The final control law is shown in equation (15).

1
u =b_(_k1(zl_yref)_k222 -1,) (15)

0
In equation (15), b, is the nominal system gain, and

k, is the ESO and controller gain parameter. This control

law is capable of effectively mitigating external
disturbances and compensating for modeling inaccuracies,
all without the need for a precise system model. The
overall control architecture is depicted in Figure 6.

As shown in Figure 6, the framework is based on the
ADRC strategy and includes key modules such as input
commands, control quantity allocation, nonlinear
feedback, and extended state observer. By monitoring the
status of UAVs in real-time and compensating for
interference, ADRC can effectively suppress external
disturbances and model uncertainties, thereby achieving
stable flight control. This control framework can
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effectively improve the control performance of
quadcopter UAVS, ensuring task completion in dynamic
and unknown environments.

ADRC estimates unknown disturbances online and
performs feed-forward compensation through an extended
state observer. It has the advantages of fast response, clear
structure, and strong parameter independence. Related
literature studies have shown that ADRC has stronger
anti-disturbance ability and convergence stability under
complex working conditions compared with traditional
controllers such as PID and LQR [21-22]. In the study, the
ADRC parameters were configured according to the
bandwidth adjustment method. The observer bandwidth
was set to 30 rad/s, the tracking differentiator bandwidth

Y. Yang

was set to 20 rad/s, and the control gain parameters were
b, =50, k, =100, k, =300, and k, =500 respectively. The
parameter selection was optimized through typical wind
disturbance simulation and noise test to ensure that the
system still has a small steady-state error and fast recovery
capability under unstable excitation.

To enhance reproducibility, the following pseudo
code summarizes the overall workflow of the proposed
CO-PRE algorithm, see Figure 7.

Figure 7 covers key steps such as sampling expansion,
curvature smoothing, B-spline fitting and dynamic
constraint optimization, and intuitively demonstrates the
overall logic of path generation and optimization.

Pseudocode of CO-PRE Algorithm

Input:
- Occupancy map M
- Start point s
- Goal point g
- Curvature threshold rc
- Window size S
- Dynamic constraint weights A1, A2

Output:
- Smoothed path P

1: Initialize tree T « {S}

2: while goal not reached do

Sample random node g_rand in M
4.  Find nearest node g_nearin T

5:  Extend from g_near to g_new

6: if g_new is collision-free then

7 Addg newto T
8

9:

: endif
end while

10: Extract raw path P_raw from T

11: for each node p in P_raw do

14: ifx W <rcthen

20: Return final path P «— P_spline

12: Define sliding window W « neighbors(p, S)
13:  Compute curvature k_W using Eq.(11)

15: Remove node p and interpolate
16: endif
17: end for

18: Apply B-spline smoothing to obtain P_spline
19: Optimize P_spline with dynamic constraints using Eq.(12)-(13)

Figure 7: Path planning comparison experiment results.
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3 Results

3.1 Performance testing of multi-sensor
fusion autonomous navigation system

The experiment was conducted under the Ubuntu 20.04
operating system, using ROS as the middleware platform,
using Gazebo to build a three-dimensional flight scene,
and using AirSim to simulate the dynamics of the aircraft.
All modules were implemented in Python and C++ mixed
programming, and the path planning module was
encapsulated in the co_pre_planner function package for
operation. Multi-source data such as lidar, IMU, optical
flow sensor and barometer were generated in real time by
the simulator and synchronously input into the system.
The computing platform was configured with an Intel
Core i7-12700H processor, 32GB of memory and an
NVIDIA RTX 3060 graphics card. To ensure the
uniformity of the evaluation, all experiments were
conducted under the same system architecture and
communication frequency settings. Firstly, sensitivity
analysis was conducted on the key parameters in CO-PRE
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to determine the optimal parameters and provide a basis
for subsequent experiments. The results are shown in
Table 3.

Table 3 systematically evaluated the effects of
different combinations of curvature constraint thresholds

¢, , sliding window sizes |S|, and dynamic constraint
factors 4, , 4, on path length, average curvature, and
planning time. In the experiment, ¢, increased from 0.5 to

0.95, showing that too low a threshold would cause path
oscillation at turns, while too high a threshold would limit
trajectory following. The increase in sliding window size

|S| improved curvature smoothness while also bringing

certain computational overhead. In particular, Groups 1
and 2 used extremely low dynamic constraint weights,
which could be regarded as approximate ablation results
of weakening dynamic constraints. The corresponding
paths had the largest average curvature and reduced path
feasibility. Considering the path quality and
computational efficiency, the final parameter combination

was selected as c, =0.9, |S|=7, (4, 4,)=(3,3).

Table 3: Key parameter sensitivity test results.

Serial number C, |S| A A, Path length (m) Mean curvature (rad/m) | Planning time (ms)
1 0.5 5 (1,1) 11.8 0.164 145
2 0.7 5 (1,1) 11.2 0.118 158
3 0.7 7 (1,1) 11.0 0.109 169
4 0.7 7 (2,2) 10.7 0.102 176
5 0.7 7 (3,3 10.4 0.096 190
6 0.9 7 (3,3 10.2 0.090 203
7 1.1 7 (3,3) 10.1 0.087 215
8 0.5 7 (2,2) 115 0.130 160
9 0.9 5 (L1 10.5 0.095 178
Table 4: Area Coverage Rate over Time (%+SD, n = 5).
Time (s) Classic Frontier Greedy Frontier Dynamic Frontier Proposed method
10 22.5+1.4 25.1+1.7 27.9+1.2 31.4+1.1
20 47.3+2.1 50.2+1.9 55.6+2.2 61.8+1.6
30 63.9+2.3 66.4+2.0 71.5+2.4 76.5+1.8
40 76.2+2.5 78.7£2.1 83.3+2.0 88.9+1.5
50 85.4+2.1 86.3+1.9 89.1+1.8 94.6+1.2
20 p —W—A* 400 [ —#—A*
--4-- P-RRT | --i-- P-RRT /.
18 | —@— PSO . —@—PSO e
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Figure 8: Path planning comparison experiment results.
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Figure 9: Multi-sensor combination comparison experimental results.

To verify the exploration efficiency of the improved
Frontier strategy, a comparative experiment was designed
with three typical methods: Classic Frontier, Greedy
Frontier and Dynamic Frontier. Table 4 shows the average
exploration coverage at different times. All results were
the average of 5 independent experiments, with standard
deviations attached.

The results in the table showed that the proposed
improved Frontier strategy achieved higher area coverage
in each stage, reaching 94.6% at 50 seconds. A paired t-
test was further performed, and the results showed that this
method had a statistically significant advantage over other
strategies (p < 0.01).

Subsequently, the CO-PRE algorithm was tested,
introducing A* algorithm, Particle Swarm Optimization
(PSO) algorithm, and traditional P-RRT as comparison
algorithms. The experiment divided the complexity level
of the environment from 1 to 5, with level 1 representing
a simple environment with sparse obstacles and smooth
paths. Level 5 simulates high difficulty navigation areas
with dense obstacles and complex structures. The results
are shown in Figure 8.

In Figure 8 (a), when the complexity level was 5, the
path lengths of A*, PSO, P-RRT, and CO-PRE were 18.18
m, 19.78 m, 14.26 m, and 11.83 m, respectively. In Figure
8 (b), the planning times of the four algorithms at the
highest complexity level were 299.7 ms, 360.2 ms, 247.1
ms, and 205.8 ms, respectively. The CO-PRE mechanism
reduced redundant sampling and improved node selection.
By applying dynamic constraints, it produced smoother
and more controllable paths, balancing quality and real-
time efficiency. In contrast, A* increased its time
consumption in complex environments due to graph
search inflation, PSO was the slowest due to
computationally intensive iterative optimization, and P-
RRT had more path redundancy despite its fast expansion,
which affected overall efficiency.

To verify the influence of various sensors in the multi-
source fusion system on the UAV positioning and
mapping performance, five sensor combination modes
were designed for comparative experiments, and different
sensors were removed to observe the system performance
changes. The specific configuration was as follows: M1
was in full fusion mode (LiDAR, IMU, optical flow, and

barometer were all enabled), M2 removed the barometer,
M3 removed the optical flow and barometer, M4 removed
the LiDAR, and M5 only retained the IMU single sensor.
The results of root mean square error (RMSE) and
mapping completeness for each combination are shown in
Figure 9.

In Figure 9 (a), the RMSE of M1, M2, M3, M4, and
M5 were 0.08 m, 0.11 m, 0.19 m, 0.26 m, and 0.43 m,
respectively. The positioning accuracy decreased
significantly as the number of sensors decreased. M1
integrated all sensors and had the strongest state
observation capability. M2 only removed the barometer,
with little change in positioning accuracy. After M3 lost
optical flow, its ability to observe velocity decreased and
the error increased significantly. Removing the LiDAR
from M4 resulted in a decrease in map construction
accuracy, indirectly affecting pose estimation. However,
M5 relied solely on IMU, with the largest error, and simple
inertial navigation was difficult to support long-term
positioning. In Figure 9 (b), the completeness of mapping
for the five groups was 98.7%, 97.3%, 92.4%, 86.1%, and
69.5%, respectively. M4 and M5 showed the most
significant decrease, indicating that LiDAR contributed
the most to map accuracy, while IMU could not provide
spatial structure information. This verified the key role of
multi-sensor collaboration in stable mapping and accurate
navigation.

3.2 Testing of UAV autonomous navigation
system based on simulation
environment

Furthermore, the study designed an autonomous
navigation experimental scenario. Firstly, the experiment
set up the UAYV to take off from its original position to an
altitude of 1.6 meters, maintain a brief hover, and then
translate about 1.5 meters along the x-axis direction before
returning to the origin and landing. The flight process was
closed-loop controlled by the controller based on the
output of the navigation system. The system recorded the
real-time position information of the UAV in the x, y, and
z axes, and compared the error with the preset trajectory
to test the tracking ability of the system in three-
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dimensional space. The experimental results are shown in
Figure 10.

In Figures 10, during the takeoff phase, the system
experienced short-term oscillations in response to sudden
changes, then quickly stabilized and entered a steady
tracking phase. The x-axis and y-axis converged within 2
seconds, while the z-axis remained within a fluctuation
range of+0.1 meters. The system exhibited good response
speed and control accuracy during autonomous flight,
verifying the adaptability and robustness of the state
estimation and control system for trajectory tracking under
the multi-sensor fusion architecture.

To further verify the path planning and execution
capability of the proposed autonomous navigation system
in complex three-dimensional space, several three-
dimensional obstacles were randomly arranged in the
experimental scene. The UAV needed to start from the
starting point and use various path planning algorithms to
generate trajectories to bypass the obstacles and reach the
target point. All obstacle maps in the experiment were
generated using the seed randomization method, and the
environmental parameters were fixed. All methods used
the same random seed to ensure the consistency of
obstacle layout and scene configuration. The comparison
algorithms were A*, Rapid exploring Random Tree Star
Algorithm (RRT*), and Path Optimization Algorithm
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based on Bezier Curve. The results are shown in Figure
11.

In Figure 11 (a), Algorithm A* was based on regular
grid search, and the path presented multiple polylines.
Although it could ensure accessibility, it did not have a
trajectory smoothing mechanism, resulting in multiple
turns and discontinuous paths, which led to an overall
increase in the length of the route. In Figure 11 (b), the
RRT algorithm used a sampling extension tree to construct
the path, which had strong global search ability. However,
its random sampling and reconnection process was prone
to local oscillations, resulting in severe path jitter and
affecting navigation stability. In Figure 11 (c), the Bezier
curve relied on control points to generate an overall
smooth curve with excellent curvature continuity.
However, due to the lack of explicit consideration of
obstacles, the path approached or even partially crossed
obstacles, lacking environmental adaptability and
resulting in infeasible areas. The CO-PRE algorithm in
Figure 11 (d) introduced a sliding window mechanism
based on curvature optimization, dynamically adjusted
path nodes, and combined probability sampling and
spatial feasibility discrimination to effectively balance
path smoothness and obstacle avoidance ability. The final
generated path was smooth, continuous, and risk averse,
demonstrating good adaptability and practical application
potential for 3D navigation.
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Figure 10: Three-axis trajectory tracking comparison chart.
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Figure 11: Three-dimensional navigation experiment based on urban building obstacle scene.

Table 5: Comprehensive test results (Mean+SD, 95% ClI, n = 10).

Performance Indicator A* RRT* Bezier Curve CO-PRE (Proposed) | p-value (vs. CO-PRE)
Success rate %) (Cirs08) | (Crs08) | (Cheiz | (207 <00t

e sion [ 125% 1m0 Losens ossen | o

Mapping delay (ms) ?é?:if4.8) (13I2:1163.6) ?éﬁiilgm (13?:1153.0) <001

Average energy consumption (J/m) 4'3%310'12 4'0#0'10 3'7,710'09 3'4,210'08 <0.01

(ClI: £0.07) (Cl: +£0.06) (Cl: +£0.05) (Cl: +£0.05)

cruas o i wsas wen uest o

Replanning count (times/task) ?Clliig 2) ?Cﬁiig’ 2) Zg]ﬂig 2) ?CAIJLZ; ) <0.01

Computational complexity (ms) (12:1163 B) (léf;ifg_()) gg?:i;l_z) (lczzifz 2 <0.01

Finally, multiple synthetic environments were built
using Gazebo and AirSim, and evaluated through repeated
testing under varied start-end configurations and dynamic
conditions to assess system robustness and generalization.
The tested scenarios included: (1) a structured urban
environment with dense buildings and grid-like corridors;
(2) canyon-like terrain with narrow paths and elevation
changes; and (3) indoor scenes simulating limited field of
view and irregular obstacle layouts. Each environment
incorporates factors such as dynamic obstacle updates,
partial map observability, and sensor bandwidth

constraints to emulate real-world mission challenges.
Evaluation metrics were averaged across multiple runs
under consistent conditions, the results are shown in Table
5.

The average path deviation was used to measure the
average spatial deviation between the flight trajectory and
the reference path. It was calculated by sampling at equal
time intervals during the mission and counting the mean
Euclidean distance between the actual trajectory point and
the reference trajectory point. Its expression was
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act _ref

pi p|

, p , p* represented the actual

>
N i3
trajectory point and the reference trajectory point at that

moment, respectively, and N was the total number of
samples. Mapping delay represented the time interval
from the reception of sensor data to the completion of the
corresponding occupancy grid map update, which was
calculated using the topic timestamp in the ROS system.
The CPU load indicator was sampled and recorded at a
frequency of 1 Hz through the system performance
monitoring tool. It was continuously monitored and its
average value was calculated during the entire navigation
mission, reflecting the system resource consumption level
under each sensor configuration.

In Table 5, the success rate of the proposed CO-PRE
algorithm reached 96.2% (1.2, Cl: +0.7), indicating
reliable task completion. The average path deviation was
maintained at 0.65+0.03 meters, significantly lower than
those of other methods (p < 0.01). Additionally, the
system demonstrated reduced mapping delay and
computational complexity, with energy consumption
controlled at 3.42+0.08 J/m. Although the CPU load was
slightly higher than some baseline methods, the overall
performance gain was statistically supported. All metrics
were averaged over 10 trials, and 95% confidence
intervals were reported. The p-values derived from paired
t-tests confirmed that CO-PRE’s improvements in path
accuracy, efficiency, and obstacle re-planning were
statistically significant.

4 Discussion

To comprehensively evaluate the performance of the
proposed CO-PRE algorithm, the study compared it with
the classic RRT and Bezier methods, focusing on
indicators such as path smoothness, obstacle avoidance
adaptability and system computational efficiency. The
results showed that in complex environments, the average
path deviation of CO-PRE was controlled at 0.65m, which
was better than RRT's 1.13m and Bezier's 0.96m, with a
higher success rate and fewer replanning times. In the test,
the system showed good response speed and control
accuracy during autonomous flight. The x-axis and y-axis
basically converged within 2 seconds, and the z-axis
maintained a fluctuation range of+0.1 meters.

Jayarajan et al. proposed the ABC-RRT* hybrid
algorithm in the literature [11], but due to the randomness
of the sampling tree structure, its path smoothness and
local adaptability were still insufficient. In contrast, CO-
PRE introduced a sliding window curvature optimization
and feasibility judgment mechanism to generate more
practical paths in high-density scenarios such as narrow
urban passages. In the performance test, when the
complexity level was 5, the path lengths of A*, PSO, P-
RRT, and CO-PRE were 18.18 m, 19.78 m, 14.26 m, and
11.83 m, respectively, and the planning times were 299.7
ms, 360.2 ms, 247.1 ms, and 205.8 ms, respectively. The
LASSA algorithm proposed by Tong et al. in the literature
[7] had advantages for multi-machine systems, but did not
directly optimize the local smoothness and dynamic
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feasibility of a single path. CO-PRE focused more on the
execution of a single trajectory in complex three-
dimensional scenes, and could better cope with the actual
navigation needs in GPS failure or densely built areas.

In summary, the system proposed in the study not
only ensured the geometric continuity of the path, but also
took into account the dynamic feasibility, providing an
effective path for building a navigation system with high
robustness and high executability. The research aimed to
improve the interpretability and controllability of the
UAYV navigation system and provide a technical idea for
realizing real-time planning under dynamic constraints.

5 Conclusion

To improve the smoothness and obstacle avoidance
capability of UAV path planning in complex
environments, a CO-PRE autonomous navigation
algorithm integrating factor graph optimization and
curvature-constrained path smoothing strategy was
proposed. Experimental results showed that the algorithm
had higher navigation stability and control accuracy. In the
application  experiment, the system successfully
completed the closed-loop flight mission of take-off-
hover-translation-return, verifying the feasibility of its
structural design and control strategy. In summary, CO-
PRE not only showed excellent performance in simulation
scenarios, but also had the potential for actual deployment.

However, the research still has certain limitations.
The system was sensitive to sensor calibration errors and
lacked explicit fault tolerance, making it dependent on the
integrity of multi-sensor inputs. In  GPS-denied
environments or under wind disturbances, control
accuracy may degrade, affecting tracking stability.
Feedback latency between perception and control may
limit responsiveness, and the current framework relies on
local mapping without integration of SLAM or semantic
maps, reducing adaptability in long-term or multi-scenario
tasks. While planning latency remained under 100 ms,
CO-PRE incurred a higher CPU load than lightweight
baselines such as Bezier, highlighting the need for further
optimization. Future work will address redundancy-aware
perception, real-time control robustness, and hardware-
level deployment to improve system reliability in dynamic
real-world environments.
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