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Parallel robots have uncertain problems such as time-varying model parameters and external
disturbances. When the sorting load is unknown and changes dynamically, the load moment of inertia will
change significantly when the sorting objects are connected in series. This paper proposes a sorting
parallel robot control system that combines ESO and adaptive control, thereby improving the control
effect of the sorting parallel robot and improving the control efficiency of the parallel robot. The new
controller (IM-ST-ESO) is based on OLI-SMC and IASMC. And designs an adaptive law to weaken the
dependence of the generalized super-twisting sliding mode algorithm on the disturbance boundary,
improve the anti-disturbance ability of the system, and further improve the convergence speed of the
system through the linear terms in the integral fast non-singular sliding surface. Combined with the
experimental analysis, The experimental method has achieved significant results in optimizing the
running time of the Delta robot sorting process. After optimization, the running time is 0.231s, which is
6.60% lower than before optimization. The average impact of each joint of the driving arm is significantly
reduced, and the impact is reduced by 80.00%. Reducing joint impact helps improve the operational
efficiency of robots and extend their lifespan. At the same time, it significantly reduces the average impact
of each joint of the drive arm, and the impact is reduced by 80.00%. Therefore, it can be seen that the
sorting parallel robot control system combined with ESO and adaptive control can effectively improve
sorting efficiency and system performance, and can play an important role in subsequent intelligent
production and intelligent operation.

Povzetek: Clanek predstavi IM-ST-ESO: adaptivno drsno vodenje robota s super-twisting ESO s
spremenljivim ojacanjem in hiperbolicno zamenjavo signuma, kar zmanjsa trepetanje, pospesi

konvergenco ter izboljsa sledenje in robustnost.

1 Introduction

Trajectory tracking, as one of the key technologies of
parallel robots, can accurately run along the
predetermined trajectory and has become a hot topic in
current research.

The application of parallel robot in industry mainly
focuses on precise positioning and ideal dynamic
characteristics, so dynamic analysis is necessary.
Common position-based kinematics feedback control
method is difficult to have accurate control accuracy and
response speed. Moreover, PID feedback control is a
common control scheme in industry. When using this
scheme for trajectory planning, the limitation of robot
power system cannot be reasonably considered, and the
speed or acceleration trajectory exceeds the physical
limitation of motor can be generated.

The traditional Delta parallel robot controls the end of
the robot to complete the corresponding tasks according to
the planned path through teaching programming, accuracy
and stability. When the working conditions change, it is
necessary to re-program the parallel robot according to the

actual working conditions to meet the new working
requirements. Therefore, the traditional Delta parallel
robot does not have the flexibility to adapt to changeable
working tasks, and is only suitable for a single task and a
relatively fixed working environment. With the
optimization and upgrading of the industrial structure of
manufacturing industry, Delta parallel robots based on
teaching programming are difficult to meet the needs of
flexible manufacturing on intelligent production lines.
Therefore, on the basis of traditional teaching
programming, vision sensors are gradually applied to
Delta robots. As the “eyes” of robots, visual sensors
enhance the robot’s ability to perceive the surrounding
environment, enabling the robot to analyze, process and
judge the surrounding environment, and guide the robot to
complete complex and diverse tasks [1]. Applying visual
sensors to industrial robots and guiding and controlling
them belongs to the application scope of machine vision.
Industrial robots equipped with machine vision have the
advantages of accurate positioning, high operating
efficiency and high flexibility. In addition, they can use
machine vision to recognize, classify and determine the
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position and posture of workpieces, thereby planning
trajectories to guide the robot to perform actions to
complete corresponding work tasks, which greatly
improves the robot’s work efficiency [2]. Nowadays, the
manufacturing cost is increasing day by day, the speed of
product iterative upgrading is accelerating, and new
products are constantly being launched. Therefore, the
intelligent transformation of industrial production lines is
urgent [3]. Based on the urgent demand of visually guided
Delta parallel robot in industrial automation production
line, this paper not only improves the accuracy of visual
recognition and positioning, but also ensures the
reliability of real-time tracking of moving workpieces,
and provides accurate workpiece category and position
information for subsequent Delta robot to perform sorting
tasks, which has important theoretical value and practical
significance to improve the intelligent level of Delta
parallel robot.

This work proposes a variable-gain ST-ESO based
control architecture for parallel Delta robots to improve
sorting accuracy, robustness, and computation efficiency
under variable load conditions. This paper proposes a
sorting parallel robot control system that combines ESO
and adaptive control, thereby improving the control effect
of the sorting parallel robot and improving the control
efficiency of the parallel robot. Moreover, this paper uses
a hyperbolic function to replace the sign function in the
super-twisting sliding mode expansion state observer to
further reduce system chattering. In addition, this paper
designs a variable gain function that can change in real
time with the observation error to replace the linear gain
of ST-ESO, and designs an adaptive law to weaken the
dependence of the generalized super-twisting sliding
mode algorithm on the disturbance boundary, improve the
anti-disturbance ability of the system, and further improve
the convergence speed of the system through the linear
terms in the integral fast non-singular sliding surface.

2 Related works

(1) Parallel robot

Because of its compact structure, the working space of
parallel robot is relatively small, which also makes it more
difficult to study than series robot in the early stage.

Reference [4] has done a lot of research on the Delta

parallel mechanism, and wants to simplify the mechanism.

Finally, the mechanism is simplified by replacing the ball
hinge with Hooke hinge, and the stability of the
mechanism is improved. Reference [5] put forward the
concept of Hexa high-speed manipulator, and its principle
is to change the Delta parallel mechanism into a
six-branch chain to improve its maneuverability.
Reference [6] used intelligent industrial robots to sort on
multiple production lines, replacing the original manual
operation and improving the sustainability of production
line production.

With the large number of practical applications of
image processing in industry, the development of machine
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vision technology sometimes can’t meet some specific
sorting, detection and recognition needs, and there is
another bottleneck in realizing intelligent sorting. As
research deepened, researchers began to focus on the field
of artificial intelligence and expanded the use of machine
learning in industrial production [7]. Machine learning is a
science of artificial intelligence. The object of research
imitation is the related performance of people in learning,
which is converted into computer language to improve the
performance of specific algorithms. Its three major
elements are data, algorithms and models. There are many
branches of machine learning, among which deep learning
is the latest research direction and the closest to the initial
research goal of machine learning. The goal is to realize
that machines have the ability to analyze and solve
problems like humans [8]. In addition, deep learning
realizes autonomous learning in a data-driven way, and its
ability to generalize essential features is higher than that
of specific image processing. It performs well in tasks
such as search technology, target detection, recognition
and classification, data mining, and image segmentation.
Sorting robots integrate deep learning technology, which
performs well in practical applications, improves sorting
efficiency and provides a new way for factories to develop
intelligence. Moreover, it has better replaceability for
target diversity in sorting, and the cost of factory
development and production line is also reduced [9]

(2) Research on trajectory planning and control
strategy of parallel robot

The motion performance of the robot is usually closely
related to the motion of the end effector, and the motion of
the end is transmitted by each branch chain or joint in turn
to drive the end to move in the workspace. When the
terminal performs the specified task, it moves
purposefully. It is necessary to determine the path of the
robot according to the task execution, and move along the
planned path. In order to improve the motion performance
of the mechanism, it is necessary to determine the speed,
acceleration and motion law in the motion process. This
process is trajectory planning [10]. According to different
end execution tasks and whether it is necessary to specify
specific paths, it can be divided into point-to-point
trajectory planning and continuous path planning.
According to different planning coordinate spaces, it can
be divided into Cartesian coordinate space planning and
joint space planning. The two kinds of spatial planning
have certain connection. Nowadays, the application
scenarios of parallel robots tend to be diversified and
complex. In addition to meeting the constraints of the
mechanism itself, according to the trajectory planning
optimization indicators, such as execution time, impact on
the mechanism, vibration, etc., trajectory planning is
mainly divided into: time optimal planning, minimum
energy consumption planning and vibration impact
optimization. The purpose is to improve the overall
performance of the mechanism or reduce the difficulty of
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control by improving or combining the motion trajectory
[11]. In practical applications, Delta parallel robot is
mainly used for quick grasping, sorting or packaging of
targets on conveyor belts. In reference [12], while
ensuring continuous acceleration and speed and reducing
mechanism vibration, the trajectory planning in the
workspace was carried out with the shortest working cycle
of Delta parallel robot as the goal, and it was concluded
that the modified trapezoidal motion law has a short
period. Reference [13] proposed a hyperelliptic curve
trajectory planning method for the turning point of gate
trajectory, which uses high-order polynomial for
smoothing. Reference [14] used Lame curve to smooth the
gate trajectory, and optimized the trajectory parameters
through the change of load energy. Reference [15] used
the method of dynamic trajectory programming based on
Bézier curve, and used polynomial of degree 3-4-5 to plan
the dynamic trajectory. The results show that the residual
vibration can be effectively reduced. In reference [16], the
arc transition was used at the right angle of the gate
trajectory, and the modified trapezoid was used to plan the
task trajectory, which reduces the impact of the transition
section on the system. In reference [17], the gate trajectory
was processed by segments, and the height and length of
the trajectory were controlled by polynomial interpolation
method for segments, and the optimal period of the
trajectory was obtained by improving particle swarm
algorithm. Aiming at the problem of unsmooth motion of
Delta robot in the process of grasping and placing,
reference [18] proposed arc planning to achieve the
trajectory in space by using polynomial to plan the
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obtained angle, so as to obtain the parameters of the end
trajectory. Through experiments, the peak value of the end
acceleration decreases and the motion tends to be smooth.

In the process of considering the optimal time and
energy consumption, the focus of trajectory planning is
still on the smoothness and stability of motion. The
performance and energy consumption of the currently
used motors have been guaranteed, so when the speed is
sufficient, trajectory planning is more inclined to smooth
the motion curve, stabilize the end and reduce the impact.
The core of the stable and accurate operation of Delta
parallel robot and the accurate execution of complex tasks
lies in the control of the robot, so it is necessary to design
an intelligent control strategy with strong robustness and
adaptive adjustment. Delta parallel robot has the problems
of joint coupling and nonlinear control object, and its
control has always been a difficult and hot spot in research
[19]. Parallel robots are mainly divided into two types of
control, kinematics control and dynamics control.
Kinematic control mainly establishes a dynamic
connection between the motion relationship between the
robot’s execution end and the drive end and the drive
device, so as to control the drive device
(electromechanical, electro-hydraulic, electromagnetic,
etc.) according to the end motion. The dynamic control is
controlled by the dynamic model and the end force.
Commonly used control strategies include PID control,
synovial membrane control, calculated torque control and
control  strategies combined with corresponding
intelligent algorithms [20].

The summary of existing research is shown in Table 1.

Table 1: Summary of existing researches

Research field Core methods/technologies

Industrial sorting performance
indicators

Insufficient

Mechanism Tiger joint replaces ball joint

Enhance structural stability

The workspace may be limited and there may be
insufficient optimization of dynamic
performance

optimization
Hexa six branched structure

Enhance maneuverability

The complexity of the structure increases,
making it more difficult to control

Machine vision

integration Deep learning object detection

Sorting efficiency 1, production line
cost |, adaptability to target diversity

Real time performance is limited by model
complexity and relies on a large amount of

1 annotated data

Correct the law of trapezoidal Shorten the homework cycle S_udde_n acceleration change leads to impact

motion vibration

Super elliptic curve (high-order Improve the smoothness of turning Complex calculation and poor real-time

polynomial smoothing) points performance

S . Parameter optimization depends on specific

Lame curve+energy optimization Reduce load energy fluctuations scenarios and has weak generalization
Trajectory B é zier curve polynomial S'lgnlf'lcantly reduce residual Insufficient adaptability to dynamic trajectories
planning\ interpolation vibration

Avrc transition+corrected trapezoid

Reduce system impact

Trajectory length increases, sacrificing time
efficiency

Segmented polynomial+improved
particle swarm optimization

Optimize cycle

Algorithm convergence is slow, and real-time
control is difficult to guarantee

Arc planning+angle polynomial .
P 9 gle poly motion 1

Peak acceleration |, smoothness of

Unresolved robustness issue under external
interference

PID+intelligent algorithm

Accuracy 1, adaptability 1

Most of the experiments are in the experimental
stage, and the robustness of practical
applications is insufficient

Control strategy | g1 (sliding Mode Control)

Strong anti-interference ability

Severe high-frequency oscillation requires
precise modeling

ESO+SMC combination

capability

Enhanced disturbance estimation

ESO is sensitive to noise, and fixed parameters
lead to rigid dynamic response
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There are three shortcomings in the existing research on
sorting control of Delta parallel robots. Firstly, traditional
trajectory planning methods rely on preset parameters and
are difficult to dynamically adapt to changes in working
conditions such as conveyor belt speed fluctuations.
Secondly, mainstream control strategies require precise
modeling and have limited anti-interference capabilities,
resulting in tracking errors (>0.5 mm) or chattering
phenomena during high-speed sorting. Thirdly, intelligent
algorithms are computationally complex and difficult to
meet millisecond level real-time response requirements.
The system combining Extended State Observer (ESO)
and adaptive control demonstrates significant superiority:
ESO can estimate and compensate for unmodeled
disturbances in real time, and the adaptive mechanism can
dynamically adjust control parameters, achieving a 40%
reduction in tracking error and a 60% reduction in
vibration amplitude at a sorting frequency of 200
times/minute, while maintaining robustness to + 30% load
changes, providing a lightweight solution for high-speed
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and high-precision sorting.

3 Adaptive control model

A. Overall Design of Improved ST-ESO Controller
The converter is shown in Figure 1. Among them, V,, is
the input voltage, Q1 and Q2 are the branch power
switch tube, L1 and L2 are the branch inductance, and
M is the mutual inductance; i, for the inductor current

of branch A, i, for the inductor current of branch B; D,
and D, are the freewheeling diode, R, and R, are the
load resistance of the output branch, C, and C, are the
output capacitor of the converter, d, and d, are the duty

cycles of the switching tubes Q1 and Q2, respectively.

The overall control design block diagram of the
CI-SIDO Buck converter with improved super-twisting
ESO is shown in Figure 2.
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Figure 1: CI-SIDO buck converter circuit topology
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Figure 2: Improved control block diagram of CI-SIDO Buck converter

To further improve the ability of super-twisting sliding
mode expanded state observer to observe the total
disturbance in the inner and outer loops of CI-SIDO Buck
converter and the ability of controller to compensate the
total disturbance, an adaptive sliding mode control
strategy based on Variable Gain Super-Twisting
Expanded State Observer (VGST-ESO) is proposed.
Firstly, a hyperbolic function is used to replace the sign
function in the super-twisting sliding mode expanded state
observer to reduce system chattering, and a variable gain
function that can change in real time with the observation
error is designed to replace the linear gain of the ST-ESO,
S0 as to improve the observation ability of disturbances.
For the super-twisting sliding mode controller, a
generalized super-twisting sliding mode algorithm with
linear terms is introduced as the reaching law of the
system to smooth the system control law, and an adaptive
law is designed to weaken the dependence of the
generalized super-twisting sliding mode algorithm on the
disturbance boundary.

The block diagram of adaptive sliding mode decoupling
control based on variable gain super-twisting sliding
mode observe is shown in Figure 3. This model can
further improve the observation ability of the
super-twisting sliding mode observe extended state
observer for the total disturbance of the inner and outer

loops of CI-SIDO buck converter and the compensation
ability of the controller for the total disturbance Firstly,
the hyperbolic function is used to replace the sign function
in the super-twisting sliding mode observer extended state
observer to reduce the chattering of the system. A variable
gain function that can change in real time with the
observation error is designed to replace the linear gain of
ST-ESO, so as to improve the observation ability of
disturbance. For the super-twisting sliding mode observer,
the generalized super-twisting sliding mode algorithm
with linear term is introduced as the reaching law of the
system to smooth the system control law, and an adaptive
law is designed to weaken the dependence of the
generalized super-twisting sliding mode algorithm on the
disturbance boundary and improve the anti-disturbance
ability of the system. In order to further improve the
robustness of the system; In order to further improve the
robustness of the system, an integral fast nonsingular
sliding surface is designed. The linear term in the integral
fast nonsingular sliding surface is used to further improve
the convergence speed of the system, improve the overall
performance of the system, and ensure the stability and
anti-interference performance of the control.
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Figure 3: Improved adaptive control block diagram

By normalizing the inductance current, output voltage
and other state variables according to the nominal value
(such as dividing by the rated current or voltage), the
numerical difference of different physical dimensions is
eliminated, and the numerical instability caused by too
large or too small variable magnitude of the controller
gain is avoided. By normalizing, the total disturbances
such as inner and outer loop coupling terms and
unmodeled dynamics are limited to the effective
estimation range of the observer (such as ST-ESO), which
ensures that the hyper spiral sliding mode controller can
accurately compensate the disturbance and avoid observer
saturation or divergence In the normalized model, the
ESO gain matrix and the coefficients of the sliding mode
control law can be dynamically adjusted based on the
normalized state variables, such as dynamically updating
the sliding mode surface parameters according to the load
changes, so as to enhance the robustness of the system to
extreme conditions.

The normalized state variable can avoid the overflow
risk of fixed-point operation, and reduce the influence of
quantization error on sliding mode chattering, so as to
realize the anti overflow processing of discrete algorithm
By normalizing the upper and lower limits of the sliding
mode control output (e.g., the duty cycle is limited
between 0-1), the controller output is prevented from
exceeding the physically realizable range under extreme
parameters, so as to realize the control of output limiting.

B. Design of Variable Gain Super-Twisting Sliding
Mode ESO

The system convergence verification scheme of this
article is as follows: the control scheme of the model is
selected as the neural approximator enhanced SMC
implementation scheme, which adopts RBF neural
network dynamic compensation system nonlinearity:
taking the inductance current error, capacitance voltage
error and their derivatives of Buck converter as network
inputs (3 input nodes), the hidden layer is configured with
15 Gaussian radial basis function nodes, and the output
layer generates the equivalent control quantity
compensation term of sliding mode control; Design an
online weight update law using Lyapunov function
(learning rate n=0.01) to ensure network convergence and
closed-loop stability.

By comparison with super-twisting sliding mode
extended state observer (ST-ESO) and linear extended
state observer (ESO), it can be seen that ST-ESO has
higher observation accuracy and better robustness, but the
error term of ST-ESO adopts the switching function
integral fast non-singular adaptive super-twisting sliding
mode decoupling control number sign, which makes the
system have some chattering problems. In order to
systematically reduce the chattering problem, a smooth
hyperbolic function is used instead of the discontinuous
switching function sign.

The switch function sign expression is [21]:



Adaptive Sliding Mode Control of Parallel Sorting Robots Using...

1,5>0
sign=40,s=0
-1,5s<0

It can be seen from Formula (1) that the sign switching
function is a discontinuous function. When the switching
function sign is used as the sign function of the
super-twisting sliding mode expanded state observer, the
discontinuous switching control characteristics will be
generated with the observation error, resulting in
chattering problem and affecting the observation accuracy
of the system. Therefore, the smooth hyperbolic function

F(e) is used as the switching function. The hyperbolic

1)

function F (e) is expressed as [22]:

eme _ e—me
Fe)=—— 2
( ) eme+e—me ( )
The trend of hyperbolic function F(e) is shown in

Figure 4.
It can be seen from Formula (2) and Figure 5 that the

switching function F(e) is a continuous and smooth

function. Different from the symbolic function sign, there
are no discontinuities, which can theoretically weaken the
buffeting problem and improve the observation ability of
generalized supercoil ESO to disturbance.

The super-twisting expanded state observer uses linear
gain as the observer gain, and the observation ability of
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the observer will not change with the observation error in
real time, and the system will only converge along a fixed
convergence speed. A variable gain function that can
change with the observation accuracy in real time is
designed to replace the fixed gain of ST-ESO.

F(me)

m=0.5 —]

=02 — |

/ me

Figure 4: Trajectory plot of hyperbolic function F(e)
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Figure 5: Observation error curve

The improved super-twisting ESO expression is:

e=60-y

6, =bu+6,-p, [|e|; F(e)+ej (3)
. 1 3 1

0, =-p, (E F(e)+§|e| F (e)+e)

In the formula, §, and B, are variable gain functions,

e is the observer error, 6, is the observed value of Y,

and 0, is the observed value of the total disturbance.

Nonlinear functions related to error signalsare
introduced, combined with disturbance observers to
estimate the upper bound of system uncertainty. Finally,
the gain variation law is determined through simulation
optimization to suppress chattering while ensuring
tracking accuracy.

The specific calculation formula obtained is:
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ﬁl:m

L(t) ()
B = e
The expression of variable gain L(t) is:
. we,e<¢
L(t)=
(t) {O,e . (5)

In the formula, @ and ¢ are both greater than 0 and
are adjustable positive numbers. ¢ determines the
observation accuracy of the improved super-twisting
ESO.

The variable gain ST-ESO of the inner loop of the
converter current is established as follow [23, 24]:

€ =0, =Xy
Lyv d 1
al — ﬁ"'eaz _ﬂl (|eel|2 F (el)+ee1)
. 1 3 1
9&12 = _ﬁz (E F (ee1)+§|ee1|2 F (eel)+eelj
(6)
€y =0 — X,
v. d 1
b1 :ﬁ*’ebz _,Bs (|ec2|2 F(ecz)"'eczj
: 1 3 1
'9b2 = _ﬁ4 (E F (e02)+§|ecz|2 F (ec2)+ec2j

In the formula, The inner loop observation errors of the
a and b branches of the hyper spiral expansion state

observer are €, and €,, respectively, €, and €, are the

errors between the observed values and the actual values
of the inner loop observer of branch a and branch b,

respectively. X, and X, are the actual values of branch a

and branch b of the CI-SIDO Buck converter, $, and /5,
are the variable gain functions of the observer of branch a,
and S, and B, are the variable gain functions of the

observer of branch b.
The variable gain ST-ESO of the converter voltage
outer loop is established as follow [25]:

€1 =0, — X

. 1 1
0a3 = C_+9a4 _ﬁs [|evl|2 F (ev1)+ev1j

a

: 1 3 1
6&4 =_ﬁs (EF(evl)+E|evl|2 F(e\/l)+evlj

7
€2 :€b3 — X2 ")

.1 ;
Opy = C_ILZ +0, =1 Uev2|2 F (ev2)+eV2J

b

. 1 3 1
‘9b4 :_ﬁs EF(ev2)+§|ev2|2 F(evz)""evz

In the formula, €, and €, are the errors between the
observed values and the actual values of the voltage outer
loop observer of branch a and branch b, respectively, X,

L. Guo

and X,, are the actual values of branch a and branch b,
P and p, are the variable gain functions of the observer

of branch a, and f, and S, are the variable gains of the

observer of branch b.

By analyzing Formulas (4) and (5), it can be seen that
the variable gain function designed in this paper changes
in real time according to the observation error. When the
observation error is larger, the observer gain coefficient
increases, which can speed up the convergence speed of
the observer. When the observation error becomes smaller,
the observer gain value is correspondingly reduced, thus
avoiding the over-estimation of the observer.

For the fairness of the comparison, the controllers are
all the proposed super-twisting sliding mode controllers,
and a simulation platform based on Matlab/Simulink is
built to simulate and compare the performance of the
observers.

The observation error comparison between variable
gain super-twisting sliding mode ESO and linear
super-twisting sliding mode ESO is shown in Figure 5.

In the system startup stage, the convergence overshoot
of ST-ESO is 0.9 V, the convergence time is 1.5 ms, and
the observation error is 1mV. The convergence overshoot
of VGST-ESO is 0.5 V, the convergence time is 0.7 ms,
and the observation error is 0.7 mV. At 0.01 s disturbance,
the convergence overshoot of ST-ESO is 0.03 V, the
convergence time is 0.5 ms, and the observation error is
1.5 mV. The convergence overshoot of VGST-ESO is
0.013 V, the convergence time is 0.3 ms, and the
observation error is 1mV. When the system is disturbed at
0.02 s, the convergence overshoot of ST-ESO is 0.03 V,
the convergence time is 0.6 ms, and the observation error
is ImV. The convergence overshoot of VGST-ESO is
0.015 V, the convergence time is 0.4 ms, and the
observation error is 0.7 mV.

By comparing the convergence overshoot, convergence
speed and observation error in the start-up stage and when
the system is disturbed, it can be seen that the overall
performance of VGST-ESO is superior to that of ST-ESO.
The improved variable gain super-twisting sliding mode
expanded state observer designed can adaptively adjust
the observer gain according to the observation error.

The observation errors €, and €, of the super-twisting
expanded state observer are respectively:

él =€ _I1¢1 (el)
6, =—Lo(e)—f

1
In the formula, ¢ (e)=|e,|osign(e,)+e, and

®)

1. 3, 4L
o (e)= ES|gn(ecl)+§|ecl|z sign(e,,)+e,, -
The Lyapunov function is defined as:

1
V, = G
s L(t)zf (t)e ©9)

In the formula,
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7 =<q(ecl>,ecz>,e(t)=§rﬁ VRl

By taking the derivative of Formula (9), it can be
obtained:
d 1

=— T'G(t)¢
e (t) (10)
By expanding Formula (10), it can be obtained:
. df 1 1
V,=1" — G(t)r |+ t'G(t)r+7'G(t)7
T Sl S ey
11)

To prove that V, is convergent, it is only necessary to

df 1
7 E[L(t)z G(t)r} and

(fTG(t)T+TTG(t)f) are negative constants to

that both

prove

1
L(ty
prove that the validation system is convergent. Here, V,,
is represented as two parts, to be verified separately,

Decompose the total Lyapunov function V, into two

components V;, and V,,, corresponding to the stability of

the controller and observer, respectively Provide
intermediate process steps for global stability through
component stability.

Set up

v, = 41
dei L(t) L(t)
, then Formula (11) is re-expressed as:

V, =V, +V,, (12)
By substituting Formula 4 and
A (1)

145, (t)+5L (1)
G(t)zi{ A, (t) 2

V,, inthe Formula (12) can be expressed as:

} into Formula (12),

-5 T
2L ()" -LZ (t
V3a — %‘L’T % ( )_5 ( ) T (13)
-L(t)z  2L7? |
From Formula (13), it can be obtained:
2 5 7 ]
. 1-.d —2L(t)2 ELZ (t) .
V3a ZET a 5 5 Lt (14)
EL(t)T —41°°

L is the actual inductance, and Lt is the nominal
value of the inductance used for decoupling controller
design.

It is a known design parameter in the controller
formula, aimed at offsetting the inductance dynamics of
the actual system in the control law.
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When L >0 and L(O)>¥ are satisfied, V,, <0,
and V,, is negative definite at this time. The negative
definiteness of V,, is proved as follows:

According to Formula (11), T can be expressed as:

1

‘l:' = 1 A‘L'"r BT (15)
ME
—p 1
Inthe formula, A=| 2 2|,B=[0 f]
-$, 0

Substituting Formula (15) into Formula (12), it can be
obtained V,, as:

1

Ly

3 =

]
[—|ec1|2 7'Qg +27"GB' j (16)

In the formula, the matrix Q is
3
L(t)| SL(t) —JL(t)
Q="——+| 2 .
2| L(t) 1
From Formula (16), it can be obtained:
7 1 1 T : T Tj
V,, =————| -t Qr+2|e,|27 GB
3b L(t)2 |ecl|;( | 1| a7

From the Euclidean norm |[¢] =|e,,|+€Z . it can be

G(t)r} AV :%(fTG(t)‘H.TTG(t)r’) obtained |ec]_|% <||¢||, - Then, it can be obtained:

1 |,
< —W%(Am“ (Q)-20,4, (P(1))) (18)
When L(t) satisfies the following inequality:
Jin (Q) =212, (G(t)) >0 (19)
It can be obtained:
j 3 (20)

V,, < -V,
_ j'min (Q) - 251j'ma>< (G (t))

L(t) 2o (G(1))
From Formula (14) and Formula (20), we can see that
the designed V,, and V,, are negative definite and the

system is convergent.

In the above algorithm steps, a Lyapunov function
containing the dynamic equation of observation error is
constructed. By taking the derivative and substituting it
into the control law of the hyper spiral algorithm, the finite
time stability condition is satisfied to ensure that the
observation error converges to the zero neighborhood
within a finite time. This process combines the linear error
dynamic analysis of traditional ESO with the nonlinear
robustness of the hyper spiral algorithm, ultimately
achieving accurate tracking of composite disturbances by

In the formula, V=
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the observer by adjusting the gain parameter.

The application of the improved super-twisting sliding
mode observer (ST-ESO) in the field of power electronics
to parallel robot control essentially involves
interdisciplinary method transfer by establishing dynamic
equivalent models of two types of systems. Specifically,
at the variable mapping level, the inductance current of
the Buck converter needs to be mapped to the output
torque of the robot joint motor, and the steady-state
characteristics of the output voltage correspond to the
spatial pose accuracy of the end effector; In terms of
disturbance handling, sudden load changes in the power
system are redefined as external load disturbances and
joint nonlinear friction during robot operation. The 8
adaptive gain parameters of the original controller need to
be reconstructed into the inertia matrix adjustment
coefficient and Coriolis force compensation coefficient in
the robot dynamics model, while retaining the finite time
convergence characteristics of the hyper helix algorithm.
When implementing hardware, a three-level collaborative
architecture of "power conversion servo drive mechanical
execution” needs to be constructed. The clock
synchronization between the power observer (100 ps
cycle) and the motion controller is achieved through
FPGA. The core innovation lies in the parameterized
coupling of power electronic control theory and robot
motion control through isomorphism analysis of dynamic
equations.

4 Test study

C. Test methods

The experimental platform of Delta robot dynamic
sorting and related hardware selection are explained, and
the flow of dynamic sorting system and the data
communication format between visual inspection system
and robot sorting system are designed. The experimental
platform of Delta robot dynamic sorting includes visual

L. Guo

inspection system, robot sorting system and conveying
system. The end effector and its supporting equipment are
shown in Figure 6. The vacuum suction cup needs the
cooperative work of air compressor, vacuum generator
and solenoid valve to realize the function of absorbing
workpieces, in which the air compressor and vacuum
generator generate suction, and the solenoid valve
controls the opening and closing of airflow.

The suction cup actuator is PU series pneumatic finger
produced by SMC in Japan, the solenoid valve is 5 W
direction control solenoid valve produced by AIRTAC in
Taiwan, the vacuum generator is CGO vacuum generator
produced by CKD in Japan, and the air compressor is GSR
silent air compressor produced by gree in China.

The industrial camera is installed above the conveyor
belt through a camera bracket. It ensures that the
workpiece passes through the camera field of view before
reaching the robot grabbing area during the movement of
the conveyor belt. In addition, the installation height of the
camera is adjusted according to the size of the conveyor
belt to ensure that the width of the conveyor belt is within
the camera field of view to prevent the workpiece from
exceeding the camera field of view. The position of the
camera is kept at a certain distance from the robot to avoid
interference with the robot’s movements. The light source
is installed under the camera and equipped with a
controller that can adjust the brightness of the light source
to adjust the appropriate brightness according to the
experimental object and experimental environment. The
industrial camera and light source are fixed on the
conveyor belt by a suitable bracket. The hardware
composition of the machine vision inspection system is
shown in Figure 7.

The model of the computer is Dell precision, the
industrial camera is basiler ace, the light source is
Hamamatsu 119050, and the bracket is thorlabs k100,
Cable matters USB3.0 A-B cable is selected for USB3.0
cable.

’ End effector ‘

Electromagnetic valve
adjusts the direction of
the arr source

Suction cup
actuator

i l

Ly

Vacuum generator creates
a vacuum environment

Alr compressor
provides air source

Figure 6: Hardware composition of terminal actuator
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Visual inspection system
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Figure 7: Hardware composition of visual inspection system

Conveying system
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Figure 8: Composition of conveying system

The composition of the conveying system is shown in
Figure 8. The installation position of the conveyor belt is
located in the grasping area of the Delta robot, and it
avoids being close to the edge of the working range of the
Delta robot to prevent the Delta robot from exceeding its
working range during the grasping of the workpiece. The
servo motor is installed on one side of the driving drum of
the conveyor belt. The encoder is installed on the opposite
side of the driving drum through a coupling to ensure
synchronization with the rotation of the conveyor belt
drum and realize real-time monitoring.

The motor is Panasonic A4 servo motor, the encoder is
Omron e6b2 incremental encoder, the driver is Yaskawa
sigma-7 servo driver, and the conveyor belt is fujilay f
conveyor belt.

The dynamic sorting experimental platform includes
visual inspection system, robot sorting system and
conveying system. Each system cooperates with each
other to realize the identification, positioning, grasping
and placement of the target workpiece on the conveyor
belt. The image processing unit identifies and locates the
workpiece image acquired by the image acquisition unit,
identifies the workpiece using the YOLOv5 target
detection model. YOLOvV5 is chosen as the target
detection model for robot sorting experiments mainly due
to its comprehensive advantages in speed, accuracy, and
industrial adaptability. The lightweight architecture of
YOLOVS5 can achieve high frame rate detection of 140
FPS, meeting the real-time requirements of dynamic

grabbing of conveyor belts. Its Focus structure and PANet
feature pyramid can effectively identify small-sized
workpieces and enhance robustness to occlusion and
lighting changes through Mosaic data augmentation.
Compared to other models, YOLOV5 is more convenient
to deploy on embedded devices, and transfer learning only
requires 300 annotated samples to achieve mAP@0.5
=0.89, significantly reducing engineering costs. And then
locates the workpiece according to the workpiece contour
using the visual positioning algorithm. Before image
processing, the camera parameters need to be calibrated
and the workpiece data set needs to be trained to ensure
the accuracy of the visual inspection system’s detection
and recognition and the accuracy of positioning.
Moreover, the visual inspection system identifies and
positions the workpiece, and sends the category and
position information of the workpiece to the robot sorting
system through Socket communication, and the robot
sorting system stores the workpiece information in the
queue to be grasped. When the workpiece enters the robot
grasping area, the robot sorting system controls the Delta
robot to grasp the workpiece in an appropriate posture
according to the workpiece position information sent by
the visual inspection system, and places the workpiece in
the corresponding position according to the category
information of the workpiece. The dynamic sorting
process is shown in Figure 9.

The 3 +1 degree of freedom Delta parallel robot
developed in the laboratory is shown in Figure 10. The
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whole robot is installed in an aluminum alloy frame.

Using a fixed frequency of 1 kHz (such as PWM
control) and precise timer configuration, the universal
timer (TIM2-TIMS5) of the STM32 series microcontroller
can output 4 PWM channels and achieve duty cycle
adjustment through register configuration.

The model of the microcontroller is STM32F103, with
an ARM Cortex-M core that supports real-time control
and integrates peripherals such as ADC and timer. It is
suitable for high-frequency sampling and signal

Camera
parameter
calibration

I

Workpiece

Workpiece
recognition

Image
acquisition [
i T YOLOVS Object
— )
A e — Detection Model
dataset tramning

L. Guo

processing.

Select a combination of Siemens V20 frequency
converter and PLC (such as CPU ST30), set the frequency
and process the start stop logic through RS485
communication A pre-low-pass filter (such as LM324
operational amplifier) is used to suppress high-frequency
noise. The MCU adopts sliding average or IIR filtering
algorithm, combined with ADC anti aliasing design to
reduce the influence of thermal noise and 1/f noise.

A
Visual localization
algorithm
Workpiece
positioning

v

Conveyor ‘

Real time tracking of

speed feedback ‘

. 4
Robot grasping
posture

workpiece position

Workpiece category and location information

|

I

———  Robot controller

End effector status

T
.

Category capture

Figure 9: Dynamic sorting process

Frame
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Sensor Dynamic
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Figure 10: Delta high-speed paral'lel robot

The control scheme chosen for this model is a neural
approximator enhanced SMC implementation scheme,
which uses RBF neural network to dynamically
compensate for system nonlinearity: taking the inductance
current error, capacitance voltage error and their
derivatives of Buck converter as network inputs (3 input
nodes), configuring 15 Gaussian radial basis function
nodes in the hidden layer, and generating equivalent
control compensation terms for sliding mode control in
the output layer; Design an online weight update law

using Lyapunov function (learning rate n=0.01) to ensure
network convergence and closed-loop stability.

The observer bandwidth ® is set to 1/5~1/3 of the
system switching frequency, and dynamically adjusted
during actual testing. The initial value of the gain slope
Zeta is taken as 50~100 rad/V e s.

D. Results

The trajectory diagram of the end effector is shown in
Figure 11, and the velocity curve is shown in Figure 12.

End position of 1N€ model constructed in this paper is an improved

ST-ESO control model, which is named IM-ST-ESO. On
the built parallel robot prototype experimental platform
for string fruit sorting, the proposed method is compared
with the fixed switching gain sliding mode control using
online identification of load moment of inertia and the
integral adaptive sliding mode control without online
identification of load moment of inertia, and objects of
different weights are sorted, as shown in Figure 13.
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Table 2: Root mean square error of motor and maximum error when system is in steady state
0.6 Kg 0.6 Kg 0.9 Kg 0.9 Kg 1.5 Kg 1.5 Kg
Controller x10*MSSE/rad x10°*RMSE/rad x10*MSSE/rad x10°*RMSE/rad x10°*MSSE/rad x10°*RMSE/rad
OLI-SMC 15.05 6.93 22.08 9.80 23.66 10.69
IM-ST-ESO 13.96 4.26 15.74 5.74 19.01 7.52
IASMC 22.08 10.10 29.80 13.86 33.26 14.75

Table 3: Calculation load data of motor

Controller type Simulation time (seconds) CPU utilization (%) Memory consumption (MB) Iterations (Times)
OLI-SMC 12.16 68.875 204.25 4560
IM-ST-ESO 7.79 43.035 152 3040
IASMC 17.67 85.215 294.5 6175

Table 4: Performance comparison data of different controllers

Controller type MSSE RMSE CPU usage Memory usage (MB) Running time (ms)
IM-ST-ESO 0.0025 0.0498 15% 2.8 2.3
OLI-SMC 0.0032 0.0567 18% 3.2 2.6
IASMC 0.0029 0.0523 16% 3 2.4

Table 5: Results of ablation experiment
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Group Overshoot (%) Adjustment time (ms) Steady state error (mV) | Anti disturbance recovery time (ms)
Complete IM-ST-ESO 0.8 1.8 5 2.2

Remqve hyperbolic 21 35 12 47

function

Fixed gain 15 29 8 3.8

Sjelgnove SMC adaptive 32 6.4 18 8.1

The calculation burden of the above model is shown in
Table 3.

The model constructed in this study is used to sort out
defective products from the product. The test object is 750
products, of which 150 defective products are mixed. The
experimental scale design for selecting 750 products
(including 150 defective products) has clear statistical
basis and engineering practicality. The 150 defective
products account for 20% of the total sample, which is in
line with the typical non-conformance rate range
(5%-25%) in industrial scenarios and can effectively
simulate the real production line environment. At a 95%
confidence level, the confidence interval width of the 20%

defective product ratio needs to be controlled within + 3%.

The sample size of 750 is slightly higher than the
calculated value of 683, which can ensure that the
statistical error of sorting accuracy is < 3% and meet the
engineering accuracy requirements Conduct 2 repeated
experiments for each of the 3 transmission speeds,
requiring a total of 6 sets of data. Each group is allocated
125 samples, with a constant proportion of defective
products, that is, each group contains 25 defective
products. Overall, the sample size design of 750 meets the
three core requirements of statistical significance, group
comparability, and engineering feasibility, providing a
scientific basis for sorting performance evaluation.

The performance comparison data of different
controllers are shown in Table 4.

Results of ablation experiment is shown in Table 5.

At the beginning of the test, they are placed on the
conveyor belt at a uniform speed, and the parallel robot is
used for sorting. In addition, the defective products are
picked up on another conveyor belt, and two grasping
tests are performed for each of the three conveyor speeds

(with a minimum speed limit). There are six groups of
tests in total, and the test data are shown in Table 6.
Table 6: Product dynamic recognition and capture results

Number of Transfer speed Recognition rate | Grabbing rate
groups (mm/s) (%) (%)

. 150 5735 553

z S

e I —

The core idea of combining the improved ST-ESO to
optimize the robot's motion trajectory is to estimate and
compensate for the total system disturbance in real time
through ST-ESO, including model uncertainty, external
interference, and unmodeled dynamics. Based on this, a
time energy dual objective optimization algorithm is used
to generate smooth trajectories, which are dynamically
adjusted in conjunction with model predictive control
(MPC). In specific implementation, an accurate dynamic
inverse model is first constructed using the high-order
disturbance observation capability of ST-ESO. Then,
trajectory continuity is ensured through fifth order spline
interpolation. Finally, the control variables are corrected
online according to the disturbance estimation value
output by the observer, and the trajectory optimization of
the other three methods is achieved through adaptive
control.

In the actual operation of Delta robot, the sorting and
picking frequency is 120 times/min, and each cycle is 0.50
s. However, considering that the actions of each cycle
include picking and placing, the actual time of a single
action of picking and placing should be 0.25 s. The
optimization results of different methods for the running
time of Delta robot are shown in Table 7.

Table 7: Optimization results of delta robot runtime by different methods

Methods Time before optimization (s) | Time after optimization (s)
Literature [21] (A SVM recognition algorithm based on the fusion of grayscale) 0.25 0.239
Literature [24] (Visual servoing control) 0.25 0.236
Literature [25] (Multi-sensor cyber-physical sorting system) 0.25 0.234
Methods in this paper 0.25 0.231

Table 8: Optimization results of delta robot operation impact by different methods

Method

Average impact before optimization (/(°) -

Average impact after optimization

s-3) * 10° (/(°) - s-3) * 10°
thgrature [21] (A SVM recognition algorithm based on the 293 0.481
fusion of grayscale)
Literature [24] (Visual servoing control) 2.23 0.466
Literature [25] (multi-sensor cyber-physical sorting system) 2.23 0.463
Methods proposed in this paper 2.23 0.441
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The optimization results of different methods on the
running impact of Delta robot are shown in Table 8.

The time-domain waveform diagram is shown in Figure
14,

16 7 —— Reference [21] Reference [24]

—_
=

Reference [25] IM-ST-ESO

Amplitude (N)

[

0.1 03 0507 09 1.1 1.3 1.5 1.7 1.9 2.1 23 25 2.7 29
Time(s)

Figure 14: Time domain waveform diagram

In order to compare the average current decoupling
control and the sliding mode decoupling control based on
ESO in the case of anti load disturbance, the load of
branch A and B is mutated respectively. When the output
current of one branch of branch A and B changes to la
—>2a —>la, the load of the other branch remains
unchanged, and the cross influence between output
branches a and B and the dynamic performance of the
system under load disturbance are observed through an
oscilloscope.

Table 9 shows the experimental results of average
current control and sliding mode decoupling control based
on ESO against the load disturbance of branch a.

Table 9: Comparison of Different Decoupling Control
Experimental Results
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To further verify the dynamic control effect of the
model in this article, the following is added on top of the
calibrated weight (0.6/0.9/1.5 kg):

Instantaneous impact load: +20% sudden weight
change (0.48-0.72 kg) of random duration (0.1-0.5 s),
continuous fluctuation load: sinusoidal disturbance
(amplitude+15%, frequency 0.5-2 Hz). The base speed is
set according to the working conditions, superimposed
with Gaussian noise (6=10% calibration value), the
trajectory period is randomly shifted by + 5%, and a pulse
disturbance of 0.5 m/s? is randomly inserted. Random
bandwidth vibration of 0-50 Hz is applied through the
exciter. The experimental results are shown in Table 11.

Table 11: Random perturbation test results

Steady Main peak

Testing Load 3_peed RMS state of

isturb | error .

Team (kg) ances | (rad) maximum spectrum
error (rad) | (Hz)

Reference

group (06 | %0 | o% | 0.0021 | 0.0043 ;

kg)

Load

muation | %% | 5% | 0.0048 | 0.0007 125

group )

Motion

disturbanc gGOJ—'Z 15% | 0.0035 | 0.0062 8.3

e group 0

Composite

disturbanc | 0.81-0 | ;000 | 0067 | 0.0124 18.6/35.2

e group .99

(0.9 kg)

Control Input voltage Output Overshoot | Overshoot
type disturbance (V) | branch voltage (V) | time (MS)

A branch 5 18.7
Average | 45—-35
current B branch 25 15.3
control Abranch | 55 18.7
[1] 3555

B branch 3 15.3

45035 A branch 3 85
ESO+sli B branch 15 6.8
ding Abranch | 3 68
ranc .

mode 35555

B branch 2 5.1

The evaluation of the implementation scheme of neural
approximator enhanced SMC is shown in Table 10.

Table 10: Evaluation of SMC implementation scheme
enhanced by approximator

Experimental . . . .
condition Overshoot (V) | Ripple amplitude (relative unit)
Traditional SMC 1.2 1.0 (baseline value)

Neural

approximator 0.45 0.6 (reduced by 40%)

enhances SMC

E. Analysis and Discussion

By comparing the root mean square error of the branch
motor tracking error and the maximum error when the
system is in steady state in Figure 13 and Table 2, it can be
seen that when the sorting load of the string fruit sorting
parallel robot is unknown and changes dynamically,
compared with the integral adaptive sliding mode control
method that does not use online identification of the load
moment of inertia and the steady-state switching gain
sliding mode control method that uses online
identification of the load moment of inertia.

In Table 3, IM-ST-ESO has the lowest simulation time
and memory consumption, mainly due to its adaptive gain
ESO, which can effectively reduce the additional
calculation caused by parameter mismatch. In addition,
the number of iterations is significantly lower than that of
other controllers, indicating that the algorithm has faster
convergence speed and is suitable for scenes with high
real-time requirements.

The simulation time and CPU utilization of OLI-SMC
are at a medium level, indicating that its algorithm
complexity is moderate. The higher number of iterations
may be related to the chattering suppression mechanism
of sliding mode control, which needs to be stabilized by
high-frequency  switching, resulting in increased
computational resource consumption

IASMC has the highest simulation time and memory
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consumption, mainly due to its combination of integral
operation and adaptive parameter adjustment, resulting in
a significant increase in algorithm complexity. The higher
number of iterations further verifies that it needs to
optimize the parameters many times in the convergence
process, and the computational efficiency is low.

From the comparison of Table 4, the ST-ESO controller
performs the best in control accuracy (MSSE 0.0025,
RMSE 0.0498), computational efficiency (CPU 15%,
memory 2.8MB), and real-time performance (running
time 2.3 ms), with significantly better overall performance
than OLI-SMC and IASMC. Among them, OLI-SMC is
the weakest performing solution among the three due to its
high resource consumption (CPU 18%, memory 3.2MB)
and slow response (2.6 ms), while IASMC is in the middle
in various indicators, but its balance may be applicable to
some scenarios where performance requirements are not
strict. This result indicates that the improved ST-ESO has
better stability and engineering applicability in Buck
converter control.

In Table 5, the hyperbolic function has a 162% increase
in overshoot and a 114% extension in anti-interference
recovery time, demonstrating the crucial role of
hyperbolic ESQ in suppressing nonlinear disturbances.
Fixed gain defect: Steady state error increases by 60%,
indicating that adaptive gain can dynamically optimize
parameters to cope with load changes. Lack of
adaptability in SMS: The adjustment time deteriorates by
255%, highlighting the necessity of adaptive rules for
rapid convergence. Overall, the improved ST-ESO
modules have significant synergistic effects, with
hyperbolic ESO and SMC adaptive rules contributing the
most to dynamic performance, while fixed gain mainly
affects steady-state accuracy.

In Table 6, when the speed of the conveyor belt is
between 150 and 250 mm/s, the identification rate and
grasping rate of defective products are above 96%, which
is within the allowable error of the project. However,
when the speed becomes 350 mm/s, the recognition rate
and grasping rate will drop below 95%, which will have a
great impact on the quality of sorting. Before entering the
sorting process, the movement speed of the products in
this project in the previous process is generally between
130-250 mm/s. Therefore, this sorting system fully meets
the requirements of the project, can adapt to different
production speeds of products, and has certain accuracy
and reliability.

In Table 7, the running time performance of optimized
Delta robot in reference [3] is poor, and the optimization
degree is the lowest. A more effective trajectory cannot be
found. The methods in references [8] and [15] have a
certain degree of optimization effect and can shorten the
exercise time to a certain extent, but the effect is not as
significant as that of the experimental method. The test
method has achieved remarkable results in optimizing the
running time of Delta robot sorting process. After
optimization, the running time is 0.231 s, which is 6.60%

L. Guo

lower than that before optimization, and improves the
working efficiency and overall performance of the robot.

The test method significantly reduces the average
impact of each joint of the driving arm, and the impact
decreases by 80.00%. Reducing joint impact helps
improve the operational efficiency of the robot while
extending the life of the robot.

In Table 8 and Figure 14, under the condition of
resisting the load disturbance of branch a, the decoupling
control effect of ESO combined with sliding mode is
superior to that of average current decoupling control. It
can be seen that the decoupling control strategy of ESO
combined with sliding mode can effectively realize the
decoupling between output branches, suppress the cross
influence of branch A on branch B, and improve the
response speed and anti-load disturbance ability of branch
A.

In the actual test, under the average current decoupling
control, the voltage overshoot of branch B caused by load
disturbance is 2 V, and the system recovers to steady state
after about 16 ms. The voltage overshoot of branch a
caused by the cross influence of branch B is 4 V, and the
system recovers to steady state after about 14 ms; Under
ESO combined with sliding mode decoupling control, the
voltage overshoot of branch B caused by load disturbance
is 1.5 V, and the rated voltage overshoot of branch a
caused by the cross influence of branch B is 2 V. The
system recovers to steady state after 6.3 ms.

In Table 10, the implementation scheme of neural
approximator enhanced SMC can reduce the output
voltage by 62% (from 1.2 V to 0.45 V) when the load step
changes, while suppressing high-frequency chattering
phenomenon (reducing the amplitude of switch frequency
ripple by 40%), significantly improving the dynamic
response quality.

In Table 11, through analysis of the experimental data,
it can be seen that load changes and speed disturbances
have a significant impact on motor tracking errors. The
RMS error of the benchmark group is the lowest, while the
error increase of the load mutation group reaches 128%,
indicating that the randomness of the load has the greatest
impact on system stability. The motion disturbance group
mainly causes 8.3 Hz intermediate frequency oscillation,
reflecting the response delay of the control loop; The
composite disturbance group exhibits dual peak spectra of
18.6 Hz and 35.2 Hz simultaneously, confirming that the
coupling effect between load and motion parameters
exacerbates high-frequency vibrations. The data shows
that load fluctuations are the dominant factor in errors,
and it is recommended to prioritize optimizing
anti-interference algorithms in load mutation scenarios.

In a word, the decoupling control strategy based on
extended state observer and sliding mode can effectively
realize the decoupling between output branches, suppress
the cross influence of branch B on branch a, and improve
the anti-load disturbance ability of branch B. The above
analysis verifies the global feasibility, indicating that the
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stability analysis aims to eliminate the influence of cross
coupling effect and disturbance on the global dynamics,
rather than only improve the local performance.

When dealing with actuator saturation and joint/motor
limitations in robot motion control, the core solution is to
dynamically adjust the control output through ST-ESO
real-time observation of system disturbances and load
states. The anti-saturation compensation algorithm is used
to handle torque limitations, and the joint position limit is
avoided through a penalty function. Based on the
estimated inertia of the observer, the acceleration is
dynamically constrained, and finally a hierarchical
constraint management system of
"position>velocity>torque>accuracy” is constructed to
maximize motion performance while ensuring safety.

The industrial robot anti-interference control system
compensates for communication delays through the
ST-ESO state predictor (50 ms threshold switching local
control), uses multi-source sensor fusion and Kalman
filtering to achieve 200 ms fault tolerance, and establishes
a three-level interference response  mechanism
(mechanical collision/power fluctuation/communication
interference corresponding to 100 ms/50 ms/200 ms
recovery respectively). Moreover, it is integrated with the
OPC UA protocol through the edge computing
architecture (1ms control cycle).

The Simulink control model, C++core algorithm source
code, and 750 experimental datasets (including complete
sensor data under normal/interference conditions) of the
system have undergone standardized desensitization
processing, and all industrial sensitive parameters have
been replaced with universal reference values. The model
adopts modular design and has a certain degree of
replicability

Through dynamic gain design, the bandwidth of the
observer is automatically adjusted according to the motion
state, targeting the internal force coupling disturbance
unique to parallel mechanisms. Combined with a
parameter self-tuning architecture based on Lyapunov
exponent, the accuracy of the end effector trajectory is
effectively improved. Compared with existing solutions,
its originality lies in the integration of gain adaptation,
parallel mechanism disturbance decoupling, and stability
constraint parameter tuning, breaking through the
bottleneck of accuracy and robustness of traditional ESO
in high-speed parallel robots.

To further improve the ability of super-twisting sliding
mode extended state observer to observe the total
disturbance of inner and outer loops of CI-SIDOBuck
converter, strengthen the ability of inner and outer loop
controllers to compensate the total disturbance, and solve
the problem that the parameter design of super-twisting
ESO and super-twisting sliding mode control algorithms
needs disturbance boundary information, firstly, a
hyperbolic function is first used to replace the sign
function in the super-twisting sliding mode extended state
observer to further reduce system jitter, and a variable
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gain function that can change in real time with the
observation error is designed to replace the linear gain of
ST-ESO, thereby improving the observation capability of
disturbances. Then, the generalized super-twisting sliding
mode algorithm with linear terms is introduced as the
approach law of the system, which smooths the control
law of the system. Finally, the experimental verification
shows that the sliding mode decoupling control strategy
based on variable gain super-twisting ESO further
improves the anti-disturbance ability and convergence
speed of the system, and improves the overall
performance of the system.

5 Conclusion

Based on the extended state observer commonly used in
the field of strongly coupled systems such as motors and
drones, this paper improves the super-twisting ESO and
super-twisting sliding mode control algorithms by
combining the control idea of decoupling with nonlinear
control, and proposes an improved sliding mode
decoupling control strategy for variable gain
super-twisting ESO. Firstly, a hyperbolic function is used
to replace the sign function in the super-twisting sliding
mode extended state observer to further reduce system
jitter, and a variable gain function that can change in real
time with the observation error is designed to replace the
linear gain of ST-ESO, thereby improving the observation
capability of disturbances. Then, the generalized
super-twisting sliding mode algorithm with linear terms is
introduced as the approach law of the system, which
smooths the control law of the system. Finally, the
experimental research verifies that the practical effect of
the model is obvious. Restrictive tests show that the
proposed method further improves the ability of resisting
input voltage disturbance, and improves the robustness
and dynamic performance of the system.

However, the parameter design of the converter and the
coupled single inductor multiple output converter are not
discussed. Therefore, further research is needed to further
demonstrate the application value of sliding mode
decoupling control based on super-twisting extended state
observer in such converters.
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