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Diabetic Retinopathy (DR) is a significant eye disease, which is caused by the damage of retina. To 

provide the best timely treatment, it is necessary to detect DR in early stages. Firstly, advanced sequential 

image preprocessing and segmentation techniques are employed for accurate localizing and isolating the 

affected regions in retinal images. Secondly, a voting ensemble classifier is introduced using a deep neural 

network model, which combines the predictions of multiple CNN models i.e., ResNet50, VGG16, VGG19 

and GoogLeNet to enhance the overall classification performance of the proposed model. Our proposed 

model, named VEnDR-Net (Voting Ensemble for Diabetic Retinopathy classification using deep neural 

networks), implements on the EyePACS dataset and achieves 0.97 sensitivity, 0.97 specificity, 0.98 

accuracy, 0.98 precision, and 0.97 F1- Score, respectively. The enhancement of the performance is 1.49% 

in accuracy over the other existing models. Lastly, the research addresses the grading of diabetic 

retinopathy by aligning the classification results with a standardized grading system, providing clinicians 

with accurate severity assessment for effective treatment decision.  

Povzetek: Opisan je nov model VEnDR-Net za avtomatizirano odkrivanje diabetične retinopatije z 

uporabo glasovalnega ansambla CNN modelov. Model združuje ResNet50, VGG16, VGG19 in 

GoogLeNet za izboljšano točnosti in občutljivost. 

 

1 Introduction 
The human eye is an essential organ among the five senses 

of a human body, which grants us the invaluable gift of 

sight. Unfortunately, vision deterioration not only darkens 

the patient’s world but also ushers in the threat of 

blindness. Diabetes is the core cause of several critical 

complications in various organs of the human body, 

including kidneys, heart, blood vessels and eyes. Diabetic 

Retinopathy is one of the chronic conditions of eye, caused 

by diabetes. Diabetic retinopathy (DR) is a diabetes-

induced eye disorder that can lead to vision impairment or 

blindness [1]. DR progresses through different stages of 

severity, ranging from mild to severe and proliferative 

forms. Prolonged high blood sugar levels in diabetic 

patients can impair retinal vasculature, causing diabetic 

retinopathy (DR), a leading cause of vision loss [2]. The 

retina is essential for vision as it captures and transmits 

visual information to the brain. When these blood vessels 

are compromised due to  

diabetes then various changes can occur which lead to DR. 

This condition is characterized by a gradual deterioration 

of the retina.  

 

Figure 1: (a) No DR (b) Mild DR (c) Moderate DR 

(d) Severe NPDR (e) PDR 

Factors such as the duration of diabetes, hereditary 

influences, and metabolic control are pivotal in the 

development of DR [3]. Figure 1 represents the five stages 

of DR. Initially, the arteries in the retina become weak and 

leaking starts  which creates tiny hemorrhages. These 

leaky arteries often lead to the deposit of exudates 

(lipoproteins) in the retina.  
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Fragile new blood vessels may form, rupture, and leak into 

the eye, damaging the macula and hindering the retina’s 

ability to transmit images to the brain, ultimately leading 

to vision loss. As a result, DR is a leading cause of 

blindness worldwide. The progression from diabetes to DR 

can take over a decade, making it a significant 

microvascular complication of diabetes mellitus globally 

[1]. While DR cannot be reversed, early diagnosis and 

appropriate treatment substantially lower the risk of vision 

impairment. Regular monitoring of diabetic patients is 

imperative for the early detection of DR. This process 

involves capturing fundus images of the eye, which are 

analyzed by an ophthalmologist to identify 

microaneurysms and exudates. Early detection of DR is 

critical to minimize the risk of blindness. Fundus images 

are used for identifying DR. Ophthalmologists visually 

examine a vast number of these images, making the 

process susceptible to errors, expensive, and time-

consuming. The accuracy of interpreting retinal fundus 

images depends on the ophthalmologist's training, 

experience, and subjective criteria. Many cases of DR go 

undetected and missed during routine screenings, even by 

experts [4]. Advancements in technology, such as 

telemedicine and artificial intelligence-based image 

analysis, hold promises in enhancing the efficiency and 

accuracy of DR diagnosis and management. Deep learning 

has revolutionized the field of diabetic retinopathy (DR) 

by offering powerful capabilities in image analysis, 
diagnosis, screening, and management [3]. Convolutional 

neural networks (CNNs), a core component of deep 

learning, have shown outstanding performance in 

analyzing retinal fundus images for DR detection and 

classification. Moreover, deep learning techniques 

contribute to the early detection and monitoring of DR 

progression [4][5]. The aforesaid limitations and the 

advancement in healthcare technology and artificial 

intelligence motivated us to make a significant 

contribution to the field of diabetic retinopathy (DR), 

which are summarized as follows: 

I. The research performs image preprocessing to 

eliminate noise and improve representative 

features from retinal fundus images.  

II. The research explores and develops segmentation 

approach using CLAHE, Otsu thresholding 

approach and other morphological operations, for 

accurately segmenting the damaged areas in the 

retinal images. These segmentation techniques 

enable precise localization and isolation of the 

regions associated with DR, providing valuable 

insights for analysis and diagnosis. 

 

 

 

 

 

 

III. The research introduces a novel voting ensemble 

deep neural network model that integrates the 

predictions of multiple learning algorithms using 

a soft voting weighted average technique.  

2 Related work 
Numerous methods to detect DR classification have 

been proposed. For multiclass classification, deep neural 

network has been used by the researchers.  

Balasubramanian et al. [6] utilized median filtering for 

preprocessing, followed by super-pixels (SAS) for image 

segmentation. CNN was then applied to the segmented 

images, where features are extracted from segmented 

blood vessel regions by pooled hidden layers, shared 

parameters, and local connections. SVM is used to classify 

the extracted features, resulting in accuracy, specificity, 

and sensitivity of 97.43 %, 98.09%, and 97.12% 

respectively.  

Kandhasamy et al. [7] employed two main methods. 

Initially, structural operations locate the clustered regions 

such as optical disk, exudates, hemorrhages, and 

microaneurysms. Subsequently, multiple-level set 

segmentation was employed, involving gradient 

computation, Neuman boundary conditions, and 

coefficient estimation using curvature central. Features 

were then extracted using Local Binary Pattern, color 

moments, and statistical features. These features were 

further refined using a generic algorithm (GA) before 

SVM classification, achieving accuracy: 97.3%, 

sensitivity: 97.14% and 98% specificity.  

Wan et al. [8] using transfer learning approach via 

employing CNNs and tuning the hyperparameters. The 

different CNN architectures like AlexNet, VggNet, 

GoogleNet, and ResNet, applied and attained accuracy of 

95.68. 

Zhang et al. [9] suggested an automated diagnosis 

architecture for DR detection and grading i.e., Deep DR. 

CNN and DNN are combined with transfer learning and 

ensemble learning procedures and used high-quality DR 

image datasets. The optimal model achieved sensitivity: 

97.5%, specificity: 97.7%, and AUC: 97.7%. Sensitivity of 

98.1% and specificity of 98.8% are obtained by the grading 

system.
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Table 1: Review of the recent state-of-art methods for detection of diabetic retinopathy 

S. No. Model  Brief Summary & 

Limitations 

Strengths of the proposed 

approaches 

Performance 

Metrics (in 

terms of 

Accuracy) 

1. CNN-Vision 

Mamba model 

[6] 

✓ Used CNN-Vision 

Mamba model 

✓ Test conducted on 

smaller dataset. 

✓ Achieved good performance in 

terms of accuracy 

✓ Enhances its applicability and 

flexibility in diverse clinical 

scenarios. 

0.906 

2. Inception V3 [7] ✓ Applied Inception V3 

model 

✓ Applied augmentation 

method due to small 

volume of data. 

✓ Obtained good accuracy making an 

applied approach therapeutically 

reliable. 

0.9164 

3. ResViT 

FusionNet [8] 

✓ Used ResNet and 

Vision 

✓ Transformers for 

disease diagnosis. 

This combination 

increases the 

computational 

complexity of the 

system 

✓ Achieved accuracy more than 93% 

by integrating CNN and Vision 

Transformers (ViTs) models. 

0.9301 

4. Integrated the 

DenseNet model 

into a Raspberry 

Pi 4 [9] 

✓ Applied DenseNet 

architecture  

✓ Used small volume of 

data-set. 

✓ Integrated the model with 

Raspberry Pi IV 

✓ Disease indication was done by 

blinking a LED  

 

0.88 

5. Residual-based 

deep neural 

network model 

[10] 

✓ Introduced Residual 

based DNN for DR 

diagnosis 

✓ However, evaluated 

the model with small 

and imbalanced data-

set. 

 

 

 

 

N/A 

0.83 

6. Grid Search 

Cross Validation 

(GSCV) 

[12] 

✓ Applied generic CNN 

model, and performed 

optimized 

hyperparameter 

tuning using GSCV. 

✓ All the hyperparameter are 

computed and estimated with 

GSCV technique. 

0.89 

7. Optimized Deep 

learning-based 

technique [13] 

✓ Applied Cuckoo 

search for feature 

optimization. 

✓ Improvement of accuracy using 

the given model is 10.46%. 

0.97 
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Table 1 represents the review of some research papers. M. 

K. Jabbaz et al. [10] develed a customized model based on 

transfer learning and VGGNET-16 for recognition of 

diabetic retinopathy. Before building the suggested model, 

the authors employed several data augmentation 

techniques to improve the generalization capabilty of 

models.  

N. Gundluru et al. [11] presented a model based on 

PCA and Harris hawk’s optimization algorithm for feature 

selection and optimization, eventually leading to 

classification of DR disease using UCI machine learning 

repository dataset.  

S. Rajmani et al. [12] used applied generic deep 

learning model and perform optimized hyoerparameter 

tuning using GSCV and achieved 89% accuracy. Zhang. 

Q. et. al. [13] followed the methodology wherein they 

combined preprocessing and segmentation approach 

before applying Cuckoo search for feature optimization 

and obtained commendable results with accuracy metrics 

surpassing 97.55%.  

A multi-stage DL framework for DR grading is 

suggested by P.S. Silva et al. [14]. The suggested model 

includes a lesion segmentation followed by a 

classification, achieving an encouraging result in terms of 

accuracy. The results achieved on a large DR dataset 

demonstrate the potential of DL in accurately diagnosing 

DR. C. Mohanty et al. [15] developed a hybrid model 

combining VGG16 and XGBoost classifier; DenseNet 121 

architecture and achieved the accuracy of 79.50%.  

W. L. Alyoubi et. al. [16] applied CNN for 

classification and YOLOv3 for lesion localization. This 

methodology achieved 89% accuracy. M.K. Yaqoob et. al. 

[17] utilized ResNet-50 for feature extraction and Random 

Forest for classification and obtained 75.09% accuracy. G. 

Zhang et al. [18] developed a Multi-Model Domain 

Adaptation (MMDA) with transfer learning using 

weighted pseudo-labeling and clustering-based 

approaches and achieved 90.6% accuracy on APTOS 

dataset. 

3 Methodology 
This research aims to develop an automated system for 

the detection and classification of diabetic retinopathy 

through retinal fundus image analysis. This study includes 

three basic stages shown in Figure 2. i.e., image 

preprocessing, segmentation and classification. In the 

image preprocessing, images have gone through gray 

scale conversion and resizing processing technique.  

 

 

 

 

 

 

 

The updated image is segmented by CLAHE, Otsu 

binary thresholding and adaptive gaussian thresholding 

segmentation techniques in the next stage. Third stage is 

classification, which includes four advanced deep 

learning models, specifically ResNet50, VGG16, VGG19 

and GoogLeNet. Additionally, soft voting approach is 

applied to evaluate the decision level of classification of 

diabetic retinopathy. All the operations were performed 

on EyePACS dataset, provided by Kaggle. 

3.1 Proposed approach 

The research involves several key steps, starting with 

the loading of data from standard benchmark datasets 

consisting of retinal fundus images with annotations of DR 

severity. To ensure reliable training and evaluation of the 

classification models, the dataset is split into training and 

test sets based on the severity levels of DR. 

To improve model performance, image preprocessing 

techniques are applied prior to training. After image 

preprocessing, segmentation approaches viz., Otsu 

thresholding and Morphological operations are employed 

to extract the affected regions from the retinal images. The 

proposed approach begins with performing image 

preprocessing. In this step, the image is converted into gray 

scale from RGB. Image is then resized to 512 X 512 from 

1024 X 1024 to save space. In the next step, image 

segmentation is implemented using CLAHE followed by 

otsu binary thresholding technique. After this Adaptive 

Gaussian Thresholding is applied in small regions of 

image. Step 3 dealt with the soft voting ensemble learning. 

This approach ensembles four deep CNN models 

ResNet50, VGG16, VGG19, GoogLeNet. Algorithm 

represents the VEnDR-Net in detail. 

 

The flow chart of the VEnDR-Net is presented in Figure 

2. To further enhance the accuracy and reliability of the 

classification, a novel cascaded voting ensemble deep 

neural network model is constructed and developed. The 

model with four architecture is defined as, 

       Ɛsoft = {ResNet50, VGG16, VGG19, GoogLeNet} 

be the set of pre-trained models, each fine-tuned using 

the Fundus Images dataset (I, C); where I the set of N 

images, each of size, 512 × 512, and C contain the 

corresponding classes:  

C = {c | c ∈ {Normal, Mild, Moderate, Severe, PDR}} 

The training set (Itrain, Ctrain) is divided into mini 

batches, each of size n = 8, such that minibatches (Ij, Cj) 

∈ (Itrain, Ctrain), i = 1, 2, . . . N/n. The CNN model, e ∈ 

Ɛsoft, is iteratively optimized to minimize the empirical.  
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Algorithm: VotEnDR 

 

Input: Set of Fundus Images (I, C); where C= {c | c ∈ {No DR, Mild DR, Moderate DR, Severe NPDR, PDR}} 

Output: The trained model that classifies the s image i ∈ I 

Step1: Perform Preprocessing 

{ 

• Convert the image into gray scale from the other color space i.e., RGB by using: 

Gray Scale= 0.299 R + 0.587 G + 0.114 B 

• Resize the image from 1024x1024 to 512x512 to save space and enhance visualization. 

} 

Step2: Implement Segmentation 

{ 

• Apply CLAHE to eliminate artificial boundaries and limiting contrast to avoid amplifying noise in 

homogeneous areas. 

• Calculates a threshold value from the image histogram, that sets at the middle of the peaks in the histogram 

using Otsu thresholding technique by using: 

σ2 b(T) = ω1(T) ω2(T) (µ1(T) - µ2(T))2         

Where, σ2 b(T) = Minimization of weighted variance of classes 

• Apply Adaptive Gaussian Thresholding to calculates threshold values for small regions in the image by using: 

𝑇h(𝑥,𝑦)=∑(𝑖,𝑗)∈𝑁𝑤(𝑖,𝑗) 𝐼(𝑖,𝑗)        

Where, Th(x,y) = Threshold value of pixel at location (x,y) 

} 

Step3: Import the set of pre-trained models  

Ɛsoft = {ResNet50, VGG16, VGG19, GoogLeNet} 

Fully Connected (FC) layer of each model = (5 X 1) dimension. 

{foreach e ∈ Ɛsoft do 

 α = 0.01 

 for epochs =1 to 50 do 

  foreach minibatch(Ij, Cj) ∈ (Itrain, Ctrain)do 

Modify the parameters of the model e(m)  

If validation error ! = improving for five epochs then 

    α = α X 0.01 

   endif 

  endforeach 

 endfor 

endforeach} 

{foreach i ∈ Itest do 

Ensemble the output of every model, e ∈ Ɛsoft, using eq. (1) 

endforeach} 
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Figure 2: Structure of VEnDR-Net 

 

loss:  

L(m, Ij) = 
1

𝑛 
     ∑ 𝑙(𝑒(𝑖, 𝑚), 𝑐)𝑖∈𝐼𝑗,𝑐∈𝐶𝑗 ……………  (1) 

 

Where, e (x, m) is the CNN model, which predicts y 

for input x given m and l(.) is the categorial cross entropy 

loss penalty function. 

 

3.2   Dataset used 
In this study, the open-source dataset named, 

EyePACS has been used, which is publicly available on 

Kaggle. The dataset was developed in collaboration with 

the California-based EyePACS screening service. It 

contains total 88,000 high-resolution color fundus 

images with size ranging from 1,500 × 1,000 pixels to 

over 3,000 × 2,000 pixels.  

 

 

 

 

 

 

Out of these 88,000 fundus images, 35126 retinal 

fundus images were utilized in our experiment to train 

and test the VEnDR-Net model. It comprises of 5 Classes 

namely, No DR, Mild DR, Moderate DR, Severe NPDR 

and PDR. The bifurcation of classes in the dataset is 

listed out in Table 2.  

Table 2 illustrates the class imbalance in the original 

dataset provided by EyePACS. To mitigate this 

imbalance, both sampling and data augmentation 

techniques were employed. From the No DR class 3,500 

images were selectively sampled from the total of 25,376 

available. The images from the Mild DR and Moderate 

DR classes were utilized without modification. For the 

underrepresented Severe NPDR and PDR classes, data 

augmentation techniques—specifically rescaling and 

resizing—were applied to increase the image count from 

1,013 to 2,500 and from 765 to 2,200, respectively. Out 

of these 16,171 images, 80% (i.e., 12937 images) were 

used for training, while 20% (i.e., 3234) of images were 

used for testing purposes. 
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Table 2: Class distribution of EyePACS dataset 

  Class Label Stage of DR/ Classes 

Image 

Count 

Image count after 

Down/Up Sampling 

0 No DR 25376 3500 

1 Mild DR 2495 2495 

2 Moderate DR 5476 5476 

3 Severe NPDR 1013 2500 

4 PDR 765 2200 

 

3.3 Image preprocessing 
Image preprocessing converts raw image data into 

an organized and informative representation, facilitating 

subsequent processing and feature extraction. 

The goal is to enhance image quality, extract useful 

information, and make images suitable for further 

analysis or interpretation [7, 8, 9]. The primary goal is to 

augment the data by down-sampling for No DR Class and 

up- sampling for Severe NPDR and PDR classes. Figure 

3. represents the results of the preprocessing techniques. 

The following two preprocessing techniques are applied 

in sequence to produce enhanced results: 

 

• Gray scale conversion: gray scale conversion 

is a low-level image preprocessing operation that 

transforms a multichannel color image (typically in the 

RGB color space) into a single-channel intensity image. 

From a computational perspective, this operation 

significantly reduces data dimensionality, enabling faster 

processing, lower memory usage, and often more 

efficient learning in computer vision models, especially 

convolutional neural networks (CNNs). In clinical 

contexts, RGB retinal fundus images are frequently 

converted to gray scale to focus on structural information 

such as blood vessels, optic disc boundaries, and retinal 

lesions. The most widely used gray scale conversion 

method is based on the ITU-R BT.601 standard, which 

approximates human visual luminance sensitivity using 

equation (2) represents the gray scale conversion. 

 

Gray Scale= 0.299 R + 0.587 G + 0.114 B    ….(2) 

 

This perceptually weighted transformation helps preserve 

brightness and contrast features critical for detecting 

subtle pathologies in fundus image. Nevertheless, gray 

scale conversion may not always be optimal. Certain 

pathological indicators, such as microaneurysms or 

hemorrhages, exhibit chromatic characteristics better 

captured in RGB or transformed color spaces (e.g., LAB, 

HSV). Thus, selective gray scale conversion, hybrid 

channel processing, or even multi-modal approaches are 

being integrated into modern deep learning pipelines to 

balance interpretability and performance. 

 

• Resizing: In this model, images are resized from 

1024x1024 to 512x512 to save space and enhance 

visualization. Its primary purpose is to normalize input 

dimensions, ensuring uniformity across diverse datasets 

and compatibility with network architectures that require 

fixed-size input tensors. From a computational 

standpoint, resizing enables memory-efficient training, 

batch processing, and streamlined deployment on GPU-

based infrastructures. It directly impacts the spatial 

resolution at which the model learns to identify features, 

which is especially critical in detecting small-scale 

anomalies such as microaneurysms or haemorrhagic 

spots in fundus images. Image resizing is achieved using 

interpolation algorithms that estimate intensity values at 

new pixel locations. In DR detection using fundus 

images, resizing must preserve critical diagnostic 

features like microaneurysms and vessel structures. 

Excessive downscaling risks losing small but clinically 

significant details, while upscaling can introduce 

artifacts or noise. Thus, the choice of target resolution 

and interpolation technique should be aligned with the 

model's receptive field and the visual scale of diagnostic 

features. Resizing serves as a normalization step, helping 

to control variation in input dimensions due to differing 

acquisition devices or protocols. These methods attempt 

to minimize information loss in critical areas while still 

standardizing input dimensions. This standardization 

enhances the robustness and generalizability of models 

deployed across multiple clinical settings. This 

streamlined deployment on GPU-based infrastructures. 

It directly impacts the spatial resolution at which the 

model learns to identify features, which is especially 

critical in detecting small-scale anomalies such as 

microaneurysms or hemorrhagic spots in fundus images. 

Image resizing is achieved using interpolation 

algorithms that estimate intensity values at new pixel 

locations. In DR detection using fundus images, resizing 

must preserve critical diagnostic features like 

microaneurysms and vessel structures. Excessive 

downscaling risks losing small but clinically significant 

details, while upscaling can introduce artifacts or noise.  
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Thus, the choice of target resolution and interpolation 

technique should be aligned with the model's receptive 

field and the visual scale of diagnostic features. resizing 

serves as a normalization step, helping to control 

variation in input dimensions due to differing acquisition 

devices or protocols. These methods attempt to minimize 

information loss in critical areas while still standardizing 

input dimensions. This standardization enhances the 

robustness and generalizability of models deployed 

across multiple clinical settings.

 

 

 
 

Figure 3: Image after preprocessing 
 

 

3.4 Segmentation 
Image segmentation divides a digital image into 

subgroups (called Image Objects) to reduce complexity, 

making analysis simpler [19]. Figure 4 represents the 

changes after multiple segmentation techniques. The 

segmentation techniques used in this model are: 

Contrast limited adaptive histogram equalization 

(CLAHE): CLAHE enhances local contrast in an image, 

improving the visibility of fine-grained structures such 

as blood vessels, lesions, and optic disc boundaries—

features crucial for diabetic retinopathy detection and 

grading. CLAHE operates by dividing the input image 

into non-overlapping contextual regions (tiles) and 

applying histogram equalization independently within 

each tile. Unlike global histogram equalization, which 

may over-amplify noise in homogeneous areas, CLAHE 

limits the amplification by clipping the histogram at a 

predefined  

 

 

 

 

 

 

 

 

 

 

threshold (contrast limit), thus preventing over-

enhancement.  

Bilinear interpolation is used to combine neighboring 

tiles, eliminating artificial boundaries and limiting 

contrast to avoid amplifying noise in homogeneous areas 

[20]. Since contrast enhancement is applied 

independently to each tile, there may be visible 

discontinuities at tile boundaries. Interpolation 

techniques are used to smooth out these transitions and 

create a visually consistent result across the entire image. 

CLAHE preprocessing improves the performance of 

CNNs and other machine learning models by amplifying 

subtle features like microaneurysms and hemorrhages 

that may  

otherwise be obscured [21]. Its contrast-limiting 

capability, tile-based processing, and adaptability to 

local context make it especially suitable for enhancing 

diagnostic features in retinal images while maintaining 

robustness against noise amplification.
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Updated Image Contrast Limited 

Adptive Histogram 

Equalization 

(CLAHE) 

Minimizes the 

weighted within class 

variance Otsu Binary 

thresholding 

Adaptive Gaussian 

Thresholding 

 

Figure 4: Conversion of updated image after segmentation

• Otsu threshold: Otsu's thresholding is a widely 

adopted binarization method used to segment regions of 

interest by converting gray scale images into binary 

form. It is particularly useful for isolating anatomical 

structures such as blood vessels, optic discs, or lesions 

in retinal images. Otsu’s method assumes that an image 

contains two classes of pixels—foreground and 

background—and calculates the optimum threshold that 

minimizes the intra-class variance (or equivalently, 

maximizes the inter-class variance) between these two 

groups [22]. The process involves computing a 

histogram of image intensity levels and exhaustively 

searching for the threshold through equation (3) that 

yields the minimum weighted within-class variance: 

 𝜎𝜔
2  (T) = ω1(T) ω2(T) (µ1(T) - µ2(T))2        …..(3) 

 

 Where ω = class probabilities  

  σ2 = class variances for threshold T 

 The optimal threshold T* is selected by minimizing 𝜎𝜔
2   

  

 It effectively delineates vascular structures and 

exudates, forming a baseline segmentation step for more 

complex algorithms. Otsu’s thresholding remains a 

robust and interpretable technique for preliminary 

segmentation in medical imaging.  

 

• Adaptive Gaussian Thresholding: Adaptive 

Gaussian Thresholding is a sophisticated binarization 

technique tailored for complex medical images 

characterized by spatially varying lighting conditions, 

contrast levels, and structural intricacies—conditions 

commonly encountered in modalities like retinal fundus 

photography, X-rays, and dermoscopic imaging. Unlike 

global methods i.e, Adaptive Gaussian Thresholding 

performs local thresholding, computing a unique 

threshold for each pixel based on the weighted average of  

 

 

its neighboring pixels [23]. The threshold value is derived  

as a weighted sum (Gaussian window) of the  

 

neighborhood area. The mathematical formulation for the 

threshold 𝑇h(𝑥,𝑦) at a pixel is: 

𝑇h(𝑥,𝑦)=∑(𝑖,𝑗)∈𝑁𝑤(𝑖,𝑗) 𝐼(𝑖,𝑗)            …..(4) 

Where, Th(x,y) = Threshold value of pixel at location 

(x,y) is shown in equation (4). 

 

Adaptive Gaussian Thresholding is used to enhance 

segmentation accuracy in retinal image analysis, lesion  

boundary detection, and morphological structure 

extraction.  

Adaptive Gaussian Thresholding technique’s 

integration into preprocessing pipelines supports hybrid 

workflows [24]. For instance, threshold maps generated 

through this method can act as spatial priors in ensemble 

learning networks, serve as inputs to edge detectors, or 

form masks for texture analysis. 

 

3.5 Ensemble learning 

Ensemble learning is based on the principle that 

multiple diverse models, when aggregated, can correct 

each other's weaknesses. The Ensemble Classifier is a 

meta-classifier that integrates similar or diverse ML 

classifiers, using majority or plurality voting for 

classification. This voting classifier functions as an ML 

model that is learned by training on a collection of 

multiple models [25]. It determines the output class with 

the highest predicted probability among the models. From 

a computational learning theory standpoint, ensemble 

learning is grounded in the bias–variance–noise 

decomposition of prediction error. Base models trained 

on the same or diverse data subsets can capture distinct 
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hypothesis spaces. Their aggregation, under the right 

conditions, leads to error reduction, formalized by: 

 Errorensemble=Errorˉ−Diversity 

 

To determine the final output class, the classifier 

aggregates the results from each model in the ensemble 

and selects the class that receives the largest majority of 

votes. The base strategies of ensemble learning are 

bagging, boosting and stacking. The fundamental 

mechanism behind this is how voting works in general 

[26]. Figure 5 illustrates the proposed stacking ensemble.  

 

By combining predictions with multiple models, the 

ensemble classifier reduces the risk of an individual model 

making an inaccurate prediction. In cases where one 

model might predict incorrectly, other models in the 

ensemble can compensate by providing the correct 

prediction. This ensemble approach improves estimator 

robustness and reduces the risk of overfitting, making the 

classifier more reliable overall. As a meta-model, the 

ensemble classifier can be used with a wide range of 

existing trained machine learning models, without 

requiring these models to be aware that they are part of the 

ensemble.

Figure 5: Structure of VEnDR-Net
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This allows for seamless integration of various 

models into a unified framework [27][28]. The Ensemble 

Classifier implements two types of voting mechanisms: 

"hard" voting and "soft" voting. 

• Hard Voting: In hard voting, the predicted output 

class is determined by the class that receives the 

highest majority of votes. Each classifier in the 

ensemble predicts a class label, and the class  

predicted by the majority is chosen as the final output. 

Hard voting simply picks the class with the highest 

number of votes. 

• Soft Voting: In soft voting, instead of considering 

just the final predictions from each classifier, the 

probabilities associated with each prediction are 

taken into account. The probabilities of each 

class are averaged across all models, and the 

class with the highest total probability is selected 

as the final prediction. The results produced by 

other state of art methods for the same problem 

is provided in Table 4. 

 

Model has been provided by a new test sample, xtest, the 

ensemble output is determined in equation (5) as follows: 

 

w* = arg max(
∑ e(m,xtest) ∀e ∈ Ɛsoft 

|Ɛsoft|  
)             …(5)

   w 

The scores (or probabilities) of all the models, are 

averaged in a soft-voting ensemble and compared to a 

threshold [29]. The aggregate results by averaging the 

base scores should be considered. It’s the median 

used instead of the mean, as it’s less sensitive to outliers, 

so it will usually represent the underlying set of outputs 

better than the mean.  

A soft-voting ensemble calculates the average score (or 

probability) and compares it to a threshold value. The 

aggregate results by averaging the base scores should be 

considered. 

It’s the median used instead of the mean, as it’s less 

sensitive to outliers, so it will usually represent the 

underlying set of outputs better than the mean. 

           …(6) 

To combine them, take average the vectors element-

wise: 

           ….(7) 

The soft voting ensemble classifier significantly 

improves predictive modeling by mitigating large errors 

or misclassifications made by individual models.  

Figure 6 shows the confusion matrix for VEnDR-Net 

model and Figure 7 represents Confusion matrix for 

VenDR- Net Model for Test set (20% image) only. 

 

Figure 6: Confusion Matrix for complete balanced data 

 

Figure 7: Confusion matrix for test set 
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The soft voting ensemble classifier significantly 

improves predictive modeling by mitigating large errors 

or misclassifications made by individual models. The 

research combines four CNN models (ResNet50, 

VGG16, VGG19, and GoogLeNet), with each model 

assigning probabilities to each class. The final prediction 

is determined by averaging the probabilities provided by 

the CNN models. 

3.6 Experimental setup 

The simulation settings for grading in diabetic 

retinopathy (DR) replicate the process of assessing the 

severity of DR using retinal images. The proposed 

VenDR-Net model for Diabetic Retinopathy detection 

and classification was developed and evaluated on a high-

performance computing environment with the following 

specifications of Hardware shown in Table 3:

Table 3: Hardware configuration 

 

S. 

No. 

Hardware Used 

1. Processor Intel Core i7, 9th Generation 

2. RAM 16 GB DDR4 

3. Graphics Processing Unit 

(GPU) 

NVIDIA GeForce GTX 1650 with 4 

GB VRAM 

4. Storage Solid State Drive (SSD) for faster 

data access and model training 

This configuration provided sufficient computational 

resources to support efficient training of deep learning 

models, including image processing, feature extraction, 

and classification tasks. Table 4 represents the software 

environment used for the experiment. The VenDR-Net 

model was trained using GPU acceleration to reduce 

computation time and enhance model efficiency. The 

training process included image preprocessing, feature 

learning, and classification, with model evaluation 

performed using 10-fold cross-validation to ensure 

consistency and robustness across data partitions [30]. The 

VenDR-Net model was trained using GPU acceleration to 

reduce computation time and enhance model efficiency 

 

Table 4: Software environment 

S. 

No. 

Software Used 

1. Operating System Windows 10 

2. Programming Language Python 3.8 

3. Deep Learning Framework TensorFlow 2.x 

4. Additional Libraries NumPy, OpenCV, Scikit-learn, Matplotlib, Pandas, and imbalanced-

learn 

5. CUDA Toolkit and cuDNN Configured to enable GPU acceleration for training and inference 
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Table 5: Tuning of hyperparameter 

Hyperparameter Description ResNet50 VGG16 VGG19 GoogLeNet 

Frozen layers Weights are not updated during 

the training process on a new 

dataset 

First 140 

Layers 

First 15 

Convolutional 

layers 

First 16 

Convolutional 

layers 

Initial 

Inception 

modules 

Unfrozen layers Weights are trainable; that is, 

updated during the training 

process using backpropagation. 

Final layers 

incl. FC 

Fully 

connected 

layers 

Fully 

connected 

layers 

Final layers 

incl. FC 

Learning Rate The step size for updating the 

model parameters during 

training 

0.01 0.01 0.0001 0.001 

Number of 

Epochs 

The number of times the entire 

dataset is passed through the 

model during training 

50 50 40 40 

Batch Size The number of samples used in 

each training iteration 

32 32 32 32 

Dropout 

Probability 

The probability of dropping out a 

neuron during training 

0.5 0.2 0.5 0.2 

Weight Decay Regularization parameter to 

prevent overfitting 

0.01 0.01 0.01 0.01 

Activation 

Function 

The activation function used in 

the neural network layers 

Softmax     Softmax Softmax Softmax 

Optimizer The optimization algorithm used 

during training 

Adam Adam Adam Adam 

The training process included image preprocessing, 

feature learning, and classification, with model evaluation 

performed using 10-fold cross- validation to ensure 

consistency and robustness across data partitions [30].   

Table 5 represents the tuning of hyperparameter for 

ensemble base deep learning model i.e., VEnDR-Net 

model. 

 

4  Results  
The simulation settings for grading in diabetic 

retinopathy (DR) replicate the process of assessing the 

severity of DR using retinal images. The confusion matrix 

in Figure 6 provides a detailed overview of the model's 

classification performance, which was trained using a 

dataset that classifies DR into five distinct labels: "No 

DR," "Mild DR," "Moderate DR," "Severe NPDR," and 

"PDR” [31]. 

 

4.1 Evaluation parameters 
This study uses the following parameters to measure 

the performance of VenDR-Net [32 - 33]. 

(a) Accuracy: Accuracy calculates the ratio of 

correctly predicted count to the total number of 

predictions. Mathematically, accuracy is expresssed as: 

Accuracy=
Number of Correct Predictions

Total Number of Predictions
    ………(8) 

In a binary classification problem with only two 

classes (such as positive and negative), accuracy is 

computed using the following formula:  

Accuracy =   

True Positives+True Negatives

True Positives+False Positives+True Negatives+False Negatives
   

.(9) 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                   …………..(10) 

 

(b) Precision: Precision is defined as the ratio of  

correctly classified positive instances (True Positives) to 

the total number of instances predicted as positive (the 

sum of True Positives and False Positives). It measures the 

accuracy of the model’s positive predictions, indicating 

the proportion of correctly identified positive cases. 

Mathematically, precision is calculated as: 

 

Precision = 
True Positive

True Positive + False Positive  
           

...….….(11) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 ….……..(12) 

 

(c) Recall: Recall is defined as the ratio of correctly 

classified positive instances (True Positives) to the total 

number of actual positive instances (the sum of True 

Positives and False Negatives). It measures the model’s 

ability to correctly detect positive samples, with higher 

recall indicating a greater number of correctly identified 

positives. 
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Recall = 
True Positive

True Positive + False Negative  
       …….(13) 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           ……(14) 

 

 

(d)          F1- Score: 

The F1-score is defined as the harmonic mean of 

precision and recall, providing a balanced measure that 

considers both metrics simultaneously. The harmonic 

mean is a type of average calculated by taking the 

reciprocal of the average of the individual values, making 

it particularly suitable when balancing two competing 

metrics.  

 

F1-Score = 
2X Precision X Recall

Precision+Recall
                    …...(15) 

 

4.2 Evaluated results 
The provided Table 6 presents the values of various 

performance measures of every CNN architecture used in 

the proposed model as well as of VEnDR-Net. The table 

shows VEnDR-Net gives much better results of precision, 

recall, F1-score and accuracy among all CNN 

architectures used for the proposed model via ensemble 

deep learning model i.e., VEnDR-Net model. 

 

Table 6: Performance of individual classification models and VEnDR-Net model 

S. No. Model Precision Recall F1-Score Accuracy 

1 ResNet50 0.95 0.94 0.94 0.95 

2 VGG16 0.96 0.96 0.96 0.95 

3 VGG19 0.96 0.96 0.96 0.96 

4 GoogLeNet 0.95 0.96 0.96 0.97 

5 VEnDR-Net  0.98 0.97 0.97 0.98 

To evaluate the computational cost associated with the 

proposed VEnDR-Net model comprising ResNet50, 

VGG16, VGG19, and GoogLeNet, a relative cost analysis 

was conducted based on model complexity, 

hyperparameters, and execution environment. All 

experiments were performed on a system equipped with an 

Intel Core i7 (9th Gen) processor, 16 GB DDR4 RAM, 

and an NVIDIA GeForce GTX 1650 GPU (4 GB 

VRAM), running Windows 10. The software stack 

included Python 3.8, TensorFlow 2.x, CUDA Toolkit, 

and cuDNN, along with essential libraries such as NumPy, 

Scikit-learn, OpenCV, and imbalanced-learn. 

Table 7 represents the calculation of estimated 

relative computational cost of VEnDR-Net Model.                                                                                                                                

Training cost was estimated using a relative unit-based 

scoring method, considering the number of model 

parameters (as a proxy for floating point operations), 

number of training epochs, and learning rate sensitivity.  

For normalization, GoogLeNet was assigned a base 

complexity factor of 1. ResNet50 (25.6M parameters) 

trained for 50 epochs with a learning rate of 0.01 yielded 

a cost of 100 units. VGG16 (138M parameters) required 

200 units under similar conditions, while VGG19 (144M 

parameters) trained for 40 epochs at a lower learning rate 

(0.0001) resulted in a higher cost of 216 units due to 

slower convergence. GoogLeNet, with only 6.8M 

parameters and moderate settings, incurred the lowest 

training cost at 40 units. The total relative training cost 

for the ensemble was thus calculated to be 556 units.

 

Table 7 : Estimated relative computational cost of ensemble models 

S. 

No. 
Model 

Parameters 

(Millions) 

Epochs Learning 

Rate 

Computational Cost 

1. ResNet50 25.6 50 0.01 50 X 2.0 X 1.0 = 100 

2. VGG16 138 50 0.01 50 X 4.0 X 1.0 = 200 

3. VGG19 144 40 0.0001 40 X 4.5 X 1.2 = 216 

4. GoogLeNet 6.8 40 0.001 40 X 1.0 X 1.0 = 40 

 Total -- -- -- 556 Units 
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For inference, the ensemble’s per-sample cost was 

approximated by summing normalized relative 

complexities of each model. The computed inference cost 

per prediction was 11.5 units, reflecting the cumulative 

burden of executing all four models sequentially, shown in 

Table 8. Due to the VRAM limitation of the GTX 1650, it  

is recommended to adopt a staged model loading strategy 

during inference or utilize model quantization to reduce 

runtime memory usage. This estimation underscores the 

trade-off between accuracy and computational overhead 

inherent in VEnDr-Net model, especially when deployed 

on resource-constrained hardware.

 

Table 8 : Relative inference cost per sample 

 

S. No. Model Relative Inference Cost (Units) 

1. ResNet50 2.0 

2. VGG16 4.0 

3. VGG19 4.5 

4. GoogLeNet 1.0 

5. VEnDR-Net 3.0 

To assess the classification performance of deep learning 

models for diabetic retinopathy (DR) detection, ROC and 

AUC curves were generated. The models compared 

include ResNet50, VGG16, VGG19, GoogLeNet, and the 

proposed VEnDR-Net.  

Figure 8 show the ROC curve, which represents the 

trade-off between the true positive rate (recall) and the 

false positive rate. The AUC (Area Under the Curve) 

shown by figure 9, quantifies the overall ability of the 

model to discriminate between positive and negative 

classes. 

• VEnDR-Net achieved the highest AUC score (≈ 

0.98), indicating excellent predictive 

performance. 

• Other models such as GoogLeNet and VGG19 

also performed well, with AUC values around 

0.96. 

• All models significantly outperformed the 

baseline (random classifier), which has an AUC 

of 0.50.

•  

 

Fig 8: ROC Curve for DR detection
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These results demonstrate that VEnDR-Net provides 

superior sensitivity and specificity compared to traditional  

CNN architectures, making it a promising approach for 

clinical DR screening. 

 

 

Fig 9: AUC Curve for DR detection

Table 9 represents the precision, recall and accuracy 

obtained by VEnDR-Net for each class. The precision,  

recall and accuracy achieved by VEnDR-Net are 98.46, 

96.91 and 98.464 respectively.

 

Table 9: Performance measure of VEnDR-Net for each class 

S. No. Stages of DR Precision Recall Accuracy 

1 No DR 98.12 98.83 98.98 

2 Mild DR 97.23 97.78 98.54 

3 Moderate DR 98.56 95.69 98.58 

4 Severe NPDR 98.34 96.94 98.26 

5 PDR  97.58 95.31 97.96 

Average 97.96 96.91 98.46 
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A comparative analysis of several methods or 

models based on different performance metrics is 

presented in Table 10. VEnDR-Net outperforms the other 

existing models in precision and accuracy as shown in       

Figure 10.  

This proposed model VEnDR-Net enhance the 

accuracy and achieve the improvement of 1.49% from 

the existing models.

Table 10: Performance comparison of VEnDR-Net with existing models 

Paper     Precision Recall F1-Score Accuracy 

Zhuang Ai et al. (2021) [35] 0.93 0.92 0.92 0.92 

ZUBAIR KHAN et al. (2021) [36] 0.67 0.56 0.61 0.83 

Muhammad Kashif Jabbar et al. (2022) [10] 0.98 0.95 0.97 0.96 

Ling Dai et al. (2021) [38] 0.95 0.93 0.94 0.95 

Abràmoff et al. (2020) [2] 0.96 0.96 0.97 0.97 

Zhao et al. (2020) [4] 0.96 0.96 0.96 0.96 

Silva et al. (2021) [14] 0.97 0.97 0.97 0.97 

VEnDR-Net (Proposed Model) 0.98 0.97 0.97 0.98 

 

 

Figure 10: Performance comparison of VEnDR-net with existing models 
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The implementation of deep learning models in real-

world medical environments demands more than just high 

predictive accuracy, which necessitates reliability, 

interpretability, and adaptability [34]. The proposed 

VEnDR-Net, a high-performance convolutional neural 

network designed for Diabetic Retinopathy (DR) 

detection, offers strong potential for integration into 

Clinical Decision Support Systems (CDSS) to enhance 

diagnostic accuracy and streamline ophthalmic 

workflows. 

 

5  Discussions 
The proposed VEnDR-Net architecture exhibits 

competitive and, in several aspects, superior performance 

when compared to existing state-of-the-art methodologies 

such as CNN-XGBoost. CNN-XGBoost leverage  

handcrafted features followed by tree-based ensemble 

classifiers. This classifier is quite useful in some of the 

cases, especially, where the data is less complex. 

However, CNN-XGBoost has limited scalability. In 

contrast, VEnDR-Net adopts an end-to-end deep ensemble 

strategy utilizing soft voting across multiple convolutional 

neural network (CNN) backbones, thereby enhancing 

model robustness and minimizing the dependency on 

feature engineering. 

 

Moreover, the traditional approaches including 

CNN-XGBoost method frequently demand substantial 

annotated data and task-specific alignment, which limits 

their practical application in real-world clinical 

environments, while VEnDR-Net circumvents this 

limitation by maintaining high diagnostic accuracy across 

diverse datasets without the need for the annotated data.  

 

6  Conclusion 
This research focuses on the development of deep 

learning model ensembles that employ a soft-voting 

approach to accurately classify the stages of diabetic 

retinopathy (DR). Dataset of EyePACS from Kaggle is 

used in the research which is providing dataset of 5 classes 

or stages of DR. Both positive and negative cases for DR 

detection have been evaluated with excellent accuracy, as 

the model demonstrated high values in sensitivity, 

specificity, accuracy, precision, and F1-score. This 

research approach introduces new ways to assess DR 

classification and provides the latest techniques for 

refining the classification and grading of DR. The 

proposed approach strengthens model robustness, refines 

feature discrimination, and delivers high classification 

accuracy using a soft voting ensemble of deep neural 

networks. This approach utilizes a voting ensemble 

learning model, which incorporates four different CNN 

architectures: ResNet50, VGG16, VGG19, and 

GoogLeNet. The integration of these architectures through 

soft voting achieves an impressive accuracy of 0.98464. 

The evaluated results show that the VEnDR-Net classifies 

diabetic retinopathy with enhanced performance metrics. 

A limitation of this research is the high computational cost 

involved in constructing ensemble models, which require 

training several models and amalgamating their outputs. 

Despite this limitation groundbreaking research strives to 

push the boundaries of DR diagnosis and treatment 

strategies, offering significant implications for both 

patients and healthcare professionals. 

7  Limitations and future work 
As Deep Learning is rapidly progressing, diabetic 

retinopathy (DR) detection has seen significant 

improvements in recent years. However, this study dealt 

with DR detection only using VEnDR-Net model, there 

remains considerable scope for enhancement. Emerging 

architectures such as Vision Transformers (ViT), 

EfficientNet, and hybrid CNN-transformer models offer 

improved representation learning capabilities. Their 

integration could lead to more accurate and robust DR 

detection systems. Implementing federated learning can 

enable collaborative model training across multiple 

healthcare institutions without sharing sensitive patient 

data, thereby enhancing model generalization while 

ensuring data privacy. Incorporating explainability 

techniques such as Grad-CAM, SHAP, or attention 

visualization will help clinicians understand the reasoning 

behind model predictions. This fosters trust and promotes 

adoption in clinical practice. Combining fundus images 

with patient metadata (e.g., age, HbA1c levels, blood 

pressure) or other imaging modalities like OCT can lead 

to a more comprehensive and accurate diagnosis of DR. 

Developing lightweight, real-time models optimized for 

edge devices or mobile platforms can facilitate affordable 

DR screening in rural and under-resourced regions. To 

ensure clinical applicability, future models should 

undergo rigorous validation in real-world healthcare 

environments. Collaboration with medical professionals 

and clinical trials will be critical in assessing reliability 

and bias reduction. 
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