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At present, face replacement technology in film and television videos faces problems such as low 

accuracy and high resource consumption. Research proposes an automated face replacement 

technology that integrates improved multi task cascaded convolutional neural networks (MTCNN) and 

generative adversarial networks (GAN). In the face detection stage, MTCNN is used, and a median filter 

preprocessing and depthwise separable convolution model are introduced. In the face replacement 

stage, a U-Net based generative adversarial network (UGAN) is constructed, whose generator consists 

of an encoder and a decoder, and is embedded with a dual skip connection residual module. The 

discriminator adopts a self attention mechanism and a video stabilization module. In the experiment, 

WIDER FACE and Celeb Faces Attributes Dataset (CelebA) were used for face detection tasks. The face 

replacement task used a high-resolution Celebrity Mask High Quality (CelebAMask HQ) dataset and a 

Deepfake Model Attribution Dataset (FDM). Meanwhile, the study introduced FaceSwap technology 

and attribute preserving generative adversarial network (AP-GAN) as comparative baselines. In face 

detection experiments, the research model performed best in terms of accuracy as well as training loss 

in different face detection scenes. For example, the accuracy of the research model in complex scenes 

was 93.25%, and the training loss was 0.221. In the face replacement experiment, the model replaces 

faces in four image sets. Its color as well as face contour structure was well preserved and face 

replacement was more natural. In the similarity index comparison, the research model performed the 

highest face replacement similarity index at different frame numbers with an average value of 0.994. 

The research model also performed the best in the face replacement imaging peak signal-to-noise ratio 

test with an average value of 35.65. Finally, in the face replacement composite test, the research model 

performed the best in both structural similarity and state error. In conclusion, the technique has good 

application results. This study can provide technical support for the improvement of face replacement 

technology as well as face characterization. 

Povzetek: vtorja združita izboljšano zaznavanje obrazov (predhodno čiščenje šuma, lažji konvolucijski 

sloji in večločnostni prikaz), generator v slogu U-Net z dvojnimi povezavami, pametnejši diskriminator 

s samousmerjanjem pozornosti ter modul za stabilizacijo videa (odprava tresenja). Rezultat so naravni 

prenosi videza, visoka podobnost z izvirnikom in tekoče predvajanje tudi pri zahtevnih prizorih. 

 

1  Introduction 
To create a very realistic look, face-swapping 

technology is a type of picture and video processing tool 

that can swap out one person's face for another [1]. The 

technology originated from early image editing. 

Computer vision technology has advanced quickly in 

recent years and is now widely employed in advertising 

production, special effects in movies and television 

shows, and other sectors [2]. At present, with the 

continuous development of deep learning (DL), artificial 

intelligence (AI) and other technologies, the related 

face-swapping technology ushers in rapid development 

and attracts the attention of a large number of scholars 

[3]. To improve the application of face exchange 

technology, Rao et al. proposed an approach based on 

convolutional god coding and decoding network. In it, 

face marker point detection and alignment were  

 

combined with clustering and computer vision 

techniques, and a large amount of face data was trained 

to construct a face model. Face clusters were generated  

by clustering to optimize the face exchange effect. It was 

shown through experiments that this technique had good 

application effect, but it was poorly applied in low-end 

devices [4]. Omar K et al. proposed a DL bagging based 

integrated classifier for the deep forgery video detection 

problem, which employed convolutional and 

self-attentive networks as the basic learners. The model 

vertically stacked the deep convolutional and 

self-attention layers and extracted the local features of 

the face from the video and trained by learning to 

achieve face replacement. Finally, the study trained the 

technique on a public dataset. The results indicated that 

the technique had good video processing capability and 

high training accuracy [5]. Abdelminaan et al. studied the 

problem of detecting deep-fake videos. They developed a 

http://art.zyufl.edu.cn/
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web application that detected the authenticity of video 

input and protected public figures and politicians from 

false videos. The research adopted the method of 

combining machine learning and DL to analyze the data 

set containing deep forgery and real video. This method 

could effectively distinguish between real and forged 

content, such as face replacement or voice replacement. 

The results could be used in courts and police stations to 

reduce the risk of crime and fraud, while improving the 

detection efficiency and providing guarantee for the 

credibility of network information [6]. 

AI has made incredible strides in image and video 

processing thanks to the quick development of DL 

technology. Among them, video face replacement 

technology, as an emerging image and video editing 

technology, utilizes DL algorithms and neural networks 

to achieve highly realistic face replacement effects. Tsai 

C S et al. put up a useful framework for enhancing angle 

transformation and face replacement in order to address 

the issue of face replacement distortion. The framework 

contained a transformation framework based on 

generative adversarial networks, and generated 

multi-angle transformed images by combining the 

predicted face points to realize face recognition. The 

method's ability to preserve high-quality photos and 

prevent image distortion during face replacement with 

image angle changes was demonstrated in experimental 

tests [7]. Melnik et al. conducted a comprehensive 

review of DL methods for generating and editing faces in 

StyleGAN. The study analyzed the evolution of 

StyleGAN from PGGAN to StyleGAN3 and discussed 

key issues such as training indicators, potential 

representations, GAN inversion, and face image editing. 

The research also involved cross-domain face styling and 

restoration. This research served as an entry point into 

the field of face generation. It helped beginners quickly 

understand related technologies and promoted the 

development of face generation and editing technology. 

Additionally, it provided an important reference for 

subsequent research. Liao X et al. investigated the 

problem of compressed depth fake video detection in 

social networks and proposed a detection framework that 

considered facial muscle movement to realize the 

detection of face-swapped videos. The framework 

achieved this by localizing faces from consecutive 

frames, extracting marker points, and modeling sensory 

regions and face regions. Experimental results 

demonstrated that the method outperformed existing 

methods in detecting compressed depth pseudo-video [9]. 

The problem of deep face-swapping technique detection 

is studied by Akhtar Z et al. In this, a comprehensive 

review of existing images, videos, and Deepfake 

databases was conducted to propose a deep 

face-swapping detection framework. It adopted a new 

generation of deep feature point recognition technology, 

which was trained by a large amount of face data to 

realize false video detection. The experimental results 

indicated that the technique had a good detection 

accuracy, but the shortcomings of the technique were the 

lack of a unified detection standard and the poor 

applicability to the detection of new type of face data 

[10]. The comparison of relevant literature research 

is shown in Table 1. 

 
Table 1: Literature review research 

Resear

cher 
Research contents  

Comparison of 

research results with 

FaceSwap, 

DeepFaceLab, 

AP-GAN, etc 

Compared with FaceSwap, 

DeepFaceLab, AP-GAN, etc 

Rao I S 

S et al. 

[4] 

Facial swapping technology based on 

convolutional neural networks, combined with 

clustering and computer vision techniques 

The application effect 

is good, but it 

performs poorly on 

low-end devices 

Compared with FaceSwap, it 

optimizes face alignment but 

has a higher computational 

complexity 

Omar 

K et al. 

[5] 

Deep fake video detection based on deep learning 

bagging ensemble classifier 

Strong video 

processing ability and 

high training 

accuracy 

Compared to DeepFaceLab, it 

focuses more on extracting 

local video features, but the 

model is complex 

Abdel

minaa

m d et 

al. [6] 

It studies face video forgery, and detects it 

combined with related voice and portrait images 

High accuracy and 

good efficiency, but 

high requirements for 

hyperparameter 

adjustment 

Compared with traditional 

AP-GAN, it optimizes 

computational efficiency but 

requires higher demands on 

the dataset 

Tsai C 

S et al. 

[7] 

An effective framework for improving angle 

transformation and face replacement based on 

generative adversarial networks 

Maintain high quality 

during image angle 

transformation to 

avoid distortion 

Compared to traditional 

FaceSwap, it solves the 

problem of image distortion, 

but the training difficulty is 

higher 

Melnik 

a et al. 

[8] 

Review and analyze the current technologies 

related to face generation and editing, and analyze 

the effects of different technologies 

The detection effect is 

superior to similar 

models 

Compared with the 

benchmark DeepFaceLab, the 

detection accuracy is higher, 
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but the model dependency is 

strong 

Liao X 

et al. 

[9] 

A compressed depth pseudo video detection 

framework considering facial muscle movement 

The effect of 

detecting compressed 

depth pseudo video is 

better than existing 

methods 

Compared to the benchmark 

AP-GAN, it is more suitable 

for compressed video 

detection, but its 

generalization ability is 

limited 

Akhtar 

Z et al. 

[10] 

Deep face swapping detection framework, 

utilizing next-generation deep feature point 

recognition technology 

High detection 

accuracy, but lack of 

unified standards, 

poor applicability to 

new data 

Compared to FaceSwap and 

DeepFaceLab, it has higher 

detection accuracy, but its 

applicability is limited 

 

According to the above research, with the development 

of DL as well as AI and other technologies in recent 

years, video face-swapping technology has seen rapid 

development. It has been used in video creation, face 

data detection and other fields. However, according to 

the above study, the current video face replacement 

technology still faces many shortcomings. For example, 

the low similarity of face replacement, the high 

consumption of face replacement technology resources, 

and the poor adaptation of complex scene technology all 

limit the development of the technology. Current 

research problems include insufficient adaptability to 

complex scenes. For example, there is a significant 

decrease in detection accuracy under occlusion and 

lighting changes. The consumption of computing 

resources is too high. For example, traditional multi task 

cascaded convolutional neural networks (MTCNN) 

detection models have a large number of parameters, 

which makes feature pyramid calculation inefficient and 

difficult to meet the real-time processing requirements of 

film and television videos. Therefore, in order to solve 

the face replacement consumption as well as accuracy 

problems, the study proposes a video face replacement 

technology based on improved MTCNN. There are two 

innovations in the research. One is to adopt the improved  

 

MTCNN algorithm, which improves face detection 

accuracy and efficiency through optimization such as 

median filtering and depth separation convolution. 

Second, the research constructs face replacement model 

based on adversarial generative network. It adopts the 

self-attention mechanism (SAM) and digital de-jittering 

method to improve the face replacement accuracy and 

video smoothness. This research can provide technical 

support for the improvement of video face replacement 

technology. 

2  Methods and materials 

2.1 Face detection model for film and 

television videos based on improved 

MTCNN algorithm 
With the rise of AI as well as video creation, film 

and television works face replacement technology is 

more and more sought after. However, the traditional 

technology is inefficient and the replacement color 

deviation is large, which cannot meet the requirements of 

film and television videos creation. In this regard, the 

study proposes a face replacement technology that 

combines MTCNN algorithm and adversarial generative 

network. The flowchart of the whole technology is 

shown in Figure 1. 
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Figure 1: Process of automatic face replacement technology in film and television videos 

In Figure 1, the technique has two parts. The first 

part is the face feature detection part and the second part 

is the face replacement based on adversarial generative 

networks. The face detection part of the study uses 

MTCNN algorithm as face detection. It has high face 

detection accuracy, suitable for all types of face feature 

recognition, and excellent performance in the face 

detection field. Figure 2 depicts the MTCNN's 

three-stage structure. 
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Figure 2: Three stage structure of MTCNN 

 

According to the MTCNN, the network uses P-net 

network to recognize the face region in the first stage of 

face recognition. It mainly achieves face feature 

classification as well as feature localization through 

multilayer convolutional processing [11]. The R-net 

network is used in the second stage to detect faces. It 

eliminates non-face candidate frames through 

non-maximum suppression (NMS) and other processing 

methods, and strengthens the analysis of face features, 

localization data, etc [12]. O-Net network is used in the 

third stage. This process refines the bounding box 

detection region and adds new convolutional layer 

processing. In the process of face classification, the 

image will be recognized whether it is a face or not. 

Equation (1) illustrates how a cross-entropy loss function 

represents the process [13]. 

( ) ( ) ( )( )( )log 1 1 logdet det det

i i i i iL y p y p= − + − − (1) 

In Equation (1), 
ip  represents the network 

recognition as face probability output.  0,1det

iy   is 

the sample detection label and the output is 1 or 0, 0 is 

non-face and 1 is face. Whereas, in face bounding box 

processing, Euclidean loss is used to reflect the candidate 

library detection, as shown in Equation (2). 
2

2
ˆbox box box

i i iyL y= − (2) 

In Equation (2), b x

iy   represents the bounding box 

of the face in detection. ˆbox

iy  represents the coordinates 

of the predicted corrected bounding box. Next, the 

minimum Euclidean loss is used in face localization to 

reflect the location of key features of the recognized face, 

as shown in Equation (3). 
2

2
ˆlandmark landmark landmark

i i iL y y= − (3) 

In Equation (3), landmark

iy  is the real human face 

feature key point coordinates. ˆ landmark

iy  represents the 
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predicted face feature keypoint coordinates. Then the 

MTCNN loss optimization is obtained based on the 

above analysis, as shown in Equation (4) [14]. 

 1 , ,

N
j j

j i i

i j det box landmark

min L 
= 

  (4) 

In Equation (4), 
ja  represents the weight set 

without loss, which reflects the degree of influence of the 

loss function. Its weight set is 1. The face classification 

weight is 0.3. The bounding box regression loss weight is 

also 0.3. The keypoint localization loss weight is 0.4. N 

represents the total number of training face samples 

 0,1j

i   represents the sample type indicator. 1 is 

face and 0 is non-face. Although MTCNN has excellent 

recognition effect on face detection compared to the 

traditional target detection model, the traditional 

MTCNN still faces the problems of high resource 

consumption, low detection efficiency, and low 

processing effect on noisy images. For example, before 

constructing the face feature map, some of the images 

captured by the camera system contain noise such as 

Gaussian and pretzel, which affects the network 

detection effect. Therefore, the input samples are pre 

denoised and then fed into the MTCNN model for 

training [15]. The median filtering process is shown in 

Equation (5). 

 ( , ) ( , ) | ( , )g x y median f x m y n m n W= − −  (5) 

In Equation (5), ( , )f x m y n− −  denotes the 

filtered pixel position with offset. ( , )g x y  denotes the 

original map pixel position. W  denotes the filter 

window. median  is the median value of the filter 

element. m  and n  are the window offset parameters. 

In MTCNN, network will extract the features of each 

layer of the image pyramid to obtain multi-scale image 

features, but the process is computationally intensive. To 

solve the problem, the study considers image pyramid 

and feature map pyramid. The former predicts only the 

high-level features in multilayer feature extraction, which 

improves the efficiency but decreases the detection 

accuracy [16]. Unlike the image pyramid, the latter 

considers different layer feature prediction relationships 

in the multiscale feature output stage. This reduces the 

amount of computation while ensuring training accuracy. 

Therefore, the feature pyramid is integrated prior to 

MTCNN inference in order to construct an image 

pyramid of the input image and generate a multi-scale 

image sequence. Finally, the study also introduces 

depth-separated convolution to improve the MTCNN 

convolutional operation parameter problem and enhance 

the network detection efficiency. Moreover, depthwise 

depth-separated is integrated into the convolutional 

layers of P-Net, R-Net, and O-Net to reduce 

computational and parameter complexity. For example, 

in R-Net/O-Net, depth-separated is applied to all 

convolutional layers. For example, in R-Net, the input 

features are first deeply convolved and then combined 

across channels via 1×1 convolution to output the 

bounding box and keypoint coordinates. The activation 

function adopts LeakyReLU instead of ReLU to enhance 

the retention of negative value information. The MTCNN 

structure is shown in Figure 3. 

3×3×16
3×3×1×3

5×5×3 5×5×3 1×1×3×4 5×5×4

 

Figure 3: Depth separable convolution 

 

Figure 3 shows the depth separable convolution 

process (CP). It resizes the input 7×7×3 feature map to 

5×5×4 size by convolving with channel number 1. 

Compared to the standard CP, it preserves the number of 

image feature channels and guarantees the quality of the 

graph while reducing the height and width of the feature 

graph. In this, the depth convolution is shown in 

Equation (6). 

(( ) ( ) ( ))( , ) ( , ) ( , )
k k

c c c

dw dw dw

i k

c

j k

Y x y X x i y j K i j b
= =−

= + +  + (

6) 

In Equation (6), ( ) ( , )cX x i y j+ +  denotes the 

value of the output tensor C th channel position 

( , )x i y j+ + . ( ) ( , )c

dwK i j  denotes the ( , )i j th position 

weight of the deep convolution at C  channel. ( )c

dwb  

denotes the C th channel bias of the depth convolution. 
( ) ( , )c

dwY x y  denotes the output at channel position ( , )x y . 

Next, the point-by-point convolution operation is shown 

in Equation (7). 

( ) ( ) ( , ) ( )

1

( , ) ( , )
inC

c c c c c

pw dw pw pw

c

Y x y Y x y K b
 

=

=  + (7) 

In Equation (7), ( ) ( , )c

dwY x y  denotes the value of the 

deep convolutional C th channel at position ( , )x y . 

( , )c c

pwK  denotes the weight of the point-by-point 
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convolution kernel from the input channel C  to the 

output channel C . ( )c

pwb
  denotes the point-by-point 

convolutional C th output bias. ( ) ( , )c

pwY x y  denotes the 

value of the final output C th channel at position ( , )x y . 

Finally, to improve the training accuracy of MTCNN 

face replacement classification task, SoftMax loss 

function is used to replace the cross loss function. Finally, 

to improve the training accuracy of the MTCNN network 

for face replacement classification tasks, the SoftMax 

loss function is introduced, based on the original 

cross-loss function. The squared-difference loss function 

is used to evaluate the performance of face-frame 

detection predictions. The SoftMax loss function is 

shown in Equation (8) [17]. 

( )
1

i

i

y

i n y

j

e
SoftMax y

e
=

=


(8) 

In Equation (8), 
ix  denotes sample i  and 

iy  

denotes labeled values. The squared deviation loss 

function is shown in Equation (9). 

( )( ) ( ) 2

2

1
1 || ||N i i

iLoss i y pred y gt
N




− −== =  −

 (9) 

In equation (9), 
( )iy pred−

 represents the 

predicted value, 
( )iy gt−

 represents the true value, i  

represents the sample type indicator, and N   represents 

the sample size. 

 

2.2 Adversarial generative network-based 

automatic face replacement model for film 

and television videos 
After completing the recognition of face images, the 

next step is to perform automatic video face replacement 

modeling. This part uses adversarial generative networks 

as face replacement technology. Currently, adversarial 

generative networks have become a representative of the 

field of image synthesis and transformation. Compared 

with the traditional DeepFakes class of face replacement 

technology, its face replacement accuracy is high and can 

be automatically replaced for the input source. Therefore, 

the study proposes a novel automatic face switching 

generation framework for self-coding networks (U-Net) 

on the framework of deep convolutional adversarial 

networks (DCGAN), which is referred to as the UGAN 

model. The UGAN model mainly contains two parts: 

generator as well as discriminator. Figure 4 depicts the 

particular structure. 

Image Input Output image

Encoder Decoder

 

Figure 4: UGAN model generator structure 

 

According to the structure of Fig. 4, there are two 

main components, Encoder and Decoder. In order for the 

generative model to output a specified realistic image 

according to the target, the feature information within the 

source image is extracted by the Encoder, including the 

background, face contours, etc. Moreover, this 

information is converted into a latent word feature vector. 

Then the Encoder processing vectors are input to the 

Decoder. It is mainly responsible for reconstructing the 

feature vectors, preserving more details of the target and 

outputting the reconstructed features. The Encoder in the 

generator first downsamples the input size of 256×256 

source image to extract multiple face feature attributes. 

The UGAN Architecture with layer names, filter sizes, 

and skip connection types is in Table 2. 

 

Table 2: UGAN Architecture with layer names, filter sizes, and skip connection types 

Network Layer Name Enter 

size 

Filter 

size/quantity 

Step 

length 

Fill in Activation 

function 

P-Net Input - 3 channels - - - 

Conv1 Any size (≥ 12 

× 12) 

10, 3×3 1 Valid PReLU - 

MaxPool1 - 2×2 2 Same - - 

Conv2 - 16, 3×3 1 Valid PReLU - 

Conv3 - 32, 3×3 1 Valid PReLU - 

Output (Cls/Reg) - 2/4, 

1×1 

1 Valid Softmax/Linear Dual branch 

output 

R-Net Input 24×24×

3 

- - - - 

Conv1 24×24×3 28, 3×3 1 Valid PReLU - 

MaxPool1 - 3×3 2 Same - - 

Conv2 - 48, 3×3 1 Valid PReLU - 
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MaxPool2 - 3×3 2 Valid - - 

Conv3 - 64, 3×3 1 Valid PReLU - 

FC1 576 dimensions Unit 

128 

- - PReLU Fully connected 

layer 

Output (Cls/Reg) - 2D/4D - - Softmax/Linear Dual branch 

output 

O-Net Input 48×48×

3 

- - - - 

Conv1 48×48×3 32, 3×3 1 Valid PReLU - 

MaxPool1 - 3×3 2 Same - - 

Conv2 - 64, 3×3 1 Valid PReLU - 

MaxPool2 - 3×3 2 Valid - - 

Conv3 - 64, 3×3 1 Valid PReLU - 

MaxPool3 - 2×2 2 Same - - 

Conv4 - 12, 3×3 1 Valid PReLU - 

FC1 1152 

dimensions 

256 

units 

- - PReLU Fully connected 

layer 

Output 

(Cls/Reg/Landmark) 

- 2D/4D/

1D 

- - Softmax/Linear/

Linear 

Three task 

branches 

 

 

 

 

 

 

 

 

Whereas in Decoder the up-sampling is done in the 

form of pixel CP to adjust the height and width H W  

image to r  times high resolution rH rW  image. 

Among them, r  denotes the sampling factor times. 

Pixel rearrangement by Decoder is shown in Equation 

(10). 

( ) ( ) ( )/ , , , ,, , y r x r c r mod y r c mod x rx y c
TS T T

+      
= (10) 

In Equation (10), mod( , )x y  is the sampling 

coordinate position. An improved residual network 

model is added to the structure of the network when 

processing image data, especially when training 

numerous face data, in order to reduce the network's 

computational load. It makes use of a double jump 

connection topology, which can successfully address the 

gradient vanishing problem in data processing. The 

residual function expression is shown in Equation (11) 

[18]. 

3 3 3 3( ) ( Re ( ( )))F x Conv Leaky LU Conv x = (11) 

In Equation (11), x  is the input information. 

Conv  is the convolutional processing. LeakyReLU  is 

the activation function. In this case, the input information 

x  is processed twice using 3×3 convolutional 

processing to strengthen the feature reuse capability. 

Then, activation processing is performed by LeakyReLU 

activation. Next, the output information x  is summed 

with the residual function for residual linkage. The study 

selects LeakyReLU activation for processing due to its 

high computational efficiency and suitability for 

real-time film and video processing requirements, despite 

its slightly slower convergence compared to GELU/Wish. 

LeakyReLU ensures stable convergence during training 

by avoiding neuronal death. The residual module is 

embedded in the encoder-decoder structure of the U-Net 

generator. This structure achieves cross-layer feature 

fusion through dual skip connections. It solves the 

problem of gradient vanishing and improves the ability to 

preserve facial details. At the same time, the robustness 

of forgery detection is enhanced by weighting key 

features in collaboration with the SAM in the 

discriminator. The residual module is shown in equation 

(12) [19]. 

3 3 3 3ResBlock( ) Conv (LeakyReLU(Conv ( )))x x x = 

(12) 

Next, after completing the image feature extraction 

work through the generator, the study uses the network 

face replacement framework (FaceSwap) discriminator 

for face replacement processing. The framework mainly 

consists of a SAM layer as well as a convolutional layer. 

The structure of the discriminator framework is shown in 

Figure 5 [20]. 
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Figure 5: Discriminator framework structure 

 

In Figure 5, in the discrimination framework, 

through iterative processing, the discriminator will 

discriminate the similarity between the generated face as 

well as the real face to ensure that the network generated 

image is closer to the real target face. Within the face 

replacement framework, a special layer of SAM is added. 

Its function is to weigh features based on their 

relationships in order to capture long-term dependencies 

and strengthen attention to key features. The 

mathematical expression of self attention mechanism is 

shown in equation (13). 

Attention( , , ) Softmax
T

k

QK
Q K V V

d

 
=  

 
 

(13) 

 

 

 

 

 

In Equation (13), Q , K , and V  denote the 

query vector, key vector, and value vector, respectively. 

kd  denotes the dimension of the key vector. 
kd  is the 

sequence length. After face replacement processing is 

completed by FaceSwap framework, the face 

replacement process still faces the video replacement 

jitter problem. In other words, during the face 

replacement session, the network performs replacement 

processing on multiple faces. This results in some video 

frames not being continuous, leading to video face loss 

and frame jitter. In this regard, the research introduces a 

digital de-jittering method. Its flow is shown in Figure 6. 

Input video sequence

Corner detection

Optical flow 

analysis

Calculate smooth motion 

between frames

Output video 

sequence

Motion estimation 

 

Figure 6: Process of face replacement video debounce 

 

In Figure 6, this de-jittering process is realized 

through corner point detection, optical flow analysis, and 

motion estimation to achieve de-jittering. Among them, 

the process is realized by using Shi-Tomasi, a corner 

detection tool within OpenCV, which detects the gray 

level change anomalies in the image frame as corner 

points through a fixed window. Then optical flow 

analysis is performed for tracking the feature points in 

the next frame of the image. Lucas-Kanade is used as the 

analyzing method in the study, although it is not able to 

track all the moving points in some scenes. Therefore, 

the marker code mechanism is used to improve the 

problem. When the next frame tracking marker position 

is determined the status is marked as 1, otherwise 0 will 

re-update the tracking points. After completing the above 

analysis for motion estimation, the study uses random 

sample consistency (RSC) algorithm to estimate the 

variation between frames. The process uses Euclidean 

transform to reflect the superposition relationship of the 

features of each frame as shown in Equation (14). 

 

11 12

21 22

'

'

0 0 1 1 1

x

E y ES

a a t X X

a a t Y T Y
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          

(14) 

 

In Equation (14), 
11a  denotes the translation factor. 
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12a  denotes the left-right rotation factor. 
21a  is the 

up-down rotation factor. 
22a  denotes the scaling factor. 

xt  and 
yt  are both transformation parameters. Next, 

the error between the front and back change frames is 

calculated for judging the estimated position. The sum of 

the errors between the front and back change frames is 

shown in Equation (15). 

, ,

1 1

N N

i j i j

i j

SAD c r
= =

= − (15) 

In Equation (15), 
,i jr  represents the previous frame 

feature point location. 
,i jc  represents the next frame 

feature point location. Finally, the study uses Smooth 

Filter to smooth the filter processing curve, which makes 

the video frame smoother. With the above processing, the 

automatic replacement of faces and the face replacement 

jitter problem are accomplished. The technical analysis 

has been completed through the above research, in which 

the improved MTCNN (Deep Separation 

Convolution+Feature Pyramid) and UGAN (Lightweight 

U-Net Generator) are synergistically optimized and meet 

the real-time running requirement of 30+FPS. 

3 Results 

3.1 Face detection experiment based on 

improved MTCNN 
Next, in order to test the proposed technology of the 

study, the corresponding face detection experiments and 

face replacement experiments will be carried out. Among 

them, the experimental system adopts WIDOWS 11 

system, the processor adopts AMD Ryzen R5600, the 

graphics card is Nvidia RT3060, and the memory is 

32GB DDR4 3200MHz. The experimental platform is 

Pyeharm 2021.1.1. The MTCNN face detection training 

time in the experimental training is 2.5 hours. The face 

replacement time is 28 hours, and an additional 3 hours 

are needed for debouncing. The parameter settings of the 

improved MTCNN are shown in Table 3. 

 

Table 3: Model initial parameters 

Parameter indicator type Numerical value 

Batch-size 16 

Learning-rate 0.001 

Weight 0.0005 

Factor 0.7 

Minsize 15 

 

Table 3 shows the parameter settings for training the 

model, where Batch size is set to 16. A smaller batch size 

is selected to balance GPU memory limitations and 

training stability. This ensures that memory does not 

overflow and that training remains stable. To ensure 

stable training, Adam optimizer uses a standard learning 

rate of 0.001. The L2 regularization weight is set to 

0.0005 to suppress overfitting. The image pyramid 

scaling factor is set to 0.7 to optimize the efficiency of 

multi-scale face detection. Minsize is set to 15, with a 

minimum facial pixel size of 15, to filter out noise and 

dryness. To effectively detect facial contours and provide 

a basis for analyzing information for subsequent face 

replacement, the professional face data WIDER FACE 

and the CelebFaces Attributes (CelebA) dataset are used 

to train the face detection model. The CelebA dataset 

mainly consists of a celebrity facial attribute dataset 

(with 40 attribute annotations such as glasses and hats), 

which includes 202599 facial attribute datasets and 

various types of facial image sets. The WIDER FACE 

dataset covers natural facial images of complex scenes 

(occlusion, lighting changes, blurring), with a total of 

32203 images. First, the normal scene and complex scene 

(occlusion, dim light) of WIDER FACE dataset are 

selected for accuracy test. First, an ablation experiment 

is conducted. 8 types of image scenes are selected for 

analysis, including ordinary scenes, complex occlusion, 

small-scale faces, low lighting, large angle deflection, 

high dynamic blur, crowded scenes with multiple 

people, and strong noise interference, corresponding to 

image sequence numbers 1 to 8. The results of the 

ablation experiment are shown in Figure 7. 
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Figure 7: Results of ablation experiment 

 
Figure 7(a) illustrates the recognition accuracy of 

the MTCNN model across various modules. According 

to the test results, standard MTCNN performs the 

worst in different scenarios, particularly in scenarios 

involving small faces and high dynamic models, 

achieving an accuracy below 80%. The best 

performing complete model has a performance rate of 

87.6% and 83.6% in small-sized face and high 

dynamic model scenarios, respectively. Figure 7 (b) 

shows the comparison results of recognition rates. 

According to the test results, the complete model's 

average recognition rate is 42.5 fps. This is 

significantly better than the standard MTCNN's rate of 

32.8 fps and better than a single MTCNN combination. 

In summary, the results indicate that adding modules 

such as median filtering and feature pyramids can 

significantly improve the model's application 

performance. Moreover, Faceness-Net (Faceness) and 

standard MTCNN are introduced as test benchmarks. The 

results are shown in Figure 8. 
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Figure 8: Accuracy of face detection in different scenarios 

 

In Figure 8(a) for common scene detection, the 

fastest convergence of the research model compared to 

similar techniques is 98.35% accuracy at convergence of 

30 iterations. Whereas MTCNN and Faceness converge 

with an accuracy of 92.31% and 82.65% respectively. In 

the complex scene detection in Figure 8(b), there is a 

significant fluctuation in Faceness face detection with the 

lowest overall accuracy of 81.25%. In comparison, the 

complex scene research model performs the best. The 

accuracy at convergence is 93.25% compared to 86.25% 

for MTCNN. Next, the same scene is compared to the 

training loss of different techniques, as shown in Figure 

8. 
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Figure 9: Face detection training loss 

 

Figure 9(a) shows the results of training loss for 

ordinary scenes. Among them, only the research model 

has the lowest loss of 0.165 at convergence, while the 

training loss of MTCNN and Faceness at convergence is 

0.184 and 0.205, respectively. In Figure 9(b), which 

shows the training loss of the complex scene, Faceness 

has the worst overall training effect and shows obvious 

fluctuations during the training process. The loss at 

convergence is 0.286, while MTCNN and the research 

model perform significantly better, 0.256 and 0.221, 

respectively. Next, the study uses CelebA data to test the 

feature detection rate of different face detection 

techniques and the number of false face detections. 

Among them, the detection rate indicates the ratio of 

detected face features to total features, while the number 

of false detections indicates the number of face judgment 

errors. The experiment sets up six facial recognition 

scenarios. Scene 1 is a low-light environment with a light 

intensity of ≤50 lux for facial detection and recognition. 

Scene 2 is a strong backlight scene, where the face is in 

front of a strong light source (such as sunlight or 

spotlights) background. Moreover, the facial brightness is 

≤ 100 lux, while the backlight ambient light is ≥ 

10000 lux. Scene 3 is a partially occluded scene, where 

the face is partially occluded by objects (masks, 

sunglasses, hands) (covering 30% to 50% of the face), 

simulating character camouflage or temporary occlusion 

in movies and TV shows. Scene 4 is a high angle 

deflection scenario, where the face has significant 

deflection (side face, pitch) relative to the camera. This 

exceeds the conventional frontal recognition range. 

Among them, the horizontal deflection angle is ≥ 45 ° or 

the vertical tilt angle is ≥ 30 °. Scene 5 is a motion 

blurred scene, where facial images are blurred due to 

rapid movement or camera shake, simulating action 

scenes or handheld shooting. Scene 6 is a small-sized 

face scene, and long-distance shooting results in a small 

proportion of the face in the image and insufficient detail 

resolution. The specific results are shown in Figure 9. 
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Figure 10: Comprehensive testing of face detection 

 

Figure 10(a) shows the results of feature detection 

rate. Among the six face scenarios, the research model 

has the highest detection rate for all types of face features 

with an average value of 93.54%. MTCNN, which is the 

next best performer, has an average value of 71.25%. 

Faceness is only 63.25%. Figure 10(b) shows the 

time-consuming face feature detection. Overall, Faceness 

face detection takes the longest time, with a mean value 

of 0.765s. It is followed by MTCNN, with a mean value 

of 0.452s. The research model is the shortest, with only 

0.253s. Finally, Figure 9(c) shows the final false 

detection rate result for one hundred faces. The number 

of false detections represents the number of 

misidentifications among the recognized faces, measured 

in individuals (pcs). The training frequency refers to the 

number of times a model is repeatedly trained on specific 

interference samples (such as background textures that 

are prone to false positives) during the training process. 

The mean value of eight repetitions of the test is 4.37 

misdetections per hundred compared to 1.75 for MTCNN. 

The research model does not suffer from the problem of 

misdetection and the number of misdetections is zero. 

 

3.2 Face replacement experiment 
Next, the face replacement experiments are 

continued. The study uses a high-resolution face dataset 

(CelebAMask-High Quality, CelebAMask-HQ) and a 

specialized video face dataset (Deepfake Model 

Attribution Dataset, FDM) for the experiments. Among 

them, CelebAMask-HQ dataset contains 30,000 face data 

of various types with a mask size of 512×512, which is 

suitable for face switching experiments. FDM contains 

6,450 videos of various types of faces. For testing, the 

study introduces attribute-preserving generative 

adversarial network (AP-GAN) and FaceSwap as test 

benchmarks. Figure 11 first compares the effects of 

several face replacement approaches using the 

CelebAMask-HQ dataset. 
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Figure 11: Face replacement effect 

 

In the face image in Figure 11(a), FaceSwap face 

replacement has problems with skin color differences and 

mouth shape deviation, while AP-GAN is overall better, 

but still has problems with skin color deviation as well as 

jaw overexposure. Only the study that restores the model 

to the original face contour and skin color performs the 

best. In Face 2 of Figure 11(b), again only the research 

model does not show face contour bias as well as color 

problems. In Face 3 of Figure 11(c), FaceSwap and 

AP-GAN show the problem of whiteness of face skin 

color, and FaceSwap face contour is obviously abnormal. 

The research model, on the other hand, effectively 

restores the skin color and contour of the original image. 

In Figure 11(d) of Face 4 the research model has the best 

color and contour restoration, while all other techniques 

show contour and color deviations. Next, under the FDM 

dataset, the study is introduced to introduce structural 

similarity index (SSMI) and peak signal-to-noise ratio 

(PSNR) to compare the face replacement effect of 

different techniques, as shown in Figure 12. 
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Figure 12: Comparison between SSMI and PSNR 
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Figure 12(a) shows the SSIM test results. The 

research model significantly outperforms the other 

techniques. In the 0 to 48 frames count scenario, the 

research model has an average SSMI value of 0.994. In 

contrast, the performance in AP-GAN face replacement 

is average, with an average SSMI value of 0.924. The 

worst performer, FaceSwap, has an average SSMI value 

of 0.875. Figure 12(b) shows the results of the PSNR 

comparison. Similarly in the 0-frame to 48-frame face 

replacement scene, only the research model has a high 

PSNR value, indicating that it reconstructs faces with 

better quality. The average PSNR values of the research 

model, AP-GAN, and FaceSwap are 35.65, 31.05, and 

28.84, respectively. The FDM face data is selected to 

compare the effect of different techniques face 

replacement. The state error measures the degree of 

matching of facial dynamic attributes, including 

expressions, poses, and motion coherence. For video face 

swapping to look natural, the replaced face must be 

synchronized with the target video's dynamic changes 

(e.g., blinking or turning the head). Otherwise, there will 

be uncoordinated "shaking" or "lag." attribute errors 

reflect the ability to preserve static identity features, 

including inherent attributes such as skin color, facial 

features, facial contours, etc. The higher the error, the 

lower the similarity between the replaced face and the 

source identity (such as skin whitening, contour 

deformation). The details are shown in Table 4. 

 

Table 4: Comprehensive testing of face replacement using different technologies 

Face 

replacem

ent 

number 

FaceSwap AP-GAN Ours 

Structural 

similarity 

State 

error 

Attribut

e error 

Structural 

similarity 

State 

error 

Attribut

e error 

Structural 

similarity 

State 

error 

Attribut

e error 

1 0.726 3.548 0.458 0.851 3.868 0.322 0.982 2.541 0.124 

2 0.756 4.055 0.425 0.826 2.956 0.357 0.986 2.057 0.114 

3 0.743 3.853 0.405 0.816 3.457 0.353 0.991 2.043 0.113 

4 0.735 3.754 0.425 0.788 3.054 0.342 0.986 2.044 0.125 

5 0.684 3.686 0.432 0.816 2.985 0.325 0.991 2.123 0.135 

6 0.765 4.285 0.432 0.823 2.973 0.325 0.998 2.255 0.126 

7 0.726 3.785 0.456 0.838 3.054 0.315 0.983 2.034 0.122 

8 0.715 4.066 0.428 0.793 3.522 0.334 0.986 2.015 0.155 

9 0.706 3.856 0.416 0.834 2.893 0.332 0.993 2.132 0.153 

10 0.698 3.852 0.405 0.835 3.085 0.325 0.992 2.053 0.164 

Average 

value 
0.725  3.874  0.428  0.822  3.185  0.333  0.989  2.130  0.133  

 

Table 4 shows the comprehensive test results of different 

techniques face replacement, which are evaluated in 

terms of SSMI, state error, and attribute error. The results 

of the 10 sets of face tests show that the research model 

has the best overall performance. For example, in the 

SSMI test, the average value of the research model is 

0.989, while FaceSwap is 00.725 and AP-GAN is 0.882. 

In the comparison of state error, the average value of the 

research model is 2.130, which is better than FaceSwap 

and AP-GAN's 3.874 and 3.185. In conclusion, the 

research technique has the best overall performance in  

 

 

face switching. In addition, the study compares the anti 

jitter effects of research models, using frame continuity 

measurement (FCM) and motion consistency error (MCE) 

as core indicators. FCM evaluates fluency by calculating 

the variance of feature point displacement between 

adjacent frames. The higher the value, the more stable it 

is. MCE measures the consistency of facial keypoint 

trajectories. The lower the value, the more consistent the 

trajectories are. The test results are shown in Table 5. 

Table 5: Vibration test 

Test indicators No shaking module There is a shaking module p-value Effect size (Cohen's d) 

FFCM 0.872±0.032 0.956±0.019 <0.001** 1.24 

MCE 3.241±0.215 2.115±0.183 0.003** 0.91 

PSNR(dB) 33.72±1.05 35.65±0.87 0.008** 0.78 

SSIM 0.931±0.021 0.989±0.012 <0.001** 1.37 

 
According to Table 5, the debounce module in FCM 

optimizes interframe transitions through optical flow 

analysis and motion compensation. This results in a 

significant improvement in FCM, raising the score from 

0.872 to 0.956. The comparison between the data is 

statistically significant, p<0.001. Moreover, its  

 

 

standard deviation decreased from 0.032 to 0.019, 

indicating that the module effectively reduced inter frame 

fluctuations. The standard deviation of MCE decreases 

from 0.215 to 0.183 in the MCE test, a 34.7% decrease, 

indicating that the module effectively suppresses the 

random shaking component of facial motion. In addition, 

the image generation quality test revealed significant 
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improvements in both PSNR and SSIM values, with a 

statistically significant difference of p<0.001 between the 

before and after results. This module controls the inter 

frame coefficient of variation within an industrial 

threshold (CV<2%), providing key technical support for 

real-time face replacement at the film and television level. 

The comparison of the debounce effect before and after 

face replacement is shown in Figure 13. 

(a) Not shaking yet

(b) After shaking

 

Figure 13: Comparison of face replacement and debounce effects 

 
Figure 13 (a) shows the face replacement effect 

without debounce, while Figure 13 (b) shows the image 

result after face replacement and debounce. Clearly, the 

image without debounce has obvious issues with 

boundary ghosting, contour blurring, and hair texture 

blurring. After deblurring, the image has prominent edge 

contours, clear color blocks, and a significantly higher 

level of brightness and darkness. The research continues 

to conduct ablation experiments on the debounce module, 

as shown in Table 6. 

 

Table 6: Experiment on the ablation of the shaking 

module 

Evaluation 

indicators 

No 

process

ing 

RSC 

module 

only 

RSC+Smo

oth Filter 

MCE 
4.52±0.

31 

3.15±0.2

4 
2.13±0.18 

FCM 
0.81±0.

04 

0.91±0.0

2 
0.96±0.01 

PSNR(dB) 
31.85±

1.12 

34.20±0.

95 

35.63±0.8

7 

SSIM 
0.902±

0.025 

0.962±0.

018 

0.988±0.0

12 

Inter frame 

difference 

coefficient (%) 

8.7±1.2 4.3±0.8 1.4±0.3 

Table 6: shows the results of the ablation 

experiment on the debounce module. According to the 

test results, no task module processing is performed, and 

the MCE, FCM, PSNR, and SSIM values are all low, 

with a high frame rate difference coefficient of 8.7±1.2%. 

After adding the RSC module, the MCE value decreases 

significantly, from 4.52 to 3.15. Meanwhile, the FCM 

value increases, from 0.81 to 0.91. This change is mainly 

due to the enhanced stability of optical flow tracking. In 

addition, the PSNR and SSIM values for image 

generation quality increases significantly. In contrast, the 

MCE and FCM values for RSC+Smooth Filter are 

2.13±0.18 and 0.96±0.01, respectively, indicating a 

significant decrease in image generation quality. This 

result also indicates that adding RSC module and Smooth 

Filter to the model can significantly improve the face 

replacement effect. Finally, the research introduces a 

comprehensive comparison of the computational 

efficiency and processing effectiveness of different 

models under resource constraints or abundance using 

literature [7] and UGAN Lite technology. Among them, 

the resource rich scenario is NVIDIA RTX3070 GPU 

(12GB video memory), batch size=16. The running 

memory is 64GB. The resource constrained scenario is 

NVIDIA RTX3070 GTX1060 (6GB of video memory), 

with a running memory of 16GB. The comparison of 

computing efficiency is shown in Table 7. 
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Table 7: Comparison of calculation efficiency and processing effect of different models 

Model Environment 
Reasoning time 

(ms) 

Memory footprint 

(MB) 

FLOPs 

(G) 

Frame rate 

(fps) 

Ours 

Rich resources 21.5±1.2 345±25 19.8 43.5 

Resource-constraine

d 
128.3±8.5 245±30 15.8 15.4 

AP-GAN 

Rich resources 35.6±1.0 354±20 12.4 35.8 

Resource-constraine

d 
152.4±5.1 246±25 7.4 11.5 

FaceSwap-GA

N 

Rich resources 48.5±0.5 352±20 13.8 38.5 

Resource-constraine

d 
254.5±2.3 254±34 9.4 10.8 

Reference [7] 

Rich resources 48.2±1.8 378±35 13.2 38.5 

Resource-constraine

d 
275.5±9.2 264±28 11.5 12.4 

UGAN-Lite 

Rich resources 31.4±0.8 367±18 14.8 40.5 

Resource-constraine

d 
156.4±1.5 258±84 11.8 14.4 

 
As shown in Table 7, there are significant differences in 

the computational efficiency of the model between 

resource-rich and resource-limited scenarios, including 

the inference time, throughput (FLOPs), and processing 

frame rate. Under abundant resources, different models 

have better computational efficiency and higher 

processing frame rates. Among them, the research model 

performs the best, with the shortest inference time of 

21.5 ± 1.2ms in the resource rich state, which is better 

than UGAN Lite's 31.4±0.8ms. Additionally, the research 

model shows the best performance in the PLOPs ratio 

under abundant and resource-limited conditions, with 

throughputs of 19.8G and 15.8G, respectively. In terms 

of processing frame rates, the research model performs 

significantly better than similar technologies under both 

resource-limited and resource-rich conditions, with 

processing frame rates of 15.4 fps and 43.5 fps, 

respectively. For example, the processing frame rates of 

the technology proposed in reference [7] under resource 

rich and resource limited conditions are 38.5 and 12.4, 

respectively. In summary, the research model has 

computational efficiency in different resource scenarios, 

and the task processing effect is better. 

4  Discussion  
In recent years, face replacement technology has 

been widely applied in fields such as film and video 

production, advertising design, etc. This is due to the 

rapid development of AI and DL technology. However, 

this technology still faces many challenges, such as 

insufficient accuracy and high resource consumption. A 

study proposed an automated face replacement technique 

based on improved MTCNN and GAN to address these 

issues. 

In the face detection experiment, the improved 

MTCNN algorithm performed excellently. In ordinary 

scenarios, the accuracy of the research model reached 

98.35%, significantly higher than the 92.31% of 

traditional MTCNN and 82.65% of Faceness. In complex  

 

 

scenarios, the accuracy of the research model was 

93.25%, which was better than MTCNN's 86.25% and 

Faceness's 81.25%. This indicated that the improved 

MTCNN algorithm improved face detection accuracy 

and efficiency by introducing median filtering and depth 

separation convolution. In terms of training loss, the 

research model's convergence loss was 0.165 and 0.221 

in ordinary and complex scenarios, respectively. These 

values were both lower than those of other techniques. In 

the face replacement experiment, the research model also 

performed well. In terms of preserving color and facial 

contour, the research model was more effective at 

restoring the original image's facial features, avoiding 

issues like skin color deviation and contour irregularities. 

In the SSMI test, the average value of the research model 

was 0.994, significantly higher than AP-GAN's 0.924 

and FaceSwap's 0.875. In the PSNR test, the average 

value of the research model was 35.65, which was better 

than AP-GAN's 31.05 and FaceSwap's 28.84. This 

indicated that the face replacement model based on 

adversarial generative networks used a SAM and a 

digital debounce method. These features significantly 

improved the accuracy of face replacement and the 

smoothness of video processing. 

Further analysis revealed that the application of self 

attention mechanism in face replacement was particularly 

crucial. It improved the model's ability to focus on 

important features by assigning weights to them, thereby 

making the replacement more natural. The digital 

debounce module effectively solved the jitter problem in 

video replacement through corner detection, optical flow 

analysis, and motion estimation, making video frames 

smoother. In terms of computational trade-offs, the 

research model performed well in both resource-rich and 

resource-limited scenarios. It had better inference time, 

throughput, and processing frame rate than similar 

technologies. 

However, it should be noted that while the use of 

deepfake technology in film and television is innovative, 

its misuse poses social risks and raises ethical concerns 

that cannot be ignored. The abuse of Deepfake 
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technology may lead to the spread of false information, 

infringement of personal privacy and portrait rights. For 

example, unauthorized facial replacement may be used to 

create fake videos for illegal activities such as fraud and 

defamation. In addition, the rapid development of 

Deepfake technology has made forged videos 

increasingly realistic, making them difficult to 

distinguish as fake with the naked eye. This not only 

poses a threat to personal safety, but also impacts the 

social trust system. Therefore, when using relevant 

technologies, it is necessary to comply with local laws 

and regulations. Service providers of deep synthesis 

technology must fulfill their prompting and supervisory 

obligations to ensure the technology's safe use, as well as 

abide by ethical and moral principles. 

In summary, the proposed facial replacement 

technology has demonstrated excellent accuracy, 

efficiency, and naturalness. This technology provides 

strong technical support for fields such as film and video 

production. 

 

5  Conclusion 
In recent years, with the continuous development of 

AI and DL, face replacement technology has become a 

focus of attention. Therefore, the research proposed an 

automated face replacement technology. The technology 

adopted an improved MTCNN algorithm for face 

detection, which improved the accuracy and efficiency of 

face detection by introducing median filtering and depth 

separation convolution. During the face replacement 

stage, a UGAN-based model was constructed that 

combined a SAM and a digital debounce method. This 

improved the accuracy of the face replacement and the 

smoothness of the video. In the face detection experiment, 

the improved MTCNN algorithm performed well. In 

ordinary scenarios, the accuracy of the research model 

reached 98.35%, significantly higher than the 92.31% of 

traditional MTCNN and 82.65% of Faceness. In complex 

scenes, the accuracy of the research model was 93.25%, 

which was better than MTCNN's 86.25% and Faceness's 

81.25%. In the face replacement experiment, the research 

model also performed well. In terms of preserving color 

and facial contour structure, the research model could 

better restore the facial features of the original image, 

avoiding problems such as skin color deviation and 

contour anomalies. In the SSMI test, the average value of 

the research model was 0.994, significantly higher than 

AP-GAN's 0.924 and FaceSwap's 0.875. In the PSNR 

test, the average value of the research model was 35.65, 

which was better than AP-GAN's 31.05 and FaceSwap's 

28.84. In summary, it can be seen that the technology 

proposed by the research has good application effects in 

video face switching. However, the research has 

shortcomings as well. For example, UGAN-based face 

replacement technology cannot process large amounts of 

offline video data. In addition, GANs also face the 

problem of hallucinations that occur in occlusions or rare 

poses during training. In the future, it will be necessary 

to develop an offline processing system that can adapt to 

different video face replacement requirements in various 

scenes, while improving technical recognition under 

occlusion and enhancing complex backgrounds. 
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