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To address the crack defects arising from the complex nonlinear mapping relationship between key laser
cladding process parameters and coating preparation, this study conducted a theoretical analysis and
experimental verification by employing a BP neural network to predict crack density based on orthogonal
experimental data. Initially, a three-factor four-level orthogonal experiment was performed to obtain
fundamental sample data for the neural network, followed by dataset expansion using kernel density
estimation (KDE). The dataset was then preprocessed through min-max normalization, ultimately
establishing a three-layer predictive neural network model that correlates laser cladding layer process
parameters (powder feeding rate, overlap rate, and scanning speed) with crack susceptibility. The results
demonstrate that the BP neural network model achieves crack density predictions with relative errors
fluctuating within £5%, while maintaining an average error of 0.85% and a mean square error of 1.11%,
indicating high prediction accuracy and stable performance. Furthermore, a comparative analysis of
various regression methods, including KNN, Ridge, and Random Forest, was conducted in terms of R?,
RMSE, and MAE metrics, revealing that the BPNN exhibits superior comprehensive performance. These
findings validate the feasibility of applying BP neural networks for crack density prediction through
process parameters in laser cladding applications, which holds significant importance for fabricating
crack-free nickel-based cladding layers.

Povzetek: Studija z ortogonalnimi eksperimenti in razsiritvijo podatkov (KDE) vzpostavi BP-nevronski
model, ki iz procesnih parametrov (dovod prahu, prekrivanje, hitrost skeniranja) napoveduje gostoto
razpok pri laserskem navarjanju Ni60 ter podpira optimizacijo postopka glede na razpoke odporne

obloge.

1 Introduction

With the continuous development of laser cladding
technology, it has shown many advantages in the
manufacturing of large and complex metal workpieces and
metal surface strengthening processes [1]. Laser cladding
is an advanced manufacturing method that uses high-
energy laser beams to rapidly melt and solidify powder and
substrate. However, due to the complex process of
integrating multiple physical fields in laser cladding, the
interaction between process parameters such as powder
feeding rate, laser power, laser scanning speed, etc. will
affect the quality of the deposited metal layer [2]. The
coating is prone to serious cladding defects such as cracks
[3], especially when cladding materials with higher
hardness, which greatly limits the promotion,
development, and application of laser cladding technology
[4, 5]. Using traditional process experiments to control
cracks is time-consuming, labor-intensive, and wasteful of
resources, and the effect is average. How to
comprehensively and intelligently control the factors that

affect the cladding process is a hot research direction in
this field [6, 7].

In this study, we investigated the challenge of crack
formation in high-hardness nickel-based coatings by
examining the key influencing factors of laser cladding
crack generation and analyzing the feasibility of achieving
crack density prediction errors below 10% using a three-
layer BP neural network based on orthogonally designed
input parameters. Previous research has demonstrated the
application of BPNN in establishing mapping relationships
between laser cladding parameters and coating
characteristics, as summarized in Table 1. Ni and Liu from
Central South University in Hunan Province optimized the
melting process using neural networks and particle swarm
optimization methods [8]; Huang et al. from Huazhong
University of Science and Technology used neural
networks to predict the characteristics and properties of
aluminum alloy cladding layers [9]; Jiang et al. from the
Shenyang Research Institute of the Chinese Academy of
Sciences used neural networks to study the prediction of
cladding height [10]; Yang et al. from Northwestern
Polytechnical University used neural networks to predict


mailto:kzy2023034@163.com

342  Informatica 49 (2025) 341-354

the morphology and quality of laser formed parts [11]; Lei
et al. from Wuhan University of Technology studied the
prediction of characteristic parameters of broadband laser
cladding pool using neural networks [12]; Liu et al. from
the School of Mechanical Engineering, Hubei University
of Technology studied the prediction of the morphology of
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nickel based alloy overlay layer using GA-BP neural
network [13]. However, it is not difficult to find that most
scholars still mainly use BPNN to predict the height, width,
morphology and other characteristics of the cladding layer,
and lack comprehensive multi factor intelligent crack
prediction research for higher hardness cladding layers.

Table 1: Comparison of model performance characteristics

Reference L Model Mapping o
Model Name Prediction Target ) ) Quantitative Result
number Relationship
The relationship between
Characteristics of the cladding bead .
) ) o ) Relative errors less
7 BPNN+PSO cladding layer - height characteristics (width,
. ) ) than 4.5%
and width height) and cladding
process parameters
o The relationship between
Prediction of . .
. laser cladding process The maximum
characteristics and .
8 ANN i i parameters and the error value is
properties of aluminum o .
. characteristics/properties of 12.5%
alloy cladding layers .
cladding layers
o The relationship between
Prediction of clad Mean squared error
9 BPNN . laser process parameters
height . 0f 0.0091
and clad height
The relationship between
scanning speed and infill
Prediction of surface angle during laser additive
10 BPNN quality in formed manufacturing and the MSE < 0.01
components surface quality evaluation
parameters of fabricated
components
The mapping relationship
o . between laser processing )
Prediction of coating Average relative
11 GA-BP parameters and the
morphology . error of 3.951%
macroscopic morphology
of cladding layers
The relationship between
o laser cladding process Errors less than 2%
Prediction of melt pool .
o parameters (laser power, and correlation
12 BPNN characteristics in wide- . . .
. powder thickness, scanning coefficient R
band laser cladding )
speed) and melt pool approaching 1
characteristic parameters

Therefore, from the perspective of crack sensitivity
analysis, in order to better meet the quality requirements
of the cladding layer, the mechanism of crack formation
was theoretically analyzed, and the cladding parameters
were determined to be important factors leading to crack
formation. Through the Analytic Hierarchy Process (AHP),

it was clarified that process parameters such as powder
feeding rate, overlap rate, and scanning speed had the
greatest impact on crack sensitivity. Then, by designing a
3-factor 4-level orthogonal experiment, sample data of
crack density was collected. Based on the data provided by
the orthogonal experiment, the data was expanded through
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interpolation, and a neural network model was constructed
with the processed sample data as a reference, achieving a
nonlinear mapping relationship between various process
parameters and crack density.

The contribution of this article is to propose a neural
network prediction model based on small sample data on
the basis of a small number of experiments. It can
accurately predict crack density through process
parameters such as powder feeding rate, overlap rate, and
scanning rate. This can reduce the amount of process
experiments, save materials, and analyze the impact of
uncertain nonlinear factors on cracks in laser cladding
layers with high hardness. At the same time, it provides a
feasible new approach to reduce the number of offline
experiments and prepare crack free coatings.

2 Experimental materials  and
methods

2.1 Experimental materials

Table 2: Contents of elements in 45# steel (w%)
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Through the study of coating cracks, 45# steel was
selected as the substrate, with a substrate size of 110
mmx>60 mmx6 mm and a quantity of 16 pieces. In order to
minimize the effect of external factors on the cladding
layer, the steel plate was polished and polished before
using the 45# steel substrate. Then, the surface of the steel
plate to be clad was cleaned with anhydrous ethanol to
ensure that the substrate surface was flat and free of rust,
oil, and other impurities. Ni60 powder is selected as the
laser cladding powder, with a powder size of 140-325
mesh. Due to the fine powder, it is prone to moisture
absorption and agglomeration in the air, which affects the
experimental results. Therefore, it is necessary to dry and
remove the powder before use. The element content in the
45-steel matrix is shown in Table 2, and the element
content in the Ni60 self-melting laser cladding powder is
shown in Table 3.

Element Cr Si C Mn Ni Cu Fe
a5 # S;iz'rg“a“ty <025 | 017040 | 0.42-050 | 050-0.80 | <025 <0.30 Balance
Table 3: Content of elements in Ni60 self-melting powder (w%)
Element C Cr B Si Fe Ni
N'GSC?);’:'"V 0.7-1.0 14.0-17.0 3.0-4.5 3555 <15.0 Margin

2.2 Experimental equipment and methods

The German KUKA machine KR30HA was used in
the experiment; Experimental research was conducted on
the Xinsong XSL-PF-01B-2 synchronous side powder

feeder; The protective gas used in the experiment is argon
gas; The cooling system uses a dual temperature chiller
unit, model PH-LW296-TH2P; The fusion equipment is
undergoing testing as shown in Figure 1.
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Figure 1: Experimental equipment
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Figure 2: Results of the analytic hierarchy process (AHP) analysis

In general, process parameters such as spot diameter,
scanning path, interlayer cooling time, powder feeding rate,
protective gas, substrate preheating temperature, laser
power, powder feeding speed, overlap rate, and scanning
speed all affect the performance and morphology of
coatings. The weight of process parameters such as spot
diameter and scanning path to crack density was calculated
using the Analytic Hierarchy Process (AHP), and the
results are shown in Figure 2. Among them, the three
process parameter variables of powder feeding speed,

overlap rate, and scanning speed have the highest weight
proportion to the results.

Meanwhile, the correlation analysis method was used
to compare the correlation sensitivity between different
parameters. As shown in Figure 3, the three process
parameters of powder feeding speed, overlap rate, and
scanning speed have the highest correlation with each
other. In summary, the three parameters that have the
greatest impact on coating performance and morphology
and have a high correlation with each other, namely
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powder feeding speed, overlap rate, and scanning rate,
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were selected as variables for the cladding experiment.
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Figure 3: Results of correlation analysis

Due to the hardness of Ni60 powder, in the fusion
process, only the powder feeding amount is changed. If
other parameters remain unchanged, the total output
energy of the laser remains unchanged. If the powder
feeding amount is too large, most of the heat source is
absorbed by the powder, and the heat reaching the
substrate is relatively small. The temperature difference
between the substrate and the fusion layer is large, and it
rapidly cools at room temperature, resulting in an increase
in crack generation; The powder feeding amount is too
small, and the thickness of the cladding layer is thin. Due
to the high energy of the laser delivered to the substrate,
sintering may occur, and the thin cladding layer cannot
achieve the purpose of laser repair. If there are multiple
overlapping layers and other process parameters remain
constant, excessive overlapping rate will result in over
overlapping phenomenon. As the number of overlapping
times increases, the cladding layer will gradually become
thicker, and the surface of the cladding layer will tilt at a
certain angle. The temperature gradient between the
substrate and the cladding layer will gradually increase. If
the overlapping rate is too low, it will lead to excessive
surface ripples. Controlling the scanning speed of a single
variable, under certain conditions, the crack sensitivity
increases with the increase of scanning speed. Due to the
fast-scanning speed, there is less heat input on the substrate,
making it difficult for the substrate to form a fully melted

melt pool with the powder, resulting in an increase in crack
sensitivity [14].

Orthogonal  experiments have two  distinct
characteristics, one is average dispersion, and the other is
homogeneity and comparability. The so-called average
dispersion refers to the equal occurrence of factor levels in
each column; The so-called neat comparability refers to
any pair of equivalent numbers in any two columns as a
logarithm, where all possible pairs have the same number
of repetitions. Based on the three variables of powder
feeding speed, overlap rate, and scanning rate, a three
factor four level orthogonal experiment Lis (4°) was
designed. The range of process parameters is shown in
Table 4. The fusion experiment was conducted using a
fusion robot, and each sample was subjected to 8§
overlapping fusion layers. Then, non-destructive crack
detection was performed using dye penetrant testing agent
to measure and calculate the total length of cracks and the
area of the fusion layer of each sample. The crack density
was calculated by dividing the two, and to eliminate
accidental errors and ensure data accuracy, the final crack
density was determined by taking the average of multiple
measurements. The experimental process of feeding 20
(g/min) powder, overlapping 50%, and scanning rate 10
(mm/s) is shown in Figure 4.
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a-matrix; b-Laser cladding results; c-Nondestructive testing results
Figure 4: Test process
Table 4: Orthogonal experimental parameters
Factor
Level powder feeding amount / .
] lap rate / (% scanning rate / (mm/s)
(g/min)
1 16 45
2 18 50
3 20 55 8
4 22 60 10

3 Establishment of neural network
model and evaluation of simulation
performance

3.1 Dataset construction

The results of the orthogonal experiments for laser
cladding parameters are presented in Table 5. These
representative experimental datasets will serve as training
and testing samples for the neural network to predict
crack density.

Table 5: Results of the laser cladding orthogonal test cladding

Test Powder delivery overlapping ratio/ .
) , scan rate/ (mm/s) crack density/ (mm/mm?)
number quantity/ (g/min) (%)
1 16 45 0.201472
2 16 50 0.312450
3 16 55 0.331451
4 16 60 10 0.340142
5 18 45 0.234483
6 18 50 0.321578
7 18 55 10 0.369252
8 18 60 8 0.426565
9 20 45 8 0.275027
10 20 50 10 0.349855
11 20 55 0.352161
12 20 60 0.450340
13 22 45 10 0.290522
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14 22 50 0.334810
15 22 55 0.371483
16 22 60 4 0.478756
However, due to the small amount of data obtained A 1 &) X=X
. . . p() =2 K(—) (1)
from orthogonal experiments, it may affect the learning nh = h

results of the BP neural network and lead to underfitting.
Therefore, based on single crack density values and
historical experience values, kernel density estimation
(KDE) is used to approximate uniform interpolation,

thereby expanding the dataset.

Kernel Density Estimation (KDE) is a non
parametric probability density estimation method that can
fit distributions based on the characteristics and
properties of the data itself, without making any
distribution

assumptions. For a sample set

consisting of n observations of a

(%, X001 X, }

continuous random variable X, the KED method

estimates the probability density function (PDF) of the

random variable X using equation (1), denoted as p (X) .

where p(x) represents the estimated PDF, 4 denotes the
bandwidth parameter of KDE, and K(u) is the kernel

function. Given n observations of a random variable X, if

k values fall within the interval [a, 5], then p(X) canbe

expressed as equation (2):

k
n(b-a)

p(x) = @)

By using a fixed interval [a, b] and changing the size
of k to estimate the PDF, the number of observations k
among the n observations of the random variable X that

fall within the interval [a, b] can be expressed as equation

3):

=YK G)

i-1
Taking sample #1 as an example, its measurement

results are presented in Table 6.

Table 6: Statistical summary of measurement results for test sample #1

Cladding bead 1 bead 2 bead 3 bead 4 bead
Crack density / (mm/mm?) 0.201683 0.104472 0.233796 0.211206 Average
Cladding bead 5 bead 6 bead 7 bead 8 bead 0.201472
Crack density / (mm/mm?) 0.1617654 0.325267 0.201031 0.172556

The crack densities of eight individual cladding
beads were treated as a sample set {0.104472,0.1617654,
0.172556, 0.201031, 0.201683, 0.211206, 0.233796,
0.325267}. Using KDE with the Gaussian kernel function,
we estimated the probability density function p(x) over
the fixed interval defined by the minimum and maximum

values [0.104472, 0.325267]. Uniform interpolation was
then performed based on the derived PDF, with results
presented in Table 7. The results from each orthogonal
experiment can be expanded to 32 data values. Through
this expansion process, the 16 sets of orthogonal
experimental results yield a total of 512 data samples.

Table 7: Interpolation results of measurement data for test sample #1

Crack density Crack density Crack density Crack density
0.104472 0.172556 0.201683 0.22476
0.11879535 0.179675 0.203588 0.229278
0.1331187 0.186794 0.205492 0.233796
0.14744205 0.193912 0.207397 0.25209
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0.1617654 0.201031 0.209301 0.270384
0.16446305 0.201194 0.211206 0.288679
0.1671607 0.201357 0.215724 0.306973
0.16985835 0.20152 0.220242 0.325267

3.2 Establishment of neural network model

BP neural network has strong nonlinear mapping
ability, fault tolerance, self-learning and adaptive ability,
and has been widely used in engineering prediction. For
the analysis of process data, an orthogonal experimental

scheme was used to melt the Ni60 cladding layer as a
sample for the BP neural network. The experimental
results were compared with the predicted values of the
neural network for performance evaluation. The neural
network algorithm flow is shown in Figure 5.

Construction of BP Neural Network

BP neural network training

' N

. Constructing a suitablew
t delin H 8
t system modeimg BP neural network J

| BP neural network BP neural network
L initialization training

Training end

BP neural network prediction

Y
BP neural network test data )
prediction J

Figure 5: Algorithm flow

A three-layer predictive neural network structure
model was established between the process parameters of
laser cladding layer and crack sensitivity, as shown in
Figure 6. The input layer has three neurons, namely
powder feeding rate, overlap rate, and scanning speed,
while the output layer only has one neuron, which is crack
density. The number of neurons in the hidden layer can
be calculated by empirical formula (4).

m=vA+B+C 4

In the formulation, 4 denotes the number of output
neurons, B represents the number of input neurons, and C
is an empirical constant.

The optimal number of hidden neurons was

determined as 9 (search range: {4, 9, 16, 32}) through a
combined grid search and Bayesian optimization
approach, calculated based on input neuron count B and
empirical constant Cé[l,lO] , achieving minimal error
on the validation set. The network architecture employs
ReLU activation for the input layer to ensure
computational efficiency, Swish activation in hidden
layers to better model nonlinear relationships among
process parameters, and linear activation for the output
layer to meet regression requirements. To prevent
overfitting, the model incorporates L, regularization (4 =
0.01) and a Dropout strategy (rate = 0.3). For the small-
scale process data characteristics, the Adam optimizer
(learning rate = 0.001, 1 = 0.9, B> = 0.999) was selected
to ensure training stability and convergence efficiency.
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Figure 6: Prediction neural network structure model

3.3 Training and simulation of neural

network models

Selecting a certain range of powder feeding amount,
overlap rate, and scanning speed as input values during
the cladding process to use BP neural network to predict
the density of cracks in the cladding layer can effectively
control the amount of crack generation. Randomly divide
the expanded dataset into a training set and a testing set
according to an 8:2 ratio.

Due to the inconsistent units between various factors
and output quantities in orthogonal experiments, it may
lead to accuracy errors. Some neural networks have large
data volumes, slow convergence, and long training times.
In addition, the range of the activation function in their
output layer is limited. Therefore, it is necessary to map

Data Columns

—e— Powder delivery quantity/(g/min] =~ overlapping ratiof(%)  —a - scan rate/(mms)

a) Process parameters before normalization

the training target data to the range of the activation
function, which requires data normalization. Substitute
the three changing parameters and output training values
into formula (5), and use the Min Max normalization
method to convert the input training value test value and
output training value into the range of [0,1].
N (5)
Xinax ~ Xmin

Where, y represents the processed quantity, x is a
single sample, X, , X;, and represents the maximum
and minimum samples.

As shown in Figure 7, the comparative variation of
process parameters before and after normalization is
illustrated, with aggregated statistics summarized in
Table 8.

Data Columns
~e~ Powder delivery quantity/(g/min)  ~#- overlapping ratiof(%) =+ scan rate/(mms)

A 1
A \
,/\ A ‘ 7

b) Normalized process parameters

Figure 7: Process parameters before and after normalization

Table 8: Mean values and standard deviations of normalized process parameters

Average Standard deviation
Process parameters Before Before
L After normalization L After normalization
normalization normalization
Powder feeding 19 0.5 2.309401077 0.384900256
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amount
Lap rate 52.5 0.5 5.773502692 0.384900256
Scanning rate 7 0.5 2.309401077 0.384900256

The model parameters were configured with 1000
maximum iterations and a training target of 1x10 at a
learning rate of 0.01. In practice, the training error
dropped below 10 and stabilized within 150 iterations,

meeting the specified accuracy requirements. The
convergence process of the iterative training loss is
demonstrated in Figure 8.
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Figure 8: Training loss convergence process

3.4 Performance evaluation of the neural
network model

The  predictive  model's  accuracy  was
comprehensively evaluated using Equations (6)-(9) to
calculate four key metrics: relative error (£), mean
absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R?). This multi-metric
assessment framework provides rigorous validation of
the model's reliability in predicting crack density.

E =YYl 1009

, (6)
yl
MAE =2 37]y, -y, e[0.+) ™
[1 n n
RMSE = EZ(yi_yi) (8)
I A I~
[ yiyi= Y yiy yif
RZ i=1 i=1 i=1 (9)

DRIINIS DRETIRDS

In the above formula, y(i=1,2,...,n) represents the
predicted value of the i-th sample, while yi(i=1,2,...,n)

denotes the corresponding true value. For the relative
error E, smaller values indicate closer proximity to the
true values and better model performance. The Mean
Absolute Error (MAE) measures the average absolute
deviation between predicted and true values as a non-
negative metric, where smaller MAE values correspond
to superior models. The Root Mean Square Error (RMSE),
a key regression metric, quantifies the magnitude of
prediction errors, assigning higher weights to larger
errors; like MAE, smaller values are preferable. The
coefficient of determination (R?) ranges within [0,1], with
values closer to 1 indicating better model performance
and vice versa.

Figure 9 presents the training and prediction results
of the BPNN model. As shown in (a) and (b), the model
successfully captures the primary fluctuation trends in
both the training and test datasets. Notably, the predicted
values on the test set demonstrate closer alignment with
the true values compared to the training set. The reduced
sample size of the test set results in less complex data
fluctuations relative to the training set. Panels (c) and (d)
display the model's relative errors, which predominantly
fluctuate within £10%, indicating minimal errors for
most samples. Remarkably, the test set's relative errors
are further constrained within +5%, demonstrating the
model's reliability and high predictive accuracy for crack
density estimation.
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Crack Density (mm/mm?)

As evident from Figure 10, the residuals are
predominantly concentrated within +0.01, indicating the

As shown in Table 9, the model's MAE, RMSE, and
R? scores are presented. On the training set, the model
achieves an R? of 0.9772, while on the test set, the R? is
0.9644, demonstrating strong fitting capability to the

Training Set: True vs Predicted Values
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Test Set: True vs Predicted Values
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Figure 9: Training and prediction results of BPNN for crack density
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Figure 10: Residual plot of prediction samples

training data and reliable prediction of crack density in
Ni60 self-fluxing alloy powder laser cladding layers
within an acceptable error margin. Furthermore, the
training set shows MAE and RMSE values of 0.0071 and
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0.0089, respectively, compared to 0.0085 (MAE) and
0.0111 (RMSE) for the test set. The minimal discrepancy
between these metrics indicates robust predictive

J. Lietal.

performance in practical applications, with maintained
effectiveness on random data samples.

Table 9: Performance metrics (R?, MAE, RMSE) for training and test sets

Coefficient of mean absolute error root mean
determination R? (MAE) square error (RMSE)
Training set 0.9772 0.0071 0.0089
Test set 0.9644 0.0085 0.0111

3.5 Comparative analysis with alternative
models

Based on the aforementioned analysis, we evaluated
multiple machine learning algorithms-including KNN

AdaBoost regression, CatBoost regression, Random
Forest regression, LSTM regression, BILSTM-AdaBoost
regression, and CNN regression-on the same dataset and
compared their performance with BPNN regression. The
R?, MAE, and RMSE values for each model are

regression, Ridge regression, XGBoost regression, summarized in Table 10.

Table 10: Comparative results of crack density prediction on the test set
Model name R? MAE RMSE
KNN 0.95002 0.00017 0.01301
ridge regression 0.88528 0.00039 0.01971
XGboost regression 0.92974 0.00024 0.01543
ADA boost 0.92604 0.00025 0.01583
Catboost 0.94618 0.00018 0.01543
Random forest 0.93593 0.00022 0.01472
LSTM 0.90605 0.01293 0.01784
BiLSTM-AdaBoost 0.91265 0.01313 0.01720
CNN 0.94571 0.00819 0.01356
BP Neural Network 0.96445 0.01109 0.00853

4 Discussion

The relationship between process parameters and
crack susceptibility in laser cladding involves complex
nonlinear interactions. The Backpropagation Neural
Network (BPNN) was selected for this study to model the
mapping between three key process parameters (powder
feed rate, overlap ratio, and scanning speed) and crack
density, owing to its exceptional nonlinear fitting
capability and adaptive feature learning through error
backpropagation that continuously optimizes network
weights and thresholds to achieve high-precision
modeling. Given the high cost and time-consuming
nature of laser cladding experiments, orthogonal
experimental designs are typically employed to
investigate = parameter-crack density relationships.
However, neural networks like BPNN require substantial
training samples for effective learning, which was
addressed in this study through Kernel Density
Estimation (KDE)-based data augmentation.

Experimental results (Tables 9-10) demonstrate that the
BPNN prediction model achieves test set errors within
+5%, with MAE and RMSE values of 0.85% and 1.11%
respectively. Comparative analysis with KNN regression,

ridge regression, XGBoost regression, AdaBoost
regression, CatBoost regression, random forest
regression, LSTM regression, BiLSTM-AdaBoost

regression, and CNN regression confirms BPNN's
superior performance, evidenced by its highest R? score
of 0.96445. This superiority stems from BPNN's three-
layer architecture employing nonlinear activation
functions (ReLU/Swish) that effectively approximate the
complex multi-parameter interactions in laser cladding
crack prediction scenarios.

The proposed method effectively addresses the
critical challenges of process parameter optimization and
crack density prediction in laser cladding, demonstrating
significant value for fabricating high-quality nickel-
based cladding layers. Furthermore, this research offers
valuable insights for cladding processes involving similar
materials (titanium alloys or other superalloys). By
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establishing a BPNN-based mapping between process
parameters and target performance characteristics, the
study provides a universal research paradigm for precise
"process-performance” regulation in additive
manufacturing,  particularly ~ enhancing  process
development efficiency for high-cost, high-precision
manufacturing scenarios. Although this study has
achieved significant results, there are still some potential
limitations. The proposed method in this research lacks
sufficient real-time optimization capability and an online
learning mechanism, which hinders the model's self-
adaptive iterative optimization ability in practical
production environments. In future research, it will be
essential to investigate elastic network structures with
incremental learning capabilities and integrate online
sequential learning algorithms to enhance the model's
generalization ability and adaptability in engineering
applications.

5 Conclusion

This study focuses on the laser cladding of Ni60
powder on 45# steel surfaces. By employing orthogonal
experimental design combined with BP neural network
modeling, we systematically investigated the nonlinear
mapping relationship between process parameters (such
as laser power, scanning speed, and powder feed rate) and
crack density in the cladding layer. Through network
training, learning, and predictive fitting, the reliability of
the model was verified, providing a feasible solution for
preparing crack-free nickel-based cladding layers. The
results demonstrate that the BP neural network-based
prediction model exhibits strong generalization
performance on the test set, with a coefficient of
determination (R?) of 0.9644, indicating excellent fitting
capability. Additionally, the mean absolute error (MAE)
and root mean square error (RMSE) were 0.0085 and
0.0111, respectively, confirming the model's predictive
stability.

Through comparative analysis with various other
regression algorithms-including KNN regression, ridge
regression, XGBoost regression, AdaBoost regression,
CatBoost regression, random forest regression, LSTM
regression, BiLSTM-AdaBoost regression, and CNN
regression-the BPNN (Backpropagation Neural Network)
model demonstrated superior stability and accuracy. This
finding validates the feasibility of integrating theoretical
modeling with experimental validation, offering a
promising new approach for preparing crack-free nickel-
based cladding layers.

Further analysis indicates that conventional
backpropagation (BP) neural networks exhibit limitations
in processing high-dimensional parameter interactions,
manifesting as slow convergence rates and susceptibility
to local optima. Moreover, the model necessitates
complete retraining when applied to new alloy powder
systems. To enhance the predictive accuracy of the
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network model, subsequent research could employ
convolutional neural networks (CNNs) to extract
morphological features from cladding layer images for
improved parameter correlation modeling, while
exploring Vision Transformer (ViT) architectures to
integrate multimodal data, combining process parameters
with molten pool dynamic monitoring images.
Additionally, an online learning system could be
implemented to enable dynamic closed-loop control of
process parameters through real-time acquisition of
spectral signals and thermal imaging data during the
cladding process.
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