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Parallel robots have uncertain problems such as time-varying model parameters and external 

disturbances. When the sorting load is unknown and changes dynamically, the load moment of inertia will 

change significantly when the sorting objects are connected in series. This paper proposes a sorting 

parallel robot control system that combines ESO and adaptive control, thereby improving the control 

effect of the sorting parallel robot and improving the control efficiency of the parallel robot. The new 

controller (IM-ST-ESO) is based on OLI-SMC and IASMC. And designs an adaptive law to weaken the 

dependence of the generalized super-twisting sliding mode algorithm on the disturbance boundary, 

improve the anti-disturbance ability of the system, and further improve the convergence speed of the 

system through the linear terms in the integral fast non-singular sliding surface. Combined with the 

experimental analysis, The experimental method has achieved significant results in optimizing the 

running time of the Delta robot sorting process. After optimization, the running time is 0.231s, which is 

6.60% lower than before optimization. The average impact of each joint of the driving arm is significantly 

reduced, and the impact is reduced by 80.00%. Reducing joint impact helps improve the operational 

efficiency of robots and extend their lifespan. At the same time, it significantly reduces the average impact 

of each joint of the drive arm, and the impact is reduced by 80.00%. Therefore, it can be seen that the 

sorting parallel robot control system combined with ESO and adaptive control can effectively improve 

sorting efficiency and system performance, and can play an important role in subsequent intelligent 

production and intelligent operation. 

Povzetek: Članek predstavi IM-ST-ESO: adaptivno drsno vodenje robota s super-twisting ESO s 

spremenljivim ojačanjem in hiperbolično zamenjavo signuma, kar zmanjša trepetanje, pospeši 

konvergenco ter izboljša sledenje in robustnost. 

 

1   Introduction 
Trajectory tracking, as one of the key technologies of 

parallel robots, can accurately run along the 

predetermined trajectory and has become a hot topic in 

current research. 

The application of parallel robot in industry mainly 

focuses on precise positioning and ideal dynamic 

characteristics, so dynamic analysis is necessary. 

Common position-based kinematics feedback control 

method is difficult to have accurate control accuracy and 

response speed. Moreover, PID feedback control is a 

common control scheme in industry. When using this 

scheme for trajectory planning, the limitation of robot 

power system cannot be reasonably considered, and the 

speed or acceleration trajectory exceeds the physical 

limitation of motor can be generated. 

The traditional Delta parallel robot controls the end of 

the robot to complete the corresponding tasks according to 

the planned path through teaching programming, accuracy 

and stability. When the working conditions change, it is 

necessary to re-program the parallel robot according to the 

actual working conditions to meet the new working 

requirements. Therefore, the traditional Delta parallel 

robot does not have the flexibility to adapt to changeable 

working tasks, and is only suitable for a single task and a 

relatively fixed working environment. With the 

optimization and upgrading of the industrial structure of 

manufacturing industry, Delta parallel robots based on 

teaching programming are difficult to meet the needs of 

flexible manufacturing on intelligent production lines. 

Therefore, on the basis of traditional teaching 

programming, vision sensors are gradually applied to 

Delta robots. As the “eyes” of robots, visual sensors 

enhance the robot’s ability to perceive the surrounding 

environment, enabling the robot to analyze, process and 

judge the surrounding environment, and guide the robot to 

complete complex and diverse tasks [1]. Applying visual 

sensors to industrial robots and guiding and controlling 

them belongs to the application scope of machine vision. 

Industrial robots equipped with machine vision have the 

advantages of accurate positioning, high operating 

efficiency and high flexibility. In addition, they can use 

machine vision to recognize, classify and determine the 
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position and posture of workpieces, thereby planning 

trajectories to guide the robot to perform actions to 

complete corresponding work tasks, which greatly 

improves the robot’s work efficiency [2]. Nowadays, the 

manufacturing cost is increasing day by day, the speed of 

product iterative upgrading is accelerating, and new 

products are constantly being launched. Therefore, the 

intelligent transformation of industrial production lines is 

urgent [3]. Based on the urgent demand of visually guided 

Delta parallel robot in industrial automation production 

line, this paper not only improves the accuracy of visual 

recognition and positioning, but also ensures the 

reliability of real-time tracking of moving workpieces, 

and provides accurate workpiece category and position 

information for subsequent Delta robot to perform sorting 

tasks, which has important theoretical value and practical 

significance to improve the intelligent level of Delta 

parallel robot. 

This work proposes a variable-gain ST-ESO based 

control architecture for parallel Delta robots to improve 

sorting accuracy, robustness, and computation efficiency 

under variable load conditions. This paper proposes a 

sorting parallel robot control system that combines ESO 

and adaptive control, thereby improving the control effect 

of the sorting parallel robot and improving the control 

efficiency of the parallel robot. Moreover, this paper uses 

a hyperbolic function to replace the sign function in the 

super-twisting sliding mode expansion state observer to 

further reduce system chattering. In addition, this paper 

designs a variable gain function that can change in real 

time with the observation error to replace the linear gain 

of ST-ESO, and designs an adaptive law to weaken the 

dependence of the generalized super-twisting sliding 

mode algorithm on the disturbance boundary, improve the 

anti-disturbance ability of the system, and further improve 

the convergence speed of the system through the linear 

terms in the integral fast non-singular sliding surface. 

 

2   Related works 
(1) Parallel robot 

Because of its compact structure, the working space of 

parallel robot is relatively small, which also makes it more 

difficult to study than series robot in the early stage.  

Reference [4] has done a lot of research on the Delta 

parallel mechanism, and wants to simplify the mechanism. 

Finally, the mechanism is simplified by replacing the ball 

hinge with Hooke hinge, and the stability of the 

mechanism is improved. Reference [5] put forward the 

concept of Hexa high-speed manipulator, and its principle 

is to change the Delta parallel mechanism into a 

six-branch chain to improve its maneuverability. 

Reference [6] used intelligent industrial robots to sort on 

multiple production lines, replacing the original manual 

operation and improving the sustainability of production 

line production. 

With the large number of practical applications of 

image processing in industry, the development of machine 

vision technology sometimes can’t meet some specific 

sorting, detection and recognition needs, and there is 

another bottleneck in realizing intelligent sorting. As 

research deepened, researchers began to focus on the field 

of artificial intelligence and expanded the use of machine 

learning in industrial production [7]. Machine learning is a 

science of artificial intelligence. The object of research 

imitation is the related performance of people in learning, 

which is converted into computer language to improve the 

performance of specific algorithms. Its three major 

elements are data, algorithms and models. There are many 

branches of machine learning, among which deep learning 

is the latest research direction and the closest to the initial 

research goal of machine learning. The goal is to realize 

that machines have the ability to analyze and solve 

problems like humans [8]. In addition, deep learning 

realizes autonomous learning in a data-driven way, and its 

ability to generalize essential features is higher than that 

of specific image processing. It performs well in tasks 

such as search technology, target detection, recognition 

and classification, data mining, and image segmentation. 

Sorting robots integrate deep learning technology, which 

performs well in practical applications, improves sorting 

efficiency and provides a new way for factories to develop 

intelligence. Moreover, it has better replaceability for 

target diversity in sorting, and the cost of factory 

development and production line is also reduced [9] 

 

(2) Research on trajectory planning and control 

strategy of parallel robot 

The motion performance of the robot is usually closely 

related to the motion of the end effector, and the motion of 

the end is transmitted by each branch chain or joint in turn 

to drive the end to move in the workspace. When the 

terminal performs the specified task, it moves 

purposefully. It is necessary to determine the path of the 

robot according to the task execution, and move along the 

planned path. In order to improve the motion performance 

of the mechanism, it is necessary to determine the speed, 

acceleration and motion law in the motion process. This 

process is trajectory planning [10]. According to different 

end execution tasks and whether it is necessary to specify 

specific paths, it can be divided into point-to-point 

trajectory planning and continuous path planning. 

According to different planning coordinate spaces, it can 

be divided into Cartesian coordinate space planning and 

joint space planning. The two kinds of spatial planning 

have certain connection. Nowadays, the application 

scenarios of parallel robots tend to be diversified and 

complex. In addition to meeting the constraints of the 

mechanism itself, according to the trajectory planning 

optimization indicators, such as execution time, impact on 

the mechanism, vibration, etc., trajectory planning is 

mainly divided into: time optimal planning, minimum 

energy consumption planning and vibration impact 

optimization. The purpose is to improve the overall 

performance of the mechanism or reduce the difficulty of 
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control by improving or combining the motion trajectory 

[11]. In practical applications, Delta parallel robot is 

mainly used for quick grasping, sorting or packaging of 

targets on conveyor belts. In reference [12], while 

ensuring continuous acceleration and speed and reducing 

mechanism vibration, the trajectory planning in the 

workspace was carried out with the shortest working cycle 

of Delta parallel robot as the goal, and it was concluded 

that the modified trapezoidal motion law has a short 

period. Reference [13] proposed a hyperelliptic curve 

trajectory planning method for the turning point of gate 

trajectory, which uses high-order polynomial for 

smoothing. Reference [14] used Lame curve to smooth the 

gate trajectory, and optimized the trajectory parameters 

through the change of load energy. Reference [15] used 

the method of dynamic trajectory programming based on 

Bézier curve, and used polynomial of degree 3-4-5 to plan 

the dynamic trajectory. The results show that the residual 

vibration can be effectively reduced. In reference [16], the 

arc transition was used at the right angle of the gate 

trajectory, and the modified trapezoid was used to plan the 

task trajectory, which reduces the impact of the transition 

section on the system. In reference [17], the gate trajectory 

was processed by segments, and the height and length of 

the trajectory were controlled by polynomial interpolation 

method for segments, and the optimal period of the 

trajectory was obtained by improving particle swarm 

algorithm. Aiming at the problem of unsmooth motion of 

Delta robot in the process of grasping and placing, 

reference [18] proposed arc planning to achieve the 

trajectory in space by using polynomial to plan the 

obtained angle, so as to obtain the parameters of the end 

trajectory. Through experiments, the peak value of the end 

acceleration decreases and the motion tends to be smooth. 

In the process of considering the optimal time and 

energy consumption, the focus of trajectory planning is 

still on the smoothness and stability of motion. The 

performance and energy consumption of the currently 

used motors have been guaranteed, so when the speed is 

sufficient, trajectory planning is more inclined to smooth 

the motion curve, stabilize the end and reduce the impact. 

The core of the stable and accurate operation of Delta 

parallel robot and the accurate execution of complex tasks 

lies in the control of the robot, so it is necessary to design 

an intelligent control strategy with strong robustness and 

adaptive adjustment. Delta parallel robot has the problems 

of joint coupling and nonlinear control object, and its 

control has always been a difficult and hot spot in research 

[19]. Parallel robots are mainly divided into two types of 

control, kinematics control and dynamics control. 

Kinematic control mainly establishes a dynamic 

connection between the motion relationship between the 

robot’s execution end and the drive end and the drive 

device, so as to control the drive device 

(electromechanical, electro-hydraulic, electromagnetic, 

etc.) according to the end motion. The dynamic control is 

controlled by the dynamic model and the end force. 

Commonly used control strategies include PID control, 

synovial membrane control, calculated torque control and 

control strategies combined with corresponding 

intelligent algorithms [20]. 

The summary of existing research is shown in Table 1. 

 

Table 1: Summary of existing researches 

Research field Core methods/technologies 
Industrial sorting performance 

indicators 
Insufficient 

Mechanism 
optimization 

Tiger joint replaces ball joint Enhance structural stability 

The workspace may be limited and there may be 

insufficient optimization of dynamic 

performance 

Hexa six branched structure Enhance maneuverability 
The complexity of the structure increases, 
making it more difficult to control 

Machine vision 

integration 
Deep learning object detection 

Sorting efficiency ↑, production line 

cost ↓, adaptability to target diversity 
↑ 

Real time performance is limited by model 

complexity and relies on a large amount of 
annotated data 

Trajectory 

planning\ 

Correct the law of trapezoidal 

motion 
Shorten the homework cycle 

Sudden acceleration change leads to impact 

vibration 

Super elliptic curve (high-order 
polynomial smoothing) 

Improve the smoothness of turning 
points 

Complex calculation and poor real-time 
performance 

Lame curve+energy optimization Reduce load energy fluctuations 
Parameter optimization depends on specific 

scenarios and has weak generalization 

B é zier curve+polynomial 

interpolation 

Significantly reduce residual 

vibration 
Insufficient adaptability to dynamic trajectories 

Arc transition+corrected trapezoid Reduce system impact 
Trajectory length increases, sacrificing time 

efficiency 

Segmented polynomial+improved 
particle swarm optimization 

Optimize cycle 
Algorithm convergence is slow, and real-time 
control is difficult to guarantee 

Arc planning+angle polynomial 
Peak acceleration ↓, smoothness of 

motion ↑ 

Unresolved robustness issue under external 

interference 

Control strategy 

PID+intelligent algorithm Accuracy ↑, adaptability ↑ 
Most of the experiments are in the experimental 
stage, and the robustness of practical 

applications is insufficient 

SMC (Sliding Mode Control) Strong anti-interference ability 
Severe high-frequency oscillation requires 
precise modeling 

ESO+SMC combination 
Enhanced disturbance estimation 

capability 

ESO is sensitive to noise, and fixed parameters 

lead to rigid dynamic response 
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There are three shortcomings in the existing research on 

sorting control of Delta parallel robots. Firstly, traditional 

trajectory planning methods rely on preset parameters and 

are difficult to dynamically adapt to changes in working 

conditions such as conveyor belt speed fluctuations. 

Secondly, mainstream control strategies require precise 

modeling and have limited anti-interference capabilities, 

resulting in tracking errors (>0.5 mm) or chattering 

phenomena during high-speed sorting. Thirdly, intelligent 

algorithms are computationally complex and difficult to 

meet millisecond level real-time response requirements. 

The system combining Extended State Observer (ESO) 

and adaptive control demonstrates significant superiority: 

ESO can estimate and compensate for unmodeled 

disturbances in real time, and the adaptive mechanism can 

dynamically adjust control parameters, achieving a 40% 

reduction in tracking error and a 60% reduction in 

vibration amplitude at a sorting frequency of 200 

times/minute, while maintaining robustness to ± 30% load 

changes, providing a lightweight solution for high-speed 

and high-precision sorting. 

3   Adaptive control model 

A. Overall Design of Improved ST-ESO Controller 

The converter is shown in Figure 1. Among them, inv  is 

the input voltage, Q1  and Q2  are the branch power 

switch tube, L1  and L2  are the branch inductance, and 

M  is the mutual inductance; Lai  for the inductor current 

of branch A, Lbi  for the inductor current of branch B; 1D  

and 2D  are the freewheeling diode, aR  and bR  are the 

load resistance of the output branch, aC  and bC  are the 

output capacitor of the converter, ad  and bd  are the duty 

cycles of the switching tubes Q1  and Q2 , respectively. 

The overall control design block diagram of the 

CI-SIDO Buck converter with improved super-twisting 

ESO is shown in Figure 2. 

 
Figure 1: CI-SIDO buck converter circuit topology 
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Figure 2: Improved control block diagram of CI-SIDO Buck converter 

To further improve the ability of super-twisting sliding 

mode expanded state observer to observe the total 

disturbance in the inner and outer loops of CI-SIDO Buck 

converter and the ability of controller to compensate the 

total disturbance, an adaptive sliding mode control 

strategy based on Variable Gain Super-Twisting 

Expanded State Observer (VGST-ESO) is proposed. 

Firstly, a hyperbolic function is used to replace the sign 

function in the super-twisting sliding mode expanded state 

observer to reduce system chattering, and a variable gain 

function that can change in real time with the observation 

error is designed to replace the linear gain of the ST-ESO, 

so as to improve the observation ability of disturbances. 

For the super-twisting sliding mode controller, a 

generalized super-twisting sliding mode algorithm with 

linear terms is introduced as the reaching law of the 

system to smooth the system control law, and an adaptive 

law is designed to weaken the dependence of the 

generalized super-twisting sliding mode algorithm on the 

disturbance boundary. 

The block diagram of adaptive sliding mode decoupling 

control based on variable gain super-twisting sliding 

mode observe is shown in Figure 3. This model can 

further improve the observation ability of the 

super-twisting sliding mode observe extended state 

observer for the total disturbance of the inner and outer 

loops of CI-SIDO buck converter and the compensation 

ability of the controller for the total disturbance Firstly, 

the hyperbolic function is used to replace the sign function 

in the super-twisting sliding mode observer extended state 

observer to reduce the chattering of the system. A variable 

gain function that can change in real time with the 

observation error is designed to replace the linear gain of 

ST-ESO, so as to improve the observation ability of 

disturbance. For the super-twisting sliding mode observer, 

the generalized super-twisting sliding mode algorithm 

with linear term is introduced as the reaching law of the 

system to smooth the system control law, and an adaptive 

law is designed to weaken the dependence of the 

generalized super-twisting sliding mode algorithm on the 

disturbance boundary and improve the anti-disturbance 

ability of the system. In order to further improve the 

robustness of the system; In order to further improve the 

robustness of the system, an integral fast nonsingular 

sliding surface is designed. The linear term in the integral 

fast nonsingular sliding surface is used to further improve 

the convergence speed of the system, improve the overall 

performance of the system, and ensure the stability and 

anti-interference performance of the control. 
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Figure 3: Improved adaptive control block diagram 

 

By normalizing the inductance current, output voltage 

and other state variables according to the nominal value 

(such as dividing by the rated current or voltage), the 

numerical difference of different physical dimensions is 

eliminated, and the numerical instability caused by too 

large or too small variable magnitude of the controller 

gain is avoided. By normalizing, the total disturbances 

such as inner and outer loop coupling terms and 

unmodeled dynamics are limited to the effective 

estimation range of the observer (such as ST-ESO), which 

ensures that the hyper spiral sliding mode controller can 

accurately compensate the disturbance and avoid observer 

saturation or divergence In the normalized model, the 

ESO gain matrix and the coefficients of the sliding mode 

control law can be dynamically adjusted based on the 

normalized state variables, such as dynamically updating 

the sliding mode surface parameters according to the load 

changes, so as to enhance the robustness of the system to 

extreme conditions. 

The normalized state variable can avoid the overflow 

risk of fixed-point operation, and reduce the influence of 

quantization error on sliding mode chattering, so as to 

realize the anti overflow processing of discrete algorithm 

By normalizing the upper and lower limits of the sliding 

mode control output (e.g., the duty cycle is limited 

between 0-1), the controller output is prevented from 

exceeding the physically realizable range under extreme 

parameters, so as to realize the control of output limiting. 

B. Design of Variable Gain Super-Twisting Sliding 

Mode ESO 

The system convergence verification scheme of this 

article is as follows: the control scheme of the model is 

selected as the neural approximator enhanced SMC 

implementation scheme, which adopts RBF neural 

network dynamic compensation system nonlinearity: 

taking the inductance current error, capacitance voltage 

error and their derivatives of Buck converter as network 

inputs (3 input nodes), the hidden layer is configured with 

15 Gaussian radial basis function nodes, and the output 

layer generates the equivalent control quantity 

compensation term of sliding mode control; Design an 

online weight update law using Lyapunov function 

(learning rate η=0.01) to ensure network convergence and 

closed-loop stability. 

By comparison with super-twisting sliding mode 

extended state observer (ST-ESO) and linear extended 

state observer (ESO), it can be seen that ST-ESO has 

higher observation accuracy and better robustness, but the 

error term of ST-ESO adopts the switching function 

integral fast non-singular adaptive super-twisting sliding 

mode decoupling control number sign, which makes the 

system have some chattering problems. In order to 

systematically reduce the chattering problem, a smooth 

hyperbolic function is used instead of the discontinuous 

switching function sign. 

The switch function sign expression is [21]: 
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1,s 0

sign 0,s 0

1,s 0




= =
− 

  (1) 

It can be seen from Formula (1) that the sign switching 

function is a discontinuous function. When the switching 

function sign is used as the sign function of the 

super-twisting sliding mode expanded state observer, the 

discontinuous switching control characteristics will be 

generated with the observation error, resulting in 

chattering problem and affecting the observation accuracy 

of the system. Therefore, the smooth hyperbolic function 

( )F e  is used as the switching function. The hyperbolic 

function ( )F e  is expressed as [22]: 

 ( )
me me

me me

e e
F e

e e

−

−

−
=

+
  (2) 

The trend of hyperbolic function ( )F e  is shown in 

Figure 4. 

It can be seen from Formula (2) and Figure 5 that the 

switching function ( )F e  is a continuous and smooth 

function. Different from the symbolic function sign, there 

are no discontinuities, which can theoretically weaken the 

buffeting problem and improve the observation ability of 

generalized supercoil ESO to disturbance. 

The super-twisting expanded state observer uses linear 

gain as the observer gain, and the observation ability of 

the observer will not change with the observation error in 

real time, and the system will only converge along a fixed 

convergence speed. A variable gain function that can 

change with the observation accuracy in real time is 

designed to replace the fixed gain of ST-ESO. 

 

 
Figure 4: Trajectory plot of hyperbolic function ( )F e  

 

 

 
Figure 5: Observation error curve 

 

The improved super-twisting ESO expression is: 

 ( )

( ) ( )

1

2
1 0 2 1

1

2
2 2

e θ y

θ b u θ β e F e e

1 3
θ β F e e F e e

2 2


 = −

  

= + − +  
 

  
= − + +  

 

  (3) 

In the formula, 1β  and 1β  are variable gain functions, 

e  is the observer error, 1θ  is the observed value of y , 

and 2θ  is the observed value of the total disturbance. 

Nonlinear functions related to error signalsare 

introduced, combined with disturbance observers to 

estimate the upper bound of system uncertainty. Finally, 

the gain variation law is determined through simulation 

optimization to suppress chattering while ensuring 

tracking accuracy.  

The specific calculation formula obtained is: 
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( )

1

2

β L t
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β

4
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

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

  (4) 

The expression of variable gain ( )L t  is: 

 ( )
ωe,e ς

 L t
0,e ς


= 


  (5) 

In the formula, ω  and ς  are both greater than 0 and 

are adjustable positive numbers. ς  determines the 

observation accuracy of the improved super-twisting 

ESO. 

The variable gain ST-ESO of the inner loop of the 

converter current is established as follow [23, 24]: 

 

( )

( ) ( )

( )

( ) ( )

e1 a1 c1

1
2 in a 2

a1 a2 1 e1 1 e12

1 2

1

2
a2 2 e1 e1 e1 e1

e2 b1 c2

1
1 in b 2

b1 b2 3 c2 c2 c22

1 2

1

2
b2 4 c2 c2 c2 c2

e θ x

L v d
θ θ β e F e e

L L M

1 3
θ β F e e F e e

2 2

e θ x

L v d
θ θ β e F e e

L L M

1 3
θ β F e e F e e

2 2

= −


  = + − +  −  


  = − + +   


= −
  

= + − +  
−  


  = − + + 

  

  (6) 

In the formula, The inner loop observation errors of the 

a and b branches of the hyper spiral expansion state 

observer are 1e  and 2e , respectively, c1e  and c2e  are the 

errors between the observed values and the actual values 

of the inner loop observer of branch a and branch b, 

respectively. c1x  and c2x  are the actual values of branch a 

and branch b of the CI-SIDO Buck converter, 1β  and 2β  

are the variable gain functions of the observer of branch a, 

and 3β  and 4β  are the variable gain functions of the 

observer of branch b. 

The variable gain ST-ESO of the converter voltage 

outer loop is established as follow [25]: 

 

( )

( ) ( )

( )

( ) ( )

v1 a3 v1

1

2
a3 a4 5 v1 v1 v1

a

1

2
a4 6 v1 v1 v1 v1

v2 b3 v2

1

2
b3 L2 b4 7 v2 v2 v2

b

1

2
b4 8 v2 v2 v2 v2

e θ x

1
θ θ β e F e e

C

1 3
θ β F e e F e e

2 2

e θ x

1
θ i θ β e F e e

C

1 3
θ β F e e F e e

2 2

= −


  = + − +   


  = − + +   


= −
  

= + − +  
 


  = − + + 

  

  (7) 

In the formula, v1e  and v2e  are the errors between the 

observed values and the actual values of the voltage outer 

loop observer of branch a and branch b, respectively, v1x  

and v2x  are the actual values of branch a and branch b, 

5β  and 6β  are the variable gain functions of the observer 

of branch a, and 7β  and 8β  are the variable gains of the 

observer of branch b. 

By analyzing Formulas (4) and (5), it can be seen that 

the variable gain function designed in this paper changes 

in real time according to the observation error. When the 

observation error is larger, the observer gain coefficient 

increases, which can speed up the convergence speed of 

the observer. When the observation error becomes smaller, 

the observer gain value is correspondingly reduced, thus 

avoiding the over-estimation of the observer. 

For the fairness of the comparison, the controllers are 

all the proposed super-twisting sliding mode controllers, 

and a simulation platform based on Matlab/Simulink is 

built to simulate and compare the performance of the 

observers. 

The observation error comparison between variable 

gain super-twisting sliding mode ESO and linear 

super-twisting sliding mode ESO is shown in Figure 5. 

In the system startup stage, the convergence overshoot 

of ST-ESO is 0.9 V, the convergence time is 1.5 ms, and 

the observation error is 1mV. The convergence overshoot 

of VGST-ESO is 0.5 V, the convergence time is 0.7 ms, 

and the observation error is 0.7 mV. At 0.01 s disturbance, 

the convergence overshoot of ST-ESO is 0.03 V, the 

convergence time is 0.5 ms, and the observation error is 

1.5 mV. The convergence overshoot of VGST-ESO is 

0.013 V, the convergence time is 0.3 ms, and the 

observation error is 1mV. When the system is disturbed at 

0.02 s, the convergence overshoot of ST-ESO is 0.03 V, 

the convergence time is 0.6 ms, and the observation error 

is 1mV. The convergence overshoot of VGST-ESO is 

0.015 V, the convergence time is 0.4 ms, and the 

observation error is 0.7 mV. 

By comparing the convergence overshoot, convergence 

speed and observation error in the start-up stage and when 

the system is disturbed, it can be seen that the overall 

performance of VGST-ESO is superior to that of ST-ESO. 

The improved variable gain super-twisting sliding mode 

expanded state observer designed can adaptively adjust 

the observer gain according to the observation error. 

The observation errors 1e  and 2e  of the super-twisting 

expanded state observer are respectively: 

 
( )

( )

11 2 1

2

1

2 12 f

e e

l

e

e e

l= −


= −  −


  (8) 

In the formula, ( ) ( )
1

2
1 1 c1 1 c1e e sign e e = +  and 

( ) ( ) ( )
1

2
2 1 c1 c1 c1 c1

1 3
e sign e e sign e e

2 2
 = + + . 

The Lyapunov function is defined as: 

 
( )

( )T

3 2

1
V τ G t τ

L t
=   (9) 

In the formula, 
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By taking the derivative of Formula (9), it can be 

obtained: 

 
( )

( )T

3 2

d 1
V τ G t ζ

dt L t
=   (10) 

By expanding Formula (10), it can be obtained: 

 
( )

( )
( )

( ) ( )( )T T T

3 2 2

d 1 1
V τ G t τ τ G t τ τ G t τ

dt L t L t

 
 = + +
 
 

 (11) 

To prove that 3V  is convergent, it is only necessary to 

prove that both 
( )

( )T

2

d 1
τ G t τ

dt L t

 
 
 
 

 and 

( )
( ) ( )( )T T

2

1
τ G t τ τ G t τ

L t
+  are negative constants to 

prove that the validation system is convergent. Here, 3aV  

is represented as two parts, to be verified separately,  

Decompose the total Lyapunov function 3V  into two 

components 3aV  and 3bV , corresponding to the stability of 

the controller and observer, respectively Provide 

intermediate process steps for global stability through 

component stability. 

Set up 

( )
( )

( )
( ) ( )( )T T T

3a 3b2 2

d 1 1
V τ G t τ ,V τ G t τ τ G t τ

dt L t L t

 
 = = +
 
 

, then Formula (11) is re-expressed as: 

 3 3a 3bV V V= +   (12) 

By substituting Formula (4) and  

( )
( ) ( ) ( )

( )

2

2 1 1

1

4β t β t β t1
G t

β t 22

 + −
=  

− 
into Formula (12), 

3aV  in the Formula (12) can be expressed as: 

 
( ) ( )

( )

5
1

2
T

3a 5
2
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2L t L t1 d
V τ τ

2 dt
L t 2L

−
−

−
−

 
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 
 − 

  (13) 

From Formula (13), it can be obtained: 

 

( ) ( )
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T

3a
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2L t L t

1 d 2V τ Lτ
2 dt 5
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−
−

−
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 
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 =
 

−  

  (14) 

L  is the actual inductance, and Lτ  is the nominal 

value of the inductance used for decoupling controller 

design. 

It is a known design parameter in the controller 

formula, aimed at offsetting the inductance dynamics of 

the actual system in the control law. 

When L 0  and ( )
5 2

L 0
8

  are satisfied, 3aV 0 , 

and 3aV  is negative definite at this time. The negative 

definiteness of 3aV  is proved as follows: 

According to Formula (11), τ  can be expressed as: 

 
T

1

2
c1

1
τ Aτ B

e

= +   (15) 

In the formula,  
1

2

β 1

A ,B 0 f2 2

β 0

− 
 = =
 
−  

. 

Substituting Formula (15) into Formula (12), it can be 

obtained 3bV  as: 
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1
T T T

2
3b c12

1
V e τ Qς 2τ GB
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− 
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In the formula, the matrix Q  is 

( ) ( ) ( )

( )

3
L t L tL t

2Q
2

L t 1

 
− 

=  
 − 

. 

From Formula (16), it can be obtained: 

 ( )

1
T T T

2
3b c12 1

2
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1 1
V τ Qτ 2 e τ GB
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 
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From the Euclidean norm 
2 2

c1 e22
τ e e= + , it can be 

obtained 
1

2
c1 2

e τ . Then, it can be obtained: 

 
( )

( ) ( )( )( )
2

2

3b min 1 max2 1

2
c1

τ1
V λ Q 2δ λ P t

L t e

 − −   (18) 

When ( )L t  satisfies the following inequality: 

 ( ) ( )( )min maxλ Q 2 fλ G t 0−    (19) 

It can be obtained: 

 
1

2
3b 3V vV −   (20) 

In the formula, 
( ) ( )( )

( ) ( )( )
min 1 max

2 1/ 2

max

λ Q 2δ λ G t
v

L t λ G t

−
= − . 

From Formula (14) and Formula (20), we can see that 

the designed 3aV  and 3bV  are negative definite and the 

system is convergent. 

In the above algorithm steps, a Lyapunov function 

containing the dynamic equation of observation error is 

constructed. By taking the derivative and substituting it 

into the control law of the hyper spiral algorithm, the finite 

time stability condition is satisfied to ensure that the 

observation error converges to the zero neighborhood 

within a finite time. This process combines the linear error 

dynamic analysis of traditional ESO with the nonlinear 

robustness of the hyper spiral algorithm, ultimately 

achieving accurate tracking of composite disturbances by 
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the observer by adjusting the gain parameter. 

The application of the improved super-twisting sliding 

mode observer (ST-ESO) in the field of power electronics 

to parallel robot control essentially involves 

interdisciplinary method transfer by establishing dynamic 

equivalent models of two types of systems. Specifically, 

at the variable mapping level, the inductance current of 

the Buck converter needs to be mapped to the output 

torque of the robot joint motor, and the steady-state 

characteristics of the output voltage correspond to the 

spatial pose accuracy of the end effector; In terms of 

disturbance handling, sudden load changes in the power 

system are redefined as external load disturbances and 

joint nonlinear friction during robot operation. The 8 

adaptive gain parameters of the original controller need to 

be reconstructed into the inertia matrix adjustment 

coefficient and Coriolis force compensation coefficient in 

the robot dynamics model, while retaining the finite time 

convergence characteristics of the hyper helix algorithm. 

When implementing hardware, a three-level collaborative 

architecture of "power conversion servo drive mechanical 

execution" needs to be constructed. The clock 

synchronization between the power observer (100 μs 

cycle) and the motion controller is achieved through 

FPGA. The core innovation lies in the parameterized 

coupling of power electronic control theory and robot 

motion control through isomorphism analysis of dynamic 

equations. 

 

4   Test study 

C. Test methods 

The experimental platform of Delta robot dynamic 

sorting and related hardware selection are explained, and 

the flow of dynamic sorting system and the data 

communication format between visual inspection system 

and robot sorting system are designed. The experimental 

platform of Delta robot dynamic sorting includes visual 

inspection system, robot sorting system and conveying 

system. The end effector and its supporting equipment are 

shown in Figure 6. The vacuum suction cup needs the 

cooperative work of air compressor, vacuum generator 

and solenoid valve to realize the function of absorbing 

workpieces, in which the air compressor and vacuum 

generator generate suction, and the solenoid valve 

controls the opening and closing of airflow. 

The suction cup actuator is PU series pneumatic finger 

produced by SMC in Japan, the solenoid valve is 5 W 

direction control solenoid valve produced by AIRTAC in 

Taiwan, the vacuum generator is CGO vacuum generator 

produced by CKD in Japan, and the air compressor is GSR 

silent air compressor produced by gree in China. 

The industrial camera is installed above the conveyor 

belt through a camera bracket. It ensures that the 

workpiece passes through the camera field of view before 

reaching the robot grabbing area during the movement of 

the conveyor belt. In addition, the installation height of the 

camera is adjusted according to the size of the conveyor 

belt to ensure that the width of the conveyor belt is within 

the camera field of view to prevent the workpiece from 

exceeding the camera field of view. The position of the 

camera is kept at a certain distance from the robot to avoid 

interference with the robot’s movements. The light source 

is installed under the camera and equipped with a 

controller that can adjust the brightness of the light source 

to adjust the appropriate brightness according to the 

experimental object and experimental environment. The 

industrial camera and light source are fixed on the 

conveyor belt by a suitable bracket. The hardware 

composition of the machine vision inspection system is 

shown in Figure 7. 

The model of the computer is Dell precision, the 

industrial camera is basiler ace, the light source is 

Hamamatsu l19050, and the bracket is thorlabs k100, 

Cable matters USB3.0 A-B cable is selected for USB3.0 

cable. 

 

 
Figure 6: Hardware composition of terminal actuator 

 



 

 

Adaptive Sliding Mode Control of Parallel Sorting Robots Using…                                          Informatica 49 (2025) 397–414 407 

 

 

 

 
Figure 7: Hardware composition of visual inspection system 

 

 
Figure 8: Composition of conveying system 

 

The composition of the conveying system is shown in 

Figure 8. The installation position of the conveyor belt is 

located in the grasping area of the Delta robot, and it 

avoids being close to the edge of the working range of the 

Delta robot to prevent the Delta robot from exceeding its 

working range during the grasping of the workpiece. The 

servo motor is installed on one side of the driving drum of 

the conveyor belt. The encoder is installed on the opposite 

side of the driving drum through a coupling to ensure 

synchronization with the rotation of the conveyor belt 

drum and realize real-time monitoring. 

The motor is Panasonic A4 servo motor, the encoder is 

Omron e6b2 incremental encoder, the driver is Yaskawa 

sigma-7 servo driver, and the conveyor belt is fujilay f 

conveyor belt. 

The dynamic sorting experimental platform includes 

visual inspection system, robot sorting system and 

conveying system. Each system cooperates with each 

other to realize the identification, positioning, grasping 

and placement of the target workpiece on the conveyor 

belt. The image processing unit identifies and locates the 

workpiece image acquired by the image acquisition unit, 

identifies the workpiece using the YOLOv5 target 

detection model. YOLOv5 is chosen as the target 

detection model for robot sorting experiments mainly due 

to its comprehensive advantages in speed, accuracy, and 

industrial adaptability. The lightweight architecture of 

YOLOv5 can achieve high frame rate detection of 140 

FPS, meeting the real-time requirements of dynamic 

grabbing of conveyor belts. Its Focus structure and PANet 

feature pyramid can effectively identify small-sized 

workpieces and enhance robustness to occlusion and 

lighting changes through Mosaic data augmentation. 

Compared to other models, YOLOv5 is more convenient 

to deploy on embedded devices, and transfer learning only 

requires 300 annotated samples to achieve mAP@0.5 

=0.89, significantly reducing engineering costs. And then 

locates the workpiece according to the workpiece contour 

using the visual positioning algorithm. Before image 

processing, the camera parameters need to be calibrated 

and the workpiece data set needs to be trained to ensure 

the accuracy of the visual inspection system’s detection 

and recognition and the accuracy of positioning. 

Moreover, the visual inspection system identifies and 

positions the workpiece, and sends the category and 

position information of the workpiece to the robot sorting 

system through Socket communication, and the robot 

sorting system stores the workpiece information in the 

queue to be grasped. When the workpiece enters the robot 

grasping area, the robot sorting system controls the Delta 

robot to grasp the workpiece in an appropriate posture 

according to the workpiece position information sent by 

the visual inspection system, and places the workpiece in 

the corresponding position according to the category 

information of the workpiece. The dynamic sorting 

process is shown in Figure 9. 

The 3 +1 degree of freedom Delta parallel robot 

developed in the laboratory is shown in Figure 10. The 
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whole robot is installed in an aluminum alloy frame. 

Using a fixed frequency of 1 kHz (such as PWM 

control) and precise timer configuration, the universal 

timer (TIM2-TIM5) of the STM32 series microcontroller 

can output 4 PWM channels and achieve duty cycle 

adjustment through register configuration. 

The model of the microcontroller is STM32F103, with 

an ARM Cortex-M core that supports real-time control 

and integrates peripherals such as ADC and timer. It is 

suitable for high-frequency sampling and signal 

processing. 

Select a combination of Siemens V20 frequency 

converter and PLC (such as CPU ST30), set the frequency 

and process the start stop logic through RS485 

communication A pre-low-pass filter (such as LM324 

operational amplifier) is used to suppress high-frequency 

noise. The MCU adopts sliding average or IIR filtering 

algorithm, combined with ADC anti aliasing design to 

reduce the influence of thermal noise and 1/f noise. 

 

 
Figure 9: Dynamic sorting process 

 
Figure 10: Delta high-speed parallel robot 

 

The control scheme chosen for this model is a neural 

approximator enhanced SMC implementation scheme, 

which uses RBF neural network to dynamically 

compensate for system nonlinearity: taking the inductance 

current error, capacitance voltage error and their 

derivatives of Buck converter as network inputs (3 input 

nodes), configuring 15 Gaussian radial basis function 

nodes in the hidden layer, and generating equivalent 

control compensation terms for sliding mode control in 

the output layer; Design an online weight update law 

using Lyapunov function (learning rate η=0.01) to ensure 

network convergence and closed-loop stability. 

The observer bandwidth ω is set to 1/5~1/3 of the 

system switching frequency, and dynamically adjusted 

during actual testing. The initial value of the gain slope 

Zeta is taken as 50~100 rad/V • s. 

D. Results 

The trajectory diagram of the end effector is shown in 

Figure 11, and the velocity curve is shown in Figure 12. 

The model constructed in this paper is an improved 

ST-ESO control model, which is named IM-ST-ESO. On 

the built parallel robot prototype experimental platform 

for string fruit sorting, the proposed method is compared 

with the fixed switching gain sliding mode control using 

online identification of load moment of inertia and the 

integral adaptive sliding mode control without online 

identification of load moment of inertia, and objects of 

different weights are sorted, as shown in Figure 13. 
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Figure 11: Trajectory diagram of end effector 

 
Figure 12: Speed curve 

 

 
(a) Motor tracking error (0.6 Kg) 

 
(b) Motor tracking error (0.9 Kg) 

 
(c) Motor Tracking Error (1.5 Kg object winding) 

 

Figure 13: Branch motor tracking error 

 

 

 

The root mean square error of the motor and the 

maximum error when the system is in steady state are 

shown in Table 2. 

 

Table 2: Root mean square error of motor and maximum error when system is in steady state 
 0.6 Kg 0.6 Kg 0.9 Kg 0.9 Kg 1.5 Kg 1.5 Kg 

Controller ×10-3MSSE/rad ×10-3RMSE/rad ×10-3MSSE/rad ×10-3RMSE/rad ×10-3MSSE/rad ×10-3RMSE/rad 

OLI-SMC 15.05 6.93 22.08 9.80 23.66 10.69 

IM-ST-ESO 13.96 4.26 15.74 5.74 19.01 7.52 

IASMC 22.08 10.10 29.80 13.86 33.26 14.75 

 

Table 3: Calculation load data of motor 
Controller type Simulation time (seconds) CPU utilization (%) Memory consumption (MB) Iterations (Times) 

OLI-SMC 12.16 68.875 204.25 4560 

IM-ST-ESO 7.79 43.035 152 3040 

IASMC 17.67 85.215 294.5 6175 

 

Table 4: Performance comparison data of different controllers 
Controller type MSSE RMSE CPU usage Memory usage (MB) Running time (ms) 

IM-ST-ESO 0.0025 0.0498 15% 2.8 2.3 

OLI-SMC 0.0032 0.0567 18% 3.2 2.6 

IASMC 0.0029 0.0523 16% 3 2.4 

 

Table 5: Results of ablation experiment 
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Group Overshoot (%) Adjustment time (ms) Steady state error (mV) Anti disturbance recovery time (ms) 

Complete IM-ST-ESO 0.8 1.8 5 2.2 

Remove hyperbolic 
function 

2.1 3.5 12 4.7 

Fixed gain 1.5 2.9 8 3.8 

Remove SMC adaptive 

rule 
3.2 6.4 18 8.1 

 

The calculation burden of the above model is shown in 

Table 3. 

The model constructed in this study is used to sort out 

defective products from the product. The test object is 750 

products, of which 150 defective products are mixed. The 

experimental scale design for selecting 750 products 

(including 150 defective products) has clear statistical 

basis and engineering practicality. The 150 defective 

products account for 20% of the total sample, which is in 

line with the typical non-conformance rate range 

(5%-25%) in industrial scenarios and can effectively 

simulate the real production line environment. At a 95% 

confidence level, the confidence interval width of the 20% 

defective product ratio needs to be controlled within ± 3%. 

The sample size of 750 is slightly higher than the 

calculated value of 683, which can ensure that the 

statistical error of sorting accuracy is ≤ 3% and meet the 

engineering accuracy requirements Conduct 2 repeated 

experiments for each of the 3 transmission speeds, 

requiring a total of 6 sets of data. Each group is allocated 

125 samples, with a constant proportion of defective 

products, that is, each group contains 25 defective 

products. Overall, the sample size design of 750 meets the 

three core requirements of statistical significance, group 

comparability, and engineering feasibility, providing a 

scientific basis for sorting performance evaluation. 

The performance comparison data of different 

controllers are shown in Table 4. 

Results of ablation experiment is shown in Table 5. 

At the beginning of the test, they are placed on the 

conveyor belt at a uniform speed, and the parallel robot is 

used for sorting. In addition, the defective products are 

picked up on another conveyor belt, and two grasping 

tests are performed for each of the three conveyor speeds 

(with a minimum speed limit). There are six groups of 

tests in total, and the test data are shown in Table 6. 

Table 6: Product dynamic recognition and capture results 
Number of 

groups 

Transfer speed 

(mm/s) 

Recognition rate 

(%) 

Grabbing rate 

(%) 

1 
150 

96.53 96.53 

2 97.35 96.53 

3 
250 

96.53 95.70 

4 95.70 95.70 

5 
350 

93.23 91.58 

6 94 91.58 

 

The core idea of combining the improved ST-ESO to 

optimize the robot's motion trajectory is to estimate and 

compensate for the total system disturbance in real time 

through ST-ESO, including model uncertainty, external 

interference, and unmodeled dynamics. Based on this, a 

time energy dual objective optimization algorithm is used 

to generate smooth trajectories, which are dynamically 

adjusted in conjunction with model predictive control 

(MPC). In specific implementation, an accurate dynamic 

inverse model is first constructed using the high-order 

disturbance observation capability of ST-ESO. Then, 

trajectory continuity is ensured through fifth order spline 

interpolation. Finally, the control variables are corrected 

online according to the disturbance estimation value 

output by the observer, and the trajectory optimization of 

the other three methods is achieved through adaptive 

control. 

In the actual operation of Delta robot, the sorting and 

picking frequency is 120 times/min, and each cycle is 0.50 

s. However, considering that the actions of each cycle 

include picking and placing, the actual time of a single 

action of picking and placing should be 0.25 s. The 

optimization results of different methods for the running 

time of Delta robot are shown in Table 7. 
 

Table 7: Optimization results of delta robot runtime by different methods 

Methods Time before optimization (s) Time after optimization (s) 

Literature [21] (A SVM recognition algorithm based on the fusion of grayscale) 0.25 0.239  

Literature [24] (Visual servoing control) 0.25 0.236  

Literature [25] (Multi-sensor cyber-physical sorting system) 0.25 0.234  

Methods in this paper 0.25 0.231 

 

Table 8: Optimization results of delta robot operation impact by different methods 

Method 
Average impact before optimization (/(º) · 

s-3) * 106 

Average impact after optimization 

(/(º) · s-3) * 106 

Literature [21] (A SVM recognition algorithm based on the 

fusion of grayscale) 
2.23 0.481 

Literature [24] (Visual servoing control) 2.23 0.466 

Literature [25] (multi-sensor cyber-physical sorting system) 2.23 0.463 

Methods proposed in this paper 2.23 0.441 
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The optimization results of different methods on the 

running impact of Delta robot are shown in Table 8. 

 

The time-domain waveform diagram is shown in Figure 

14. 

 
Figure 14: Time domain waveform diagram 

 

In order to compare the average current decoupling 

control and the sliding mode decoupling control based on 

ESO in the case of anti load disturbance, the load of 

branch A and B is mutated respectively. When the output 

current of one branch of branch A and B changes to 1a 

→>2a →>1a, the load of the other branch remains 

unchanged, and the cross influence between output 

branches a and B and the dynamic performance of the 

system under load disturbance are observed through an 

oscilloscope. 

Table 9 shows the experimental results of average 

current control and sliding mode decoupling control based 

on ESO against the load disturbance of branch a. 

 

Table 9: Comparison of Different Decoupling Control 

Experimental Results 
Control 
type 

Input voltage 
disturbance (V) 

Output 
branch 

Overshoot 
voltage (V) 

Overshoot 
time (MS) 

Average 

current 
control 

[1] 

45→35 
A branch 5 18.7 

B branch 2.5 15.3 

35→55 
A branch 5.5 18.7 

B branch 3 15.3 

ESO+sli

ding 
mode 

45→35 
A branch 3 8.5 

B branch 1.5 6.8 

35→55 
A branch 3 6.8 

B branch 2 5.1 

 

The evaluation of the implementation scheme of neural 

approximator enhanced SMC is shown in Table 10. 

 
 

Table 10: Evaluation of SMC implementation scheme 

enhanced by approximator 
Experimental 

condition 
Overshoot (V) Ripple amplitude (relative unit) 

Traditional SMC 1.2 1.0 (baseline value) 

Neural 

approximator 
enhances SMC 

0.45 0.6 (reduced by 40%) 

 

To further verify the dynamic control effect of the 

model in this article, the following is added on top of the 

calibrated weight (0.6/0.9/1.5 kg): 

Instantaneous impact load: +20% sudden weight 

change (0.48-0.72 kg) of random duration (0.1-0.5 s), 

continuous fluctuation load: sinusoidal disturbance 

(amplitude+15%, frequency 0.5-2 Hz). The base speed is 

set according to the working conditions, superimposed 

with Gaussian noise (σ=10% calibration value), the 

trajectory period is randomly shifted by ± 5%, and a pulse 

disturbance of 0.5 m/s² is randomly inserted. Random 

bandwidth vibration of 0-50 Hz is applied through the 

exciter. The experimental results are shown in Table 11. 

 

Table 11: Random perturbation test results 

Testing 

Team 

Load 

(kg) 

Speed 
disturb

ance σ 

RMS 
error 

(rad) 

Steady 

state 

maximum 
error (rad) 

Main peak 

of 

spectrum 
(Hz) 

Reference 

group (0.6 

kg) 

0.60±0
% 

0% 0.0021 0.0043 - 

Load 

mutation 

group 

0.54–0
.72 

5% 0.0048 0.0097 12.5 

Motion 
disturbanc

e group 

0.60±2

% 
15% 0.0035 0.0062 8.3 

Composite 
disturbanc

e group 

(0.9 kg) 

0.81–0

.99 
10% 0.0067 0.0124 18.6/35.2 

E. Analysis and Discussion 

By comparing the root mean square error of the branch 

motor tracking error and the maximum error when the 

system is in steady state in Figure 13 and Table 2, it can be 

seen that when the sorting load of the string fruit sorting 

parallel robot is unknown and changes dynamically, 

compared with the integral adaptive sliding mode control 

method that does not use online identification of the load 

moment of inertia and the steady-state switching gain 

sliding mode control method that uses online 

identification of the load moment of inertia. 

In Table 3, IM-ST-ESO has the lowest simulation time 

and memory consumption, mainly due to its adaptive gain 

ESO, which can effectively reduce the additional 

calculation caused by parameter mismatch. In addition, 

the number of iterations is significantly lower than that of 

other controllers, indicating that the algorithm has faster 

convergence speed and is suitable for scenes with high 

real-time requirements. 

The simulation time and CPU utilization of OLI-SMC 

are at a medium level, indicating that its algorithm 

complexity is moderate. The higher number of iterations 

may be related to the chattering suppression mechanism 

of sliding mode control, which needs to be stabilized by 

high-frequency switching, resulting in increased 

computational resource consumption 

IASMC has the highest simulation time and memory 
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consumption, mainly due to its combination of integral 

operation and adaptive parameter adjustment, resulting in 

a significant increase in algorithm complexity. The higher 

number of iterations further verifies that it needs to 

optimize the parameters many times in the convergence 

process, and the computational efficiency is low. 

From the comparison of Table 4, the ST-ESO controller 

performs the best in control accuracy (MSSE 0.0025, 

RMSE 0.0498), computational efficiency (CPU 15%, 

memory 2.8MB), and real-time performance (running 

time 2.3 ms), with significantly better overall performance 

than OLI-SMC and IASMC. Among them, OLI-SMC is 

the weakest performing solution among the three due to its 

high resource consumption (CPU 18%, memory 3.2MB) 

and slow response (2.6 ms), while IASMC is in the middle 

in various indicators, but its balance may be applicable to 

some scenarios where performance requirements are not 

strict. This result indicates that the improved ST-ESO has 

better stability and engineering applicability in Buck 

converter control. 

In Table 5, the hyperbolic function has a 162% increase 

in overshoot and a 114% extension in anti-interference 

recovery time, demonstrating the crucial role of 

hyperbolic ESQ in suppressing nonlinear disturbances. 

Fixed gain defect: Steady state error increases by 60%, 

indicating that adaptive gain can dynamically optimize 

parameters to cope with load changes. Lack of 

adaptability in SMS: The adjustment time deteriorates by 

255%, highlighting the necessity of adaptive rules for 

rapid convergence. Overall, the improved ST-ESO 

modules have significant synergistic effects, with 

hyperbolic ESO and SMC adaptive rules contributing the 

most to dynamic performance, while fixed gain mainly 

affects steady-state accuracy. 

In Table 6, when the speed of the conveyor belt is 

between 150 and 250 mm/s, the identification rate and 

grasping rate of defective products are above 96%, which 

is within the allowable error of the project. However, 

when the speed becomes 350 mm/s, the recognition rate 

and grasping rate will drop below 95%, which will have a 

great impact on the quality of sorting. Before entering the 

sorting process, the movement speed of the products in 

this project in the previous process is generally between 

130-250 mm/s. Therefore, this sorting system fully meets 

the requirements of the project, can adapt to different 

production speeds of products, and has certain accuracy 

and reliability. 

In Table 7, the running time performance of optimized 

Delta robot in reference [3] is poor, and the optimization 

degree is the lowest. A more effective trajectory cannot be 

found. The methods in references [8] and [15] have a 

certain degree of optimization effect and can shorten the 

exercise time to a certain extent, but the effect is not as 

significant as that of the experimental method. The test 

method has achieved remarkable results in optimizing the 

running time of Delta robot sorting process. After 

optimization, the running time is 0.231 s, which is 6.60% 

lower than that before optimization, and improves the 

working efficiency and overall performance of the robot. 

The test method significantly reduces the average 

impact of each joint of the driving arm, and the impact 

decreases by 80.00%. Reducing joint impact helps 

improve the operational efficiency of the robot while 

extending the life of the robot. 

In Table 8 and Figure 14, under the condition of 

resisting the load disturbance of branch a, the decoupling 

control effect of ESO combined with sliding mode is 

superior to that of average current decoupling control. It 

can be seen that the decoupling control strategy of ESO 

combined with sliding mode can effectively realize the 

decoupling between output branches, suppress the cross 

influence of branch A on branch B, and improve the 

response speed and anti-load disturbance ability of branch 

A. 

In the actual test, under the average current decoupling 

control, the voltage overshoot of branch B caused by load 

disturbance is 2 V, and the system recovers to steady state 

after about 16 ms. The voltage overshoot of branch a 

caused by the cross influence of branch B is 4 V, and the 

system recovers to steady state after about 14 ms; Under 

ESO combined with sliding mode decoupling control, the 

voltage overshoot of branch B caused by load disturbance 

is 1.5 V, and the rated voltage overshoot of branch a 

caused by the cross influence of branch B is 2 V. The 

system recovers to steady state after 6.3 ms. 

In Table 10, the implementation scheme of neural 

approximator enhanced SMC can reduce the output 

voltage by 62% (from 1.2 V to 0.45 V) when the load step 

changes, while suppressing high-frequency chattering 

phenomenon (reducing the amplitude of switch frequency 

ripple by 40%), significantly improving the dynamic 

response quality. 

In Table 11, through analysis of the experimental data, 

it can be seen that load changes and speed disturbances 

have a significant impact on motor tracking errors. The 

RMS error of the benchmark group is the lowest, while the 

error increase of the load mutation group reaches 128%, 

indicating that the randomness of the load has the greatest 

impact on system stability. The motion disturbance group 

mainly causes 8.3 Hz intermediate frequency oscillation, 

reflecting the response delay of the control loop; The 

composite disturbance group exhibits dual peak spectra of 

18.6 Hz and 35.2 Hz simultaneously, confirming that the 

coupling effect between load and motion parameters 

exacerbates high-frequency vibrations. The data shows 

that load fluctuations are the dominant factor in errors, 

and it is recommended to prioritize optimizing 

anti-interference algorithms in load mutation scenarios. 

In a word, the decoupling control strategy based on 

extended state observer and sliding mode can effectively 

realize the decoupling between output branches, suppress 

the cross influence of branch B on branch a, and improve 

the anti-load disturbance ability of branch B. The above 

analysis verifies the global feasibility, indicating that the 
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stability analysis aims to eliminate the influence of cross 

coupling effect and disturbance on the global dynamics, 

rather than only improve the local performance. 

When dealing with actuator saturation and joint/motor 

limitations in robot motion control, the core solution is to 

dynamically adjust the control output through ST-ESO 

real-time observation of system disturbances and load 

states. The anti-saturation compensation algorithm is used 

to handle torque limitations, and the joint position limit is 

avoided through a penalty function. Based on the 

estimated inertia of the observer, the acceleration is 

dynamically constrained, and finally a hierarchical 

constraint management system of 

"position>velocity>torque>accuracy" is constructed to 

maximize motion performance while ensuring safety.  

The industrial robot anti-interference control system 

compensates for communication delays through the 

ST-ESO state predictor (50 ms threshold switching local 

control), uses multi-source sensor fusion and Kalman 

filtering to achieve 200 ms fault tolerance, and establishes 

a three-level interference response mechanism 

(mechanical collision/power fluctuation/communication 

interference corresponding to 100 ms/50 ms/200 ms 

recovery respectively). Moreover, it is integrated with the 

OPC UA protocol through the edge computing 

architecture (1ms control cycle). 

The Simulink control model, C++core algorithm source 

code, and 750 experimental datasets (including complete 

sensor data under normal/interference conditions) of the 

system have undergone standardized desensitization 

processing, and all industrial sensitive parameters have 

been replaced with universal reference values. The model 

adopts modular design and has a certain degree of 

replicability 

Through dynamic gain design, the bandwidth of the 

observer is automatically adjusted according to the motion 

state, targeting the internal force coupling disturbance 

unique to parallel mechanisms. Combined with a 

parameter self-tuning architecture based on Lyapunov 

exponent, the accuracy of the end effector trajectory is 

effectively improved. Compared with existing solutions, 

its originality lies in the integration of gain adaptation, 

parallel mechanism disturbance decoupling, and stability 

constraint parameter tuning, breaking through the 

bottleneck of accuracy and robustness of traditional ESO 

in high-speed parallel robots. 

To further improve the ability of super-twisting sliding 

mode extended state observer to observe the total 

disturbance of inner and outer loops of CI-SIDOBuck 

converter, strengthen the ability of inner and outer loop 

controllers to compensate the total disturbance, and solve 

the problem that the parameter design of super-twisting 

ESO and super-twisting sliding mode control algorithms 

needs disturbance boundary information, firstly, a 

hyperbolic function is first used to replace the sign 

function in the super-twisting sliding mode extended state 

observer to further reduce system jitter, and a variable 

gain function that can change in real time with the 

observation error is designed to replace the linear gain of 

ST-ESO, thereby improving the observation capability of 

disturbances. Then, the generalized super-twisting sliding 

mode algorithm with linear terms is introduced as the 

approach law of the system, which smooths the control 

law of the system. Finally, the experimental verification 

shows that the sliding mode decoupling control strategy 

based on variable gain super-twisting ESO further 

improves the anti-disturbance ability and convergence 

speed of the system, and improves the overall 

performance of the system. 

 

5   Conclusion 
Based on the extended state observer commonly used in 

the field of strongly coupled systems such as motors and 

drones, this paper improves the super-twisting ESO and 

super-twisting sliding mode control algorithms by 

combining the control idea of decoupling with nonlinear 

control, and proposes an improved sliding mode 

decoupling control strategy for variable gain 

super-twisting ESO. Firstly, a hyperbolic function is used 

to replace the sign function in the super-twisting sliding 

mode extended state observer to further reduce system 

jitter, and a variable gain function that can change in real 

time with the observation error is designed to replace the 

linear gain of ST-ESO, thereby improving the observation 

capability of disturbances. Then, the generalized 

super-twisting sliding mode algorithm with linear terms is 

introduced as the approach law of the system, which 

smooths the control law of the system. Finally, the 

experimental research verifies that the practical effect of 

the model is obvious. Restrictive tests show that the 

proposed method further improves the ability of resisting 

input voltage disturbance, and improves the robustness 

and dynamic performance of the system. 

However, the parameter design of the converter and the 

coupled single inductor multiple output converter are not 

discussed. Therefore, further research is needed to further 

demonstrate the application value of sliding mode 

decoupling control based on super-twisting extended state 

observer in such converters. 
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