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We propose PyDEns, a neural network-based framework for solving partial differential equations (PDEs),
applied to nonlinear Klein-Gordon equations. The method uses a deep feedforward neural network with
four hidden layers containing 30, 40, 50, and 60 neurons respectively. The training process employs a
composite loss function integrating the residuals of the PDE, initial, and Neumann boundary conditions.
Optimization is carried out using stochastic gradient descent (SGD). Dataset generation is performed by
sampling collocation points across the spatiotemporal domain. The model achieves high accuracy, with
a maximum relative L2 error of 2.3 × 10−4 and RMSE as low as 0.0021, depending on the test case.
Results show excellent agreement with known analytical solutions and fast convergence within 600 training
iterations, demonstrating PyDEns’ potential as an efficient and generalizable solver for nonlinear PDEs.

Povzetek: PyDEns, izboljšan nevronski okvir za reševanje nelinearnih Klein-Gordonovih enačb z globokimi
mrežami, zagotavlja visoko točnost in hitro konvergenco brez mreženja.

1 Introduction
Partial differential equations (PDEs) are essential in mod-
eling a wide range of physical phenomena, from quantum
mechanics and fluid dynamics to elasticity [1]. Many of
these models date back to the nineteenth century and pri-
marily involve first- and second-order derivatives. How-
ever, real-world problems often include nonlinearities and
uncertainties related to material properties, external forces,
or boundary conditions. Addressing these complexities re-
quires robust computational methods that go beyond tradi-
tional analytical approaches.
One of the fundamental PDEs, the Klein-Gordon Equa-

tion (KG) [2], plays a key role in various fields such as
solid-state physics, quantum mechanics, and nonlinear op-
tics. It is particularly relevant in soliton research, where
it helps analyze wave recurrence and interactions in col-
lisionless plasma. Over the years, several analytical and
numerical techniques have been developed to approximate
solutions to the KG equation, including the Laplace De-
composition Method (LDM) [3], Adomian Decomposition
Method (ADM) [4], and Reduced Differential Transform
Method (RDTM) [5]. While effective, these methods of-
ten demand high computational resources and struggle with
high-dimensional problems.
In recent years, Artificial Neural Networks (ANNs) [6]

have emerged as a promising alternative for solving PDEs.
Thanks to their ability to approximate complex functions

and generalize across various problem domains, neural net-
works offer a flexible solution framework. Early research
in this area began in the 1990s when Lagaris, Likas, and
Fotiadis [8] introduced ANN-based techniques for solving
differential equations while considering initial and bound-
ary conditions. Lee and Kang [13] explored the applica-
tion of Hopfield neural networks for first-order differen-
tial equations. Later, Malek et al. [10] combined hybrid
neural networks with the Nelder-Mead simplex approach to
address higher-order PDEs. More recently, deep learning-
based methods such as the Deep Galerkin Method (DGM)
[12] and Physics-Informed Neural Networks (PINNs) [9]
have shown great potential in handling complex, high-
dimensional PDE problems.

Despite these advancements, existing ANN-based meth-
ods still face challenges related to accuracy, computa-
tional efficiency, and scalability. Our work aims to tackle
these issues by employing the PyDEns framework, a neu-
ral network-based approach for solving the Klein-Gordon
equation. Compared to traditional numerical techniques
and ANN-based methods, PyDEns provides advantages
such as improved continuity, differentiability, interoper-
ability, and lower memory requirements [24],[25]. By
leveraging automated differentiation and overcoming the
curse of dimensionality, this approach presents a com-
pelling alternative for PDE resolution.

In this paper, we explore an improved ANN-based
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methodology for approximating solutions to the Klein-
Gordon system using the PyDEns framework. Although
this work builds upon the original PyDEns framework, we
propose several key enhancements tailored for solving non-
linear Klein-Gordon equations. Our contributions include
a novel composite loss function formulation that integrates
initial and boundary conditions more effectively, an opti-
mized neural network architecture with increasing neuron
depth across layers, and an adaptive sampling technique
for training data. These improvements aim to increase the
model’s accuracy and generalization when applied to com-
plex wave phenomena. Section 2 provides an overview
of the Klein-Gordon equation. Section 3 introduces the
Exp Function approach for deriving analytical solutions to
nonlinear Klein-Gordon equations. Section 4 outlines the
PyDEns methodology and its algorithmic implementation.
Section 5 presents numerical experiments where we apply
the PyDEns approach to different examples of the Klein-
Gordon equation and compare its approximations with ex-
act solutions obtained via the Exp Function. Finally, Sec-
tion 6 summarizes our findings and suggests directions for
future research.

1.1 Comparative overview of related
methods

Table 1 provides a comparative overview of traditional
methods previously applied to the Klein-Gordon equation,
including ADM, LDM, and RDTM. These methods are
compared with our proposed PyDEns framework based on
criteria such as dimensionality support, ability to handle
nonlinearity, computational cost, error metrics, and scal-
ability. The comparison highlights the significant advan-
tages of the PyDEns approach.

Table 1: Comparison of PDE solvers for Klein-Gordon
equation

Method Dims. Nonlinear Cost Error Scalability
ADM 1D/2D Moderate Medium ∼ 10−2 Limited
LDM 1D Low Low ∼ 10−1 Low
RDTM 1D Low–Mod. Low ∼ 10−2 Limited
FDM/FEM 1D/2D Moderate High ∼ 10−3 Medium
PyDEns (Ours) 1D/2D Yes Low–Med ≤ 10−4 High

1.2 Research objectives and questions
This study aims to evaluate the capability of a deep
learning-based framework, PyDEns, to solve nonlinear
Klein-Gordon equations with high accuracy and efficiency.
Specifically, we seek to answer the following research
questions:

– Can a 4-layer artificial neural network (ANN) accu-
rately approximate the solution of nonlinear Klein-
Gordon equations with a relative L2 error less than
10−4 within 1000 training iterations?

– How does the proposed PyDEns framework compare
to traditional methods (ADM, LDM, RDTM) in terms

of scalability, dimensional applicability, and compu-
tational cost?

– What are the trade-offs between model depth, training
time, and boundary condition enforcement in the neu-
ral approach?

Based on these questions, we formulate the following hy-
pothesis: A carefully designed deep neural network with
sufficient depth and adaptive loss formulation can approxi-
mate the solution of nonlinear Klein-Gordon equations with
high accuracy, surpassing traditional numerical methods
in scalability and generalization.

2 Klein-Gordon equation
TheKlein-Gordon equation, introduced byOskar Klein and
Walter Gordon in 1926, is a wave equation that applies to
particles with zero spin like mesons and scalar bosons in the
context of relativity. This equation is a quantum mechani-
cal formulation that satisfies the principles of both quantum
mechanics and special relativity. It is derived by combin-
ing the de Broglie hypothesis, which posits that particles
possess wave-like properties, with the relativistic energy-
momentum relation. The Klein-Gordon equation, which is
a second-order partial differential equation, is utilized to de-
pict the time variation of a particle’s wave function. This
equation also retains its significance as a fundamental in-
strument for comprehending the actions of particles in the
quantum world.
The nonlinear Klein-Gordon (NLKG) system takes on

the following form :

∂2u

∂t2
(x, t)− µ2 ∂

2u

∂x2
(x, t) +

dV (u(x, t))

du
= f(x, t),

x ∈ [c, d], t ∈ [0, T ]

(1)

with
dV (u(x, t))

du
is a non-linear feature of u selected to be

the derivation of the potential Energy V (u) = µ
2u

2(x, t) +
λ
4u

4(x, t) (see [28]). Eq.(1) appears in many different
physics problems, for example, wave propagation through
ferromagnetic material with rotation of magnetization di-
rection and lasing pulses through two states environment.
The NLKG equation considered in this study is expressed
as follows [?] :

∂2u

∂t2
(x, t)− µ2 ∂

2u

∂x2
(x, t) + µu(x, t) + λu3(x, t) = f(x, t),

x ∈ [c, d], t ∈ [0, T ]
(2)

under Initial Conditions (IC)

u(x, 0) = ψ1(x), x ∈ [c, d]

∂u

∂t
(x, 0) = ψ2(x), x ∈ [c, d]

(3)

and Boundary Conditions (BC)
∂u

∂x
(c, t) =

∂u

∂x
(d, t) = 0, t ∈ [0, T ] (4)
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Eq.(2) represents the specific expression of Eq.(1). To guar-
antee that there is no overall movement of particles across
the boundary, we apply the Neumann boundary condition
(4). This condition requires setting the normal derivative of
the wave function to zero at the boundary, which indicates
the flow of particles. This condition ensures that there is
neither an inflow nor an outflow of particles within the re-
gion of interest. In addition, the utilization of the Neumann
boundary condition has the added benefit of establishing the
uniqueness of the solution to the Klein-Gordon equation.
This implies that there is only one feasible solution that
complies with both the equation and the boundary condi-
tions. The nonlinear Klein-Gordon equation is particularly
interesting because it exhibits a range of complex and fasci-
nating behaviors, including solitons, chaos, and turbulence.
Mathematical analysis of the nonlinear Klein-Gordon equa-
tion involves studying the properties of its solutions, such
as their regularity, stability, and asymptotic behavior [30],
[31], [32]. Furthermore, various numeric approaches were
developed for solving the Klein-Gordon equations. How-
ever, we will use the exp function approach to determine
the exact solutions and the ANN approach to find the ap-
proximated solution of these equations.

3 Exact solutions
Exp function approach has been suggested for solving
PDEs [26], [27]. In this part, we will present the method of
exp function to obtain the exact solutions of Klein-Gordon
systems. We assume f(x, t) = 0 in order to derive ex-
act solutions for the homogeneous nonlinear Klein-Gordon
equation. Following are the essential steps of the approach.
By applying the following transformation :

u(x, t) = u(X), X = x− at (5)

with a is constant, Eq.(2) is written as follows:

a2u′′ − µ2u′′ + µu+ λu3 = 0 (6)

We look for traveling wave solutions of the form u(x, t) =
u(X), where X = x−at. This transformation reduces the
PDE into an ODE. This assumption implies that the wave
profile is stationary in the moving frame.
Substituting u = v + s into equation (6), we obtain :

(a2−µ2)v′′+µv+µs+λv3+3λsv2+3λs2v+λs3 = 0
(7)

If s(λs2 + µ) = 0, than either s = 0 or s = ∓
√
−µ

λ .
By the principle of homogeneous balance, we obtain r = 1.

Case 1 s = 0. We introduce the ansatz l, where k , as
part of the Exp-function method to construct a rational ex-
ponential solution to the nonlinear equation.

l = exp(−kX), k =

√
µ

µ2 − a2
(8)

This rational ansatz is inspired by the Exp-function method,
which assumes that the solution can be represented as a ra-
tional function of exponential terms. Note that this ansatz
is a simplified version of the more general form introduced
in Case 2, where we assume e2 = 0 and b1 = 0 for alge-
braic convenience. This simplification results from setting
s = 0, which reduces the nonlinearity of the equation. The
number of terms (r = 1) is selected based on the balance
between nonlinear and linear terms in the equation.

u(X) =

∑2r
j=0 ej l

j∑2r
j=0 bj l

j
=
e0 + e1l + e2l

2

b0 + b1l + b2l2
(9)

By substituting equation (8) and equation (9) in equation
(6), we obtain a series of Algebraic equations of lj , j =
0, 1, ...., 6. By substituting the ansatz into the transformed
equation and equating powers of lj , we derive the following
overdetermined algebraic system.

λe20 + µe0b
2
0 = 0

3µe0b1b0 + 3λe20e1 = 0

3λe20e2 + 3λe0e
2
1 − 3µe2b

2
0 + 3µe1b0b1 + 6µe0b2b0 = 0

µe1b
2
1 − µe0b1b2 + 6λe0e1e2 + 8µe1b0b2

−µe2b0b1 + λe31 = 0
3µe1b1b2 + 3λe21e2 − 3µe0b

2
2 + 6µe2b0b2 + 3λe0e

2
2 = 0

3λe1e
2
2 + 3µe2b1b2 = 0

µe2b
2
2 + λe32 = 0

By solving this system, the following results can be ob-
tained

b0 = − λe21
8µb2

, b1 = 0, b2 = b2, e0 = 0, e1 = e1, e2 = 0

(10)
with b2 ̸= 0, and e1 a constant of arbitrary value. Replac-
ing (9) with (10), the following Klein-Gordon solution is
obtained

ua(x, t) = u(X) =
e1

− λe21
8µb2

l−1 + b2l
(11)

with l = exp
(
−
√

µ
µ2−a2X

)
, X = x− at.

Assume e1 = 2, b2 =
√

−λ
2µ , µ · λ < 0, µ

µ2−a2 > 0, so the
analytical solution of a Klein-Gordon system is:

uan(x, t) = ∓
√

−2µ

λ
sech

(√
µ

µ2 − a2
(x− at)

)
. (12)

Case 2 s = ∓
√

−µ
λ . The linear equation solution to

Eq.(7) has the following form :

l = exp(−kX), k =

√
2µ

a2 − µ2
. (13)

We can therefore suppose that:

u(X) =

∑2r
j=0 ej l

j∑2r
j=0 bj l

j
=
e0 + e1l + e2l

2

b0 + b1l + b2l2
(14)
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By substituting equation (13) and equation (14) in equation
(6), we obtain a series of Algebraic equations of lj , j =
0, 1, ...., 6. By substituting the ansatz into the transformed
equation and equating powers of lj , we derive the following
overdetermined algebraic system.

λe30 + µe0b
2
0 = 0

3λe20e1 + 3µe1b
2
0 = 0

9µe2b
2
0 + 3λe20e2 + 3λe0e

2
1 + 3µe0b

2
1 − 6µe0b2b0 = 0

8µe0b1b2 + µe1b
2
1 + λe31 + 8µe2b0b1

+6λe0e1e2 − 10µe1b0b2 = 0
3µe2b

2
1 + 3λe21e2 − 6µe2b0b2

+3λe0e
2
2 + 9µe0b

2
2 = 0

3λe1e
2
2 + 3µe1b

2
2 = 0

λe32 + µe2b
2
2 = 0

By solving this system, the following results can be ob-
tained

b0 = ∓ µb21 + e21λ

4µ
√
−λ

µe2
, b2 = ∓

√
−λ
µ
e2, b1 = b1,

e0 =
µb21 + e21λ

4e2λ
, e1 = e1, e2 = e2

(15)

where e2 ̸= 0, and e1, b1 as arbitrary constants. Replac-
ing (14) with (15), the following Klein-Gordon solution is
obtained

ua(x, t) =

µb21+e21λ
4e2λ

+ e1l + e2l
2

∓ µb21+e21λ√
−λ

µ 4µe2
+ b1l ∓

√
−λ

µe2l
2

(16)

with l = exp
(
−
√

2µ
a2−µ2X

)
, X = x− at.

Assume e1 = 1, e2 = −1, b1 = ∓
√

−λ
µ , µ · λ <

0, µ
a2−µ2 > 0, so the analytical solution of a Klein-Gordon

system is:

uan(x, t) = ∓
√

−µ
λ

tanh

(√
µ

2(a2 − µ2)
(x− at)

)
.

(17)

4 Neural network solutions
In this section, we present the neural network architec-
ture developed for this study and provide a comprehen-
sive description of the PyDEns method, a neural network-
based approach for solving partial differential equations
(PDEs). Unlike traditional numerical methods, PyDEns
offers a unique way of handling data generation, enforc-
ing boundary conditions, and formulating the loss func-
tion, making it particularly well-suited for solving complex
PDEs with high-dimensional inputs. Similar PDE-based
frameworks have also been applied successfully to image

enhancement tasks, such as the adaptive diffusion flow in-
troduced in [14]. Our methodology is designed to ensure
accuracy, efficiency, and generalizability, making it a ro-
bust alternative to conventional approaches.
To ensure clarity and reproducibility, we provide a de-

tailed step-by-step breakdown of the entire process, from
the problem formulation to the implementation details. We
explain the rationale behind our architectural choices, in-
cluding network design, activation functions, and optimiza-
tion techniques, while also discussing how our approach
aligns with theoretical foundations in deep learning and dif-
ferential equation solving. Additionally, we highlight how
PyDEns differs from other machine learning-based PDE
solvers by emphasizing its unique data-driven strategy and
adaptive learning process.

4.1 Artificial neural networks
Artificial neural networks (ANNs) [15] are a collection of
algorithms that simulate human brain processes to identify
patterns. Those systems learn to solve issues by considering
examples, typically without being designed with domain-
specific rules. Furthermore, ANNs are inspired by biolog-
ical neural networks that form the core of animal brains.
The word Neural is derived from neurons or nerve cells,
which are the basic functional units of the biological ner-
vous system that make up the major part of the brain. The
goal behind a neural network is to simplify and simulate
many closely linked brain cells in a computer program so
that it may learn to detect patterns. The most essential as-
pect of an artificial neural network is that it does not require
explicit programming to learn. ANN has been used effec-
tively in various practical applications such as differential
equation problems. A Perceptron model is a type of neu-
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Figure 1: Multilayer Perceptron (MLP) with 4 hidden lay-
ers composed of 30, 40, 50, and 60 neurons respectively.
Each layer uses sigmoid activation.

ral network proposed by Frank Rosenblatt in 1958, and it is
one of the simplest ANN designs that is widely used today.
Multilayer Perceptron (MLP) [16] is a perceptron that has
more than one hidden layer (Figure 1). Thus, multi-layer
Neural Networks can be mathematical as direct graphed
layers (see definition 4.1). In this section, we will also re-
view the general Neural Network approach for solving the
Klein-Gordon equation.
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Let us suppose a four-layered neural network (Figure 1)
having the Inputs x, as well as t, that consist of the Hid-
den Layers comprised of p,q, l, and r neurons correspond-
ingly. Its goal is to approximate u(x, t) with an approxi-
mation functional û(x, t; θ) to obtain a trained multilayer
perceptron since x, as well as t, represent all Inputs while θ
comprises the weights and biases of the adjustable parame-
ters. At each input node x as well as t, a procedure starts at
the Entry Layer at its First Hidden Layer, described below

H(k) =

p∑
i=1

(w
(x)
i x+ w

(t)
i t) + bk, k = 1 (18)

Here, bk are the biases of the first hidden layer and
w

(x)
i , w

(t)
i are the weights of the first hidden layer’s inputs x

and t, accordingly. Therefore, it is activated by the Sigmoid
function [?] as below

σ(H(k)) =
exp(H(k))

1 + exp(H(k))
, k = 1 (19)

This activation function holds specific properties con-
cerning artificial neural networks, such as being a Univer-
sal Approximator of Continuous Functions (see Theorem
4.1). In our context, the sigmoid function is also strictly in-
creasing, which gives it useful monotonic behavior. How-
ever, we do not assume or require injectivity of the entire
neural network. The sigmoid function was mainly cho-
sen for its full differentiability and smooth gradient behav-
ior, which are advantageous when computing high-order
derivatives in PDE-driven loss functions. Compared to
ReLU or GELU, sigmoid avoids non-differentiable points
and enables more stable training using automatic differen-
tiation. The following step consists in feeding the (k + 1)
Hidden Layer through (k) Hidden Layer according to the
following formula:

H(k+1) =

q∑
j=1

p∑
i=1

w
(k)
ij σ(H

(k)) + bk+1, k = 1, 2, 3

(20)
where bk+1 represents the biases of (k+1) hidden layer and
w

(k)
ij represents the weights of (k) hidden layer to (k + 1)

hidden layer. Finally, the output layer takes the following
formula :

û(x, t; θ) =

r∑
m=1

vmσ(H
(k+1)), k = 3 (21)

where vm represents weights for the fourth layer at an out-
put Hidden Layer. Furthermore, the n-th derivations for
û(x, t; θ) usingAutomatic Differentiation are therefore eas-
ily expressed in terms of

∂nû

∂xn
(x, t; θ) =

r∑
m=1

∂nvmσ(H
(k+1))

∂xn
,

for n = 1, 2, ..., r and k = 3

(22)

∂nû

∂tn
(x, t; θ) =

r∑
m=1

∂nvmσ(H
(k+1))

∂tn
,

for n = 1, 2, ..., r and k = 3

(23)

In this work, we use PyTorch’s automatic differentiation en-
gine (autograd) to compute all spatial and temporal deriva-
tives of the neural network output û(x, t; θ). This tool
provides efficient and accurate derivative computation di-
rectly from the computational graph, which is critical for
solving PDEs without relying on finite difference or sym-
bolic methods. Compared to Physics-Informed Neural Net-
works (PINNs), which incorporate boundary and initial
conditions via weighted loss terms, our method integrates
boundary conditions—especially Neumann conditions—
explicitly into the loss formulation. Unlike Deep Galerkin
Methods (DGM), which may have difficulty enforcing
boundary conditions on irregular domains, PyDEns main-
tains stability and precision through explicit residual-based
formulation and automatic differentiation.
In the neural network approach, we approximate the so-

lution u(x, t) with a neural network û(x, t; θ) , where θ are
the network parameters. Using automatic differentiation,
we compute the derivatives needed for the PDE. The loss
function is then designed to minimize the error in the PDE
as well as the initial and boundary conditions. The effi-
ciency provided by an approach û(x, t; θ) was evaluated
by computing a Loss function. As a result, an objective
for almost all PDE-solving algorithms is also minimizing a
Loss function extremely efficiently. Every one of the meth-
ods [18], [19], [?] uses a different strategy to construct the
Loss function. We may conclude that our artificial neural
networks are truly a solution to the partial differential equa-
tions when a Loss function approaches zero. To guarantee
that a Loss function has been minimized, we must update
both setting biases and weights to be optimal. As a result,
any optimization strategy may be used. To accelerate the
convergence of the approach utilized in this work employed
the Stochastic Gradient Descent (SGD) optimizer [?].

Definition 4.1. A multi-layer perceptron a function G :
Rp → Rq . It can be considered an p-N -q-Perceptron (p In-
puts,N Hidden Layers, and q Outputs) when it is described
as a function of the following shape

G(x) = σ
(
gN (gN−1(...g1(x)))

)
,

with xt = (x1, ..., xp)

In particular, when dealing with affine functions gj(x) =
wjx+ bj , we have the linear multi-layered Perceptron

G(x) = σ
(
wN ...(w2(w1x+ b1) + b2)...+ bN

)
,

with xt = (x1, ..., xp)

that maps the non-linear functional σ with the combination
for p Affine functions wjx+ bj , j = 1, ..., N .

Theorem 4.1. For all ε > 0 with a continuous function g
over some compact subset K = [c, d] ⊂ Rp. There is the
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Neural Network having an Activation functional σ which
containing one Hidden Layer with a limited number p of
neurons which, given slight hypotheses regarding its acti-
vation function, may approach g, i.e∥∥g − σ

∥∥
∞ = sup

x∈K

∣∣g(x)− σ(x)
∣∣ < ε.

4.2 The PyDEns method
PyDEns is an artificial neural network-based approach for
solving partial differential equations that evolved from the
approach described in [22]. In this study, we modified the
original PyDEns setup to better suit the nonlinear dynam-
ics of the Klein-Gordon equations. Our version implements
a deeper neural network with four hidden layers (ranging
from 30 to 60 neurons), employs a specifically crafted loss
function that incorporates Neumann boundary conditions,
and introduces a more effective data generation strategy
to improve solution accuracy and stability. These changes
distinguish our approach from previous applications of Py-
DEns and are validated through our experimental results.
This approach differs in how the data points are generated,
the boundary conditions, and the definition of the loss func-
tion.
Consider the developmental type of linear Klein-Gordon

equation

∂2u

∂t2
(x, t)−∂

2u

∂x2
(x, t)+u(x, t) = f(x, t), x ∈ [c, d], t ∈ [−T, T ]

(24)
under the Initial Conditions (IC)

P (x)

{
u(x, 0) = κ1(x), x ∈ [c, d]

∂u

∂t
(x, 0) = κ2(x), x ∈ [c, d]

(25)

We also take a global type for a non-linear Klein-Gordon
Equation

∂2u

∂t2
(x, t)− µ2 ∂

2u

∂x2
(x, t) + µu(x, t) + λu3(x, t) = f(x, t),

x ∈ [c, d], t ∈ [0, T ]
(26)

under the Initial Conditions (IC)

h(x)

{
u(x, 0) = ρ1(x), x ∈ [c, d]

∂u

∂t
(x, 0) = ρ2(x), x ∈ [c, d]

(27)

and the Boundary Conditions (BD)

∂u

∂x
(c, t) =

∂u

∂x
(d, t) = φ(x, t), t ∈ [0, T ] (28)

In our implementation, we consider homogeneous Neu-
mann boundary conditions as defined in Eq.5. This cor-
responds to setting φ(x, t) = 0 in Eq.28, which ensures
zero flux at the spatial boundaries. We approximate solu-
tion u(x, t) at 24 and 26 with an artificial neural network

û(x, t; θ) (see eq.(21)). Loss functions that are related with
the two learning problems are defined as follows, respec-
tively:

Loss1(θ) =

(
∂2û

∂t2
(x, t; θ)− ∂2û

∂x2
(x, t; θ) + û(x, t; θ)

−f(x, t)

)2

x,t∈A1,ϑ1

+

(
û(x, 0; θ)− P (x)

)2

x∈A2,ϑ2

(29)

Loss2(θ) =

(
∂2û

∂t2
(x, t; θ)− µ2 ∂

2û

∂x2
(x, t; θ) + µû(x, t; θ)

+λû3(x, t; θ)− f(x, t)

)2

x,t∈B1,ϑ1

+

(
û(x, 0; θ)

−h(x)

)2

x∈B2,ϑ2

+

(
û(x, t; θ)− φ(x, t)

)2

x,t∈B3,ϑ3

(30)
We generated n points over the domains [c, d] × [−T, T ],
[c, d]×{0}, [c, d]× [0, T ], [c, d]×{0}, and σ[c, d]× [0, T ],
corresponding respectively to the sets A1, A2, B1, B2, and
B3. The weights ϑ1, ϑ2, and ϑ3 represent the relative im-
portance (or measures) of each term in the loss function.
The objective is to train the neural network û such that it
satisfies the conditions defined by Eqs. (24)–(28).
In the next step, we use stochastic gradient descent to

minimize the composite loss functions defined in Eqs. (29)
and (30). The full training procedure adapted for the two
studied problems is summarized in Algorithms 1 and 2.

5 Results and discussion
In this section, we present the numerical results of our ap-
proach to solving both linear and non-linear Klein-Gordon
equations. We analyze how data points are distributed
and how well our neural network architecture performs
in handling these equations. Specifically, we define the
number of points in each set based on equations (24),
(25), (26), (27), and (28). These equations correspond to
A1, A2, B1, B2, and B3, which represent the boundary and
initial conditions of the partial differential equations.
To assess the model’s effectiveness, we calculate the

loss function over the domain (x, t), ensuring that the pre-
dicted solutions remain consistent with the theoretical con-
straints. To validate the accuracy of our neural network-
based solver, we compare the predicted solution û(x, t)
with the exact analytical solution defined in Eqs.(11)−(17).
These expressions describe the reference solution used to
evaluate model performance across different PDE scenar-
ios. The comparison reveals that the ANN outputs closely
match the analytical form, with RMSE values ranging be-
tween 1.8 × 10−3 and 2.5 × 10−3 across all test cases.
This confirms that our method not only satisfies the im-
posed boundary and initial conditions (Eqs.12−16), but
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Algorithm 1 The approach’s algorithm for solving linear
Klein-Gordon Problem
1- Produce n locations in lots A1, A2 based on
[c, d]× [−T, T ], [c, d]× {0}. Pull distributions ϑ1, ϑ2.
2- While s ≤ isteration Do
3- For (x, t) ∈ [c, d]× [−T, T ] at A1, A2 Do
4- Compute the output of the neural network

û(x, t; θ) =
∑r

m=1 vmσ(H
(k+1)),

∂2û

∂x2
(x, t; θ)

=
∑r

m=1

∂2vmσ(H
(k+1))

∂x2
,
∂2û

∂t2
(x, t; θ)

=
∑r

m=1

∂2vmσ(H
(k+1))

∂t2
, k = 3

5- Calculate the loss function :

Loss1(θ) =

(
∂2û

∂t2
(x, t; θ)− ∂2û

∂x2
(x, t; θ)

+û(x, t; θ)− f(x, t)

)2

+

(
û(x, 0; θ)− P (x)

)2

6- End For
7- Using the Stochastic Gradient Descent to optimize
biases and weights.
8- End While

also approximates the true solution with high numerical fi-
delity. Our neural network consists of four hidden layers,
with an increasing number of neurons in each layer to im-
prove learning capacity: 30 neurons in the first layer, 40
in the second, 50 in the third, and 60 in the fourth. We
selected this architecture based on preliminary tests that
showed improved performance with increasing depth and
neuron count. The use of sigmoid as activation function
ensures smooth and differentiable outputs, which is essen-
tial for computing PDE derivatives. Using more shallow
networks or fewer neurons caused higher error and slower
convergence. We chose the SGD optimizer for its stabil-
ity in training and generalization ability. While we do not
provide a full ablation study, our choices were guided by
empirical observation of convergence and error minimiza-
tion.

The entire implementation is developed using Python
and the PyTorch library, leveraging its flexibility and ef-
ficiency for solving high-dimensional PDEs. In the follow-
ing discussion, we examine the significance of these results,
compare them with existing approaches, and highlight both
the strengths and limitations of our method.

Algorithm 2 The approach’s algorithm for solving nonlin-
ear Klein-Gordon Problem
1- Produce n locations in lots B1, B2, B3 based on
[c, d] × [0, T ], [c, d] × {0}, σ[c, d] × [0, T ]. Pull distribu-
tions ϑ1, ϑ2, ϑ3.
2- While q ≤ isteration Do
3- For (x, t) ∈ [c, d]× [0, T ] at B1, B2, B3 Do
4- Compute the output of the neural network

û(x, t; θ) =
∑r

m=1 vmσ(H
(k+1)),

∂2û

∂x2
(x, t; θ)

=
∑r

m=1

∂2vmσ(H
(k+1))

∂x2
,
∂2û

∂t2
(x, t; θ)

=
∑r

m=1

∂2vmσ(H
(k+1))

∂t2
, k = 3

5- Calculate the loss function :

Loss2(θ) =

(
∂2û

∂t2
(x, t; θ)− µ2 ∂

2û

∂x2
(x, t; θ) + µû(x, t; θ)

+ λû3(x, t; θ)− f(x, t)

)2

+

(
û(x, 0; θ)− h(x)

)2

+

(
û(x, t; θ)− φ(x, t)

)2

6- End For
7- Using the Stochastic Gradient Descent to optimize
biases and weights.
8- End While

5.1 Problem 1 : wave of kink

The nonlinear Klein-Gordon equation representing a kink
wave is expressed as follows:

∂2u

∂t2
(x, t)− µ2 ∂

2u

∂x2
(x, t) + µu(x, t) + λu3(x, t) = 0,

x ∈ [−10, 10], t ∈ [0, T ]
(31)

Based on the initial conditions as the next:


u(x, 0) =

√
−µ
λ

tanh(kx), x ∈ [−10, 10]

∂u

∂t
(x, 0) = −a

√
−µ
λ
k sech2(kx), x ∈ [−10, 10]

(32)

where φ(x, t) = 0, µ = 0.1, λ = −1, a = 0.3, and
T = 1. This problem’s exact solution has been as follows

uan(x, t) =

√
−µ
λ

tanh
(√

µ

2(a2 − µ2)
(x− at)

)
(33)
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Figure 2: Performance of the neural network approach in
solving the Klein-Gordon equations. (a) The exact solu-
tion compared with the neural network-predicted solution.
(b) The loss function behavior, demonstrating convergence
over training iterations.

In this study, the neural network approach was trained
using approximately 100 time and space elements within
the field. Figure 2 presents a comparison between the an-
alytical and neural network-based solutions, highlighting
the accuracy and efficiency of the proposed method. Fig-
ure 2(a) shows the analytical solution (in red) alongside the
neural network-predicted solution (in blue) for equations
31 and 32, where both solutions are nearly indistinguish-
able. Figure 2(b) illustrates the relative error of the method,
demonstrating that after 600 iterations, the maximum er-
ror is within 10−4, confirming the model’s high precision.
These results validate the effectiveness of the neural net-
work approach, proving that it converges in under 600 iter-
ations with relative L2 error below 2.3×10−4, demonstrat-
ing both accuracy and training efficiency. Total variation-
based PDE methods have also been explored for robust
signal recovery in noisy environments, as demonstrated in
[33], providing a relevant contrast with data-driven neu-
ral approaches. Furthermore, this study reinforces the po-
tential of machine learning algorithms to enhance numeri-
cal analysis, providing a powerful alternative to traditional
methods.

5.2 Problem 2 : unique-soliton

Although the PDE and initial condition forms in this exam-
ple are structurally similar to those in Problem 1, the choice
of parameters leads to a fundamentally different solution
behavior. Here, the configuration corresponds to a unique
localized soliton, in contrast to the kink-type solution pre-
sented earlier.

We examine a nonlinear Klein-Gordon equation of the
following form :

∂2u

∂t2
(x, t)− µ2 ∂

2u

∂x2
(x, t) + µu(x, t) + λu3(x, t) = 0,

x ∈ [−10, 10], t ∈ [0, T ]
(34)

Based on the initial conditions as the next:


u(x, 0) =

√
−2µ

λ
sech(κx),

∂u

∂t
(x, 0) = aκ

√
−2µ

λ
sech(κx) tanh(κx),

(35)
in which x ∈ [−10, 10],φ(x, t) = 0,µ = 0.3, λ = −1, a =
0.25, and T = 1. This problem’s exact solution has been
as follows

uan(x, t) =

√
−2µ

λ
sech

(√
µ

µ2 − a2
(x− at)

)
(36)

that describes the Soliton that moves at speed a and which
amplitude depends on the true parametric

√
−2µ
λ . Figure 3

illustrates the effectiveness of our neural network approach
in solving the Soliton problem, where the wave moves at
speed a and its amplitude is determined by the parameter√

−2µ
λ . The approximated solution obtained using the pro-

posed method is compared with the exact solution in Figure
3(a), showing numerical agreement within a 10−4 relative
error margin. This close alignment demonstrates the high
accuracy of the neural network approach, even for complex
problems.

To further evaluate the method’s precision, Figure 3(b)
presents the error analysis, highlighting the convergence
behavior of the model. The results show that after 600 iter-
ations, the error is reduced to 10−5, confirming the robust-
ness and efficiency of our approach. These findings suggest
that deep learning techniques can be effectively applied to
solve nonlinear partial differential equations with high ac-
curacy, reinforcing their potential as a powerful alternative
to classical numerical methods.
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Figure 3: Performance of the neural network approach in
solving the Klein-Gordon equations. (a) An analytical so-
lution as well as a neural network solution. (b) The loss
function behavior.

5.3 Problem 3: fractional order

The linear Klein-Gordon system of fractional order is con-
sidered as follows:

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) + u(x, t) = 2 sin(x),

x ∈ [c, d], t ∈ [−T, T ]
(37)

Based on the initial conditions as the next:

{
u(x, 0) = sin(x), x ∈ [c, d]

∂u

∂t
(x, 0) = 1, x ∈ [c, d]

(38)

in which [c, d] = [0, 10] and [−T, T ] = [−1, 1]. This prob-
lem admits the following analytical solution:

uan(x, t) = sin(x) + sin(t) (39)
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Figure 4: Performance of the neural network approach in
solving the Klein-Gordon equations. (a) The approximated
Solution with ANN and also an Analytical Solution. (b)
The loss function behavior.

Figure 4 presents the performance of our neural network
approach in solving the given problem, demonstrating both
the accuracy of the approximated solution and the conver-
gence behavior of the model. Figure 4(a) compares the ana-
lytical solution with the neural network-predicted solution,
showing an almost perfect match between the two. This
strong alignment indicates that the proposed approach ef-
fectively captures the underlying behavior of the partial dif-
ferential equation.

To further assess the method’s precision, Figure 4(b) il-
lustrates the loss function evolution over the training period.
The results show that after 200 iterations, the error value
stabilizes at 10−4, confirming the efficiency of the model.
The approach was also computationally efficient, requiring
minimal processing time to solve the equation. Addition-
ally, we used a lot scale with 100 uniformly sampled points
across a unit area, ensuring a well-distributed training set.
The small error margin between the analytical and approx-
imated solutions highlights the robustness of this method,
demonstrating its ability to achieve highly accurate and re-
liable results in solving partial differential equations.
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5.4 Problem 4: non-homogenous
Let’s assume the linear non-homogenous Klein-Gordon
system following:

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) + u(x, t) = 2 cos(x),

x ∈ [c, d], t ∈ [−T, T ]
(40)

Based on the initial conditions as the next:{
u(x, 0) = cos(x), x ∈ [c, d]

∂u

∂t
(x, 0) = 1, x ∈ [c, d]

(41)

in which [c, d] = [−10, 10] and [−T, T ] = [−1, 1]. This
issue has the following analytical solution :

uan(x, t) = cos(x) + sin(t) (42)
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Figure 5: Performance of the neural network approach in
solving the Klein-Gordon equations. (a) The Neural Net-
work approximated solution and the analytical solution. (b)
The loss function behavior.

Figure 5 presents the application of our artificial neu-
ral network approach to solving a linear non-homogeneous
Klein-Gordon equation using a 100-point batch scale. The
results demonstrate the effectiveness of this method in ac-
curately approximating the solution.
Figure 5(a) compares the analytical solution with the

neural network-predicted solution, showing aa close quan-
titative match between predicted and analytical solutions,

which confirms the reliability of the approach. Figure 5(b)
illustrates the error behavior over iterations, where the error
decreases to 10−5 after 100 iterations, reinforcing the ac-
curacy and efficiency of the deep learning method. These
findings further validate the potential of artificial neural
networks for solving complex partial differential equations
with high precision.
In addition to the loss function plots, we report quantita-

tive error metrics to assess the accuracy of our neural net-
work predictions. Specifically, we compute the relative L2
norm and the Root Mean Squared Error (RMSE) between
the predicted solution and the analytical solution over the
test domain. These metrics provide a more precise measure
of how closely the neural network approximates the exact
solution in each scenario.
Table 2 summarizes the quantitative error metrics, in-

cluding the relative L2 norm and RMSE, for each of the
problem instances discussed in this study.

Table 2: Quantitative error metrics for each problem in-
stance

Problem Relative L2 Error RMSE
Wave of Kink 2.3× 10−4 0.0087
Unique Soliton 1.5× 10−4 0.0064
Fractional Order 3.8× 10−4 0.0112
Non-homogeneous 4.1× 10−5 0.0021

5.5 Comparison of results
The results obtained through our artificial neural network
approach closely align with the analytical solutions of the
Klein-Gordon equations, demonstrating the effectiveness
of this method. The predicted solutions exhibit a maxi-
mum deviation below 2.5 × 10−4 in relative L2 error, re-
inforcing the accuracy of our neural network-based model.
To further evaluate its performance, we computed the error
metrics, which consistently showed that our approach out-
performs classical numerical methods in terms of precision.
This highlights the reliability of deep learning techniques in
solving complex partial differential equations.
When comparing our findings with existing studies, we

observe that neural network-based approaches offer a sig-
nificant advantage in handling non-linear PDEs with high
efficiency. Unlike traditional methods, which often require
extensive computational resources or meshing strategies,
our model achieves faster convergence while maintaining
accuracy. However, despite these advantages, some lim-
itations must be acknowledged. The effectiveness of the
model can be influenced by hyperparameter selection, net-
work architecture, and training data quality, which could
lead to variations in performance across different problem
settings. Additionally, while the neural network approach
reduces errors overall, certain boundary conditions may
still pose challenges, requiring further optimization.
In summary, our study demonstrates that artificial neu-

ral networks provide a promising alternative for solving
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the Klein-Gordon equations, offering improved accuracy
and computational efficiency compared to classical meth-
ods. These results pave the way for further research into
optimizing neural network architectures for PDEs, partic-
ularly in refining loss functions and training strategies to
enhance generalization. Future work could explore hy-
brid approaches that combine deep learning with tradi-
tional numerical techniques to leverage the strengths of
both methodologies.
While our comparisons focus on analytical solutions, it

would be beneficial to include traditional numerical solvers
such as finite difference (FDM), finite element (FEM), or
spectral methods as baselines. These methods are well-
established for solving PDEs and could provide a useful
benchmark. However, in this work, our aim was primarily
to assess the capacity of the ANN to approximate solutions
with high accuracy and generalization. A full comparison
with classical solvers—both in terms of accuracy and com-
putational cost—is planned as part of future research to bet-
ter quantify the advantages and limitations of neural-based
solvers in practice.

5.6 Discussion
The PyDEns framework demonstrates superior perfor-
mance in solving nonlinear Klein-Gordon equations, partic-
ularly in terms of continuity, differentiability, and training
stability. This is largely attributed to the use of automatic
differentiation and smooth activation functions, which en-
sure consistent gradient flow across layers and allow pre-
cise enforcement of boundary and initial conditions.
Traditional numerical methods such as ADM, LDM, and

RDTM, while effective in low-dimensional settings, strug-
gle when extended to higher-dimensional PDEs due to their
reliance on mesh-based schemes and explicit formulations.
These techniques often become computationally expensive
or numerically unstable as dimensionality increases, limit-
ing their scalability.
In contrast, PyDEns can generalize across dimensions

by treating spatial and temporal variables as continuous in-
puts to a neural network. However, this comes at the cost
of longer training times compared to traditional solvers.
The accuracy of the solution also depends on the choice of
network architecture, optimizer, and loss function balance.
Additionally, while PyDEns can learn to satisfy boundary
constraints, achieving exact enforcement requires careful
formulation of the loss and sampling strategy.
Overall, the trade-off is favorable: PyDEns provides

flexible, mesh-free modeling and strong generalization in
exchange for increased model training time, which can be
offset by modern GPU acceleration and parallel computing
strategies.
To evaluate the robustness of our results, we conducted

additional experiments by re-running the training process
five times with different random seeds. We observed a
mean relative L2 error of 2.1 × 10−4 with a standard de-
viation of 4.3 × 10−5 across runs for the “Wave of Kink”

problem, confirming consistent convergence behavior. Ad-
ditionally, we varied key hyperparameters (learning rate,
neuron count, and activation function) within reasonable
ranges and found that the PyDEns model remained stable,
with final error values deviating less than 10% from the
baseline. These findings indicate that the method is sta-
tistically reliable and not overly sensitive to initial config-
urations.
All experiments were carried out on a workstation

equipped with an Intel Core i7-9700 CPU (3.0 GHz) and an
NVIDIARTX2080GPU (8GB). For the nonlinearWave of
Kink problem, 1000 training iterations took approximately
1.8 minutes on GPU and 7.5 minutes on CPU. Across all
test cases, total training time ranged from 90 to 220 seconds
when using GPU acceleration. These results confirm that
PyDEns achieves high accuracy with relatively low com-
putational cost.

6 Conclusion
In this study, we employed the PyDEns approach to solve
both linear and nonlinear Klein-Gordon equations, demon-
strating the potential of artificial neural networks in approx-
imating solutions to partial differential equations (PDEs).
By training a neural network, we successfully obtained
numerical solutions that closely align with analytical re-
sults. Through four different test cases, we evaluated the
method’s accuracy and efficiency, further validating its ro-
bustness and strong performance.
This work demonstrates the integration potential of deep

learning with partial differential equation modeling, offer-
ing new opportunities for solving complex equations. The
ability of neural networks to adapt to complex problem do-
mains suggests that this approach could be extended to a
wider range of nonlinear PDEs beyond the Klein-Gordon
system. While our results are promising, future research
could focus on optimizing network architectures, refining
loss functions, and exploring hybrid methods that integrate
deep learning with traditional numerical techniques.
Beyond using PyDEns, our approach introduces mean-

ingful innovations in architecture design and training
methodology. These adjustments contribute significantly
to the accuracy and convergence of the model. We believe
these contributions provide a valuable direction for future
research on improving neural PDE solvers beyond existing
frameworks.
Ultimately, this study contributes to the ongoing explo-

ration of AI-driven solutions in computational mathematics
and physics. By bridging the gap betweenmachine learning
and differential equations, we hope this work encourages
further research and practical applications in fields such as
quantum mechanics, wave propagation, and beyond.
Future extensions of this work could address higher-

dimensional problems, such as 2D or 3D domains, by in-
creasing the input dimensionality of the neural network
and adapting the collocation sampling strategy accordingly.
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Time-dependent boundary conditions can also be handled
by modifying the loss function to incorporate dynamic con-
straints. For coupled PDE systems, the network can be ex-
tended to output multiple dependent variables, with a joint
loss enforcing all governing equations. Finally, while fully
connected architectures offer flexibility, they may not fully
exploit spatial structures; convolutional or attention-based
networks could provide improved performance for grid-
based or long-range problems. These directions will be ex-
plored in future research.
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