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With the widespread application of unmanned systems in various fields, achieving high-precision 

autonomous navigation of unmanned aerial vehicles has become a research hotspot. Therefore, a 

navigation system that integrates vision, lidar, inertial sensor and barometer is designed in this study. 

Based on the factor graph optimization structure, the effective fusion of multi-source information is 

realized, thereby improving the consistency of positioning and mapping. Meanwhile, a probabilistic path 

planning method based on curvature constraints is proposed to reduce trajectory discontinuity and 

support dynamic feasibility requirements. The results show that the positioning error of the complete 

system is 0.43 m and the mapping completeness is 98.7%. Compared with the traditional A* algorithm, 

particle swarm optimization algorithm, and probabilistic rapid expansion random tree method, the 

improved algorithm reduces the path length by about 17.04% and shortens the planning time by about 

16.71%. In the simulation test, its average energy consumption is 3.42 J/m, the average path deviation is 

0.65 m, and the number of obstacle avoidance re-planning is 2.4 times/task. The research results show 

that the system has good operating performance in complex environments and has certain advantages 

over the baseline method in terms of efficiency, stability and obstacle avoidance ability. 

Povzetek: Predstavljena je avtonomna navigacija UAV. Uvaja faktor-grafno fuzijo podatkov (kamera, 

LiDAR, IMU, barometer) z načrtovanjem poti CO-PRE s krivinskimi omejitvami; 0,43 m RMSE, 98,7% 

zemljevid, ~17% krajše/hitrejše poti. 

 

1 Introduction 
As intelligent unmanned systems continue to evolve, 

quadcopter unmanned aerial vehicles (UAVs) have gained 

widespread application in diverse scenarios including 

urban logistics, disaster search and rescue, and 

environmental monitoring, thanks to their straightforward 

design, agile maneuverability, and robust adaptability [1]. 

Particularly in enclosed settings like indoor structures, 

underground corridors, and post-disaster debris where 

satellite positioning is unreliable, the achievement of 

autonomous UAV navigation has emerged as a critical 

challenge demanding urgent attention. UAVs need to have 

precise environmental perception and state estimation 

capabilities in such scenarios to complete core tasks such 

as positioning, mapping, and path planning, which puts 

higher demands on the system's perception reliability and 

computational efficiency [2-3]. In recent years, with the 

development of sensor technology and computing 

platforms, various sensors such as vision, LiDAR, inertial 

measurement units (IMUs), etc. have been widely used in 

autonomous navigation systems. Multi-sensor fusion has 

become a key direction for improving localization 

robustness and map accuracy [4-5]. 
Zhang et al. introduced an innovative modeling and 

algorithmic approach that integrates the Internet of Things 

with edge computing to address the limitations in 

intelligence within the collaborative optimization of path 

planning and control for UAVs. They developed an  

 

integrated optimization model for path and control, along 

with a metaheuristic solution framework, thereby  

achieving a comprehensive enhancement in flight  

efficiency and collaborative scheduling [6]. Tong et al. 

introduced a novel optimization algorithm that integrates  

a logarithmic spiral with an adaptive step size strategy. 

This approach enhances population diversity through 

hierarchical modeling and improvements in spatial search. 

Simulation results demonstrated that the algorithm was 

capable of generating high-quality, feasible paths while 

satisfying time coordination constraints, thereby verifying 

its effectiveness and advantages [7]. 

Shiri was inspired by attention mechanisms in natural 

language processing and proposed an iterative single head 

attention mechanism suitable for multi-UAV path control. 

This method assigned individual scores through 

communication assistants to strengthen the modeling of 

multi-machine collaborative relationships in control. The 

results indicated that this mechanism could improve flight 

speed and reduce collision risk [8]. Bashir et al. proposed 

a path planning method based on connectivity awareness 

to address the risk of collision and communication 

interruption between UAVs and obstacles in urban 

environments. This method constructed a graph structured 

path and combined it with fleet formation strategy to 

ensure communication continuity and path safety [9]. 

In intricate environmental settings and task-oriented 

scenarios, the autonomous path planning of UAVs 
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necessitates a delicate equilibrium among flight 

efficiency, the quality of task coverage, and the robustness 

of obstacle avoidance. Researchers have proposed various 

path optimization methods that integrate intelligent 

algorithms and task models. Ko et al. proposed a UAV 

visual coverage method that combines velocity function 

and dynamic trajectory planning to meet the resolution 

requirements of images in different regions. This method 

optimized regional access by adjusting flight altitude and 

path sequence, combined with auxiliary travel merchant 

strategies [10]. Jayarajan N proposed a path planning 

method that combines artificial bee colony algorithm and 

fast exploration of random tree stars to address the low 

efficiency of UAV path planning in complex obstacle 

environments. This algorithm combined global search 

capability with path optimization characteristics to 

achieve efficient obstacle avoidance and path optimization 

in obstacle environments [11]. 

Wu et al. proposed the Q-Learning algorithm with 

adaptive transition speed to address the issues of low path 

efficiency and unstable learning in UAV search and rescue 

missions in unknown environments. This method involved 

phased design and state space optimization, combined 

with sensor information to initialize the learning process. 

The simulation results showed that the algorithm had fast 

learning speed, shorter path, and more stable convergence 

[12]. Liu et al. proposed a collaborative path planning 

model for UAVs and transport vehicles. Through multi-

objective optimization and boundary intersection 

algorithm, UAV task scheduling and path optimization 

were achieved under dynamic objectives and variable path 

conditions [13]. Table 1 summarizes the main contents of 

the related work section. 

In summary, the current UAVs still face three key 

problems in performing autonomous navigation tasks in 

complex environments: First, there is heterogeneity in 

multi-sensor observations, and the data fusion accuracy is 

not high. Second, path planning lacks continuity and real-

time in dynamic environments. Third, the control system 

does not respond sufficiently to disturbances, affecting 

flight stability. Although existing studies have made some 

progress in visual-inertial navigation mapping or path 

planning, most of them have failed to achieve deep 

integration of perception, planning and control under a 

unified framework, and lack collaborative modeling of 

path feasibility and consistency of multi-source 

observations. To this end, this study proposes a visual-

inertial navigation autonomous navigation system based 

on multi-sensor fusion, constructs an integrated closed-

loop architecture of perception-planning-control, and aims 

to provide efficient, accurate and adaptable solutions for 

autonomous navigation and real-time decision-making of 

UAVs in unknown environments. The study aims to 

evaluate whether the proposed multi-sensor fusion 

navigation framework can achieve reliable performance in 

complex environments. The specific goals are to keep the 

average path deviation below 0.7 meters and the energy 

consumption below 3.5 J/m while ensuring a high success 

rate and minimal re-planning during the navigation 

mission. 

The novelty of this research resides in the application 

of the factor graph optimization method to achieve tight 

coupling and fusion of multiple sensor data. Additionally, 

to enhance the efficiency and precision of path planning, 

a Curvature Optimized Probabilistic Path Rapid 

Expansion Algorithm (CO-PRE) based on curvature 

optimization is introduced. By incorporating curvature 

smoothing techniques, this approach improves path 

smoothness and computational efficiency, while 

optimizing path feasibility and stability through the 

integration of dynamic constraints. Furthermore, anti-

interference adaptive control methods are employed to 

bolster the system's steady-state response and resistance to 

disturbances. 

2 Methods and materials 

2.1 Autonomous positioning and mapping 

methods for multi-source information 

fusion 

The autonomous localization and map construction of 

UAVs in unknown and communication limited 

environments rely on deep fusion of information from 

multiple heterogeneous sensors [14-15]. A synchronous 

positioning and mapping system based on tight coupling 

of multi-source information was studied and designed, 

which integrates observation information from laser radar, 

IMU, optical flow sensor, and barometer. State estimation 

and map construction were achieved through factor graph 

optimization. The architecture is shown in Figure 1. 

Table 1: Summary of related UAV navigation methods. 

Reference Sensor Types Optimization Method Key Metrics 

[6] Zhang X IoT + Edge Metaheuristic Flight efficiency, scheduling improvement 

[7] Tong H et al. IMU + Visual LASSA (log-spiral based) Path feasibility, diversity, time coordination 

[8] Shiri H et al. Communication modules ISHA Flight speed, collision risk reduction 

[9] Bashir N et al. Connectivity sensors 
Graph-based with fleet 

formation 
Connectivity, path safety 

[10] Ko Y C et al. Camera 
Velocity + Dynamic 
Planning 

Coverage quality, task time 

[11] Jayarajan N et al. General UAV sensors ABC-RRT* Path efficiency in obstacle environments 

[12] Wu J et al. Sensor-driven learning ACSQL Path length, convergence stability 

[13] Liu X et al. UAV + Vehicle sensors 

Penalty-based boundary 

intersection+Pareto 
technique 

Efficiency, resource utilization 
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Figure 1: Synchronous localization and mapping system architecture based on tight coupling of multi-source 

information. 
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Figure 2: Schematic diagram of factor graph optimization structure under multi-sensor constraint fusion. 

As illustrated in Figure 1, the system incorporates 

laser radar, IMU, optical flow sensors, and barometers to 

gather multi-source observation data. After pre-

integration, filtering, and feature extraction, the data is 

fused via a factor graph framework to enable accurate pose 

estimation and dense map construction. The system's 

front-end handles data association and loop closure 

detection, while the back-end produces continuous 

subgraphs and global maps, thereby establishing a closed-

loop process for autonomous positioning and mapping. 

Initially, a systematic model of the quadcopter UAV's 

state is developed. The complete state vector of UAV at 

time kt  is represented by equation (1). 

[ , , , , , ]
k k Bk k k k a w Ox p v q b b p= • • • • • • •

 (1) 

In equation (1), kp  represents the position vector of 

the UAV in the world coordinate system W , and kv  

represents the velocity. kq  is a posture represented by 

quaternions. 
kab  and 

kwb  are the zero bias terms of the 

accelerometer and gyroscope, respectively, and 
BOp  

represents the position of the origin of the optical flow 

coordinate system relative to the body coordinate system 

B . 

To achieve unified fusion of multi-source sensor 

information, the system constructs a state estimation 

framework based on factor graphs, in which each state 

node represents the position of the UAV at a certain 

moment, and the edges correspond to the observation 

constraint factors of different sensors. The spatial 

relationship between the body coordinate system B  and 

the optical flow coordinate system O  is shown in Figure 

2. 

Figure 2 shows the composition of the multi-sensor 

factor graph optimization structure, where each state node 

represents the pose estimation of the UAV at a specific 

moment, and the measurements from different sensors are 

connected to the state nodes in the form of factors. The 

data is modeled as four types of observation factors, 

corresponding to inertial-visual pre-integration, lidar 

mileage constraint, air pressure measurement, and loop 

detection. Different information sources are embedded in 

the state estimation graph in a unified form to provide a 

high-precision initial state for subsequent pose 

optimization and path planning. 

To enhance the mathematical clarity and technical 

operability of factor graph fusion modeling, a joint 

residual function is introduced to characterize the 

constraints of multi-source observation information on 

state estimation. Let the UAV state vector be x, including 

position, velocity, attitude quaternion and inertial sensor 

bias, then the optimization objective function can be 

expressed as equation (2). 
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In equation (2), 
i

imur , 
j

lidarr , 
k

flowr , 
l

baror  represent the 

residual terms of the i , j , k , l  th sensor observations 

respectively. imu , lidar , flow , and baro  are the 

covariance matrices of the corresponding observation 
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residuals, which are used to weight the errors of different 

sensors. 1

2
r −

 represents the Mahalanobis distance norm, 

which is used to consider the noise uncertainty of each 

residual. To clearly present the relationship between the 

system state composition and sensor observations, Table 

2 lists the state variables and their source sensors. 

In addition, to improve the accuracy of LiDAR point 

cloud registration and the global consistency of the 

system, the study adopts an initial registration strategy 

based on voxel filtering and KD tree matching, and 

introduces an iterative closest point method for residual 

refinement. In terms of system closed-loop detection, a 

revisit detection module based on the scan context 

descriptor is designed. Once the loop node is identified, 

the pose graph optimization module is triggered to adjust 

the global constraints, and the graph scale is controlled 

through the node pruning mechanism to ensure real-time 

operation efficiency. 

Firstly, based on the pre integration factor of optical 

flow and IMU, high-frequency constraints are established 

using the continuous acceleration and angular velocity 

information obtained by IMU, and combined with the 

relative displacement observation of optical flow sensor 

on the image plane. The IMU measurement model is 

represented by equation (3). 
ˆ ,

ˆ ( )

t t w w

B

t W t a a

w w b n

a R a g b n

= + +

= − + +
 (3) 

In equation (3), ˆ
tw  and ˆ

ta  respectively represent the 

angular velocity and acceleration measured by IMU. 
wb  

and 
ab  are zero bias terms. 

wn  and 
an  are for noises. B

WR  

is for the rotation matrix and g  is for the gravitational 

acceleration. The optical flow method is based on the 

assumption of constant image grayscale, and its 

constraints are shown in equation (4). 

( , , ) ( , , )I x x y y t t I x y t+ + + =  (4) 

In equation (4), ( , , )I x y t  represents the grayscale of 

the image at time t  and ( , )x y  is the pixel coordinate. x  

and y  are the displacement amounts, and t  is the time 

interval between frames. 

A first-order Taylor expansion is performed on the 

equation, the definitions of pixel velocities 
pix

dx
u

dt
=  and 

pix

dy
w

dt
=  are introduced, and linear system constraints 

are further constructed and then solved using the least 

squares method, as shown in equation (5). 
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In equation (5), A  is a matrix composed of image 

gradients of multiple pixels, with each row representing 

the gradient [ , ]x yI I  of a point in the x  and y  directions. 

b  corresponds to the time gradient 
tI  of each pixel. 

[ , ]pix pixu w •
 represents the average optical flow velocity 

vector of pixels on the image plane. Pixel velocity is 

converted to ground velocity and UVA camera installation 

height H  and scaling factor are introduced. When there 

is a change in attitude of UVA, it is corrected based on the 

gyroscope output, and the corrected velocity observation 

is obtained as shown in equation (6). 

ô o z ov v Hw n= − +   (6) 

In equation (6), 
zw  is the rotational speed around the 

vertical axis. 
on  is the observation noise term. 

Subsequently, in the factor graph optimization, a joint pre 

integration model is constructed based on the observation 

information of IMU and optical flow sensor to estimate 

the state transition of UAV between two laser radar 

keyframes. The prediction of the state between time 
kt  

and 
1kt +
 is described by the integral equation of equation 

(7). 
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Table 2: UAV state elements, sensor observations, and factor addition time. 

State Variable / Observation Sensor Source Factor Addition Time (ms) 

UAV position in world frame LiDAR, IMU, Optical Flow, Barometer 0.4 (IMU), 1.8 (LiDAR), 0.6 (Flow), 0.2 (Baro) 

UAV velocity IMU, Optical Flow 0.4 (IMU), 0.6 (Flow) 

UAV orientation
lidar  IMU 0.4 

Accelerometer bias IMU 0.4 

Gyroscope bias IMU 0.4 

Image-plane displacement observation Optical Flow 0.6 

Altitude estimate Barometer 0.2 

Point cloud geometric residuals LiDAR 1.8 

Note: The listed factor addition times were measured on a system with Intel Core i7-12700H and 32GB RAM using ROS middleware. Values represent 

average computation time per frame for inserting the corresponding factor into the graph optimization. 
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Figure 3: Schematic diagram of laser radar feature extraction and inter-frame matching. 

In equation (7), 
kt  represents the time difference. 

  is quaternion multiplication. ( )Exp   represents 

exponential mapping. Under the factor graph optimization 

framework, all observation information is ultimately fused 

through residual terms to construct the optimization 

objective function. 

Furthermore, in the joint optimization of LiDAR and 

IMU, the feature points extracted by LiDAR are combined 

with IMU data to estimate the relative motion of UAV. 

The distance calculation in feature matching is shown in 

equation (8). 

2

2

3 2 1 2

2

,

( ) ( )

o

e

o

p

e e
d e

e

p p p p
d

p o


= 


=

 (8) 

In equation (8), 
oe  and 

2e  are the edge features of the 

feature points. 
1p , 

2p , and 
3p  are the coordinates of the 

point cloud, and o  is the origin of the beam. The 

schematic diagram of LiDAR feature extraction and inter 

frame matching is shown in Figure 3. 

As shown in Figure 3, the feature points of the current 

frame are compared with those of the previous frame by 

rotating the matrix 
kT , to estimate the relative 

displacement between the two frames. The calculated 

distance is used to optimize the objective function, which 

is shown in equation (9). 

e pe d d= +    (9) 

In equation (9), 
ed  and 

ed  are the distances from the 

feature point matching point to the edge and from the point 

to the surface, and e  is the residual. Finally, the barometer 

is used to estimate the altitude of the UAV, but its 

measurement is greatly affected by noise. Therefore, a 

low-pass filter is used to smooth the barometer data. The 

calculation of the measured value of the barometer is 

shown in equation (10). 

0 1 1 2 2

1 1 2 2

k k k k

k k h

z b h b h b h

a z a z n

− −

− −

= + +

+ + +
 (10) 

In equation (10), 
kh  is the raw measurement value of 

the barometer, 
0b , 

1b , 
2b , 

1a , and 
2a  are filter 

coefficients, and 
hn  is the noise term. As a result, the 

measurement value of the barometer is smoothed and 

corrected. 

2.2 3D path planning algorithm integrating 

smooth and constrained optimization 

The integration of multi-source information and state 

estimation has established a fundamental basis for the 

autonomous positioning and mapping of UAVs. However, 

to attain full closed-loop control within autonomous 

navigation systems, it remains imperative to tackle the 

pivotal challenges of path planning and dynamic obstacle 

evasion. Therefore, in response to the practical application 

requirements of quadcopter UAVs, a path planning 

method based on Probabilistic Rapidly-exploring Random 

Tree (P-RRT) algorithm is proposed. P-RRT quickly finds 

feasible paths from the starting point to the target point by 

randomly expanding the tree structure, which is suitable 

for avoiding dynamic environments and complex 

obstacles [16-17]. To further improve the smoothness and 

computational efficiency of the path, curvature smoothing 

technology will be introduced to reduce the randomness of 

the planning. 

After generating the local path, a sliding window is 

first used to calculate the curvature smoothness of each 

point in the path. In the path planning process, a sliding 

window containing S  path nodes is used to smooth the 

current node 
ix , and the curvature smoothness of the path 

nodes is calculated using equation (11). 

,

1
( )i j i

j S j i

c x x
S  

 = −  (11) 

In equation (11), 
ic  represents the average position 

deviation between the i th node and the nodes in its sliding 

window neighborhood, which can be used to 

approximately measure the local non-smoothness or 

"sharpness" of the point, and thus serve as an heuristic 
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indicator of path smoothness. S  represents a sliding 

window set centered on the current path node 
ix  and 

containing S  neighboring nodes. Based on the 

calculation of curvature smoothness, the sliding window 

method is used to optimize the path. According to the 

calculated curvature smoothness, if the curvature of a node 

is less than a predetermined threshold 
rc , the node is 

deleted and the path is adjusted through interpolation 

algorithm to achieve smoother path planning. 

To further smooth the generated path, a B-spline-

based formulation is used as shown in equation (12), 

which defines the trajectory parametrically through 

control point interpolation 

1 1( ( )) t t aP s t s M q+ +=  (12) 

In equation (12), P  represents the path planning 

result. 
aq  is the speed of the path node. 

1tM +
 represents 

the constraint matrix at the current time. This expression 

serves as a structural representation of the path, providing 

the basis for subsequent optimization. To enforce velocity 

and acceleration limits during path execution, dynamic 

constraints are incorporated into the optimization process 

via the cost function defined in equation (13). 

1

2 2

1 2
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( ( ) ( ) )

m m

c

V
V Q Q A

t

f V A 

+


= − =


 = + 

 (13) 

In equation (13), V  and A  respectively represent the 

velocity and acceleration of the path nodes. 
1  and 

2  are 

weight coefficients for adjusting speed and acceleration 

limits, ensuring that the path satisfies dynamic constraints 

simultaneously during the optimization process. This 

designated objective function serves to mitigate abrupt 

fluctuations in both speed and acceleration throughout the 

optimization procedure. Consequently, it facilitates the 

attainment of dynamic feasibility and enables precise 

control over the smoothness of the path. 

To efficiently explore unknown environments, the 

Frontier exploration strategy is introduced. By dividing 

the environment into known and unknown areas, 

quadcopter UAVs continuously update the map to find the 

boundaries of unknown areas and use them as new 

exploration targets [18]. After completing the exploration 

of a local area, the system calculates the unknown area 

adjacent to the known area and uses it as the next target 

for path planning. In three-dimensional space, considering 

the limitation of computing resources, the study optimizes 

the exploration area range through spatial segmentation to 

reduce computational burden. The improved Frontier 

exploration framework is shown in Figure 4. 

As shown in Figure 4, the framework indicates the 

division of known and unknown regions during the 

exploration process. Quadcopter UAVs continuously 

update the boundaries of known environments and use the 

boundaries of unknown areas as new exploration targets 

for path planning. Therefore, the process of combining the 

improved exploration strategy with the path planning 

algorithm is shown in Figure 5. 

Figure 5 illustrates that during the path planning 

process, the algorithm initially identifies the global path 

objective. Subsequently, it constructs a three-dimensional 

map utilizing the current position of the UAV and 

environmental data. Following this, the algorithm 

optimizes the three-dimensional path planning to generate 

the most efficient route, ensuring a seamless navigation of 

the UAV towards the target zone. Ultimately, the 

algorithm refines the entire exploration and path planning 

procedure through a hybrid path planning strategy. 

Unknown space

Local subspace

Local subspace

Local subspace

Local subspace

Global exploration path

Local exploration path

Current local subspace

 

Figure 4: Improved Frontier exploration framework. 
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Figure 5: Process of combining improved exploration strategy with path planning algorithm. 

IMU-optical flow 

pre-integration factor

Control distribution

ADRC
1/b

b0

Tracking 

differentiator

Nonlinear 

feedback controller

Controlled 

object

Extended state 

observer

v1

v2

-

- e2

e1

U0

-
U

y

z3z2z1

ADRC

 

Figure 6: UAV control framework based on ADSC. 

Subsequently, to achieve precise navigation and 

stable control, the research will adopt Active Disturbance 

Rejection Control (ADRC) method. ADSC, as a powerful 

control strategy, can effectively handle external 

disturbances and internal model uncertainties in the 

system [19-20]. Its core includes nonlinear state error 

feedback control law and extended state observer (ESO). 

Assuming that the current UAV system is a second-order 

uncertain system, the internal dynamics and external 

disturbances are uniformly modeled as generalized 

disturbance terms, and the extended state observer is 

constructed as shown in equation (14). 

1 2 1 1

2 3 2 1

3 1 1

( )

( )

( )

z z z y

z z z y

z z y







= − −

= − −

= − −

 (14) 

In equation (14), 
1z , 

2z , and 
3z  are the position, 

velocity, and generalized disturbance estimates, 

respectively.   is the ESO and controller gain parameter. 

The final control law is shown in equation (15). 

1 1 2 2 3

0

1
( ( ) )refu k z y k z z

b
= − − − −  (15) 

In equation (15), 
0b  is the nominal system gain, and 

1k  is the ESO and controller gain parameter. This control 

law is capable of effectively mitigating external 

disturbances and compensating for modeling inaccuracies, 

all without the need for a precise system model. The 

overall control architecture is depicted in Figure 6. 

As shown in Figure 6, the framework is based on the 

ADRC strategy and includes key modules such as input 

commands, control quantity allocation, nonlinear 

feedback, and extended state observer. By monitoring the 

status of UAVs in real-time and compensating for 

interference, ADRC can effectively suppress external 

disturbances and model uncertainties, thereby achieving 

stable flight control. This control framework can 
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effectively improve the control performance of 

quadcopter UAVs, ensuring task completion in dynamic 

and unknown environments. 

ADRC estimates unknown disturbances online and 

performs feed-forward compensation through an extended 

state observer. It has the advantages of fast response, clear 

structure, and strong parameter independence. Related 

literature studies have shown that ADRC has stronger 

anti-disturbance ability and convergence stability under 

complex working conditions compared with traditional 

controllers such as PID and LQR [21-22]. In the study, the 

ADRC parameters were configured according to the 

bandwidth adjustment method. The observer bandwidth 

was set to 30 rad/s, the tracking differentiator bandwidth 

was set to 20 rad/s, and the control gain parameters were 

0b =50, 
1k =100, 

2k =300, and 
3k =500 respectively. The 

parameter selection was optimized through typical wind 

disturbance simulation and noise test to ensure that the 

system still has a small steady-state error and fast recovery 

capability under unstable excitation. 

To enhance reproducibility, the following pseudo 

code summarizes the overall workflow of the proposed 

CO-PRE algorithm, see Figure 7. 

Figure 7 covers key steps such as sampling expansion, 

curvature smoothing, B-spline fitting and dynamic 

constraint optimization, and intuitively demonstrates the 

overall logic of path generation and optimization. 

Input: 

  - Occupancy map M

  - Start point s

  - Goal point g

  - Curvature threshold rc

  - Window size S

  - Dynamic constraint weights λ1, λ2

Output: 

  - Smoothed path P

1: Initialize tree T ← {s}

2: while goal not reached do

3:     Sample random node q_rand in M

4:     Find nearest node q_near in T

5:     Extend from q_near to q_new

6:     if q_new is collision-free then

7:         Add q_new to T

8:     end if

9: end while

10: Extract raw path P_raw from T

11: for each node p in P_raw do

12:     Define sliding window W ← neighbors(p, S)

13:     Compute curvature κ_W using Eq.(11)

14:     if κ_W < rc then

15:         Remove node p and interpolate

16:     end if

17: end for

18: Apply B-spline smoothing to obtain P_spline

19: Optimize P_spline with dynamic constraints using Eq.(12)-(13)

20: Return final path P ← P_spline

Pseudocode of CO-PRE Algorithm

 

Figure 7: Path planning comparison experiment results. 
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3 Results 

3.1 Performance testing of multi-sensor 

fusion autonomous navigation system 

The experiment was conducted under the Ubuntu 20.04 

operating system, using ROS as the middleware platform, 

using Gazebo to build a three-dimensional flight scene, 

and using AirSim to simulate the dynamics of the aircraft. 

All modules were implemented in Python and C++ mixed 

programming, and the path planning module was 

encapsulated in the co_pre_planner function package for 

operation. Multi-source data such as lidar, IMU, optical 

flow sensor and barometer were generated in real time by 

the simulator and synchronously input into the system. 

The computing platform was configured with an Intel 

Core i7-12700H processor, 32GB of memory and an 

NVIDIA RTX 3060 graphics card. To ensure the 

uniformity of the evaluation, all experiments were 

conducted under the same system architecture and 

communication frequency settings. Firstly, sensitivity 

analysis was conducted on the key parameters in CO-PRE 

to determine the optimal parameters and provide a basis 

for subsequent experiments. The results are shown in 

Table 3. 

Table 3 systematically evaluated the effects of 

different combinations of curvature constraint thresholds 

rc , sliding window sizes S , and dynamic constraint 

factors 
1 , 

2  on path length, average curvature, and 

planning time. In the experiment, 
rc  increased from 0.5 to 

0.95, showing that too low a threshold would cause path 

oscillation at turns, while too high a threshold would limit 

trajectory following. The increase in sliding window size 

S  improved curvature smoothness while also bringing 

certain computational overhead. In particular, Groups 1 

and 2 used extremely low dynamic constraint weights, 

which could be regarded as approximate ablation results 

of weakening dynamic constraints. The corresponding 

paths had the largest average curvature and reduced path 

feasibility. Considering the path quality and 

computational efficiency, the final parameter combination 

was selected as 
rc =0.9, S =7, (

1 ,
2 )=(3,3). 

Table 3: Key parameter sensitivity test results. 

Serial number rc  S  1 , 
2  Path length (m) Mean curvature (rad/m) Planning time (ms) 

1 0.5 5 (1,1) 11.8 0.164 145 

2 0.7 5 (1,1) 11.2 0.118 158 

3 0.7 7 (1,1) 11.0 0.109 169 

4 0.7 7 (2,2) 10.7 0.102 176 

5 0.7 7 (3,3) 10.4 0.096 190 

6 0.9 7 (3,3) 10.2 0.090 203 

7 1.1 7 (3,3) 10.1 0.087 215 

8 0.5 7 (2,2) 11.5 0.130 160 

9 0.9 5 (1,1) 10.5 0.095 178 

Table 4: Area Coverage Rate over Time (%±SD, n = 5). 

Time (s) Classic Frontier Greedy Frontier Dynamic Frontier Proposed method 

10 22.5±1.4 25.1±1.7 27.9±1.2 31.4±1.1 

20 47.3±2.1 50.2±1.9 55.6±2.2 61.8±1.6 

30 63.9±2.3 66.4±2.0 71.5±2.4 76.5±1.8 

40 76.2±2.5 78.7±2.1 83.3±2.0 88.9±1.5 

50 85.4±2.1 86.3±1.9 89.1±1.8 94.6±1.2 
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Figure 8: Path planning comparison experiment results. 
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Figure 9: Multi-sensor combination comparison experimental results. 

To verify the exploration efficiency of the improved 

Frontier strategy, a comparative experiment was designed 

with three typical methods: Classic Frontier, Greedy 

Frontier and Dynamic Frontier. Table 4 shows the average 

exploration coverage at different times. All results were 

the average of 5 independent experiments, with standard 

deviations attached. 

The results in the table showed that the proposed 

improved Frontier strategy achieved higher area coverage 

in each stage, reaching 94.6% at 50 seconds. A paired t-

test was further performed, and the results showed that this 

method had a statistically significant advantage over other 

strategies (p < 0.01). 

Subsequently, the CO-PRE algorithm was tested, 

introducing A* algorithm, Particle Swarm Optimization 

(PSO) algorithm, and traditional P-RRT as comparison 

algorithms. The experiment divided the complexity level 

of the environment from 1 to 5, with level 1 representing 

a simple environment with sparse obstacles and smooth 

paths. Level 5 simulates high difficulty navigation areas 

with dense obstacles and complex structures. The results 

are shown in Figure 8. 

In Figure 8 (a), when the complexity level was 5, the 

path lengths of A*, PSO, P-RRT, and CO-PRE were 18.18 

m, 19.78 m, 14.26 m, and 11.83 m, respectively. In Figure 

8 (b), the planning times of the four algorithms at the 

highest complexity level were 299.7 ms, 360.2 ms, 247.1 

ms, and 205.8 ms, respectively. The CO-PRE mechanism 

reduced redundant sampling and improved node selection. 

By applying dynamic constraints, it produced smoother 

and more controllable paths, balancing quality and real-

time efficiency. In contrast, A* increased its time 

consumption in complex environments due to graph 

search inflation, PSO was the slowest due to 

computationally intensive iterative optimization, and P-

RRT had more path redundancy despite its fast expansion, 

which affected overall efficiency. 

To verify the influence of various sensors in the multi-

source fusion system on the UAV positioning and 

mapping performance, five sensor combination modes 

were designed for comparative experiments, and different 

sensors were removed to observe the system performance 

changes. The specific configuration was as follows: M1 

was in full fusion mode (LiDAR, IMU, optical flow, and 

barometer were all enabled), M2 removed the barometer, 

M3 removed the optical flow and barometer, M4 removed 

the LiDAR, and M5 only retained the IMU single sensor. 

The results of root mean square error (RMSE) and 

mapping completeness for each combination are shown in 

Figure 9. 

In Figure 9 (a), the RMSE of M1, M2, M3, M4, and 

M5 were 0.08 m, 0.11 m, 0.19 m, 0.26 m, and 0.43 m, 

respectively. The positioning accuracy decreased 

significantly as the number of sensors decreased. M1 

integrated all sensors and had the strongest state 

observation capability. M2 only removed the barometer, 

with little change in positioning accuracy. After M3 lost 

optical flow, its ability to observe velocity decreased and 

the error increased significantly. Removing the LiDAR 

from M4 resulted in a decrease in map construction 

accuracy, indirectly affecting pose estimation. However, 

M5 relied solely on IMU, with the largest error, and simple 

inertial navigation was difficult to support long-term 

positioning. In Figure 9 (b), the completeness of mapping 

for the five groups was 98.7%, 97.3%, 92.4%, 86.1%, and 

69.5%, respectively. M4 and M5 showed the most 

significant decrease, indicating that LiDAR contributed 

the most to map accuracy, while IMU could not provide 

spatial structure information. This verified the key role of 

multi-sensor collaboration in stable mapping and accurate 

navigation. 

3.2 Testing of UAV autonomous navigation 

system based on simulation 

environment 

Furthermore, the study designed an autonomous 

navigation experimental scenario. Firstly, the experiment 

set up the UAV to take off from its original position to an 

altitude of 1.6 meters, maintain a brief hover, and then 

translate about 1.5 meters along the x-axis direction before 

returning to the origin and landing. The flight process was 

closed-loop controlled by the controller based on the 

output of the navigation system. The system recorded the 

real-time position information of the UAV in the x, y, and 

z axes, and compared the error with the preset trajectory 

to test the tracking ability of the system in three-
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dimensional space. The experimental results are shown in 

Figure 10. 

In Figures 10, during the takeoff phase, the system 

experienced short-term oscillations in response to sudden 

changes, then quickly stabilized and entered a steady 

tracking phase. The x-axis and y-axis converged within 2 

seconds, while the z-axis remained within a fluctuation 

range of±0.1 meters. The system exhibited good response 

speed and control accuracy during autonomous flight, 

verifying the adaptability and robustness of the state 

estimation and control system for trajectory tracking under 

the multi-sensor fusion architecture. 

To further verify the path planning and execution 

capability of the proposed autonomous navigation system 

in complex three-dimensional space, several three-

dimensional obstacles were randomly arranged in the 

experimental scene. The UAV needed to start from the 

starting point and use various path planning algorithms to 

generate trajectories to bypass the obstacles and reach the 

target point. All obstacle maps in the experiment were 

generated using the seed randomization method, and the 

environmental parameters were fixed. All methods used 

the same random seed to ensure the consistency of 

obstacle layout and scene configuration. The comparison 

algorithms were A*, Rapid exploring Random Tree Star 

Algorithm (RRT*), and Path Optimization Algorithm 

based on Bezier Curve. The results are shown in Figure 

11. 

In Figure 11 (a), Algorithm A* was based on regular 

grid search, and the path presented multiple polylines. 

Although it could ensure accessibility, it did not have a 

trajectory smoothing mechanism, resulting in multiple 

turns and discontinuous paths, which led to an overall 

increase in the length of the route. In Figure 11 (b), the 

RRT algorithm used a sampling extension tree to construct 

the path, which had strong global search ability. However, 

its random sampling and reconnection process was prone 

to local oscillations, resulting in severe path jitter and 

affecting navigation stability. In Figure 11 (c), the Bezier 

curve relied on control points to generate an overall 

smooth curve with excellent curvature continuity. 

However, due to the lack of explicit consideration of 

obstacles, the path approached or even partially crossed 

obstacles, lacking environmental adaptability and 

resulting in infeasible areas. The CO-PRE algorithm in 

Figure 11 (d) introduced a sliding window mechanism 

based on curvature optimization, dynamically adjusted 

path nodes, and combined probability sampling and 

spatial feasibility discrimination to effectively balance 

path smoothness and obstacle avoidance ability. The final 

generated path was smooth, continuous, and risk averse, 

demonstrating good adaptability and practical application 

potential for 3D navigation. 
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Figure 10: Three-axis trajectory tracking comparison chart. 
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Figure 11: Three-dimensional navigation experiment based on urban building obstacle scene. 

Table 5: Comprehensive test results (Mean±SD, 95% CI, n = 10). 

Performance Indicator A* RRT* Bezier Curve CO-PRE (Proposed) p-value (vs. CO-PRE) 

Success rate (%) 
81.6±1.5 87.4±1.3 73.8±2.1 96.2±1.2 

< 0.01 
(CI: ±0.9) (CI: ±0.8) (CI: ±1.2) (CI: ±0.7) 

Average path deviation (m) 
1.52±0.07 1.13±0.05 0.96±0.04 0.65±0.03 

< 0.01 
(CI: ±0.04) (CI: ±0.03) (CI: ±0.02) (CI: ±0.02) 

Mapping delay (ms) 
219±8 192±6 240±10 158±5 

< 0.01 
(CI: ±4.8) (CI: ±3.6) (CI: ±6.0) (CI: ±3.0) 

Average energy consumption (J/m) 
4.38±0.12 4.01±0.10 3.77±0.09 3.42±0.08 

< 0.01 
(CI: ±0.07) (CI: ±0.06) (CI: ±0.05) (CI: ±0.05) 

CPU load (%) 
42.1±2.5 48.5±2.3 30.4±1.8 51.9±2.4 

0.06 
(CI: ±1.5) (CI: ±1.4) (CI: ±1.1) (CI: ±1.4) 

Replanning count (times/task) 
6.1±0.3 4.8±0.3 7.3±0.4 2.4±0.2 

< 0.01 
(CI: ±0.2) (CI: ±0.2) (CI: ±0.2) (CI: ±0.1) 

Computational complexity (ms) 
184±6 142±5 169±7 127±4 

< 0.01 
(CI: ±3.6) (CI: ±3.0) (CI: ±4.2) (CI: ±2.4) 

 

Finally, multiple synthetic environments were built 

using Gazebo and AirSim, and evaluated through repeated 

testing under varied start-end configurations and dynamic 

conditions to assess system robustness and generalization. 

The tested scenarios included: (1) a structured urban 

environment with dense buildings and grid-like corridors; 

(2) canyon-like terrain with narrow paths and elevation 

changes; and (3) indoor scenes simulating limited field of 

view and irregular obstacle layouts. Each environment 

incorporates factors such as dynamic obstacle updates, 

partial map observability, and sensor bandwidth 

constraints to emulate real-world mission challenges. 

Evaluation metrics were averaged across multiple runs 

under consistent conditions, the results are shown in Table 

5. 

The average path deviation was used to measure the 

average spatial deviation between the flight trajectory and 

the reference path. It was calculated by sampling at equal 

time intervals during the mission and counting the mean 

Euclidean distance between the actual trajectory point and 

the reference trajectory point. Its expression was 
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ip  represented the actual 

trajectory point and the reference trajectory point at that 

moment, respectively, and N  was the total number of 

samples. Mapping delay represented the time interval 

from the reception of sensor data to the completion of the 

corresponding occupancy grid map update, which was 

calculated using the topic timestamp in the ROS system. 

The CPU load indicator was sampled and recorded at a 

frequency of 1 Hz through the system performance 

monitoring tool. It was continuously monitored and its 

average value was calculated during the entire navigation 

mission, reflecting the system resource consumption level 

under each sensor configuration. 

In Table 5, the success rate of the proposed CO-PRE 

algorithm reached 96.2% (±1.2, CI: ±0.7), indicating 

reliable task completion. The average path deviation was 

maintained at 0.65±0.03 meters, significantly lower than 

those of other methods (p < 0.01). Additionally, the 

system demonstrated reduced mapping delay and 

computational complexity, with energy consumption 

controlled at 3.42±0.08 J/m. Although the CPU load was 

slightly higher than some baseline methods, the overall 

performance gain was statistically supported. All metrics 

were averaged over 10 trials, and 95% confidence 

intervals were reported. The p-values derived from paired 

t-tests confirmed that CO-PRE’s improvements in path 

accuracy, efficiency, and obstacle re-planning were 

statistically significant. 

4 Discussion 
To comprehensively evaluate the performance of the 

proposed CO-PRE algorithm, the study compared it with 

the classic RRT and Bezier methods, focusing on 

indicators such as path smoothness, obstacle avoidance 

adaptability and system computational efficiency. The 

results showed that in complex environments, the average 

path deviation of CO-PRE was controlled at 0.65m, which 

was better than RRT's 1.13m and Bezier's 0.96m, with a 

higher success rate and fewer replanning times. In the test, 

the system showed good response speed and control 

accuracy during autonomous flight. The x-axis and y-axis 

basically converged within 2 seconds, and the z-axis 

maintained a fluctuation range of±0.1 meters. 

Jayarajan et al. proposed the ABC-RRT* hybrid 

algorithm in the literature [11], but due to the randomness 

of the sampling tree structure, its path smoothness and 

local adaptability were still insufficient. In contrast, CO-

PRE introduced a sliding window curvature optimization 

and feasibility judgment mechanism to generate more 

practical paths in high-density scenarios such as narrow 

urban passages. In the performance test, when the 

complexity level was 5, the path lengths of A*, PSO, P-

RRT, and CO-PRE were 18.18 m, 19.78 m, 14.26 m, and 

11.83 m, respectively, and the planning times were 299.7 

ms, 360.2 ms, 247.1 ms, and 205.8 ms, respectively. The 

LASSA algorithm proposed by Tong et al. in the literature 

[7] had advantages for multi-machine systems, but did not 

directly optimize the local smoothness and dynamic 

feasibility of a single path. CO-PRE focused more on the 

execution of a single trajectory in complex three-

dimensional scenes, and could better cope with the actual 

navigation needs in GPS failure or densely built areas. 

In summary, the system proposed in the study not 

only ensured the geometric continuity of the path, but also 

took into account the dynamic feasibility, providing an 

effective path for building a navigation system with high 

robustness and high executability. The research aimed to 

improve the interpretability and controllability of the 

UAV navigation system and provide a technical idea for 

realizing real-time planning under dynamic constraints. 

5 Conclusion 
To improve the smoothness and obstacle avoidance 

capability of UAV path planning in complex 

environments, a CO-PRE autonomous navigation 

algorithm integrating factor graph optimization and 

curvature-constrained path smoothing strategy was 

proposed. Experimental results showed that the algorithm 

had higher navigation stability and control accuracy. In the 

application experiment, the system successfully 

completed the closed-loop flight mission of take-off-

hover-translation-return, verifying the feasibility of its 

structural design and control strategy. In summary, CO-

PRE not only showed excellent performance in simulation 

scenarios, but also had the potential for actual deployment. 

However, the research still has certain limitations. 

The system was sensitive to sensor calibration errors and 

lacked explicit fault tolerance, making it dependent on the 

integrity of multi-sensor inputs. In GPS-denied 

environments or under wind disturbances, control 

accuracy may degrade, affecting tracking stability. 

Feedback latency between perception and control may 

limit responsiveness, and the current framework relies on 

local mapping without integration of SLAM or semantic 

maps, reducing adaptability in long-term or multi-scenario 

tasks. While planning latency remained under 100 ms, 

CO-PRE incurred a higher CPU load than lightweight 

baselines such as Bezier, highlighting the need for further 

optimization. Future work will address redundancy-aware 

perception, real-time control robustness, and hardware-

level deployment to improve system reliability in dynamic 

real-world environments. 
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