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To address the crack defects arising from the complex nonlinear mapping relationship between key laser 

cladding process parameters and coating preparation, this study conducted a theoretical analysis and 

experimental verification by employing a BP neural network to predict crack density based on orthogonal 

experimental data. Initially, a three-factor four-level orthogonal experiment was performed to obtain 

fundamental sample data for the neural network, followed by dataset expansion using kernel density 

estimation (KDE). The dataset was then preprocessed through min-max normalization, ultimately 

establishing a three-layer predictive neural network model that correlates laser cladding layer process 

parameters (powder feeding rate, overlap rate, and scanning speed) with crack susceptibility. The results 

demonstrate that the BP neural network model achieves crack density predictions with relative errors 

fluctuating within ±5%, while maintaining an average error of 0.85% and a mean square error of 1.11%, 

indicating high prediction accuracy and stable performance. Furthermore, a comparative analysis of 

various regression methods, including KNN, Ridge, and Random Forest, was conducted in terms of R², 

RMSE, and MAE metrics, revealing that the BPNN exhibits superior comprehensive performance. These 

findings validate the feasibility of applying BP neural networks for crack density prediction through 

process parameters in laser cladding applications, which holds significant importance for fabricating 

crack-free nickel-based cladding layers. 

Povzetek: Študija z ortogonalnimi eksperimenti in razširitvijo podatkov (KDE) vzpostavi BP-nevronski 

model, ki iz procesnih parametrov (dovod prahu, prekrivanje, hitrost skeniranja) napoveduje gostoto 

razpok pri laserskem navarjanju Ni60 ter podpira optimizacijo postopka glede na razpoke odporne 

obloge. 

1 Introduction 

With the continuous development of laser cladding 

technology, it has shown many advantages in the 

manufacturing of large and complex metal workpieces and 

metal surface strengthening processes [1]. Laser cladding 

is an advanced manufacturing method that uses high-

energy laser beams to rapidly melt and solidify powder and 

substrate. However, due to the complex process of 

integrating multiple physical fields in laser cladding, the 

interaction between process parameters such as powder 

feeding rate, laser power, laser scanning speed, etc. will 

affect the quality of the deposited metal layer [2]. The 

coating is prone to serious cladding defects such as cracks 

[3], especially when cladding materials with higher 

hardness, which greatly limits the promotion, 

development, and application of laser cladding technology 

[4, 5]. Using traditional process experiments to control 

cracks is time-consuming, labor-intensive, and wasteful of 

resources, and the effect is average. How to 

comprehensively and intelligently control the factors that 

affect the cladding process is a hot research direction in 

this field [6, 7]. 

In this study, we investigated the challenge of crack  

formation in high-hardness nickel-based coatings by 

examining the key influencing factors of laser cladding 

crack generation and analyzing the feasibility of achieving 

crack density prediction errors below 10% using a three-

layer BP neural network based on orthogonally designed 

input parameters. Previous research has demonstrated the 

application of BPNN in establishing mapping relationships 

between laser cladding parameters and coating 

characteristics, as summarized in Table 1. Ni and Liu from 

Central South University in Hunan Province optimized the 

melting process using neural networks and particle swarm 

optimization methods [8]; Huang et al. from Huazhong 

University of Science and Technology used neural 

networks to predict the characteristics and properties of 

aluminum alloy cladding layers [9]; Jiang et al. from the 

Shenyang Research Institute of the Chinese Academy of 

Sciences used neural networks to study the prediction of 

cladding height [10]; Yang et al. from Northwestern 

Polytechnical University used neural networks to predict 
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the morphology and quality of laser formed parts [11]; Lei 

et al. from Wuhan University of Technology studied the 

prediction of characteristic parameters of broadband laser 

cladding pool using neural networks [12]; Liu et al. from 

the School of Mechanical Engineering, Hubei University 

of Technology studied the prediction of the morphology of 

nickel based alloy overlay layer using GA-BP neural 

network [13]. However, it is not difficult to find that most 

scholars still mainly use BPNN to predict the height, width, 

morphology and other characteristics of the cladding layer, 

and lack comprehensive multi factor intelligent crack 

prediction research for higher hardness cladding layers. 

Table 1: Comparison of model performance characteristics 

Reference 

number 
Model Name Prediction Target 

Model Mapping 

Relationship 
Quantitative Result 

7 BPNN+PSO 

Characteristics of the 

cladding layer - height 

and width 

The relationship between 

cladding bead 

characteristics (width, 

height) and cladding 

process parameters 

Relative errors less 

than 4.5% 

8 ANN 

Prediction of 

characteristics and 

properties of aluminum 

alloy cladding layers 

The relationship between 

laser cladding process 

parameters and the 

characteristics/properties of 

cladding layers 

The maximum 

error value is 

12.5% 

9 BPNN 
Prediction of clad 

height 

The relationship between 

laser process parameters 

and clad height 

Mean squared error 

of 0.0091 

10 BPNN 

Prediction of surface 

quality in formed 

components 

The relationship between 

scanning speed and infill 

angle during laser additive 

manufacturing and the 

surface quality evaluation 

parameters of fabricated 

components 

MSE < 0.01 

11 GA-BP 
Prediction of coating 

morphology 

The mapping relationship 

between laser processing 

parameters and the 

macroscopic morphology 

of cladding layers 

Average relative 

error of 3.951% 

12 BPNN 

Prediction of melt pool 

characteristics in wide-

band laser cladding 

The relationship between 

laser cladding process 

parameters (laser power, 

powder thickness, scanning 

speed) and melt pool 

characteristic parameters 

Errors less than 2% 

and correlation 

coefficient R 

approaching 1 

 

Therefore, from the perspective of crack sensitivity 

analysis, in order to better meet the quality requirements 

of the cladding layer, the mechanism of crack formation 

was theoretically analyzed, and the cladding parameters 

were determined to be important factors leading to crack 

formation. Through the Analytic Hierarchy Process (AHP), 

it was clarified that process parameters such as powder 

feeding rate, overlap rate, and scanning speed had the 

greatest impact on crack sensitivity. Then, by designing a 

3-factor 4-level orthogonal experiment, sample data of 

crack density was collected. Based on the data provided by 

the orthogonal experiment, the data was expanded through 
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interpolation, and a neural network model was constructed 

with the processed sample data as a reference, achieving a 

nonlinear mapping relationship between various process 

parameters and crack density. 

The contribution of this article is to propose a neural 

network prediction model based on small sample data on 

the basis of a small number of experiments. It can 

accurately predict crack density through process 

parameters such as powder feeding rate, overlap rate, and 

scanning rate. This can reduce the amount of process 

experiments, save materials, and analyze the impact of 

uncertain nonlinear factors on cracks in laser cladding 

layers with high hardness. At the same time, it provides a 

feasible new approach to reduce the number of offline 

experiments and prepare crack free coatings. 

2 Experimental materials and 

methods 

2.1 Experimental materials 

Through the study of coating cracks, 45# steel was 

selected as the substrate, with a substrate size of 110 

mm×60 mm×6 mm and a quantity of 16 pieces. In order to 

minimize the effect of external factors on the cladding 

layer, the steel plate was polished and polished before 

using the 45# steel substrate. Then, the surface of the steel 

plate to be clad was cleaned with anhydrous ethanol to 

ensure that the substrate surface was flat and free of rust, 

oil, and other impurities. Ni60 powder is selected as the 

laser cladding powder, with a powder size of 140-325 

mesh. Due to the fine powder, it is prone to moisture 

absorption and agglomeration in the air, which affects the 

experimental results. Therefore, it is necessary to dry and 

remove the powder before use. The element content in the 

45-steel matrix is shown in Table 2, and the element 

content in the Ni60 self-melting laser cladding powder is 

shown in Table 3. 

Table 2: Contents of elements in 45# steel (w%) 

Element Cr Si C Mn Ni Cu Fe 

45 # steel quality 

score 
≤0.25 0.17-0.40 0.42-0.50 0.50-0.80 ≤0.25 ≤ 0.30 Balance 

 

Table 3: Content of elements in Ni60 self-melting powder (w%) 

Element C Cr B Si Fe Ni 

Ni60 quality 

score 
0.7-1.0 14.0-17.0 3.0-4.5 3.5-5.5 ≤15.0 Margin 

2.2 Experimental equipment and methods 

The German KUKA machine KR30HA was used in 

the experiment; Experimental research was conducted on 

the Xinsong XSL-PF-01B-2 synchronous side powder 

feeder; The protective gas used in the experiment is argon 

gas; The cooling system uses a dual temperature chiller 

unit, model PH-LW296-TH2P; The fusion equipment is 

undergoing testing as shown in Figure 1. 
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Figure 1: Experimental equipment 

 

 

Figure 2: Results of the analytic hierarchy process (AHP) analysis 

 

In general, process parameters such as spot diameter, 

scanning path, interlayer cooling time, powder feeding rate, 

protective gas, substrate preheating temperature, laser 

power, powder feeding speed, overlap rate, and scanning 

speed all affect the performance and morphology of 

coatings. The weight of process parameters such as spot 

diameter and scanning path to crack density was calculated 

using the Analytic Hierarchy Process (AHP), and the 

results are shown in Figure 2. Among them, the three 

process parameter variables of powder feeding speed, 

overlap rate, and scanning speed have the highest weight 

proportion to the results. 

Meanwhile, the correlation analysis method was used 

to compare the correlation sensitivity between different 

parameters. As shown in Figure 3, the three process 

parameters of powder feeding speed, overlap rate, and 

scanning speed have the highest correlation with each 

other. In summary, the three parameters that have the 

greatest impact on coating performance and morphology 

and have a high correlation with each other, namely 
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powder feeding speed, overlap rate, and scanning rate, were selected as variables for the cladding experiment. 

 

Figure 3: Results of correlation analysis 

 

Due to the hardness of Ni60 powder, in the fusion 

process, only the powder feeding amount is changed. If 

other parameters remain unchanged, the total output 

energy of the laser remains unchanged. If the powder 

feeding amount is too large, most of the heat source is 

absorbed by the powder, and the heat reaching the 

substrate is relatively small. The temperature difference 

between the substrate and the fusion layer is large, and it 

rapidly cools at room temperature, resulting in an increase 

in crack generation; The powder feeding amount is too 

small, and the thickness of the cladding layer is thin. Due 

to the high energy of the laser delivered to the substrate, 

sintering may occur, and the thin cladding layer cannot 

achieve the purpose of laser repair. If there are multiple 

overlapping layers and other process parameters remain 

constant, excessive overlapping rate will result in over 

overlapping phenomenon. As the number of overlapping 

times increases, the cladding layer will gradually become 

thicker, and the surface of the cladding layer will tilt at a 

certain angle. The temperature gradient between the 

substrate and the cladding layer will gradually increase. If 

the overlapping rate is too low, it will lead to excessive 

surface ripples. Controlling the scanning speed of a single 

variable, under certain conditions, the crack sensitivity 

increases with the increase of scanning speed. Due to the 

fast-scanning speed, there is less heat input on the substrate, 

making it difficult for the substrate to form a fully melted 

melt pool with the powder, resulting in an increase in crack 

sensitivity [14]. 

Orthogonal experiments have two distinct 

characteristics, one is average dispersion, and the other is 

homogeneity and comparability. The so-called average 

dispersion refers to the equal occurrence of factor levels in 

each column; The so-called neat comparability refers to 

any pair of equivalent numbers in any two columns as a 

logarithm, where all possible pairs have the same number 

of repetitions. Based on the three variables of powder 

feeding speed, overlap rate, and scanning rate, a three 

factor four level orthogonal experiment L16 (43) was 

designed. The range of process parameters is shown in 

Table 4. The fusion experiment was conducted using a 

fusion robot, and each sample was subjected to 8 

overlapping fusion layers. Then, non-destructive crack 

detection was performed using dye penetrant testing agent 

to measure and calculate the total length of cracks and the 

area of the fusion layer of each sample. The crack density 

was calculated by dividing the two, and to eliminate 

accidental errors and ensure data accuracy, the final crack 

density was determined by taking the average of multiple 

measurements. The experimental process of feeding 20 

(g/min) powder, overlapping 50%, and scanning rate 10 

(mm/s) is shown in Figure 4. 
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a-matrix; b-Laser cladding results; c-Nondestructive testing results 

Figure 4: Test process 

Table 4: Orthogonal experimental parameters 

Level 

Factor 

powder feeding amount / 

(g/min) 
lap rate / (% scanning rate / (mm/s) 

1 16 45 4 

2 18 50 6 

3 20 55 8 

4 22 60 10 

 

3 Establishment of neural network 

model and evaluation of simulation 

performance 

3.1 Dataset construction 

The results of the orthogonal experiments for laser 

cladding parameters are presented in Table 5. These 

representative experimental datasets will serve as training 

and testing samples for the neural network to predict 

crack density.  

Table 5: Results of the laser cladding orthogonal test cladding 

Test 

number 

Powder delivery 

quantity/ (g/min) 

overlapping ratio/

（%)  
scan rate/ (mm/s) crack density/（mm/mm2)  

1 16 45 4 0.201472 

2 16 50 6 0.312450 

3 

4 

16 

16 

55 

60 

8 

10 

0.331451 

0.340142 

5 18 45 6 0.234483 

6 18 50 4 0.321578 

7 18 55 10 0.369252 

8 18 60 8 0.426565 

9 20 45 8 0.275027 

10 20 50 10 0.349855 

11 20 55 4 0.352161 

12 20 60 6 0.450340 

13 22 45 10 0.290522 

 

a 
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14 22 50 8 0.334810 

15 22 55 6 0.371483 

16 22 60 4 0.478756 

 

However, due to the small amount of data obtained 

from orthogonal experiments, it may affect the learning 

results of the BP neural network and lead to underfitting. 

Therefore, based on single crack density values and 

historical experience values, kernel density estimation 

(KDE) is used to approximate uniform interpolation, 

thereby expanding the dataset. 

Kernel Density Estimation (KDE) is a non 

parametric probability density estimation method that can 

fit distributions based on the characteristics and 

properties of the data itself, without making any 

distribution assumptions. For a sample set 

 1 2, , , nx x x   consisting of n observations of a 

continuous random variable X, the KED method 

estimates the probability density function (PDF) of the 

random variable X using equation (1), denoted as ( )p x . 

1

1
( ) ( )

n
i

i

x x
p x K

nh h



−

−
=   (1) 

where p̂(x) represents the estimated PDF, h denotes the 

bandwidth parameter of KDE, and K(u) is the kernel 

function. Given n observations of a random variable X, if 

k values fall within the interval [a, b], then ( )p x  can be 

expressed as equation (2): 

( )
( )

k
p x

n b a



=
−

 (2) 

By using a fixed interval [a, b] and changing the size 

of k to estimate the PDF, the number of observations k 

among the n observations of the random variable X that 

fall within the interval [a, b] can be expressed as equation 

(3): 

1

( )
n

i

i

x x
k K

h−

−
=  (3) 

Taking sample #1 as an example, its measurement 

results are presented in Table 6. 

Table 6: Statistical summary of measurement results for test sample #1 

Cladding bead 1 bead 2 bead 3 bead 4 bead 

Average 

0.201472 

Crack density /（mm/mm2)  0.201683 0.104472 0.233796 0.211206 

Cladding bead 5 bead 6 bead 7 bead 8 bead 

Crack density /（mm/mm2)  0.1617654 0.325267 0.201031 0.172556 

 

The crack densities of eight individual cladding 

beads were treated as a sample set {0.104472, 0.1617654, 

0.172556, 0.201031, 0.201683, 0.211206, 0.233796, 

0.325267}. Using KDE with the Gaussian kernel function, 

we estimated the probability density function p(x) over 

the fixed interval defined by the minimum and maximum 

values [0.104472, 0.325267]. Uniform interpolation was 

then performed based on the derived PDF, with results 

presented in Table 7. The results from each orthogonal 

experiment can be expanded to 32 data values. Through 

this expansion process, the 16 sets of orthogonal 

experimental results yield a total of 512 data samples. 

Table 7: Interpolation results of measurement data for test sample #1 

Crack density Crack density Crack density Crack density 

0.104472 0.172556 0.201683 0.22476 

0.11879535 0.179675 0.203588 0.229278 

0.1331187 0.186794 0.205492 0.233796 

0.14744205 0.193912 0.207397 0.25209 
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0.1617654 0.201031 0.209301 0.270384 

0.16446305 0.201194 0.211206 0.288679 

0.1671607 0.201357 0.215724 0.306973 

0.16985835 0.20152 0.220242 0.325267 

 

3.2 Establishment of neural network model 

BP neural network has strong nonlinear mapping 

ability, fault tolerance, self-learning and adaptive ability, 

and has been widely used in engineering prediction. For 

the analysis of process data, an orthogonal experimental 

scheme was used to melt the Ni60 cladding layer as a 

sample for the BP neural network. The experimental 

results were compared with the predicted values of the 

neural network for performance evaluation. The neural 

network algorithm flow is shown in Figure 5. 

 

Figure 5: Algorithm flow 

 

 

A three-layer predictive neural network structure 

model was established between the process parameters of 

laser cladding layer and crack sensitivity, as shown in 

Figure 6. The input layer has three neurons, namely 

powder feeding rate, overlap rate, and scanning speed, 

while the output layer only has one neuron, which is crack 

density. The number of neurons in the hidden layer can 

be calculated by empirical formula (4). 

m A B C= + +  (4) 

In the formulation, A denotes the number of output 

neurons, B represents the number of input neurons, and C 

is an empirical constant.  

The optimal number of hidden neurons was 

determined as 9 (search range: {4, 9, 16, 32}) through a 

combined grid search and Bayesian optimization 

approach, calculated based on input neuron count B and 

empirical constant  1,10Cò  , achieving minimal error 

on the validation set. The network architecture employs 

ReLU activation for the input layer to ensure 

computational efficiency, Swish activation in hidden 

layers to better model nonlinear relationships among 

process parameters, and linear activation for the output 

layer to meet regression requirements. To prevent 

overfitting, the model incorporates L2 regularization (λ = 

0.01) and a Dropout strategy (rate = 0.3). For the small-

scale process data characteristics, the Adam optimizer 

(learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) was selected 

to ensure training stability and convergence efficiency. 
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Figure 6: Prediction neural network structure model 

 

3.3 Training and simulation of neural 

network models 

Selecting a certain range of powder feeding amount, 

overlap rate, and scanning speed as input values during 

the cladding process to use BP neural network to predict 

the density of cracks in the cladding layer can effectively 

control the amount of crack generation. Randomly divide 

the expanded dataset into a training set and a testing set 

according to an 8:2 ratio. 

Due to the inconsistent units between various factors 

and output quantities in orthogonal experiments, it may 

lead to accuracy errors. Some neural networks have large 

data volumes, slow convergence, and long training times. 

In addition, the range of the activation function in their 

output layer is limited. Therefore, it is necessary to map 

the training target data to the range of the activation 

function, which requires data normalization. Substitute 

the three changing parameters and output training values 

into formula (5), and use the Min Max normalization 

method to convert the input training value test value and 

output training value into the range of [0,1]. 

min

max min

x x
y

x x

−
=

−
 (5) 

Where, y represents the processed quantity, x is a 

single sample,
maxx  ,

minx  and represents the maximum 

and minimum samples. 

As shown in Figure 7, the comparative variation of 

process parameters before and after normalization is 

illustrated, with aggregated statistics summarized in 

Table 8. 

 

a) Process parameters before normalization    b) Normalized process parameters 

Figure 7: Process parameters before and after normalization 

Table 8: Mean values and standard deviations of normalized process parameters 

Process parameters 

Average Standard deviation 

Before 

normalization 
After normalization 

Before 

normalization 
After normalization 

Powder feeding 19 0.5 2.309401077 0.384900256 
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amount 

Lap rate 52.5 0.5 5.773502692 0.384900256 

Scanning rate 7 0.5 2.309401077 0.384900256 

 

The model parameters were configured with 1000 

maximum iterations and a training target of 1×10-6 at a 

learning rate of 0.01. In practice, the training error 

dropped below 10-6 and stabilized within 150 iterations, 

meeting the specified accuracy requirements. The 

convergence process of the iterative training loss is 

demonstrated in Figure 8. 

 

Figure 8: Training loss convergence process 

 

3.4 Performance evaluation of the neural 

network model 

The predictive model's accuracy was 

comprehensively evaluated using Equations (6)-(9) to 

calculate four key metrics: relative error (E), mean 

absolute error (MAE), root mean square error (RMSE), 

and coefficient of determination (R²). This multi-metric 

assessment framework provides rigorous validation of 

the model's reliability in predicting crack density. 
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 (9) 

In the above formula, ŷᵢ(i=1,2,...,n) represents the 

predicted value of the i-th sample, while yᵢ(i=1,2,...,n) 

denotes the corresponding true value. For the relative 

error E, smaller values indicate closer proximity to the 

true values and better model performance. The Mean 

Absolute Error (MAE) measures the average absolute 

deviation between predicted and true values as a non-

negative metric, where smaller MAE values correspond 

to superior models. The Root Mean Square Error (RMSE), 

a key regression metric, quantifies the magnitude of 

prediction errors, assigning higher weights to larger 

errors; like MAE, smaller values are preferable. The 

coefficient of determination (R²) ranges within [0,1], with 

values closer to 1 indicating better model performance 

and vice versa. 

Figure 9 presents the training and prediction results 

of the BPNN model. As shown in (a) and (b), the model 

successfully captures the primary fluctuation trends in 

both the training and test datasets. Notably, the predicted 

values on the test set demonstrate closer alignment with 

the true values compared to the training set. The reduced 

sample size of the test set results in less complex data 

fluctuations relative to the training set. Panels (c) and (d) 

display the model's relative errors, which predominantly 

fluctuate within ±10%, indicating minimal errors for 

most samples. Remarkably, the test set's relative errors 

are further constrained within ±5%, demonstrating the 

model's reliability and high predictive accuracy for crack 

density estimation. 
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a) the true and predicted values of the training set  b) the true and predicted values of the test set 

 

c) corresponding relative errors of the training set  d) corresponding relative errors of the test set 

Figure 9: Training and prediction results of BPNN for crack density 

 

As evident from Figure 10, the residuals are 

predominantly concentrated within ±0.01, indicating the 

model maintains excellent fitting capability with 

consistent stability. 

 

Figure 10: Residual plot of prediction samples 

 

As shown in Table 9, the model's MAE, RMSE, and 

R² scores are presented. On the training set, the model 

achieves an R² of 0.9772, while on the test set, the R² is 

0.9644, demonstrating strong fitting capability to the 

training data and reliable prediction of crack density in 

Ni60 self-fluxing alloy powder laser cladding layers 

within an acceptable error margin. Furthermore, the 

training set shows MAE and RMSE values of 0.0071 and 
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0.0089, respectively, compared to 0.0085 (MAE) and 

0.0111 (RMSE) for the test set. The minimal discrepancy 

between these metrics indicates robust predictive 

performance in practical applications, with maintained 

effectiveness on random data samples. 

 

Table 9: Performance metrics (R², MAE, RMSE) for training and test sets 

 
Coefficient of 

determination R2 

mean absolute error

（MAE)  

root mean 

square error （RMSE)  

Training set 0.9772 0.0071 0.0089 

Test set 0.9644 0.0085 0.0111 

 

3.5 Comparative analysis with alternative 

models 

Based on the aforementioned analysis, we evaluated 

multiple machine learning algorithms-including KNN 

regression, Ridge regression, XGBoost regression, 

AdaBoost regression, CatBoost regression, Random 

Forest regression, LSTM regression, BiLSTM-AdaBoost 

regression, and CNN regression-on the same dataset and 

compared their performance with BPNN regression. The 

R², MAE, and RMSE values for each model are 

summarized in Table 10. 

Table 10: Comparative results of crack density prediction on the test set 

Model name R2 MAE RMSE 

KNN 0.95002 0.00017 0.01301 

ridge regression 0.88528 0.00039 0.01971 

XGboost regression 0.92974 0.00024 0.01543 

ADA boost 0.92604 0.00025 0.01583 

Catboost 0.94618 0.00018 0.01543 

Random forest 0.93593 0.00022 0.01472 

LSTM 0.90605 0.01293 0.01784 

BiLSTM-AdaBoost 0.91265 0.01313 0.01720 

CNN 0.94571 0.00819 0.01356 

BP Neural Network 0.96445 0.01109 0.00853 

 

4 Discussion 

The relationship between process parameters and 

crack susceptibility in laser cladding involves complex 

nonlinear interactions. The Backpropagation Neural 

Network (BPNN) was selected for this study to model the 

mapping between three key process parameters (powder 

feed rate, overlap ratio, and scanning speed) and crack 

density, owing to its exceptional nonlinear fitting 

capability and adaptive feature learning through error 

backpropagation that continuously optimizes network 

weights and thresholds to achieve high-precision 

modeling. Given the high cost and time-consuming 

nature of laser cladding experiments, orthogonal 

experimental designs are typically employed to 

investigate parameter-crack density relationships. 

However, neural networks like BPNN require substantial 

training samples for effective learning, which was 

addressed in this study through Kernel Density 

Estimation (KDE)-based data augmentation. 

Experimental results (Tables 9-10) demonstrate that the 

BPNN prediction model achieves test set errors within 

±5%, with MAE and RMSE values of 0.85% and 1.11% 

respectively. Comparative analysis with KNN regression, 

ridge regression, XGBoost regression, AdaBoost 

regression, CatBoost regression, random forest 

regression, LSTM regression, BiLSTM-AdaBoost 

regression, and CNN regression confirms BPNN's 

superior performance, evidenced by its highest R² score 

of 0.96445. This superiority stems from BPNN's three-

layer architecture employing nonlinear activation 

functions (ReLU/Swish) that effectively approximate the 

complex multi-parameter interactions in laser cladding 

crack prediction scenarios. 

The proposed method effectively addresses the 

critical challenges of process parameter optimization and 

crack density prediction in laser cladding, demonstrating 

significant value for fabricating high-quality nickel-

based cladding layers. Furthermore, this research offers 

valuable insights for cladding processes involving similar 

materials (titanium alloys or other superalloys). By 
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establishing a BPNN-based mapping between process 

parameters and target performance characteristics, the 

study provides a universal research paradigm for precise 

"process-performance" regulation in additive 

manufacturing, particularly enhancing process 

development efficiency for high-cost, high-precision 

manufacturing scenarios. Although this study has 

achieved significant results, there are still some potential 

limitations. The proposed method in this research lacks 

sufficient real-time optimization capability and an online 

learning mechanism, which hinders the model's self-

adaptive iterative optimization ability in practical 

production environments. In future research, it will be 

essential to investigate elastic network structures with 

incremental learning capabilities and integrate online 

sequential learning algorithms to enhance the model's 

generalization ability and adaptability in engineering 

applications. 

5 Conclusion 

This study focuses on the laser cladding of Ni60 

powder on 45# steel surfaces. By employing orthogonal 

experimental design combined with BP neural network 

modeling, we systematically investigated the nonlinear 

mapping relationship between process parameters (such 

as laser power, scanning speed, and powder feed rate) and 

crack density in the cladding layer. Through network 

training, learning, and predictive fitting, the reliability of 

the model was verified, providing a feasible solution for 

preparing crack-free nickel-based cladding layers. The 

results demonstrate that the BP neural network-based 

prediction model exhibits strong generalization 

performance on the test set, with a coefficient of 

determination (R²) of 0.9644, indicating excellent fitting 

capability. Additionally, the mean absolute error (MAE) 

and root mean square error (RMSE) were 0.0085 and 

0.0111, respectively, confirming the model's predictive 

stability. 

Through comparative analysis with various other 

regression algorithms-including KNN regression, ridge 

regression, XGBoost regression, AdaBoost regression, 

CatBoost regression, random forest regression, LSTM 

regression, BiLSTM-AdaBoost regression, and CNN 

regression-the BPNN (Backpropagation Neural Network) 

model demonstrated superior stability and accuracy. This 

finding validates the feasibility of integrating theoretical 

modeling with experimental validation, offering a 

promising new approach for preparing crack-free nickel-

based cladding layers. 

Further analysis indicates that conventional 

backpropagation (BP) neural networks exhibit limitations 

in processing high-dimensional parameter interactions, 

manifesting as slow convergence rates and susceptibility 

to local optima. Moreover, the model necessitates 

complete retraining when applied to new alloy powder 

systems. To enhance the predictive accuracy of the 

network model, subsequent research could employ 

convolutional neural networks (CNNs) to extract 

morphological features from cladding layer images for 

improved parameter correlation modeling, while 

exploring Vision Transformer (ViT) architectures to 

integrate multimodal data, combining process parameters 

with molten pool dynamic monitoring images. 

Additionally, an online learning system could be 

implemented to enable dynamic closed-loop control of 

process parameters through real-time acquisition of 

spectral signals and thermal imaging data during the 

cladding process. 
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