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We describe a biophysical framework for subneuronal processing of information via certain quantum me-
chanical processes and solitonic interactions as applicable to neuronal microtubules. In particular, we
describe how certain energase actions and vibrationally assisted tunneling may influence the conforma-
tional dynamics of the neuronal cytoskeletal protein network. Some implications are also discussed in
relationship to special neurophysiological processes as basic to the study of mind and memory.

Povzetek: Opisan je model neurobiološkega delovanja.

1 Introduction
Solitons are dissipationless waves whose theory and appli-
cations prevail in fields such as quantum physics, atmo-
spherics, oceanography, cellular automata, and biophysi-
cal systems. Some well known examples appearing in the
wealth of literature on the subject include the equations
of Korteweg-de Vries, Boussinesq, Klein–Gordon, and the
nonlinear Schrödinger (NLS) equation (Dodd et al. 1982,
Calogero and Degasperis 1982, Davydov 1991). These ro-
bust, often bell–shaped waves can propagate in a pulsating
manner while retaining their form and velocity in undergo-
ing collisions; so in a sense they can be compared with in-
teracting particles. On the other hand, their universality as
a nonlinear scientific phenomenon suggests they are essen-
tial to understanding life and information within a unified
framework, and therefore provide an essential contribution
to the understanding of consciousness.

Soliton equations constitute part of a hierarchy of in-
tegrable, or ‘solvable’, systems admitting high degrees of
symmetry (Ablowitz and Clarkson 1991, Calogero and De-
gasperis 1982, Miwa et al. 1982), but seen as solutions to
nonlinear wave equations, solitons do not normally obey
the superposition principle, so that when two solutions
are combined, a complicated wave is formed. Eventually
however, pairs of soliton waves are seen to actually pass
through each other thus revealing an unusual phenomenon
that has far–reaching applications. Of specific interest here

are ‘kink’ and ‘antikink’ solutions which are common to
a number of solvable systems where spatial derivatives are
localized; typically, the resulting wave pulsates in a twist-
ing fashion with certain asymptotic properties. Besides
kink and antikink solutions, there may also be oscillatory
solutions known as ‘breathers’ which will play an instru-
mental role in the discussion following.

For biomolecular/physical systems, the works of Davy-
dov (1982, 1991) provide a foundation for applying the the-
ory of solitons for dissipationless energy transfer in hydro-
gen bonded systems, DNA, membraneous flexing, muscu-
lar contraction and other phenomena (we refer also to the
excellent article by Scott 1992 on this subject). Our inter-
est here draws upon the role that soliton dynamics can play
in neurobiology/neurophysiology in a particular situation;
namely, we survey how such effects theoretically related
to systems such as the sine–Gordon and the class of evo-
lutionary equations considered in Davydov (1982, 1991),
might influence the mechanisms of dendritic and axonal
microtubules, subneuronal processing of information, and
synaptogenesis in cerebral architecture.
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2 Microtubules and C–terminal
tubulin tails

Neuronal structures within the brain are known to be dy-
namically regulated by strings of self–assembling protein
networks forming the cytoskeleton, a skeleton–like protein
network that regulates cellular dynamics. The main con-
stituents of the cytoskeleton consist of microtubules which
are like hollow cylinders of 25 nm in diameter, of vari-
able length (from micrometers to milimeters, depending on
whether they are contained within dendrites or axons) and
are composed of assemblies of α/β tubulin dimers. Mi-
crotubules interact with intermediary and actin filaments,
MAPs (microtubule associated proteins), as well as dif-
ferent scaffold proteins, thus organizing the intracellular
space and tuning the biochemical activity of microtubule
anchored enzymes (mostly phosphatases and kinases). The
assembly by α/β tubulin dimers is a process requiring
nucleotide GTP (guanosine triphosphate) to bind to both
α and β tubulins. The α–bound GTP never hydrolyzes,
whereas the GTP–molecule which is tied to the β–tubulin,
is hydrolyzed to nucleotide GDP (guanosine diphosphate)
soon after the dimer is incorporated into the growing mi-
crotubule lattice. The released energy is then stored in
the microtubule wall as an elastic strain, and the β–tubulin
bound GDP cannot be further phosphorylated or exchanged
for GTP because the successive α–tubulin in the protofila-
ment occludes the preceding β–tubulin nucleotide binding
pocket (Heald and Nogales, 2002).

Experimental data by Sackett (1995) revealed the form
of microtubules not as smooth cylinders, since extending
from each tubulin are tiny ‘hairy’ projections of 4–5 nm in
length, referred to as tubulin tails. Since these projections
are highly flexible, their PDB structure was revealed only
recently by Jimenez et al. (1999) who determined the he-
licity of α (404–451) and β (394–445) tubulin C–terminal
recombinant peptides with the use of NMR (nuclear mag-
netic resonance). They showed that the C–terminal domain
of tubulins has a different length and structure in both α–
and β–tubulin. In general, the C–terminal domain has a
C–terminal helix H12 and a random coil C–terminal tubu-
lin tail. In α–tubulin molecules aminoacid residues 418–
432 form the C–terminal helix H12 and aminoacid residues
433–451 comprise the α–tubulin tail. The α–tubulin
C–terminal tail aminoacid sequence is EEVGVDSVEG-
EGEEEGEEY. The α–tubulin tail is 19 aminoacids long
and possesses 10 negatively charged residues. The situa-
tion in the β–tubulin C–terminal domain is more interest-
ing. Jimenez et al. (1999) have computed a 9 aminoacid
longer helix of the β–tubulin compared to previous PDB
models (cf Nogales et al. 1998). This suggests an ex-
tension in the protein, supporting the possibility of a func-
tional coil–to–helix transition at the C–terminal zone. The
β–tubulin C–terminal helix H12 is formed by aminoacid
residues 408-431, but it seems that the reversible transi-
tion between coil and helix of the last 9 aminoacid residues

423–431 from the C-terminal helix (with sequence QQYQ-
DATAD) could either decrease or increase the length of
the helix H12, at the same time increasing or decreasing
the β–tubulin tail length. The β–tubulin tail aminoacid
sequence (residues 432–445) is EQGEFEEEEGEDEA. It
has 14 aminoacids and 9 negatively charged residues, but
depending on the conformational status of the residues
423–431, the β–tubulin tail random coil can extend to 23
aminoacid residues bearing 11 negative charges. Follow-
ing the C–terminal helices α–H12 and β–H12, the 19 and
14 C–terminal residues of the respective α– and β–tubulin
tails are observed to be disordered by NMR. In particular,
this is a dynamical disordering and is effectively the man-
ifestation of the extreme sensitivity of the tubulin tails to
environmental conditions, and local electric fields yielding
a plethora of metastable conformations (Georgiev 2003a).

Located within dendrites and axonal projections, micro-
tubules serve as tracks for the transportation of post–Golgi
vesicles by microtubule bound motor proteins (such as ki-
nesin and dynein). Microtubules however are not passive
elements in the vesicle transport and it has been shown that
the tubulin C–terminal tails modulate kinesin function. Ex-
periments performed by Skiniotis et al. (2004) have shown
that the β–tubulin tail interacts with the kinesin switch II
domain, while the α–tubulin tail possibly interacts with the
kinesin α 7–helix in such a way that after the kinesin bound
ATP (adenosine triphosphate) is hydrolyzed, the kinesin
perambulates along the microtubule surface. Native micro-
tubules that possess tubulin tails cannot be decorated by
ADP (adenosine diphosphate)–kinesin molecules because
of the weak ADP–kinesin/tubulin tail binding, while subtil-
isin treated microtubules that lack tubulin tails bind stably
ADP–kinesin, thus blocking the kinesin walk. The conclu-
sion is that the tubulin tails catalyze the detachment of the
kinesin–ADP complex from the microtubule surface allow-
ing the kinesin dimer to take a ‘step’ along the microtubule
protofilament.

Microtubules do not only regulate motor protein func-
tion but also attach with their C–terminal tubulin tails dif-
ferent MAPs and protein kinases and phosphatases, thus
organizing the intraneuronal space. The proper attach-
ment/detachment of these proteins could regulate their en-
zymatic activity. In case studies of schizophrenia, Arnold
et al. (1991) have found altered expressions of MAP2 and
MAP5 that result in abnormalities in the neuronal cytoar-
chitecture. Whereas in Alzheimer’s disease, the primary
alteration is the phosphorylation status of axonal MAP–tau
and the activity of protein phosphatase 2A (PP2A) regu-
lated via attachment/detachment to microtubules (Sontag
et al. 1999).

We propose that the mechanism of the tubulin tail en-
zymatic action is generated by vibrationally assisted tun-
neling – a key concept which emerged and was experi-
mentally verified over the last several years (Sutcliffe and
Scrutton, 2000). A locally formed tubulin tail standing
breather could promote or suppress conformational tunnel-
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ing of a molecule attached to the tubulin tail. The effect
of vibrations on mixed-tunneling could be either to pro-
mote or to suppress the tunneling process and this depends
on the boundary conditions (Takada and Nakamura 1994,
1995). Formally, the mechanism of the tubulin tail breath-
ing action could be manifestly a form of enzymatic ener-
gase process. Energases do not have source of energy, but
rather induce conformational transitions in a molecule that
has accumulated energy in an intermediate highly energetic
conformational state (Purich, 2001). The accumulated en-
ergy is derived from hydrolyzed ATP or GTP in previous
biochemical steps, so for that reason this energy is usually
called ‘primed energy’ and the process of energy accumu-
lation in metastable protein states is referred to as ‘prim-
ing’.

The idea that microtubules might be agents of sub-
neuronal processing of information was originally sug-
gested by Hameroff and Watt (1982). Hameroff and col-
leagues (Hagan et al. 2000) conjectured that the energy
for computation could be delivered from the tubulin bound
GTP molecules. Since it had been already observed that
in stable microtubules there is no possibility for tubulin
bound nucleotide cycling, we propose that tubulin tail ener-
gase action releases the energy accumulated in metastable
conformational states of kinesin, dynein, or phosphory-
lated MAPs. The metastable states of these proteins are
produced via ATP hydrolysis through previous ‘priming’
steps. We mention that ideas involving GTP–hydrolysis,
ferroelectric phase and (C–terminal) tubulin tails as possi-
ble agents of information transfer, have been suggested in
Georgiev (2003a, 2003c, 2004), Georgiev et al. (2004), Sa-
tarić and Tuszyński (2003) and the appropriate references
therein.

3 The water laser as a pumping
mechanism

As the organizing framework for special neurobiological
processes, the cytoskeleton is the major intracellular struc-
ture providing a protein surface to which water molecules
cling thus facilitating the water ordering. We point out that
the term ‘water’ used here is not quite the same as its mun-
dane sense, but instead should be regarded as a protein–like
saturated mixture. Ordered (vicinal) water molecules are
microscopic dipoles that interact with each other via hy-
drogen bonds whose effect influences a relatively high vis-
cosity, surface tension and dielectric constant. They form
the water electric dipole (WEDP)–field occurring on ei-
ther side of a brain cell. Within the interior of the cell,
the water molecules generate a WEDP–field in the vicin-
ity of the cytoskeleton, whereas in the exterior of the cell,
the molecules form an intercellular flow completing the
regions between neighbouring cells. Del Giudice et al.
(1983) have proposed that electromagnetic waves arising
from the WEDP–field within the body of the cytoskeleton,

create signals compatible in size with the internal diameter
of a given microtubule.

To proceed, we adopt in part the development of Jibu et
al. (1994, 1996, 1997). Let V denote a perimembranous
region or a spatial region in the vicinity of a cytoskeletal
microtubule. The WEDP–field in V taken within a cylin-
drical neighbourhood, is represented by a 2–spinor field

ψ(x, t) =
[
ψ+(x, t)
ψ−(x, t)

]
, (3.1)

where ψ+(x, t) and ψ−(x, t) are spinor components. The
electric dipole moment is given by

µ = ψ(x, t)∗
}
2
σ ψ(x, t) , (3.2)

where σ = [σ1, σ2, σ3] is a 3–vector whose components
consist of the Pauli spin matrices. The dipole moment
µ exhibits the water molecule as similar to a quantum–
mechanical spinning top. In other words, it is due to µ that
the water molecules interact dynamically with the quan-
tized electromagnetic field in V . If mp and ep denote
the proton mass and charge respectively, then the aver-
age moment of inertia of a water molecule is estimated as
I = 2mpd

2 with d ≈ 0.82Å, whereas µ is estimated as
µ = 2epP , with P ≈ 0.2Å .

Given ψ(x, t) 6= 0 only holds at each position x = xk

of the k–th manifestation of localization, the WEDP–field
with N localizations are describable in terms of N spin
variables as given by

sk(t) = ψ(xk, t)∗ σ ψ(xk, t) , 1 ≤ k ≤ N . (3.3)

The Hamiltonian of the WEDP–field for N water
molecules with energy difference ε, is given by

HWM = ε

N∑

k=1

sk
3(t) , (3.4)

where for a given wave vector k0, it is convenient to as-
sume that a normal mode has an angular frequency ωk0

resonating to the energy difference between two principal
eigenstates for which ε = }ωk0 (ε ≈ 24.8 meV), in accor-
dance with the predictions of dominance over other possi-
ble energy exchanges (Del Giudice et al. 1988). The radi-
ation field of V is given by a scalar electric field operator
E = E(x, t) whose associated Hamiltonian is

HEM =
1
2

∫

V
E2 d3x . (3.5)

A main premise of Jibu and Yasue (1997) is that the
dynamics of the WEDP–field and the quantized electro-
magnetic (EM) field is an energy interchange through cre-
ation and annihilation operators of photons. In order to see
this, consider a decomposition of the electric field operator
E = E+ + E− into its positive and negative frequency
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components. Then the Hamiltonian for the interaction be-
tween the WEDP–field and the EM–field is given by

HI = −µ

N∑

k=1

{E−(rk, t)sk
− + sk

+E+(rk, t)} , (3.6)

where sk
± = sk

1 ± ιsk
2 . The total Hamiltonian HQM

which governs the quantum mechanical dynamics of the
electromagnetic field, the dipolar vibrational field of water
molecules along with their interaction, is then expressed by

HQM = HEM + HWM + HI . (3.7)

Since parts of the region V in the vicinity of a cell can
be considered as a cavity for the electromagnetic wave, we
introduce the normal mode expansion of E given by

E±(x, t) =
∑

λ

E±
λ (t) exp[ ± ι(λ · x− ωλt) ] . (3.8)

From a motivational viewpoint, let us mention that the
process of signaling response in synapses is influenced by
certain classes of cellular adhesive molecules (CAMs) in
which the actin cytoskeleton provides a suitable structural
mechanism for assimilating the signaling inputs. The for-
mation of functional synapses at an axonal growth cone
involves identifying and initiating contacts with suitable
companion cells (Brose 1999). Of special importance for
synapse formation are two types of CAMs known as β-
neurexin and neuroligin forming a heterologous adhesive
interaction. Remarkably, β-neurexin-neuroligin interaction
alone has the unique ability to act as a bidirectional trig-
ger of synapse formation (Dean and Dresbach, 2006). β–
neurexin is located in axons and interacts presynaptically
with CASK, a multidomain scaffolding protein that orga-
nizes the presynaptic space and emits signals to the actin
cytoskeleton via protein 4.1. β–neurexin also directly in-
teracts with the synaptic vesicle protein synaptotagmin-1,
thus controlling exocytosis and neuromediator release (see
later). Synaptotagmin-1 per se might act as MAP molecule
binding to β–tubulin tails stabilizing microtubules in high
Ca2+ concentration presynaptically. Neuroligins are lo-
cated in dendrites and transmit information to postsynap-
tic density protein (PSD-95), which is a multidomain scaf-
fold protein that anchors different ion channels to the active
zones of the postsynaptic membrane. Neuroligin-1 is a spe-
cific CAM for excitatory (glutamatergic) synapses, while
neuroligin-2 is a specific CAM for inhibitory (GABAer-
gic) synapses. PSD-95 is anchored to postsynaptic micro-
tubules via another protein known as CRIPT. Neuroligins
on binding with presynaptic β–neurexins, comprise an ad-
hesive system facilitating learning processes manifest as
a morphological reorganization of the synapse. Relevant
here is that the radiation field of (3.8) could be considered
as falling within this junction as shielded by ordered water
molecules, and so assists the signaling mechanism between
neighbouring neurons (Georgiev 2003b, 2003c).

Next, we introduce collective dynamical variables S±λ
for water molecules given by

S±λ (t) =
N∑

k=1

sk
±(t) exp[ ± ι(λ · x− ωλt) ] . (3.9)

On setting S ≡ ∑
k sk

3 , we can express (3.7) in the form

HQM = HEM + εS − µ
∑

λ

{E−
λ S−λ + S+

λ E+
λ } . (3.10)

Equation (3.10) resembles that of the Hamiltonian for a
laser radiation process, and in this way suggests that the
water molecules of V exhibit a laser–like coherent optical
property, provided the energy is sustained above a certain
threshold; this threshold will be represented by equation
(3.15) below. The dynamically ordered region of water
molecules and quantized EM–field, are considered within a
coherence length of 50 µm. The explanation given by Jibu
et al. (1997) is that by increasing the ordering of water on
the microtubule surface, spontaneous symmetry breaking
occurs (see below), thus creating Nambu–Goldstone (NG)
bosons, the quanta of long–range correlation waves of the
aligned electric dipoles referred to as dipole wave quanta,
denoted DWQ.

The Hamiltonian HEM can also be expressed in terms
of canonical operators (observables) Pλ(t) and Qλ(t) as
defined by

Pλ(t) =

√
}ωλ

2
ι(E−

λ −E+
λ ) ,

Qλ(t) =
√

}
2ωλ

(E−
λ + E+

λ ) ,

(3.11)

and which satisfy the well–known canonical commutation
relations of the Heisenberg algebra. On making the neces-
sary transformations and substituting into (3.10), we obtain

HQM =
1
2

∑

λ

{P ∗λ (t)Pλ(t) + ω2
λQ∗λ(t)Qλ(t)}

+ ε

N∑

k=1

sk
3(t)

−
√

2
}
µ

N∑

k=1

∑

λ

{√ωλQλ(t)sk
1

− 1√
ωλ

Pλ(t)sk
2} .

(3.12)

Consider when a system possesses a certain symmetry
but through which the vacuum state is altered (through this
symmetry) and may be transformed into some other de-
generate state, whereas the Lagrangian symmetry remains
independent of the vacuum solution. In other words, the
Hamiltonian may be invariant under the symmetry trans-
formation but the vacuum (or lowest energy) state is not.
In this way, spontaneous symmetry breaking (SSB) occurs
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and results in massless quanta governed by Bose–Einstein
(BE) statistics that are assigned to repair the broken sym-
metry. The NG bosons are understood to be the quanta of
long range coherence induced by the vacuum state, which
violated the original dynamical symmetry. Typically, what
might otherwise be two massive fields emerge from SSB as
one massive and one massless field, the latter in this case is
a NG boson. In Jibue–Yasue (1997) this is explained when
the corresponding Heisenberg equations of (3.12) are con-
sidered in order to study the dynamically ordered state of
the WEDP–field in terms of a long–range alignment of as-
sociated spin variables. Under an SO(2)–transformation of
the canonical variables, the Hamiltonian HQM is invariant,
whereas a time independent solution is not invariant.

In order for the coherent emission of photons to have
the proper biological impact, it is necessary to consider
timescales of the order of 10–15 picoseconds which are
compatible with that of protein action. In the presence
of a disordered thermodynamic system, thermal fluctua-
tions, noise and dissipation have to be take into consider-
ation. However, the laser–like emission of coherent pho-
tons may still be realized under such circumstances once
the protein molecules achieve dynamics sufficient to en-
gage a pumping effect of the WEDP–field. This ‘slow phe-
nomenon’ involving the water laser is preferred in this sit-
uation to the ‘fast phenomena’ of superradiance. Jibu and
Yasue (1997) consider the relevant system of Heisenberg–
Langevin equations governing the collective dynamics of
the quantized EM–filed in V . On assuming a certain co-
herent state representation, these are seen to reduce to the
stochastic Langevin equation

dZ

dt
= α1Z − α2ZZ2 + B , (3.13)

where Z = Z(t) is a Markov process in C of the cor-
responding EM–field operator, B = B(t) is a (complex)
Gaussian white noise of thermal fluctuations of quantized
EM–field, and α1, α2 are particular constants depending on
the volume V of the region, thermal fluctuations for the EM
and WEDP–field, damping coefficients (denoted γ, γ0) for
the WEDP–field, and a parameter of pumping rate (denoted
S∞) resulting from the interaction of the WEDP–field with
the dynamics of the microtubule protein molecules. In turn,
these parameters are used to define a diffusion constant D,
which along the probability density function f = f(z, x̄, t)
of Z(t), transform equation (3.13) to its corresponding
Fokker–Planck equation

∂f

∂t
= − ∂

∂z
[(α1z − α2zz2)f ] + D

∂2f

∂z ∂z̄
. (3.14)

Finally, and again referring to Jibu and Yasue (1997) for
details, the required level of excitations of the quantized
EM–field, namely the photon emission as induced by the
electric dipoles of tubulin, is attained when the pumping
rate S∞ satisfies the estimate

S∞ >
}2V γ0γ

4πεf2
. (3.15)

Thus it is suggested that the energy for the coherent pulse
emission by vicinal water in a proximity of 4-5 nm of the
microtubule’s outer surface could be gained from the tubu-
lin electric dipole oscillations and/or from vibrations along
the microtubule walls. The transmission of pulse mode co-
herent photons is determined by Maxwell’s equation as de-
rived from the total Hamiltonian HQM . For E = E(z, t)
it is given by the quantum dynamical equation of motion
(Jibu et al. 1994, 1997, Abdalla et al. 2001) :

∂E±

∂z
+

1
c

∂E±

∂t
= ∓ι

2πεµ

}V
S± . (3.16)

In terms of a quantum average, denoted 〈 〉q , the expression
for the electric field is

θ±(z, t) =
2µ

}

∫ t

−∞
〈E±(z, u)〉q du . (3.17)

This leads to a soliton equation of sine–Gordon type

∂2

∂t∂σ
θ± = −2A sin θ± , (3.18)

expressed in Lorenztian coordinates, where
A = 2πεµ2N

}2V , in which N
V is the number of water dipoles

per unit of volume, and σ = t + z
c . The indices ± indi-

cate the transverse directions of the electric field where it is
assumed there is no propagation in the longitudinal direc-
tion. The soliton equation (3.18) is an equation character-
istic of self–induced transparency as realized in nonlinear
optics and here suggests how the cumulative effects of the
WEDP–field might induce a transfer of energy via dissipa-
tionless waves. Time–differentiating (3.17), leads to

E =
}
µ

√
Aρ sech [

√
Aρ (t− z

c
) ] , (3.19)

where ρ = v0
c−v0

. The above equations were taken up by
Abdalla et al. (2001) who studied the correspondence be-
tween information configurations induced by solitonic in-
teractions and the DWQ at certain levels of excitation. As
is part represented by the sine–Gordon equation (3.18), the
cumulative effect of the WEDP–field then induces a source
of resonant–propulsive energy.

Let us mention several alternative models which con-
sider different dynamics, based on equations of ‘solvable’
type, which are relative to the lattice structure of micro-
tubules. For instance, in Chou et al. (1994) energy releas-
ing effects of GTP–hydrolysis could generate certain kinks
and pulsations which propagate along the microtubule via
elastic flexing of the dimers. In Satarić and Tuszyński
(2003) a liquid crystal property of microtubules is con-
sidered relative to kink ‘shifting’ through GTP hydrolysis
whose rate may increase given additional Ca2+ and where
possible impediments to the kink motion, polymerization,
and microtubular caps are taken into account. These mod-
els, however, investigate effects in dynamic microtubules
that undergo assembly/disassembly while not addressing
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the contrasting situation for stable microtubules (such as
the neuronal types). Another model involving solitonic in-
teractions, as considered by Mavromatos et al. (2002), en-
tails possible quantum coherent states of the DWQ on the
tubulin dimer walls where the DWQ are paired to electrons
in the dimer hydrophobic pockets via Rabi field coupling.

A model suggested in Georgiev (2004) relates to how
the water dipoles from the tubulin tail hydration shells that
form a 4–5 nm layer on the outer microtubular surface,
strongly interact with the local electromagnetic field thus
affecting the conformational state of the tiny C–tubulin
tails. The model is based on a long–range interaction of
the water molecule dipoles and local EM field resulting in
a coherent emission of photon pulses propagating via tun-
neling. The resulting solitons could be viewed as traveling
conformational waves in the tubulin tails that do not dis-
sipate under thermal fluctuations, but could be pumped by
the water laser provided the threshold inequality (3.15) is
satisfied. This model also considers solutions to the sine–
Gordon equation as providing the necessary dynamics. To
facilitate matters, consider a change of parameters from
Lorentzian coordinates to laboratory coordinates, so that
equation (3.18) is now expressed by :

utt − uxx = ± sin u , u ≡ u(x, t) . (3.20)

We have chosen for now a description based on the elas-
tic ribbon model, and recall that a kink soliton involves a
twist in a solution, u = u(x, t) say, which moves from one
solution u = 0 to an adjacent solution u = 2π . Vacuum
states as constant solutions of zero energy, correspond to
u = 0(mod 2π). In this respect, the traveling solitons of
Jibu–Yasue can be regarded as tunneling photons coupled
with tubulin tail hydration shells. The assumption is that
there is a prevailing coherence time of 10–15 picoseconds.

Such a kink (K) solution uK of (3.20) as given by :

uK = 4 tan−1 exp[ γK(x− vKt− xK) ] , (3.21)

where 0 ≤ vK < 1 is the kink velocity, xK the kink posi-
tion at t = 0, and

γ−1
K = (1− v2

K)
1
2 , (3.22)

the kink width. The kink energy is given by EK = 8γK .

On setting G = γK(x − vKt − xK), one also finds the
derived equations :

ux = 2γK sech G , (magnetic field)
ut = −2γKvK sech G , (electric field)

sin
1
2
u = sech G ,

(3.23)

(see Dodd et al. 1982).

The antikink (AK) solutions correspond to reversing the
velocity, v 7→ −v, and taking the negative square root in

(3.22). At this stage we mention the role of certain so-
lutions, called breathers which are manifestly local oscil-
lating waves resulting from how a kink and antikink can
merge into a combined state. Breathers admit more struc-
ture compared to a usual traveling wave because of the for-
mer’s internal oscillations, and in contrast to (topological)
ribbon solitons, can evolve without energy activation. In
practice they have been realized as linear phonon modes
which are excitable within thermal fluctuations (Russell et
al. 1997). It was suggested earlier that some class of prop-
agating solitons may influence the conformational states
of the tubulin tails. To this extent, in Georgiev (2004,
2003a) several possibilities involving sine–Gordon kink–
antikink–breather soliton collisions were proposed, where
for instance, a standing breather soliton could be coupled
to the energase action of the tubulin tails through vibra-
tionally assisted tunneling. Further, we are reminded how
the β–tubulin tails may interact with kinesin switches and
the role of the α–tubulin tail in activating the kinesin walk
(Skiniotis 2004).

As outlined in Dodd et al. (1982), the scheme of Bäck-
lund transformations can be employed to derive 3–soliton
from 2–soliton solutions. In relationship to the kink so-
lution uK in (3.21), we follow Dmitriev et al. (1998) to
describe a 3–soliton solution uKB representing the elastic
collision (without exchange of energy or momentum) be-
tween a kink and a breather, as it is given by the sum

uKB = uK + wB , (3.24)

where the term wB is explained as follows. Firstly, if ω
denotes the frequency of the breather, 0 ≤ ω < 1, we set
η = (1− ω2)

1
2 . Then

wB = 4 tan−1
{(

2ωη(sinh D − cos C sinhG)

+ 2ηγKγB(vK − vB) sin C coshG
)
·

(
2ωη(cos C + sinh D sinhG)

− 2ωγKγB(1− vKvB) cosh D cosh G
)−1}

,

(3.25)
where we have set

C = −ωγB(t− vB(x− xB)) + 2πm ,

m an integer,

D = ηγB(x− xB − vBt) ,

γ−1
B = (1 − v2

B)
1
2 is the kink width in which vB denotes

the velocity of the breather 0 ≤ |vB | < 1, and lastly, xB

denotes the position of the breather at time t = 0 . In the
continuum limit, the breather’s wavelength λ and period T
are related via

|vB | = λ

T
, λ = 2πγB |vB | 1

ω
, (3.26)
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whereas the amplitude A and energy EB are given by A =
4 tan−1( η

ω ) , EB = 16ηγB .
Particularly interesting is the collision between a stand-

ing breather (vB = 0) and a traveling kink. After the
collision the kink and breather recover their velocity and
shape. However, the interaction results in a phase shift
of the standing breather that oscillates at a new position.
Therefore we can consider the sine–Gordon soliton colli-
sions as a kind of application of computational gates.

In the process of collision between a moving kink and a
standing breather, the shift ∆B of the breather is given by
the formula

∆B =
2 tanh−1

√
(1− ω2)(1− v2

K)√
1− ω2

, (3.27)

where vK is the velocity of the kink. If the original position
is denoted x0, then post–collision, the new position will be
x = x0 + ∆B .

Thus as a result of a pushing/pulling kink or antikink col-
lision with a standing breather, the latter through its phase
shift is conjectured to cause a deflection of the tubulin tails
so as to influence the kinesin walk across the microtubule
surface. Making the necessary change in parameters, a
kink–breather or an antikink–breather collision might ac-
tually implement the required ‘pushing’ effect (this ques-
tion remains open) if indeed a breather does function as
a catalytic agent registering transitions, influencing MAPs
and as noted, the workings of the prevailing motor pro-
teins (kinesin and dynein) through tunneling and the ener-
gase action. It is possible there are other combinations and
permutations of kink–antikink–breather collisions in, say,
the pendulum or discrete models (cf Miroshnichenko et al.
2000, even perhaps a configuration of moving breathers
as in Russell et al. 1997), which could provide the rel-
evant dynamics. At the same time we keep in mind the
kink etc. counterparts in other integrable/solvable systems
which might also serve as models of regulatory or compu-
tational gates that could influence cytoskeletal processes.

These last issues are discussed in Georgiev (2004) in re-
lationship to some finer neurobiological processes. Con-
cerning these, we comment on two important mechanisms
corresponding to protein constituents such as synapsin-1
and synaptotagmin-1. Hirokawa et al. (1989) have pro-
posed that phosphorylation of synapsin-1 by Ca2+ depen-
dent kinases, on releasing synaptic vesicles from actin fil-
aments, may accelerate vesicles to the presynaptic mem-
brane. In Honda et al. (2002) it is shown that cy-
toskeletal protein tubulin binds directly to synaptotagmin-
1 which promotes tubulin assembly. At the same time,
synaptotagmin-1 functions by attaching synaptic vesicles
to microtubules in high concentrations of Ca2+. Presy-
naptic microtubules may attach directly to the synaptotag-
min/SNARE complexes (SNARE abbreviates soluble NSF
attachment protein receptor, where NSF abbreviates N-
ethyl-maleimide-sensitive fusion protein) where β–tubulin

tails may trigger synaptotagmin dimerization which is es-
sential for accomplishing exocytosis. A further open pos-
sibility is that presynaptic microtubules remain crosslinked
to docked synaptic vesicles by means of a complex presy-
naptic scaffold protein network referred to as the cytoma-
trix of the active zone (CAZ).

The SNARE complex, while functioning as a fusion
mechanism, may be capable of receiving Ca2+ signals
transmitted by synaptotagmin-1 Ca2+ binding, which may
result in the fusion of synaptic vesicle with the presynap-
tic membranes. This opens up the possibility that a trav-
eling antikink (for instance) on collision with a stationary
breather, typically located at a penultimate tubulin tail, may
push the breather to the microtubule end β–tail which is at-
tached to the synaptotagmin Ca2+ sensor molecule located
above the SNARE complex. If indeed the case, then such
a model should be relevant to questions posed by Chap-
man (2002) concerning how synaptotagmin-1 may be real-
ized as a catalyst of exocytosis. Answering these and other
questions may well reflect upon the earlier ideas of Beck
and Eccles (1992) who hypothesized long–range quantum
correlation resulting from the exocytosis of synaptic vesi-
cles when propagating into a bouton.

4 Solitons in α–helix protein
molecules

The relevance of soliton dynamics to biophysics can be
traced back in part to the studies of Fröhlich (1968, 1975)
who considered one–dimensional electron systems occur-
ring in biology. When these systems admit holes of some
kind, it was conjectured that electron–hole pairing leads to
the existence of intracellular solitonic dynamics inducing
dissipationless energy transfer. Fröhlich postulated unusual
protein dipole moments and wave frequencies as exhibited
by cell membranes and certain enzymes. Such dielectric
systems were considered as producing longitudinal electric
oscillations across the matter. At suitable levels, energy
can be channeled into a single mode and sufficiently or-
dered so as to sustain coherent electric waves, an ordering
suggestive of long range quantum–coherence comparable
to BE–condensation. In short, particles forsake their indi-
vidual characteristics and unite into a condensate regulated
by a single wave function, whereas particles outside of the
condensate disperse erratically.

Further studies revealed molecules beneath the cell
membrane as exhibiting dipolar vibrational activity where
thin layers appear to act like biological superconductors
in which the resulting wave propagation leads to Fröhlich
waves possessing a frequency of order 1011 to 1012 sec−1

(see e.g. Grundler and Keilmann 1983). The evidence
suggests that protein dipoles in a common electromagnetic
field exhibit resonating effects when energy is supplied.
Such waves are seen to be induced by dipolar oscillations
maintained by hydrogen bonds and non–localized electrons
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within hydrophobic regions of protein molecules. The in-
teraction between dipolar excitations and harmonic vibra-
tions of certain biological lattice structures can be modeled
on a Hamiltonian from which, as shown in e.g. Satarić et
al. (1991), Davydov solitons can be derived relative to rates
of chemical reactions. In a broader perspective, the ideas
of Fröhlich are linked to electron superconductivity and are
closer to utilizing this class of solitons.

Next, we recall the basic principle of how proteins
act in converting chemical into mechanical energy, and
when aided by lipids they generate the traffic of ions and
molecules in and around cellular membranes. As we have
mentioned, the protein chain can coil into a helix-like form
which is manifestly the structure of hydrogen bonded pep-
tide groups of the protein molecule. Protein molecules in-
corporated into the cytoskeleton create transduction energy
and intracellular couplings all of which assist and deter-
mine energy release of hydrolysis of ATP molecules while
at the same time portions of the helix constitute part of the
cytoskeleton’s protein composition. On the other hand, the
excited states of a protein molecule are related to the res-
onant interaction between peptide groups within distinct
chains.

According to Davydov (1982, 1991), a class of solitons
evolve at the origin of each chain and so can be created
within short intervals of α–helix proteins. The propagation
of a soliton within an α–helix protein molecule could be
either symmetric or asymmetric. Of these, the asymmetric
soliton is the more stable and its radiation life–span does
not depend on velocity and can increase sharply as the an-
gle between the spiral axis and vibrational dipole moment
decreases. This explains why the asymmetric solitons are
favourable for transferring the energy of ATP hydrolysis
without loss of energy along the α–helix protein chain over
suitably large distances. Recall that Jiminez et al. (1999)
have predicted a helicial structure to the C–terminal do-
mains, and for certain C–terminal recombinant peptides,
this helicity has been determined with evidence supporting
a functional coil to the helix transition at the C–terminal
zone. As also seen in Amos (2000), each tubulin monomer
possesses twelve α–helices (labeled from H1 to H12), so
in terms of short–range localization, it is plausible that the
above asymmetric soliton propagation is applicable.

In order to see how the corresponding solutions arise,
consider the Hamiltonian HPM for collective excited states
of the protein molecules as given by

HPM =
∑
n,α

{
(E + Dnα)B∗

nαBnα

+ Jn,α;n+1,α(B∗
nαBn+1α + B∗

n+1αBnα)

+ Jnα;n,n+1(B∗
nαBnα+1 + B∗

nα+1Bnα)
}

+ Hph ,

(4.1)

(Davydov 1982). In this expression the B∗
nα and Bnα are

creation/annihilation operators for the excitation E of the

peptide group nα; the term Jnα;mβ denotes the energy of
the resonance inter–dipolar coupling between the peptide
groups nα and mβ; Dnα denotes the deformation energy
of interaction with neighbouring groups arising from exci-
tations of the group nα, and Hph is the displacement op-
erator of the groups from their equilibrium position along
hydrogen bonds. This is given by

Hph =
1
2

∑
nα

[
1
M

P 2
nα + w(Unα − Un+1α)2 ] , (4.2)

where M denotes the effective mass displaced along with
the peptide group, w is the elasticity coefficient of the chain
along the hydrogen bonds, and Pnα is the momentum op-
erator conjugated to the displacement operator Unα of the
peptide group.

Associated to the Hamiltonian HPM is the wave func-
tion describing the collective vibrations of the system as
given by :

|Ψ(t) 〉 =
∑
nα

ana(t)eσ(t)B∗
nα|0 〉 , (4.3)

where |0〉 denotes a function for which all of the groups
are in the ground-state with vibrationless excitations away
from their equilibria, and where

σ(t) = − ι

}
∑
nα

[ βnα(t)Pnα − πnα(t)Unα ] . (4.4)

In this last expression, the functions βnα(t) and πnα(t)
depend on the average values for the displacement of
the groups nα and their momenta in the above state.
The coefficient function anα(t) satisfy

∑ |anα(t)|2 = 1,
where the latter corresponds to the distributive probabil-
ity over the groups nα in their collective excitation states.
The complex–valued functions anα(t) and the real–valued
functions βnα(t), πnα(t) are obtained from minimizing the
functional

〈Ψ(t)|H|Ψ(t)〉 , (4.5)

and on applying a certain approximation, the following sys-
tem of equations is deduced (Davydov 1982 §22.4). Firstly,
since the functions anα(t), βnα(t) are continuous in n, they
are replaced by aα(ξ, t), βα(ξ, t) respectively. The system
in question is then :

{
ι}

∂

∂t
− [ E0 + W − 2J ]− 2χ

∂βα

∂ξ

}
aα

+ J
∂2aα

∂ξ2
− L(aα+1 + aα−1) = 0 ,

[
∂2

∂t2
− vα

∂2

∂ξ2
]βα =

2χ

M

∂

∂ξ
|aα|2 .

(4.6)

Here χ is formed from coupling parameters for internal
excitations of the peptide groups and their displacements
from the equilibrium positions; J denotes the resonant
energy of inter–dipolar interactions between neighbour-
ing groups in the same chain, and L the energy of the
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same interaction between neighbouring groups from dif-
ferent chains (J ≈ 967 µeV, L ≈ 1537 µeV). Also,
v2

α = w/M , the term W is the average density for dis-
placement of molecules from the equilibria position, and
E0 is the excitation energy of the peptide group relative to
the deformation potential. It is from this system that the
symmetric and asymmetric solitons are derived (see Davy-
dov 1982 §22.4 for explicit details).

It is worth pointing out that Davydov solitons can sub-
serve the function of local effectors (e.g. responsible for
local tubulin–kinesin interaction) but are not suitable for
long–range dissipationless transfer of information. The BE
condensation of tunneling photons in a macroscopic coher-
ence region of ≈ 50µm, however, is sufficiently long–
ranged to mediate a global coupling between distant parts
within the neuron. The tunneling photons have boson mass
of 13.6 eV and their condensation is sustainable even at
body temperature of 310 K (Jibu and Yasue, 1997). This is
the main reason to didactically separate the possible quan-
tum effects into local (Davydov solitons) and global (BE–
condensation of tunneling photons) interactions.

5 DWQ and arrows of time

5.1 Dipole wave quanta and arrows of time
Following the model of Ricciardi and Umezawa (1967) (cf
Stuart et al. 1979) that memory entails a phase transition
from a chaotic vacuum state to one that is relatively or-
dered, Vitiello (1995, 2003) proposes the DWQ when in
their lowest ground state as inducing a stability of memory
with the distinctions of long–term as ‘stable’ and inherent
to the vacuum state, whereas short–term (memory) corre-
sponds to the excitations of the DWQ condensates which
were described earlier. Order parameters correspond to the
WDQ, ‘symmetron’ (Riccardi and Umezawa 1967, Vitiello
1995) and the WEDP field electric polarization, the ‘corti-
con’ (Stuart et al 1979, Vitiello 1995). These order param-
eters are considered as corresponding to the code strength
specifying the vacuum, the value of which is determined
by the density of condensed NG bosons. In turn, informa-
tion storage is proposed to be represented by coding of the
ground state via symmetron condensation.

We have described the vacuum state in a conventional
QM–sense, but now we mention an alternative characteri-
zation following Vitiello (1995, 2003). Firstly, on denot-
ing the DWQ by A(k) for some k, the number N(A) for
all k of the A(k)–modes in the vacuum state |0(N)〉, is
taken to define a coding of information relative to the order
parameters. Taking a time reversal Ã(k) of the copies of
the A(k), the vacuum state is then characterized by setting
N(A)−N(Ã) = 0, for all k . The same applies to differing
values of the code N(A), that is, all ground states for which
N ′(A) 6= N(A) . It is proposed that the brain ground state
is the entirety of memory states |0(N)〉, for all N , and fur-
ther, memory is manifestly how the brain may accomodate

a multitude of co-existent macroscopic quantum states.

Such a proposition commences with the premise that the
brain forms an ‘open system’ and its environment, in the
appropriate sense, forms the ‘closure’. Given that the DWQ
frequency depends on time t, modes A(k, t), Ã(k, t), are
considered so that the coupled system of differences A− Ã
is describable in terms of an oscillator frequency. In the
continuum limit, the system of differences A − Ã also be-
comes closed. A finiteness of size for the corresponding
domains implies then a transition through distinct vacuum
states for a given t . In the presence of external stimuli,
the reversal of time symmetry is broken and the purported
dissipation results in multifold degenerate vacuua, in turn,
resulting in a vast memory storage. Possibly the mem-
ory state |0(N)〉 as a finite temperature state corresponds
to thermodynamic effects in brain activity, further suggest-
ing that in view of increasing entropy, the thermodynamic
arrows of time may have the same orientation as the psy-
chological arrows as emergent in the dissipative process.

It is possible that there may be any number of exper-
imental studies that could prove or disprove such a hy-
pothesis. The question bears some similarity to the rela-
tionship between (brain) cortical versus thermodynamical
phase transitions (Steyn–Ross et al. 2001): how cortical en-
tropy varies under the effects of anesthetics from a state of
consciousness (ordered phase transitions) to unconscious-
ness (disordered phase transitions). On the surface, such
findings might suggest an ‘emergent’ process through ob-
jective time intervals, at least as far as clinical conscious-
ness is concerned. The soliton–like mechanisms we have
described are in essence derived from time evolution equa-
tions, and thus mathematically involve a time flow. How-
ever, the mechanisms by themselves do not explain away
the questions of objective versus subjective time. The vari-
ous models in which they feature, suggest how they may be
tied to memory storage and retrieval, and to the irreversibil-
ity of consciousness. We can see the relevance of the mech-
anisms to objective time as manifest in the brain within cer-
tain cortical regions, but we cannot tie these (mechanisms)
to the subjective feeling of time, as exemplified in the case
of individuals suffering from time agnosia : the compre-
hension of time is altogether lost, although most normal
mental processes may still function nevertheless.

6 Conclusion

We have discussed some mechanisms for solitonic in-
teractions ambient to microtubular surfaces, suggesting
possibilities for interaction between local EM–fields of
electro–neural impulses and the cytoskeletal structure. The
broader model suggests how these processes might actu-
ally recover an EM–field through the chain of events EM–
field =⇒ tubulin–tail solitons =⇒ exocytosis =⇒ EM–
field. This progression may be crucial towards understand-
ing the neurobiological basis for mind and memory, as well
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as for the possible implementation of quantum or semi–
classical computational schemes which are to be assessed
in a future work.
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