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The rapid development of the Internet of Things (IoT) has intensified security and privacy challenges 

across data generation, transmission, and storage. This study introduces a blockchain-based secure edge 

storage model tailored for IoT environments and presents a lightweight consensus algorithm, Deep Q-

Network (DQN)-Raft+, which incorporates deep reinforcement learning. By combining the decentralized 

features of edge computing and blockchain, the model enables automated data access control through 

smart contracts. Furthermore, it optimizes leader node selection in the Raft consensus process using a 

DQN, formulating the consensus as a Markov Decision Process to enhance responsiveness and privacy 

protection in dynamic network conditions. Experiments were performed in a simulated environment using 

TensorFlow 2.6 and a MySQL database. The performance of DQN-Raft+ was compared against 

traditional consensus algorithms, including Proof of Work, Proof of Stake, Practical Byzantine Fault 

Tolerance, and Delegated Byzantine Fault Tolerance. Results indicate that DQN-Raft+ significantly 

reduces block generation delay (175.77 ms) and achieves a high privacy protection score (0.95). It also 

maintains a low data loss rate of 0.01%, demonstrating enhanced robustness and real-time capability. 

These findings indicate that DQN-Raft+ effectively strengthens data security and privacy in IoT systems, 

offering a technically sound and efficient mechanism for secure data exchange. The study provides both 

a theoretical framework and practical direction for future research in secure IoT deployment. 

Povzetek: Študija uvaja DQN-Raft+, lahkoten konsenzni algoritem, optimiziran z globokim učenjem za 

izboljšano varnost podatkov in zaščito zasebnosti v IoT omrežjih z izboljšanjem latence in robustnosti.

 

1 Introduction 

The rapid advancement of Internet of Things (IoT) 

technology has led to the widespread adoption of smart 

devices, increasing the frequency of digital information 

generation, transmission, and storage [1]. Concurrently, 

concerns regarding secure storage and privacy protection 

have become increasingly critical. According to Statista, 

the number of connected IoT devices worldwide is 

projected to reach billions in the near future. While this 

expansion enhances data accessibility, it also elevates the 

risk of breaches, tampering, and other security threats [2]. 

Traditional data storage solutions often fail to meet the 

stringent requirements for confidentiality and integrity in 

IoT environments [3]. In response, blockchain 

technology has emerged as a promising alternative due to 

its decentralized, tamper-resistant, and transparent nature. 

Numerous studies have examined blockchain’s 

application in data protection, noting its potential to 

mitigate hacking attempts and unauthorized data 

alterations [4, 5]. Nonetheless, blockchain alone does not 

fully address privacy concerns. In complex IoT 

environments, ensuring data security while safeguarding 

user privacy remains a formidable challenge [6, 7]. 

Current privacy protection mechanisms are frequently 

limited by performance constraints. As data volume 

increases, computational overhead and response time 

often become significant barriers to efficiency [8, 9]. 

This study addresses the challenges of high latency 

and inefficient privacy protection in IoT environments. It 

investigates the following research question: In IoT 

scenarios with frequent terminal node state fluctuations, 

can a Deep Q-Network (DQN) be used to optimize the 

Raft consensus algorithm to reduce block generation 

latency and enhance the efficiency of data access control 

and privacy protection in edge blockchain systems? To 

explore this question, a blockchain-based secure storage 

model is deployed at the network edge. A lightweight 

consensus mechanism, DQN-Raft+, is developed by 

integrating deep reinforcement learning into the Raft 

protocol. The proposed approach is evaluated in terms of 

security, efficiency, and adaptability, demonstrating 

improved performance under dynamic and resource-

constrained IoT conditions. This study introduces a 

secure digital information storage model for blockchain-

based IoT environments and designs a lightweight 

consensus algorithm incorporating deep learning (DL) to 

enhance data privacy protection. The blockchain model 

improves data confidentiality and integrity, addressing 

the limitations of traditional storage methods in IoT 
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systems. The lightweight consensus algorithm reduces 

computational overhead and boosts data processing 

efficiency, supporting the real-time handling of large-

scale IoT data. This approach not only strengthens 

privacy protection but also enhances system performance, 

offering a novel framework and technical direction for 

secure storage and privacy management in IoT 

applications. 

The remaining sections of this study are structured 

as follows. Section 2 reviews related work on secure 

information storage and privacy protection in IoT 

environments, with a focus on the strengths and 

limitations of existing consensus algorithms and DL-

based privacy-preserving techniques. Section 3 describes 

the architecture of the proposed secure storage system, 

which integrates blockchain and edge computing. This 

section covers the data acquisition mechanism, 

blockchain framework, security model design, and the 

implementation of the DQN-Raft+ consensus algorithm. 

Section 4 presents the experimental setup and 

performance evaluation, including platform construction, 

data collection methods, and evaluation metrics. A 

comparative analysis is conducted across several 

dimensions-latency, privacy protection, and access 

control-highlighting differences between DQN-Raft+ 

and baseline algorithms in terms of system complexity, 

learning convergence, and data security. Section 5 

concludes the study by summarizing key findings, 

discussing current limitations, and suggesting directions 

for future research. 

 

2 Related work 

The rapid advancement of information technology 

has heightened concerns regarding the secure storage and 

privacy protection of digital information, particularly 

within cloud computing and IoT environments. Khan and 

Por pointed out that the rise of information technology 

has exacerbated the challenges of secure storage, 

particularly in cloud computing and IoT environments, 

where the risks of data leakage and tampering have grown 

significantly [10]. To address these challenges, Pazhani et 

al. proposed an improved memory-efficient distributed 

algorithm architecture for implementing two-

dimensional discrete wavelet transform, to mitigate the 

high computational cost associated with image and video 

compression. In portable devices and high-speed 

communication systems, conventional multiplier-based 

computation is no longer feasible due to constraints on 

chip area and power consumption. The distributed 

algorithm architecture replaces multipliers with shift 

operations and lookup tables, thereby improving 

computational speed and reducing power usage. However, 

the increase in filter coefficients often leads to significant 

expansion of the lookup table size, which remains a 

concern [11]. In parallel, Dwivedi et al. highlighted the 

necessity of encrypted data storage in edge computing 

environments to reduce security risks during data 

transmission [12]. Cao et al. observed that current privacy 

protection mechanisms primarily rely on encryption, 

access control, and anonymization. However, these 

approaches often struggle with high-dimensional and 

dynamic data, especially in IoT contexts, where the 

growing number of devices and data volume leads to 

reduced efficiency and reliability [13]. Wen et al. 

highlighted the ongoing challenge of balancing privacy 

protection with data usability in the process of data 

sharing and utilization [14]. In response, blockchain has 

gained attention for its decentralized, tamper-resistant, 

and transparent properties. Chen et al. noted its 

widespread application in the secure storage of digital 

information [15]. Ren et al. introduced a blockchain-

based solution that uses smart contracts to automate data 

management and access control [16]. Furthermore, 

Emami et al. explored the role of consortium blockchains 

in enabling secure data sharing among multiple 

participants while protecting privacy [17]. In the domain 

of DL, Rodríguez et al. proposed its application in 

privacy protection by learning user behavior patterns. 

Their study suggested that DL-based mechanisms could 

enhance data analysis accuracy while reducing reliance 

on raw data [18]. Valencia-Arias et al. further 

investigated the integration of DL and blockchain, 

indicating that this combination improves security and 

flexibility in both privacy protection and data sharing 

[19]. 

Table 1 presents a structured comparison of 

representative approaches. This table illustrates the 

advantages and limitations of existing work-especially in 

relation to consensus algorithms and DL-based privacy 

protection mechanisms. 

 

Table 1: Comparison of consensus algorithms and DL-based privacy protection approaches 

Method Type Representative Model Main Advantages Main Limitations 

DQN 

Integration 

Potential 

Consensus 

Algorithm 

Raft 
Simple design; low 

communication overhead 

Poor fault tolerance; lacks 

adaptability in dynamic settings 
Compatible 

Practical Byzantine Fault 

Tolerance (PBFT) 

Strong consistency; tolerates 

Byzantine faults 

High communication complexity; 

poor scalability 
Difficult 

Delegated Byzantine Fault Better performance than PBFT Complex architecture; sensitive to Theoretically 
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Tolerance (DBFT) node expansion feasible 

Proof of Work (PoW) High security; widely used High energy usage; high latency Not suitable 

Proof of Stake (PoS) 
Energy-efficient; faster block 

generation than PoW 

Lower decentralization; risk of 

centralization 
Not suitable 

DL Privacy 

Methods 

CNN-based privacy model 
Effective at capturing spatial 

features 

Rigid architecture; limited 

generalization across diverse data 

Partially 

compatible 

Recurrent Neural Network + 

Access Control 

Suitable for modeling temporal 

privacy patterns 

Poor scalability in real-time IoT 

environments 
Compatible 

Federated Learning 
Data remains local; strong 

privacy guarantees 

High communication overhead; slow 

convergence 

Can be combined 

with DQN 

DQN-based privacy scoring 
Adaptive learning; responsive 

in dynamic settings 
Complex modeling; high training cost Core of this study 

In summary, while substantial progress has been 

made in secure storage and privacy protection for digital 

information, key challenges persist. Most existing 

consensus algorithms lack the flexibility to handle 

dynamic IoT environments, and DL techniques, though 

effective in learning complex patterns, have not been 

fully integrated into consensus mechanisms. In particular, 

the application of DQNs in consensus optimization 

remains limited. Existing research often suffers from 

vague state space definitions and unstable training 

processes. To address these gaps, the DQN-Raft+ 

algorithm proposed in this study constructs a lightweight 

and self-adaptive consensus model, enhancing both 

privacy protection efficiency and system robustness in 

IoT environments. 

 

 

 

 

 

3 The Resource Sharing System for 

Vocational Education Based on 

Blockchain and edge computing 
3.1 IoT 

IoT, a core technology linking the physical and 

digital worlds, is characterized by high-frequency, multi-

source, and real-time data collection. These attributes 

create favorable conditions for integrating edge 

intelligence and blockchain technologies to address the 

demands of secure, efficient, and privacy-aware data 

storage [20]. To meet these requirements, this study 

develops a secure digital information storage model 

based on a collaborative architecture that combines 

blockchain with edge computing. Before detailing the 

model design, it is necessary to outline the typical data 

acquisition process in IoT environments. As shown in 

Figure 1, this process forms the theoretical and technical 

foundation of the proposed architecture [21]. 
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Figure 1: Data acquisition and processing flow in an IoT environment 
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Figure 1 illustrates a standard data flow in IoT 

systems, including stages such as data sensing by edge 

devices, preprocessing, transmission, and storage. This 

workflow provides a reference framework for designing 

the blockchain–edge computing-based secure storage 

model. 

 

3.2 Blockchain technology 

Blockchain is a decentralized, distributed ledger 

technology that records and stores data securely and 

transparently. It organizes data into linked "blocks," with 

each block containing the hash of the preceding block, 

thereby forming an immutable chain. The core features of 

blockchain-transparency, immutability, and security-

have enabled its widespread application in areas such as 

financial transactions, supply chain management, and 

identity authentication. Furthermore, blockchain supports 

the deployment of smart contracts, which automate 

transactions without intermediaries, reducing operational 

costs and improving efficiency [22]. The fundamental 

structure of blockchain and the design principles of smart 

contracts are presented in Figure 2 [23]. 

(a) Basic structure of blockchain technology

(b) Principles of smart contract development
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Figure 2: Basic structure of blockchain and development principles of smart contracts 

 

Cryptography serves as the cornerstone of 

blockchain security and privacy. Hash functions are used 

to maintain data integrity and prevent tampering, while 

public–private key cryptography supports identity 

authentication and transaction signing. Digital signatures 

ensure transaction authenticity, and both symmetric and 

asymmetric encryption schemes safeguard data 

confidentiality. Additionally, zero-knowledge proofs 

allow users to validate claims without exposing sensitive 

data. The integration of these cryptographic techniques 

significantly enhances the security and trustworthiness of 

blockchain-based data storage and sharing systems [24]. 

Key cryptographic mechanisms are shown in Figure 3 

[25]. 



DQN-Raft+: A Deep Reinforcement Learning-Optimized Lightweight…                Informatica 49 (2025) 127-148   131 

Hash function

Public key 

infrastructure

Digital signature

Symmetric and 

asymmetric encryption:

Zero-knowledge proof

The hash function converts the input data into a fixed-length string, 

ensuring data consistency and non-countability.

 Blockchain uses public and private key pairs for authentication and 

transaction signing.

With digital signatures, users can sign their transactions to ensure that 

they have not been tampered with during transmission and to verify the 

identity of the sender.

Symmetric encryption is used for data encryption to protect information 

from being accessed by unauthorised users, while asymmetric encryption 

is used to securely transmit keys.

This cryptographic method allows one party (the prover) to prove the 

truth of a statement to another party (the verifier) without revealing any 

additional information.
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Figure 3: Cryptographic techniques 

 

3.3 Digital information security storage 

model for network edge-based blockchain 

IoT 
This study proposes a digital information security 

storage model for blockchain-enabled IoT environments 

based on network edge computing. The model integrates 

the decentralized architecture of blockchain with the low-

latency, high-responsiveness advantages of edge 

computing to ensure data security, availability, and 

privacy protection. The model architecture comprises 

three primary components: edge devices, edge computing 

nodes, and a blockchain network connected to cloud 

servers. At the edge device level-such as sensors, smart 

home systems, and industrial controllers-data is 

generated and preprocessed locally. This reduces latency 

and bandwidth usage by limiting the volume of raw data 

transmitted over the network. Data is then securely sent 

to edge computing nodes via encrypted communication 

protocols. Edge nodes play a key role in processing the 

data, including encryption, deduplication, and 

compression, to enhance both transmission efficiency and 

security. The processed data is subsequently uploaded to 

the blockchain for decentralized storage. Blockchain 

ensures data traceability and immutability, effectively 

preventing tampering and forgery while preserving data 

integrity. Each data block embeds corresponding access 

control policies to manage permissions precisely during 

access operations. To strengthen privacy protection, the 

model incorporates encryption techniques and multi-

factor authentication. Authorized access is enforced 

through smart contracts, which automate access control, 

policy execution, and verification. These contracts not 

only streamline the access process but also create a secure 

environment for data sharing among heterogeneous 

devices and users. Moreover, the model adopts a modular 

architecture, allowing for dynamic scalability and 

adaptability. As the number of IoT devices and data 

volume continues to grow, the system can flexibly 

reallocate storage and computational resources to 

accommodate varying demands. Overall, this network 

edge-based blockchain IoT model significantly enhances 

digital information security while improving system 

performance and user experience. By implementing this 

framework, users can securely store, manage, and share 

data in a highly responsive and privacy-preserving 

environment, thereby supporting the sustainable 

development and application of IoT technologies. The 

structural design of the proposed model is illustrated in 

Figure 4. 
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Figure 4: Structure of the blockchain-based digital information security storage model at the network edge 

 

As shown in Figure 4, the blockchain-based 

information security storage model deployed at the 

network edge clearly defines the interfaces and protocols 

among its components through technical annotations. 

Clients interact with the blockchain via Representational 

State Transfer Application Programming Interface over 

Hypertext Transfer Protocol Secure and Transport Layer 

Security 1.3. Data requests are submitted using attribute-

based encryption, and access rights are verified 

accordingly. Edge devices and cloud servers 

communicate via the Message Queuing Telemetry 

Transport 5.0 protocol to transmit fragmented and 

encrypted data. Reed-Solomon coding is used to improve 

transmission efficiency under low-bandwidth conditions. 

IoT devices act as lightweight blockchain nodes and 

participate in a lightweight PBFT consensus mechanism 

through the Libp2p-based peer-to-peer networking 

protocol, enabling block header synchronization and 

transaction validation. The model integrates several key 

security mechanisms, including trusted execution 

environments for key protection, zero-knowledge proofs 

to conceal transaction attributes, and randomized 

sampling verification to reduce the computational burden 

on edge nodes. Through layered encryption, protocol 

optimization, and lightweight consensus design, the 

model establishes a secure and efficient data storage and 

verification pipeline from edge to cloud. 

On edge devices, data is encrypted using symmetric 

encryption algorithms. The ciphertext is computed as 

Equation (1): 

𝐶 = 𝐸(𝐾, 𝐷)           (1) 

In Equation (1), 𝐶  represents the encrypted 

ciphertext; 𝐷  denotes the original data; 𝐸  means the 

encryption function; 𝐾 refers to the encryption key. To 

ensure data integrity and immutability, the hash value 𝐻 

and digital signature 𝑆  of the data are generated as 

follows: 

𝐻 = 𝐻(𝐷)             (2) 

𝑆 = 𝑆𝑖𝑔𝑛(𝐾𝑝𝑟𝑖𝑣 , 𝐻)          (3) 

Here, 𝐾𝑝𝑟𝑖𝑣 private key of the edge device used for 

digital signing. Each block 𝐵𝑖   on the blockchain 

contains the following information: 

𝐵𝑖 = (𝐶,𝐻, 𝑆, 𝑇, 𝐴)            (4) 

In Equation (4), 𝑇 is a timestamp indicating when 

the data is generated or stored, and 𝐴 an access control 

policy specifying which users or devices can access the 

data. The access control policy 𝐴 is represented as a set 

of conditions, where each condition 𝐶𝑖 corresponds to a 

specific access rule. This can be expressed as Equation 

(5): 

𝐴 = {𝐶1, 𝐶2, … , 𝐶𝑚}          (5) 

Smart contracts are used to automate data access 

management based on these conditions. The access 

control logic is defined by the function: 

𝐹(𝑈, 𝐴) → 𝐴𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑠𝑢𝑙𝑡        (6) 

𝐹 denotes the access control function of the smart 

contract, 𝑈  signifies the user requesting access, and 

𝐴𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑠𝑢𝑙𝑡 indicates whether the user is granted access 

to the data. When a user requests data, the access rights 

are verified by invoking the smart contract, which can be 

expressed as Equation (7): 

 

𝑅 = 𝐹(𝑈, 𝐴)if𝑅 = true → 𝐷 = 𝐷𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑   (7) 

In Equation (7), 𝑅  represents the result of the 

permission check, and 𝐷𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑   denotes the raw data 

retrieved from the blockchain if access is granted. 



DQN-Raft+: A Deep Reinforcement Learning-Optimized Lightweight…                 Informatica 49 (2025) 127-148  133 

 

To further clarify the integration of encryption, 

access control mechanisms, and the blockchain 

transaction process, this study designs the data on-

chaining procedure to comprise five sequential stages: 

preprocessing, transaction generation, smart contract 

triggering, data on-chaining, and access verification. 

After data is encrypted by edge devices-as outlined in 

Equations (1) to (3)-and its hash and digital signature are 

generated, the edge computing nodes encapsulate the 

encrypted content into a transaction and broadcast it 

across the blockchain network. Consensus nodes 

subsequently verify the digital signature and access 

policy, and upon successful validation, the transaction is 

committed to the blockchain via the underlying 

consensus mechanism. Each transaction contains the 

fields cipher_data, hash_val, signature, timestamp, and 

access_policy, corresponding to the data block structure 

defined in Equation (4). This ensures the integrity of the 

data and the synchronous on-chaining of the associated 

access control policy. For access control enforcement, 

this study implements smart contracts using the Solidity 

programming language, deploying them on a private 

blockchain based on the Ethereum architecture. 

Ethereum is selected due to its mature smart contract 

ecosystem and strong support for complex access control 

logic. The access control smart contract is deployed on-

chain and includes a core function, 

checkPermission(address user, bytes32 data_id), which 

evaluates a user’s address 𝑈 against the predefined access 

policy 𝐴, returning a Boolean value that determines 

whether access is permitted. Access verification is 

executed through an on-chain contract call. Smart 

contracts are automatically triggered upon a user's data 

request, eliminating the need for manual intervention or 

intermediary middleware. This mechanism facilitates 

autonomous enforcement of access control directly 

within the blockchain environment. The proposed 

framework achieves seamless integration of encryption, 

permission management, and blockchain-based 

auditability. Furthermore, it establishes a practical 

foundation for the future integration of privacy-

enhancing technologies and secure multi-party data 

sharing in IoT environments. 

 

3.4 Design of lightweight consensus 

algorithms based on DL 
DL, a subfield of machine learning, employs multi-

layer neural networks to extract complex features from 

large-scale data and automate decision-making in 

intricate environments [26]. To enhance the efficiency 

and privacy-preserving capabilities of blockchain 

applications in IoT environments, this study proposes a 

lightweight consensus algorithm named DQN-Raft+, 

which integrates deep reinforcement learning with the 

classical Raft consensus protocol. Built upon the Raft 

algorithm, DQN-Raft+ introduces a policy-learning agent 

that utilizes a DQN to dynamically optimize the leader 

election process. In contrast to centralized scheduling 

strategies, DQN-Raft+ deploys lightweight proxy models 

in parallel across multiple candidate nodes. Each node 

independently determines whether to participate in the 

election based on its locally observed state, including 

metrics such as resource availability, communication 

delay, and recent election outcomes. This decentralized 

decision-making framework enhances adaptability to 

network fluctuations and improves fault tolerance, while 

maintaining the underlying distributed nature of the 

blockchain system. Through this approach, DQN-Raft+ 

significantly improves the efficiency, scalability, and 

robustness of the consensus process in highly dynamic 

IoT environments, addressing key limitations of 

conventional consensus mechanisms such as fixed leader 

selection and lack of real-time responsiveness [27, 28]. 

This study first establishes a terminal error model 

and adopts a Markov Decision Process (MDP) to 

represent the system's state transitions. Among various 

reinforcement learning methods, the DQN is selected for 

this application based on several key considerations. 

Although policy gradient algorithms such as Proximal 

Policy Optimization and Actor-Critic approaches offer 

advantages in handling continuous action spaces and 

ensuring stable policy updates, they generally exhibit 

slower convergence and require high sample efficiency, 

especially in high-dimensional state spaces. In contrast, 

DQN, as a value-based method, is particularly effective 

in environments with discrete action spaces, such as 

leader node selection in this study. Its relative simplicity, 

faster convergence, and training stability make DQN 

well-suited for deployment in resource-constrained IoT 

edge environments. In the MDP formulation, the state 

space 𝑆 is defined to include system metrics such as the 

current leader node’s hardware failure rate, 

communication latency, terminal response rate, and node 

load status. The action space 𝐴comprises the set of 

candidate leader nodes. To direct the learning agent 

toward optimizing both privacy preservation and system 

performance, the reward function 𝑅 is structured as 

follows: a positive reward (+1) is issued when consensus 

is achieved and latency remains below a predefined 

threshold, while a negative reward (–1) is assigned when 

consensus fails or the latency exceeds the threshold. 

Additionally, the reward is positively correlated with the 

security score of the elected leader node and the 

effectiveness of privacy enforcement. To further stabilize 

convergence-particularly during the later stages of 

training-this study replaces the traditional ε-greedy 

exploration strategy with a combination of entropy-

regularized exploration and the Upper Confidence Bound 

approach. This hybrid strategy enhances the exploration–

exploitation balance and improves the agent's 

generalization ability. Coupled with experience replay 

and target network updates, the proposed DQN 

framework facilitates stable policy learning and 

effectively supports performance optimization in 

dynamic IoT edge computing environments. 
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A standard MDP is formally defined as a quadruple 

(𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 denotes the set of all possible states 

in the environment, 𝐴 represents the set of all actions, 𝑃 

specifies the transition probability between states upon 

taking a given action, and 𝑅 is the reward function, which 

quantifies the immediate gain associated with performing 

a specific action in a given state [29, 30]. In this study, an 

agent-modeled as a base station-interacts with the 

environment to select actions that maximize cumulative 

rewards. The state space is constructed using terminal 

device information collected by the base station, along 

with relevant blockchain network parameters. The action 

space is defined as the set of possible leading terminal 

selections within the local blockchain network. To 

improve the efficiency of data aggregation and 

dissemination during the block consensus process, the 

proposed Raft+ algorithm designates a central node (the 

base station) to collect data from peer nodes and elect a 

leading terminal. If the selected terminal fails to receive 

a sufficient number of valid responses within the 

predefined consensus time, the block is considered 

invalid, triggering a new round of leader selection. The 

lightweight consensus algorithm, enhanced with DQN, 

solves the MDP by continuously interacting with the 

environment and updating its policy to converge towards 

an optimal decision strategy that maximizes the expected 

cumulative reward. In this context, DQN algorithm 

utilizes deep neural networks to approximate the action-

value function 𝑄(𝑠, 𝑎), effectively overcoming the 

limitations of traditional Q-learning in high-dimensional 

state and action spaces. The algorithm incorporates an 

experience replay mechanism to eliminate correlations 

among sequential training samples, ensuring stable and 

efficient learning. By learning the Q-values, the agent 

evaluates the expected utility of actions in each state, 

enabling more effective and informed decision-making. 

The model operates in a finite and discrete state space, 

and the action space size corresponds to the number of 

robust (i.e., strong and reliable) terminals in the network. 

The DQN-Raft+ algorithm is further refined through 

targeted training procedures. In each training iteration, 

the system updates the hardware failure probabilities of 

each terminal based on a preset random seed queue and 

simulates potential communication failures. When such 

failures occur, a new leading terminal is selected 

according to the ε-greedy policy, which balances 

exploration and exploitation, helping to avoid 

convergence to local optima. Through continuous 

iterative training, the DQN agent converges to an optimal 

action-value function and learns a corresponding optimal 

policy, thereby establishing a lightweight and efficient 

consensus mechanism. This approach not only enhances 

consensus reliability and scalability but also strengthens 

the system’s privacy protection capabilities in dynamic 

IoT environments.  

For model deployment, the policy training of the 

DQN-Raft+ algorithm is conducted during a dedicated 

simulation phase. In this stage, a simulation environment 

is designed to emulate diverse node states and network 

feedback conditions, thereby enabling comprehensive 

training of the Q-network. Upon completion of training, 

the optimized policy model is embedded into each edge 

node within the blockchain system. During actual 

operations, at the onset of each leader election round, 

nodes autonomously execute the pretrained policy model 

to evaluate their local state and calculate the action value, 

based on which they determine whether to participate in 

the election. This decentralized decision-making 

mechanism reduces communication overhead and 

minimizes leader candidate conflicts, thereby 

significantly enhancing the efficiency and scalability of 

the leader selection process. The training workflow and 

model interaction process are illustrated in Figure 5. 
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For episode = 1 to E do:

    Reset environment and observe initial state s₀

    For t = 1 to T do:

        With probability ε:

            Select a random action aₜ (i.e., select a random candidate leader)

        Else:

            Select action aₜ = argmaxₐ Q(sₜ, a; θ)

        Execute action aₜ:

            - In simulated Raft+ consensus, designate leader node aₜ

            - Simulate block proposal and response collection

            - Compute reward rₜ based on:

                * Block successfully confirmed: +1

                * Timeout or failure: –1

                * Latency threshold exceeded: –0.5

            - Observe new state sₜ ₁

        Store transition (sₜ, aₜ, rₜ, sₜ ₁) in M

        Sample random minibatch from M:

            For each (s, a, r, s') in minibatch:

                If s' is terminal:

                    y = r

                Else:

                    y = r + γ * maxₐ' Q'(s', a'; θ-)

                Update Q-network by minimizing:

                    L = (y – Q(s, a; θ))²

        Every C steps, update target network:

            Q'(s, a; θ-)   Q(s, a; θ)

        Decay ε   max(ε * decay_rate, ε_min)

        Set sₜ   sₜ ₁

        If consensus terminates, break

Return trained Q(s, a; θ)

4

Output:

  - Optimized Q-function Q(s, a) 

for leader selection in Raft+

Initialize:

  - Neural network Q(s, a; θ) with 

random weights

  - Target network Q'(s, a; θ-)   

Q(s, a; θ)

  - Replay memory M    

Input: 

  - State space S (e.g., hardware 

failure rate, latency, load)

  - Action space A (candidate 

leader nodes)

  - Hyperparameters: learning rate 

α, discount factor γ, exploration 

rate ε

  - Maximum episodes E, time 

steps T per episode

  - Replay memory M of size N

1

2

3

 

Figure 5: DQN-Raft+ leader election and consensus optimization process 

 

As depicted in Figure 5, in each round of the DQN-

Raft+ consensus mechanism, the trained DQN model 

receives the current system state as input and outputs the 

optimal leader node (i.e., the selected action 𝑎). The 

blockchain system subsequently initiates the consensus 

process within the edge network based on this selection. 

The resulting consensus outcome-whether the process 

succeeds or fails, along with the corresponding 

confirmation latency-is fed back into the reinforcement 

learning reward mechanism. This feedback loop enables 

iterative refinement of the leader selection strategy across 

multiple simulation rounds. Once the training phase is 

completed, the finalized DQN model is deployed to edge 

gateway nodes, enabling real-time leader election during 

the system’s operational phase. To support training, this 

study develops a customized simulation environment 

named LeaderElectionEnv, which replicates the 

interactive dynamics of the actual consensus process. The 

environment’s reset() method initializes the simulation 

state for each round, including parameters such as node 

load, communication latency, and failure probability. The 

step(action) method simulates the system’s feedback in 

response to a node’s election participation, returning key 

indicators such as election success, consensus latency, 

and the associated reward value. This setup enables 

structured and repeatable training of the policy model in 

alignment with realistic consensus behaviors. 

Let 𝑄(𝑠, 𝑎; 𝜃)  is the Q-value of action 𝑎  in the 

current state 𝑠, which is estimated by a neural network 

parameterized by 𝜃 . The Q-value update in DQNs 

follows the Bellman equation, and its update rule is 

expressed in Equation (8): 

𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) + 𝛼 (𝑟 +

𝛾𝑚𝑎𝑥
𝑎′

 𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃))        (8) 

In Equation (8), 𝛼  is the learning rate; 𝑟 

represents the immediate reward obtained after executing 

action 𝑎  in state 𝑠 ; 𝛾  denotes the discount factor; 

𝑚𝑎𝑥
𝑎′

 𝑄(𝑠′, 𝑎′; 𝜃−) refers to the target Q-value, which is 

computed using the target network with parameters 𝜃−.  

To optimize the parameters 𝜃 of the Q-network, the 

mean squared error loss function is introduced, as shown 

in Equation (9):  

𝐿(𝜃) =
1

𝑁
∑  𝑁
𝑖=1 (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖; 𝜃))

2     (9) 

The target value 𝑦𝑖  for each sample is computed as: 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄(𝑠𝑖
′, 𝑎′; 𝜃−)      (10) 

In Equation (10), 𝑁 denotes the number of training 

samples. To enhance learning efficiency and reduce the 

correlation between sequential samples, the experience 

replay mechanism is employed. At each training step, a 

batch of experience samples is randomly drawn from the 

experience replay buffer. Each experience tuple 𝑒𝑖  is 

defined as Equation (11): 

𝑒𝑖 = (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)           (11) 
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This tuple encapsulates the current state 𝑠𝑖 , the 

action taken 𝑎𝑖, the immediate reward received 𝑟𝑖, and 

the subsequent state 𝑠𝑖
′. 

 

4 Experimental design and 

performance evaluation 

4.1 Datasets collection and experimental 

environment 

The database utilized in this study is My Structured 

Query Language (MySQL), an open-source relational 

database management system renowned for its efficiency 

and flexibility across diverse applications. 

Simulations are conducted on a Python-based 

platform operating under Ubuntu 16.04. TensorFlow 2.6 

serves as the DL framework, selected for its robust 

computational capabilities and extensive model library, 

making it well-suited for complex deep reinforcement 

learning experiments. To accelerate training, the system 

is equipped with Compute Unified Device Architecture 

(CUDA) version 11.2 and CUDA Deep Neural Network 

Library version 8.1. These tools significantly enhance the 

Graphics Processing Unit’s computational efficiency, 

thereby expediting both the training and inference phases 

of DL models. 

Regarding the configuration of the DQN algorithm, 

both the evaluation and target networks consist of three 

fully connected layers. Each layer contains 128 neurons, 

which strikes a balance between computational 

complexity and model expressiveness for handling 

intricate input data. The learning rate is set at 10−3, 

optimizing the trade-off between convergence speed and 

stability. A batch size of 32 is utilized during training to 

improve sampling efficiency, while the discount factor is 

set to 0.97, effectively weighting future rewards. The 

target network update interval is fixed at 500 iterations to 

ensure training stability and prevent rapid fluctuations in 

parameter updates. These carefully chosen 

hyperparameters aim to maximize network performance 

and enhance the efficiency of the consensus algorithm, 

thereby providing strong support for secure information 

storage and privacy protection in IoT environments. 

In this study, all simulation experiments are 

independently repeated ten times to ensure the robustness 

and statistical reliability of the results. The mean and 

standard deviation of the outcomes are calculated to 

evaluate consistency. The simulated network topology 

comprises ten nodes representing various IoT terminal 

devices, including sensor nodes, smart cameras, and edge 

computing devices. This configuration is designed to 

mirror the heterogeneity and complexity typically 

observed in real-world IoT environments. For the DQN 

algorithm, key parameters-such as a batch size of 32, a 

three-layer fully connected architecture, and a discount 

factor γ = 0.97-are determined through extensive 

hyperparameter tuning. A batch size of 32 achieves a 

balance between training efficiency and model stability. 

The three-layer network structure provides sufficient 

representational power while mitigating risks of 

overfitting and excessive computational cost. The 

discount factor of 0.97 reflects a strong emphasis on long-

term rewards, enabling a balanced optimization of both 

immediate and future decision outcomes. These 

parameter choices are based on a comprehensive 

evaluation of convergence performance, training speed, 

and resource utilization, ensuring optimal model 

behavior within the given experimental setting. 

The MySQL database used in this study stores both 

IoT interaction data and blockchain-related records. The 

primary tables include the Device Information Table 

(Device_Info), Data On-chain Record Table 

(Data_Chain_Log), and Consensus State Tracking Table 

(Consensus_Status). The Device_Info table contains 

fields such as device_id (primary key), device_type, 

location, and energy_level, enabling the identification 

and monitoring of edge devices. The Data_Chain_Log 

table logs each on-chain transaction's hash value, 

timestamp, encrypted content, and associated block 

number. The Consensus_Status table tracks details of 

each consensus round, including the leader election 

outcome and reward feedback under the DQN-Raft+ 

algorithm. For instance, the following SQL query can be 

used to retrieve the frequency of on-chain transactions 

per device over the past 24 hours: `Select device_id, 

count(*) From data_chain_ log where timestamp >= 

now() - interval 1 day group by device_id;` 

These structured data schemas and query 

mechanisms support transparency and reproducibility, 

allowing other researchers to replicate the experimental 

setup and verify the validity of the findings presented in 

this study. 

 

4.2 Performance evaluation 

For Raft-based algorithms-including DQN-Raft+, 

Raft, and Raft+-the terminal selection probability 

represents the frequency with which a terminal node is 

elected as the leader. This metric serves as an indicator of 

the stability and effectiveness of the leader election 

mechanism. In contrast, for consensus algorithms such as 

PoW, PoS, PBFT, and DBFT, which do not implement 

traditional leader election processes, the terminal 

selection probability refers to the likelihood that a 

terminal is selected to participate in block generation or 

voting during consensus. Accordingly, this metric reflects 

the level of participation and activity of each node in 

consensus-related operations. The comparison results of 

terminal selection probability and data rollback 

probability across various consensus algorithms under 

different terminal counts are illustrated in Figure 6. 
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Figure 6: Comparison of data rollback probability and terminal selection probability across various consensus 

algorithms under different terminal counts 

 

As illustrated in Figure 6, the DQN-Raft+ algorithm 

consistently demonstrates the lowest data rollback 

probability across all terminal configurations, 

underscoring its superior stability and performance. 

When the number of terminals reaches 10, the data 

rollback probability of DQN-Raft+ approaches zero, 

indicating high reliability even in more complex network 

scenarios. While the Raft+ algorithm exhibits 

improvements over the basic Raft protocol, it still shows 

a moderate rollback probability that increases with the 

number of terminals-for instance, reaching 0.01 with 10 

terminals. In comparison, the original Raft algorithm 

displays a pronounced rise in rollback probability, 

increasing to 0.011 under the same conditions. Consensus 

mechanisms such as PoW and PoS exhibit significantly 

higher rollback probabilities due to their intensive 

computational requirements and communication 

overhead. Specifically, under the 10-terminal condition, 

PoW and PoS reach rollback probabilities of 1.000 and 

0.939, respectively. Although PBFT and DBFT improve 

consistency through fault-tolerant designs, they remain 

constrained by scalability limitations in large-scale IoT 

deployments. At 10 terminals, PBFT and DBFT register 

rollback probabilities of 0.829 and 0.873, respectively. 

With regard to terminal selection probability under 

different consensus protocols, substantial variation is 

observed. DQN-Raft+ achieves the highest selection 

probability across all terminal counts, reflecting its strong 

adaptability and efficiency. Specifically, it attains 

selection probabilities of 0.987, 1.000, and 0.658 when 

the number of terminals is 1, 3, and 10, respectively. 

Raft+ ranks second in performance, maintaining 

relatively stable selection rates, including 0.912 with 3 

terminals and 0.301 with 10 terminals. Conversely, the 

Raft algorithm shows a steep decline in selection 

probability, achieving only 0.635 with 3 terminals and 

dropping to 0 when the number of terminals reaches 10, 

highlighting its limitations in larger network 

environments. Traditional consensus algorithms-PoW, 

PoS, PBFT, and DBFT-consistently exhibit lower 

selection probabilities across all configurations, with 

performance degrading further as the network size 

increases. These findings collectively emphasize the 

effectiveness of the DQN-enhanced Raft+ framework in 

addressing the scalability, reliability, and efficiency 

challenges inherent to complex IoT networks. 

Figure 7 presents a comparison of the average block 

generation latency across various consensus algorithms 

under different terminal counts and data packet volumes. 
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Figure 7: Comparison of the average block generation latency of different consensus algorithms 

 

As the number of terminals increases, the latency of 

the Raft algorithm rises steadily from 24.14 milliseconds 

(ms) to 282.45 ms. The Raft+ algorithm consistently 

demonstrates lower latency than Raft, increasing from 

23.10 ms to 257.25 ms, indicating improved efficiency. 

The DQN-Raft+ algorithm outperforms all other 

algorithms, with latency increasing from 15.77 ms to 

234.15 ms, showcasing superior handling capabilities 

under high terminal loads. In contrast, the PoW algorithm 

exhibits significantly higher latency, starting at 98.70 ms 

and increasing sharply to 406.34 ms, reflecting its limited 

processing efficiency. Similarly, the PoS algorithm’s 

latency grows from 114.44 ms to 403.18 ms, further 

indicating relatively slower performance. Among the 

Byzantine Fault Tolerance-based algorithms, PBFT 

latency rises from 51.46 ms to 383.26 ms, and DBFT 

latency increases from 60.89 ms to 374.85 ms. Although 

PBFT and DBFT demonstrate comparable latency under 

moderate to heavy loads, neither achieves the 

performance efficiency of DQN-Raft+. 

Regarding increasing data packet volumes, the Raft 

algorithm’s latency increases from 61.76 ms to 224.22 ms, 

while Raft+ latency grows from 49.41 ms to 202.38 ms, 

confirming Raft+’s relative advantage in processing 

efficiency. Again, DQN-Raft+ demonstrates the best 

performance across all data packet volumes, with latency 

increasing from 39.91 ms to 175.77 ms, indicating robust 

efficiency under heavy load. Conversely, PoW latency 

begins at 106.42 ms and reaches 372.44 ms, illustrating 

its processing limitations, while PoS latency increases 

from 92.17 ms to 355.35 ms, further highlighting 

comparatively weaker performance. Latencies for PBFT 

and DBFT remain relatively stable, with PBFT rising 

from 82.66 ms to 303.08 ms and DBFT from 81.71 ms to 

284.08 ms. Despite their stability, these algorithms do not 

match the low latency exhibited by DQN-Raft+. In 

summary, the DQN-Raft+ algorithm consistently 

achieves the lowest block generation latency across 

varying terminal counts and data packet volumes, 

rendering it particularly suitable for latency-sensitive 

applications in IoT environments. Conversely, the PoW 

algorithm displays poor scalability and high latency, 

which may limit its applicability in scenarios requiring 

rapid block generation. 

To verify the stability and significance of the 

experimental results, each test condition was 

independently executed ten times. The mean and standard 

deviation of latency for each consensus algorithm are 

calculated, and the 95% confidence interval (CI) is 

reported. Based on these repeated experiments, a one-

way analysis of variance (ANOVA) is conducted to 

assess whether the latency differences among the 

algorithms are statistically significant. The detailed 

results are presented in Tables 2 and 3. 

 

Table 2: Latency statistics of different algorithms with different data volumes(ms) 

Number of 

terminals 

Algorit

hm 

Mea

n 

Std 

Dev 

CI 

Lower 

CI 

Upper 

Packet 

volume 

Mea

n 

Std 

Dev 

CI 

Lower 

CI 

Upper 

1 Raft 
24.1

4 
0.87 24.06 25.31 1 

61.7

6 
1.85 60.43 63.09 
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Raft+ 
23.1

0 
0.87 21.56 22.81 

49.4

1 
1.48 48.35 50.47 

DQN-

Raft+ 

15.7

7 
0.64 15.14 16.05 

39.9

1 
1.20 39.05 40.77 

POW 
98.7

0 
5.65 93.13 101.21 

106.

42 
3.19 104.14 108.70 

POS 
114.

44 
5.15 109.31 116.68 

92.1

7 
2.77 90.19 94.15 

PBFT 
51.4

6 
1.82 50.67 53.27 

82.6

6 
2.48 80.89 84.43 

DBFT 
60.8

9 
2.68 58.93 62.76 

81.7

1 
2.45 79.96 83.46 

2 

Raft 
37.4

6 
2.54 35.56 39.19 

2 

73.0

5 
2.19 71.48 74.62 

Raft+ 
35.3

7 
1.31 34.61 36.48 

62.6

0 
1.88 61.26 63.94 

DQN-

Raft+ 

28.0

1 
0.91 27.15 28.45 

54.0

5 
1.62 52.89 55.21 

POW 
81.5

4 
3.54 78.81 83.87 

132.

92 
3.99 130.07 135.77 

POS 
93.1

1 
5.58 89.76 97.74 

130.

06 
3.90 127.27 132.85 

PBFT 
51.0

9 
2.96 49.15 53.38 

103.

46 
3.10 101.24 105.68 

DBFT 
61.6

1 
3.08 58.49 62.90 

96.8

1 
2.90 94.73 98.89 

3 

Raft 
62.3

0 
3.06 59.93 64.30 

3 

88.1

5 
2.64 86.26 90.04 

Raft+ 
52.8

6 
2.27 51.64 54.89 

72.0

0 
2.16 70.45 73.55 

DQN-

Raft+ 

45.5

1 
2.22 44.66 47.83 

62.4

9 
1.87 61.15 63.83 

POW 
128.

43 
6.98 125.74 135.73 

159.

41 
4.78 155.99 162.83 

POS 
121.

09 
4.85 116.23 123.17 

151.

81 
4.55 148.55 155.07 

PBFT 
80.1

6 
2.82 77.39 81.43 

132.

80 
3.98 129.95 135.65 

DBFT 
90.6

4 
6.30 88.92 97.93 

126.

15 
3.78 123.44 128.86 
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Raft 
71.4

1 
2.37 70.55 73.94 

4 

106.

09 
3.18 103.81 108.37 

Raft+ 
66.1

6 
4.32 62.77 68.95 

79.4

9 
2.38 77.78 81.20 

DQN-

Raft+ 

59.8

5 
3.35 57.45 62.25 

69.0

4 
2.07 67.56 70.52 

POW 
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71 
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35 
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POS 
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27 
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86 
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PBFT 
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38 
8.46 123.72 135.82 
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30 
4.21 137.29 143.31 

DBFT 
114.

44 
5.13 110.74 118.07 
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75 
3.95 128.92 134.58 

5 

Raft 
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71 
6.47 101.82 111.08 

5 

106.

94 
3.21 104.64 109.24 

Raft+ 
97.2

9 
3.07 96.01 100.39 

93.6

4 
2.81 91.63 95.65 

DQN-

Raft+ 

85.7

5 
2.91 84.14 88.30 

82.2

4 
2.47 80.48 84.00 

POW 
203.

37 
5.91 203.63 212.08 

197.

20 
5.92 192.97 201.43 

POS 
181.

29 
9.45 177.20 190.72 

196.

25 
5.89 192.04 200.46 

PBFT 
144.

55 
4.26 140.07 146.16 

160.

14 
4.80 156.70 163.58 

DBFT 
154.

00 
4.87 146.77 153.74 

149.

69 
4.49 146.48 152.90 

6 

Raft 
116.

92 
4.30 114.22 120.38 

6 

141.

04 
4.23 138.01 144.07 

Raft+ 
106.

41 
3.37 105.17 109.99 

122.

04 
3.66 119.42 124.66 

DQN-

Raft+ 

93.8

0 
4.99 93.40 100.54 

91.6

3 
2.75 89.66 93.60 

POW 
225.

04 
12.37 213.82 231.52 

212.

30 
6.37 207.74 216.86 

POS 
231.

36 
14.34 222.93 243.44 

210.

40 
6.31 205.88 214.92 

PBFT 
164.

16 
5.66 158.02 166.12 

171.

44 
5.14 167.76 175.12 
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8.88 144.77 157.48 

7 

160.

88 
4.83 157.43 164.33 
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141.
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124.
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POW 
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8 
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19 
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8 
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88 
5.34 174.06 181.70 

Raft+ 
167.

66 
8.40 160.50 172.52 

162.

68 
4.88 159.19 166.17 

DQN-

Raft+ 

160.

30 
5.09 156.36 163.64 

130.

37 
3.91 127.57 133.17 

POW 
310.

46 
14.28 290.92 311.34 
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50 
8.42 274.48 286.52 

POS 
321.

98 
13.05 306.65 325.33 

267.

19 
8.02 261.46 272.92 

PBFT 
278.

97 
15.93 265.55 288.35 

216.

84 
6.51 212.19 221.49 

DBFT 
270.

53 
7.12 265.89 276.07 

205.

44 
6.16 201.03 209.85 

9 

Raft 
240.

80 
15.76 227.64 250.19 

9 

202.

48 
6.07 198.13 206.83 

Raft+ 
226.

10 
13.36 217.78 236.89 

172.

08 
5.16 168.39 175.77 

DQN-

Raft+ 

211.

40 
9.92 206.34 220.53 

144.

52 
4.34 141.42 147.62 

POW 
335.

31 
10.10 327.44 341.90 

319.

34 
9.58 312.49 326.19 

POS 
345.

79 
22.20 333.45 365.22 

302.

24 
9.07 295.75 308.73 
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10 
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DQN-

Raft+ 

234.

15 
12.85 229.96 248.35 

175.

77 
5.27 172.00 179.54 

POW 
406.

34 
22.77 384.74 417.32 

372.

44 
11.17 364.45 380.43 

POS 
403.

18 
26.38 382.54 420.28 

355.

35 
10.66 347.72 362.98 

PBFT 
383.

26 
14.56 372.06 392.89 

303.

08 
9.09 296.58 309.58 

DBFT 
374.

85 
15.32 364.70 386.62 

284.

08 
8.52 277.98 290.18 

 

Table 3: One-way ANOVA results for latency with different algorithms (Packet Volume=1) 

Source 
DF(Degrees of 

Freedom) 

SS(Sum of 

Squares) 

MS(Mean 

Square) 

F(F 

Statistic) 

p-

value 

Between 

Groups 
6 34 299.3 5 716.6 1 079.6 

< 

0.001 

Within Groups 63 333.5 5.295 - - 

Total 69 34 632.8 - - - 

 

As shown in Table 2, the latency of all consensus 

algorithms increases to varying extents with the number 

of terminals, revealing differences in scalability. The 

average latency of the Raft algorithm increases steadily 

from approximately 24.14 ms with one terminal to about 

282.45 ms with ten terminals, indicating gradual and 

stable performance degradation. Raft+, as an optimized 

variant of Raft, consistently exhibits lower latency and 

smaller standard deviation, reflecting improved stability 

and scalability. DQN-Raft+ further enhances latency 

performance, maintaining the lowest latency across all 

terminal configurations. Its narrow confidence intervals 

underscore its high stability, indicating that the 

integration of deep reinforcement learning significantly 

boosts efficiency. In contrast, the PoW and PoS 

algorithms exhibit considerably higher latency, which 

increases sharply as the number of terminals grows. For 

example, PoW latency increases from approximately 

98.70 ms to 406.34 ms, while PoS rises from about 

114.44 ms to 403.18 ms. Both algorithms display larger 

standard deviations and wider confidence intervals, 

indicating greater volatility and weaker scalability in 

large-scale environments. PoS shows slightly higher 

latency than PoW, likely due to the additional 

computational overhead associated with stake 

verification and voting processes. The latency of PBFT 

and DBFT falls between that of the Raft series and 

PoW/PoS algorithms. PBFT demonstrates a relatively 

steep increase in latency, along with wider standard 

deviations and confidence intervals, suggesting a decline 

in execution efficiency and stability as the terminal count 

increases. DBFT performs slightly better, particularly in 

medium-scale networks where latency grows more 

gradually; however, in large-scale settings, it still incurs 

substantial latency overhead. Across all algorithms, the 

95% confidence intervals are relatively narrow, 

indicating controlled variability and reliable results. Raft-

based algorithms exhibit smaller standard deviations, 
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reflecting consistent and stable latency across repeated 

tests. In contrast, PoW, PoS, PBFT, and DBFT-

particularly PoS and PBFT-show larger standard 

deviations, suggesting considerable latency fluctuations 

due to variations in network communication and 

computational load. In summary, the DQN-Raft+ 

algorithm demonstrates a significant advantage in latency 

performance, making it well-suited for scenarios 

involving large terminal networks and stringent real-time 

requirements. Traditional Raft and Raft+ algorithms also 

offer good scalability and stability, making them 

appropriate for small- to medium-scale systems. 

Conversely, the high latency and volatility of PoW and 

PoS limit their scalability in larger environments. PBFT 

and DBFT are more appropriate for systems requiring 

high fault tolerance, although their higher latency costs 

necessitate trade-offs between performance and security. 

The DQN-Raft+ algorithm demonstrates the lowest 

average response time across all data packet levels, with 

latency increasing steadily from 39.91 ms at a packet 

count of 1 to 175.77 ms at a packet count of 10. This 

result significantly outperforms both the traditional Raft 

algorithm and its optimized variant, Raft+, indicating that 

the integration of deep reinforcement learning markedly 

enhances the efficiency of the Raft consensus mechanism 

under complex network traffic conditions. Furthermore, 

DQN-Raft+ exhibits a low standard deviation and narrow 

confidence intervals, further confirming its stability and 

robustness within the experimental setting. 

As the number of data packets increases, the latency 

of the traditional Raft algorithm rises markedly-from 

61.76 ms to 224.22 ms-while Raft+ consistently 

maintains slightly lower latency at each data packet level, 

demonstrating moderate improvements in processing 

efficiency. In contrast, blockchain-based consensus 

algorithms such as PoW and PoS consistently exhibit 

higher latency values. At the highest packet load (10), 

PoW reaches 372.44 ms and PoS 355.35 ms, highlighting 

substantial performance bottlenecks in scenarios 

requiring high-frequency or high-throughput processing. 

PBFT and DBFT perform better than PoW and PoS in 

terms of average latency but remain inferior to Raft-based 

algorithms. As the data packet count increases, both 

PBFT and DBFT experience substantial latency growth-

for example, PBFT rises from 82.66 ms to 303.08 ms, 

while DBFT increases from 81.71 ms to 284.08 ms. 

Although these algorithms outperform PoW and PoS in 

average latency, their broader confidence intervals 

suggest greater performance variability and reduced 

predictability under dynamic network conditions. In 

conclusion, DQN-Raft+ outperforms all other evaluated 

algorithms in both latency and scalability, making it 

especially suitable for digital information storage 

applications in IoT environments where real-time 

responsiveness is critical. Its superior performance not 

only surpasses that of traditional Raft and blockchain-

based consensus mechanisms but also demonstrates high 

stability and robust adaptability to increasing data loads. 

As shown in Table 3, the F-statistic for latency 

differences among the consensus algorithms significantly 

exceeds the critical value, with a corresponding p-value 

less than 0.001. This result indicates that the observed 

latency differences are highly statistically significant 

under the scenario with a data packet count of 1. In 

particular, the average latency of DQN-Raft+ differs 

substantially from that of the other algorithms, further 

validating the superiority of the proposed method in 

minimizing latency and enhancing system 

responsiveness. 

To facilitate a quantifiable comparison of 

multidimensional performance attributes, this study 

transforms qualitative security-related metrics-such as 

privacy protection, anti-censorship capability, and user 

identity protection-into standardized and actionable 

evaluation indicators. 

(1) Privacy protection capability is assessed using 

the ε parameter from differential privacy theory, which 

quantifies the potential privacy leakage under simulated 

query attacks. Lower ε values correspond to stronger 

privacy guarantees and reduced risk of sensitive data 

exposure. 

(2) Anti-censorship capability is evaluated based on 

information gain leakage (ΔH), which measures the 

amount of unauthorized information that an attacker can 

infer. A lower ΔH value reflects a higher resistance to 

censorship and unauthorized inference. 

(3) Access control effectiveness is jointly measured 

using the F1-score (the harmonic mean of precision and 

recall) and the Area Under Curve (AUC)- Receiver 

Operating Characteristic Curve (ROC). These metrics 

comprehensively reflect the system’s accuracy and 

robustness in correctly distinguishing between legitimate 

and unauthorized access attempts. 

(4) User identity protection is quantified by 

simulating a re-identification attack scenario, where 

anonymized user data is subjected to auxiliary 

information-based identification attempts. The re-

identification success rate is normalized using min-max 

scaling to yield a score between 0 and 1, with lower 

values indicating stronger identity protection. 

All evaluation indicators are averaged over five 

independent simulation runs, with corresponding 

standard deviations reported to ensure statistical 

robustness, reproducibility, and objective interpretation 

of the results. 

The comparison results of model performance for 

secure storage and privacy protection of digital 

information of the DQN Raft+ algorithm based on the 

network edge are exhibited in Table 4. 
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Table 4: Comparison results of model performance 

Metric 
DQN-

Raft+ 
Raft Raft+ POW POS PBFT DBFT 

Average Block Generation Delay 

(ms) 

175.77±

6.47 

224.22±

7.18 

202.38±

5.94 

472.44±

9.83 

355.35±

8.51 

303.08±

7.64 

284.08±

7.15 

Data Encryption Processing Delay 

(ms) 

51.24±2

.12 

85.98±3

.65 

80.13±3

.27 

170.23±

4.01 

164.83±

3.89 

101.34±

3.16 

114.60±

3.52 

Privacy Leakage (ε in Differential 

Privacy)↓ 

0.23±0.

04 

0.71±0.

06 

0.64±0.

05 

1.22±0.

08 

1.01±0.

07 

0.58±0.

05 

0.66±0.

06 

Information Gain Leakage (ΔH)↓ 
0.11±0.

02 

0.29±0.

03 

0.23±0.

03 

0.47±0.

05 

0.39±0.

04 

0.26±0.

03 

0.31±0.

03 

Access Control Effectiveness (F1-

score)↑ 

0.94±0.

01 

0.71±0.

02 

0.78±0.

02 

0.55±0.

03 

0.60±0.

02 

0.70±0.

02 

0.68±0.

02 

AUC-ROC↑ 
0.96±0.

01 

0.73±0.

02 

0.81±0.

02 

0.58±0.

03 

0.63±0.

02 

0.74±0.

02 

0.71±0.

02 

System Throughput (Transactions 

Per Second (TPS)) 

150±4.1

1 

120±5.0

3 

135±4.2

6 
70±6.77 80±5.88 

100±5.0

1 
95±4.65 

Data Loss Rate (%)↓ 
0.01±0.

003 

0.06±0.

007 

0.04±0.

006 

0.15±0.

009 

0.12±0.

008 

0.05±0.

006 

0.07±0.

007 

User Re-identification Risk (%)↓ 
1.2±0.2

1 

6.8±0.3

5 

5.5±0.3

3 

15.3±0.

49 

12.1±0.

44 

4.9±0.2

9 

6.1±0.3

1 
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As shown in Table 4, the DQN-Raft+ algorithm 

outperforms traditional consensus mechanisms across 

most key performance indicators, demonstrating robust 

capabilities in both privacy protection and overall system 

performance. In terms of block generation latency, DQN-

Raft+ achieves an average latency of 175.77 ms, 

significantly lower than Raft (224.22 ms), Raft+ (202.38 

ms), and PBFT (303.08 ms). Compared with the PoW 

algorithm’s latency of 472.44 ms, DQN-Raft+ reduces 

latency by over 62.8%, underscoring its superior 

responsiveness in high-concurrency environments. 

Regarding privacy protection, DQN-Raft+ attains a 

differential privacy leakage parameter (ε) of 0.23, 

markedly lower than Raft (0.71) and PoW (1.22). 

Additionally, its information gain leakage (ΔH) is only 

0.11, representing a 64.5% reduction compared to DBFT 

(0.31), which indicates a substantial mitigation of 

adversaries’ ability to extract sensitive information. For 

access control effectiveness, DQN-Raft+ achieves an F1-

score of 0.94 and an Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) of 0.96, significantly 

outperforming PBFT (F1 = 0.70, AUC = 0.74) and PoS 

(F1 = 0.60, AUC = 0.63). These results highlight its 

strong capability to accurately distinguish legitimate 

from illegitimate access requests. From a system security 

perspective, the user re-identification risk under DQN-

Raft+ is only 1.2%, whereas the traditional PoW model 

reaches 15.3%. Furthermore, the system throughput 

attains 150 transactions per second (TPS) with a minimal 

data loss rate of 0.01%, indicating a well-balanced trade-

off between efficiency and data reliability. In summary, 

DQN-Raft+ demonstrates clear advantages across 

multiple dimensions, including information security, 

privacy protection, and overall system efficiency. These 

findings validate the feasibility and effectiveness of 

DQN-Raft+ as a lightweight and secure consensus 

mechanism tailored for IoT environments.  

It is important to note that the “encryption 

processing latency” metric in Table 4 reflects the actual 

time consumed by cryptographic operations on edge 

devices. Although encryption is performed independently 

of the consensus process, different consensus algorithms 

indirectly influence encryption latency by affecting 

overall system performance and resource scheduling. For 

example, DQN-Raft+ optimizes the consensus-reaching 

process, thereby reducing waiting times for block 

generation and confirmation. This enables encrypted data 

to be promptly included in blocks after encryption, 

minimizing latency caused by delays in consensus 

confirmation. Additionally, the lightweight network 

architecture and efficient scheduling strategies adopted 

by DQN-Raft+ alleviate computational burdens on edge 

devices, further shortening encryption processing time. 

Conversely, traditional algorithms such as PoW involve 

intense competition for computational resources and 

prolonged block confirmation times, often leading to 

backlogs of encrypted data awaiting consensus. This 

backlog increases the overall delay. Therefore, while 

encryption and consensus are separate stages, the 

efficiency and scheduling strategy of the consensus 

algorithm exert a significant indirect impact on 

encryption latency. 

To verify the learning capability and convergence 

performance of the proposed DQN algorithm in 

managing digital information security storage tasks 

within IoT environments, this study presents the learning 

curve illustrating the trend of rewards across training 

episodes. This visualization offers an intuitive assessment 

of whether the algorithm progressively optimizes its 

policy and enhances system performance, thereby 

ensuring stable and efficient operation in practical 

scenarios. The learning curve of the DQN algorithm is 

shown in Figure 8.  
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Figure 8: DQN algorithm learning curve 
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As illustrated in Figure 8, the average reward 

fluctuates during the training process relative to the 

number of training episodes. In the initial phase (0–150 

episodes), the average reward remains relatively low and 

occasionally negative, indicating that the model has not 

yet acquired an effective policy and is still exploring the 

environment. With continued training, the average 

reward demonstrates a steady upward trend, reflecting the 

model’s ongoing learning and policy optimization to 

achieve higher returns. Between 200 and 600 episodes, 

the reward increases rapidly, signifying significant 

improvement in policy selection. After 600 episodes, the 

reward growth rate decelerates and stabilizes around 30 

points, suggesting that the DQN algorithm has converged 

and attained a relatively optimal policy. This convergence 

curve validates the effectiveness and appropriateness of 

the selected network architecture and hyperparameters-

such as a batch size of 32, a three-layer fully connected 

network, and a discount factor of 0.97-within the context 

of this study. It confirms that the algorithm achieves 

satisfactory learning performance and exhibits stable 

behavior for information security storage tasks in IoT 

environments. 

 

4.3 Discussion 

Compared with traditional consensus algorithms, 

the proposed DQN-Raft+ algorithm not only achieves 

significant improvements in performance metrics but also 

demonstrates comprehensive advancements in system 

design complexity, learning convergence capability, and 

data protection levels. In terms of design complexity, the 

Raft algorithm inherently features a relatively simple 

structure, making it suitable for small-scale networks; 

however, its stability and flexibility under multi-node 

fluctuations remain limited. Although PBFT and DBFT 

provide strong consistency guarantees, their 

communication complexity is considerably high, leading 

to poor scalability as the number of nodes increases. In 

contrast, DQN-Raft+ preserves the concise architecture 

of Raft while integrating deep reinforcement learning to 

optimize the leader election mechanism. This introduces 

additional learning overhead solely during the training 

phase, whereas the deployed system maintains a 

lightweight structure, rendering it well-suited for 

resource-constrained edge computing environments. 

Regarding learning convergence, traditional consensus 

algorithms such as PoS and PBFT lack adaptive 

capabilities and are unable to dynamically adjust 

consensus strategies according to changing 

environmental conditions [31]. By modeling the 

consensus process as a Markov Decision Process (MDP), 

DQN-Raft+ enables continuous policy updating under 

dynamic multi-terminal scenarios, thereby exhibiting 

strong environmental adaptability and learning ability 

[32,33]. Experimental results demonstrate that DQN-

Raft+ converges to a stable strategy within a limited 

number of episodes, effectively enhancing processing 

efficiency and robustness in high-load IoT environments. 

In terms of data protection, DQN-Raft+ significantly 

outperforms traditional algorithms, achieving a privacy 

protection score of 0.95 and a censorship resistance score 

of 0.90, compared to PoW (0.45 and 0.35) and PoS (0.50 

and 0.40). This superiority primarily results from 

incorporating learned assessments of node reliability and 

historical behavior during consensus node selection, 

effectively mitigating the risk of malicious nodes 

dominating consensus and improving the precision of 

access control. Although the initial training phase of 

DQN-Raft+ requires computational resources for policy 

learning and parameter updates, this cost is incurred only 

once. Upon deployment, the algorithm substantially 

reduces consensus latency and improves block generation 

efficiency, yielding clear long-term performance benefits. 

Regarding the scalability and generalization 

capabilities of the proposed model, the DQN-Raft+ 

algorithm exhibits a degree of adaptability through 

reinforcement learning strategies when faced with 

increased node scale or dynamic environmental changes. 

However, its robustness remains limited in adversarial 

IoT scenarios, such as those involving Sybil attacks, and 

it has yet to undergo systematic validation against such 

threats. Future research could explore the integration of 

federated learning frameworks or secure hardware 

modules to enhance the system’s overall security and 

generalization capabilities. Moreover, although the deep 

reinforcement learning-based consensus mechanism 

demonstrates notable advantages in latency reduction and 

stability, its fault tolerance in the presence of 

malfunctioning or malicious nodes remains unassessed. 

Additionally, given that IoT devices often operate under 

stringent energy and computational constraints, the 

current study does not sufficiently address the model’s 

applicability in energy-limited environments. While DL 

techniques can improve system performance, they may 

also introduce increased computational and energy 

overheads. Therefore, future efforts should focus on 

developing low-power algorithms and optimizing 

lightweight model architectures to ensure the approach 

remains practical for real-world IoT deployments without 

compromising performance. Overall, DQN-Raft+ 

effectively achieves intelligent privacy protection and 

access control optimization alongside efficient block 

generation, successfully mitigating the scalability 

challenges of Raft-based algorithms, the high resource 

demands of PBFT/DBFT, and the adaptability issues 

faced by traditional PoW and PoS algorithms in edge 

environments. This approach offers a novel solution for 

constructing IoT security storage systems that balance 

scalability, robustness, and security. 

 

5 Conclusion  

This study proposes a novel consensus mechanism, 

DQN-Raft+, which integrates blockchain technology 

with deep reinforcement learning to achieve secure 
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storage and privacy protection of digital information in 

IoT environments. Experimental results demonstrate that 

the proposed method significantly outperforms the 

traditional PoW mechanism across key performance 

metrics, including block generation latency, data 

encryption processing delay, privacy protection 

capability, system throughput, and data loss rate, thereby 

exhibiting superior efficiency and stability. More 

importantly, DQN-Raft+ leverages deep reinforcement 

learning to enhance the intelligence and environmental 

adaptability of consensus strategies, demonstrating 

strong generalizability in highly dynamic, heterogeneous 

node networks with stringent real-time requirements 

typical of IoT scenarios. This mechanism not only 

effectively improves system processing capacity under 

high-concurrency workloads but also excels in 

safeguarding data privacy and resisting censorship, 

providing a scalable and transferable technical solution 

for data security in the IoT domain. 

Nonetheless, this study has certain limitations. 

Specifically, the robustness and security of the DQN-

Raft+ algorithm have not been systematically evaluated 

under extreme high-load conditions, complex network 

topologies, or adversarial scenarios such as Sybil attacks. 

Moreover, the deployment and operation of DL models 

on energy-constrained edge devices pose practical 

challenges. Future research will aim to enhance the 

model’s generalizability and robustness in real-world 

application contexts and to improve its performance in 

low-power environments. Potential directions include the 

integration of secure hardware enclaves to reinforce 

privacy-preserving computation, the adoption of 

federated learning frameworks to facilitate distributed 

training, and the incorporation of edge computing 

architectures to minimize model inference latency. These 

enhancements are expected to promote broader 

applicability and scalability of the proposed approach in 

large-scale, real-time IoT systems. 
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The key experimental parameters, model 

configurations, and representative query statements 
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the research methodology. The example data structures 

and query logic presented serve as foundational 

references, enabling accurate replication of the 

experimental procedures and validation of the findings. 
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