
https://doi.org/10.31449/inf.v49i28.8860 Informatica 49 (2025) 121–136 121

Improving Load Balancing Efficiency in Cloud Data Centers Through Hybrid

Grey Wolf with Cat Swarm Optimization

Arif Ullah1, Siti Fatimah Abdul Razak2*, Amine Mrhari3, Sumendra Yogarayan 4, Syeda Hina Mazhar Kazmi5
1Centre for Intelligent Cloud Computing, Multimedia University, Melaka, 75450, Malaysia
2,4Faculty of Information Science and Technology, Multimedia University, Melaka, 75450, Malays
3Research in Computer Science Laboratory Faculty of Sciences, Ibn Tofail University Kenitra, Morocco
5Faculty of Information Science Arid Agricultural University Pakistan

E-mail: Arifullahms88@gmail.com & fatimah.razak@mmu.edu.my.
*Corresponding author

Keywords: virtual machine, makespan, throughput, degree of imbalance, turnaround time

Received: April 10, 2025

An effective resource management strategy that anticipates server resource utilization and appropriately

distributes the load is recommended in order to address these problems and enhance data center

performance. By reducing the number of servers in use, facilitating virtual machine migrations, and

optimizing resource utilization, it helps save power. To reduce the likelihood of service level agreement

(SLA) violations and performance degradation caused by either oveloded or under loaded servers and

virtual machines. Resources for software applications can now be dynamically altered as needed thanks

to the growth of cloud computing. Since better resource consumption can lead to increased scalability as

well as significant cost and energy savings, effective resource management is crucial in cloud computing.

The flexibility of cloud resources allows clients to dynamically increase and decrease their resource

demands over time. However, predefined virtual machine sizes and variable resource requirements result

in underutilization of resources, load imbalances, and high power consumption. The goal of this research

is to develop a hybrid technique by combining Grey Wolf with algorithms. The hybridization processes

take place in the Grey Wolf portion, when the Cat Swarm initialization process takes the place of the

startup phase. The virtual machine (VM) section's data selection is enhanced by this substitution. The

Grey Wolf and Cat Swarm algorithms are two examples of optimization algorithms. The evaluation

criteria that are used are makespan, throughput, degree of imbalance, and turnaround time with degree

of imbalance. The recommended approach outperforms alternative algorithms in each of these metrics.

The proposed hybrid strategy resulted in 0.3% increase overall performance. Potential directions for

future research include testing the proposed approach in larger and more complex data distribution in

cloud data centers.

Povzetek: Predstavljen je izvirni hibridni algoritem HGWCA, ki združuje dva algoritma: Grey Wolf

Optimizer in Cat Swarm Optimization za učinkovitejše razporejanje nalog in zmanjšanje porabe časa v

oblačnih podatkovnih centrih.

1 Introduction
The term "cloud computing" refers to the provision of

pay-as-you-go on-demand services via the internet.

Instead of using a conventional computer system or any

other local devices, it allows you to handle files online.

The cloud is a network of interconnected virtual machines

with distributed, parallel systems that may deliver and

offer computing resources on demand. "Cloud computing"

refers to anything that involves offering hosted services

via the internet. Private, public, hybrid, and community

clouds are the four types of cloud deployment models.

Numerous cloud service providers are accessible, and

each one offers a unique collection of cloud services.

Platform as a Service (PaaS), Infrastructure as a Service

(IaaS), Software as a Service (SaaS), and Storage as a

Service (STaaS), Cloud computing models that provide a

range of services to customers include Security as a

Service (SECaaS), Data as a Service (DaaS), Test

Environment as a Service (TEaaS), and Backend as a

Service (BaaS) [1]. Software as a Service (SaaS) offers

software services online, with the service provider

managing software maintenance and updates. IaaS enables

virtualized access to actual resources, whereas PaaS offers

tools for managing and developing applications. Instead of

buying their own devices, businesses can rent storage

capacity thanks to STaaS. Security services like intrusion

detection and authentication are included in SECaaS.

Regardless of one’s location, DaaS makes it possible to

access data whenever there is a need for it. Through the

internet, TEaaS enables users to access software and

pertinent data. Developers can concentrate on the frontend

and application by using BaaS's pre-built backend services

for mobile applications reasoning [2]. Cloud computing

has a number of benefits. It gives users access to

inexpensive systems, removing the need for powerful

computers and enabling the use of less expensive gadgets.

Because it makes data and apps accessible from any

mailto:fatimah.razak@mmu.edu.my

122 Informatica 49 (2025) 121–136 A. Ullah et al.

location at any time, it provides dependability and ease.

Because they may use cloud computing instead of

spending money on pricey servers, it also lowers the cost

of IT infrastructure for businesses. There are less

maintenance problems and expenses, which means that

less hardware and software maintenance is needed. Users

can always get the most recent version of software without

extra expense or work because to cloud computing's

smooth software upgrades. By utilizing the combined

capabilities of linked PCs and servers, it provides more

processing power [3]-[4]. Cloud storage surpasses the

constraints of local storage by offering nearly infinite

capacity. Usage of these resources by making certain that

workloads are distributed fairly across the servers or

virtual machines that are available. Better performance

and resource efficiency in the cloud are ensured by load

balancing, which helps avoid overloading certain servers

by dynamically allocating and reallocating computing

resources based on demand. In a cloud context, load

balancing is the essential technology to guarantee a fair

task distribution and effective resource use. One useful

strategy for cloud data centers to save energy is to

consolidate virtual machines (VMs). By combining virtual

machines (VMs) into fewer active physical machines

(PMs), the VM consolidation technique enables the PMs

that do not have any VMs to go into a state of dormancy.

Because a PM uses a lot of energy when it is sleeping,

Utilizing VM consolidation techniques can assist cloud

data centers consume less energy, as it is lower than that

of a PM in its active mode [5]. To reduce waiting time, the

virtual machine (VM) should react quickly when a tasks is

sent to the cloud to be processed. However, tasks should

be distributed among all virtual machines (VMs) in

parallel to ensure system balance and efficient functioning

making use of the available resources. This necessitates

task planning that is assigned and distributed among the

available resources. When several tasks are assigned to a

single virtual machine (VM), the assigned activities will

execute simultaneously across numerous VMs to

complete the tasks. As a result, the task requirements

ensure that not every tasks is loaded onto a single

computer. The system is unbalanced, or the VM will

restrict access to other VMs, rendering them unreachable

[6]. Other factors, such as makespan, cost, and resource

use, must be considered while scheduling in order to avoid

this. The main goal of allocating among a system's load-

balancing responsibilities is to maximize workload

distribution among available resources and minimize

system-processing timing. Several scholars have

proposed methods for load balancing in both uniform and

heterogeneous environments. In order to do this, the

suggested algorithm in this study split the tasks evenly

between VM and PM [7]. The structure of the paper is as

follows: Section 2 presents the latest advancements in

tasks distribution for hybrid systems for cloud systems.

Section 3 describes the suggested model, and the

algorithm created to address the issues and illustrate the

design of our solutions and allocate resources. Section 4

describes the procedures, tests, and results and these

conclusions are present in Section 5.

2 Related work
In this study, we examine the relevant literature on

energy management, load balancing, and appropriate

cloud data center use. In order to evaluate Quality of

Service (QoS) metrics, a multi-objective task-scheduling

algorithm that combines Cat Swarm Optimization (CSO)

with machine learning classifiers such as Support Vector

Machine (SVM) has been proposed. However, the

algorithm falls short in terms of classification and

consideration of other important parameters. Concepts

like workload prediction and auto-scaling require further

investigation [8]. A dynamic task scheduling system for

tasks and cloudlets is suggested by the author [9]. The

approach seeks to increase acceptance rate, scalability,

and minimize makespan. However, it is expensive and

complicated. Future studies will concentrate on load

balancing strategies that respect privacy. As stated in [10],

discuss the scheduling of cloud computing applications,

with an emphasis on response speed and makespan.

Enhancing these metrics and investigating the

effectiveness of the MOTSGWO algorithm in an open

stack setting are their goals. The Sand Cat Swarm

Optimization (SCSO) algorithm for global optimization

problems is introduced in [11]. Although the technique

can be expensive, it works effectively in a variety of

engineering design challenges. Additionally, it may find

use in bioinformatics, machine learning, smart farming,

logistics, wireless sensor networks, and the Internet of

Things. For feature selection in classification tasks, a

binary multi-objective grey wolf optimizer is proposed in

[12]. With a lower computational cost, the algorithm

performs better than current methods in terms of features

reduction and classification error rate. It works well with

small datasets introduces a clustering technique based on

RCSO that makes use of SVM and MLP networks. The

RCSO algorithm performs better than current algorithms

and may be applied in future tissue cell quantification and

legal proceedings. An approach for the Urban Transit

Routing Problem (UTRP) based on Cat Swarm

Optimization (CSO) is presented in [13]. It is economical

and successfully resolves the UTRP. However, the values

of the parameters affect the algorithm's capacity to

optimize. A Cat Swarm Optimization (CSO) algorithm

using a subgroup information interaction approach is

proposed by the author in [14]. It exhibits a faster rate of

convergence and the capacity to search globally. It will be

compared to other swarm intelligence algorithms in future

studies. A Sand Cat Swarm Optimization (SCSO)

algorithm based on elite collaboration and [15] present

stochastic variation. Although it increases time

complexity, it effectively addresses engineering and

optimization difficulties. For more applications,

cooperation with other researchers is desired. As

suggested by [16], a MATLAB task scheduling system

that reduces makespan and energy usage. Energy and

execution costs, however, are not taken into account.

Evaluation of the suggested algorithm in a small-scale

cluster is the goal of future research. The enhanced Multi-

Objective Grey Wolf Optimizer (IMOGWO) algorithm

for edge computing work scheduling is presented in paper

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 123

[17]. In terms of convergence, diversity, and coverage,

IMOGWO performs better than current algorithms. The

algorithm can be used for multi-objective test issues;

however, it is expensive suggests using the Hybrid Particle

Swarm Grey Wolf (HPSGW) algorithm to optimize

automated CNN in [18]. The technique lowers

computational costs while increasing performance

accuracy on benchmark datasets. Future studies will

concentrate on enhancing the optimization procedure by

adding more hyperactive parameters. A hybrid form of

MCA and GWO for scheduling the power of smart home

appliances is presented by [19]. The Power scheduling

issues are successfully addressed by the GWO-MCA

hybrid. The goal of future study is to enhance the selection

process and method's performance. For multi-objective

optimization problems, [20] suggests a method based on

the Grey Wolf Optimizer (GWO) with the memeplex

structure of the Shuffled Frog leaping method (SFLA).

The method can be used to solve a variety of problems and

produces competitive results. In order to optimize

spectrum sensing in cognitive radio networks, [21]

presents the Multi-Objective Modified Grey Wolf

Optimization (MOMGWO) algorithm. In spectrum

sensing, MOMGWO has excellent coverage,

convergence, and performance. The Multi-Objective Grey

Wolf Optimizer (MOGWO) method is suggested by [22]

for the IEEE-30 bus test system. For multi-objective

problems, MOGWO shows good Pareto-optimal front

setup and quick convergence. [23] Introduce the

Fractional Grey Wolf Optimizer (FGMTS). For cloud

Table 1: Related work summary

Computing multi-objective tasks scheduling. In addition

to achieving resource allocation, the FGMTS method

enhances cloud profitability and performance. However,

because of the search space, there can be restrictions. The

multi-objective Grey Wolf Optimizer (MOGWO) for

near-optimal tasks scheduling in cloud computing is

presented in paper [24]. The MOGWO performs better

than alternative approaches and can be improved with

parallel programming techniques. The summary of related

work is shown in Table 1.

The main goal of dynamic task scheduling systems is

to decrease makespan while improving system scalability;

however, their algorithms are frequently costly, intricate,

and made to properly protect sensitive activities. Although

it is still time-consuming and expensive to install, the

Multi-Objective Grey Wolf Optimizer (MOGWO) is

known for reaching the fastest convergence rates and

providing the best Pareto-optimal front settings, with

advantages including fuel cost savings. These capabilities

are extended for multi-objective task scheduling by the

Ref Methods Parameter Results Limitations Future work

[25] Dynamic task

scheduling

Makespan Well as improving

scalability

 Algorithms are

expensive and

complicated

Effectively safeguard

sensitive task

[26] Multi objective grey

wolf optimizer

(MOGWO)

Convergence Fastest convergence and

the best Pareto-optimal

front setting. Reduce fuel
cost

Laborious and costly It is possible to obtain a

Pareto-optimal front for

multi-objective

[27] FGMTS: Fractional

grey wolf optimizer

Multi-Objective task

scheduling

Performance and

increasing profitability.

Result in faulty

resource allocation

for subtask

 Could be used for other

datasets

[28] Task scheduling
mechanism

Makespan and energy
consumption

It greatly minimizes
energy consumption and

makespan

Energy and execution
cost are not

considered

 Assess the proposed
algorithm while taking into

account a small-scale cluster.

[29] IMOGWO
algorithm

Task Scheduling Convergence, diversity
and coverage.

Costly Applied to multi-objective
test problem

[30] An algorithm based

on grey wolf

optimizer (GWO)
with memeplex

structure of the

shuffled frog leaping
algorithm (SFLA)

Multi objective

optimization

Multi-objective problems

and achieve competitive

or superior results when
compared to other

comparison algorithms.

Complicated It can also be tested on multi-

objective types of real-

world problems such as image
processing, vehicle routing

and clustering.

[31] Cat Swarm

Optimization
(CSO)-based

algorithm

Optimization,

scheduling workflow

CSO based algorithms are

an excellent choice for
effectively solving the

UTRP while also being

cost-effective.

The determination of

parameter values,
which may be lacking

in effectiveness.

 The algorithm aims to

optimize the cost of the
service provider while also

being applicable

[32] A binary multi-

objective grey wolf
optimizer for feature

selection in

classification

Features number,

classification accuracy

Classification error rate

though benefiting from a
lower computational cost.

Effective for small

size datasets

 Minimizing the number of

features and minimizing the
error rate simultaneously

[33] Multi objective grey

wolf optimizer

(MOGWO)

Throughput, makespan

and resource

utilization in cloud

computing.

The method outperformed

all other methods tested

 Complicated Memory usage during peak

loads, to improve overall

efficiency.

124 Informatica 49 (2025) 121–136 A. Ullah et al.

FGMTS (Fractional Grey Wolf Optimizer), which

enhances system performance and profitability. However,

it can occasionally lead to incorrect subtask resource

allocation, which may be applicable to other datasets.

However, they frequently ignore the combined effect of

energy and execution costs, traditional task scheduling

techniques focus on decreasing makespan and energy

consumption, restricting their assessment to small-scale

clusters. By striking a balance between convergence,

diversity, and coverage, the IMOGWO method

significantly improves task scheduling. However, because

of its high computational costs, it is more appropriate for

controlled multi-objective test problems. Another version

combines the Grey Wolf Optimizer with the Shuffled Frog

Leaping Algorithm's (SFLA) structure. It produces

competitive results in multi-objective optimization, yet it

is still sophisticated and appropriate for applications such

as clustering, image processing, and vehicle routing.

Targets for feature selection using a binary multi-objective

GWO although it works best with small datasets, it can

achieve low error rates and lower computing costs by

decreasing the number of features and increasing

classification accuracy. Furthermore, throughput,

makespan, and resource utilization are improved by a

multi-objective GWO version for cloud computing

environments, which continuously outperforms

alternative approaches but struggles with complexity and

excessive memory use during periods of high load.

Overall, these techniques tackle different facets of multi-

objective scheduling and optimization problems in cloud

and workflow contexts; each has particular advantages

and disadvantages.

2.1 Problems statement
The Grey Wolf exploitation strengths are enhanced by

the Cat Algorithm's exploration skills, resulting in a

synergistic optimization framework. This hybrid approach

seeks to allocate workloads across available resources in a

dynamic manner while tackling several goals, including

throughput, energy efficiency, and response speed. In a

fast changing technological world, the incorporation of

these bio-inspired algorithms into load balancing offers a

fresh way to get around the drawbacks of current methods,

improving the scalability and performance of cloud data

centers. The Cat Algorithm's exploration abilities

complement the Grey Wolf exploitation capabilities,

creating a synergistic optimization framework. This

hybrid strategy aims to dynamically distribute workloads

across available resources while addressing a number of

objectives, such as response speed, energy efficiency, and

throughput. The integration of these bio-inspired

algorithms into load balancing provides a novel approach

to overcome the limitations of existing techniques,

enhancing the scalability and performance of cloud data

centers in a rapidly evolving technological environment.

3 Proposed algorithm
A task manager, scheduler, CPU, RAM, storage

resources, virtualization layer, physical resources, and a

data center are among the parts of the system shown in

Figure 1.

Figure 1: Proposed approach model

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 125

The grey wolf optimization algorithm (GWO) is a new

type of metaheuristic algorithm. In the field of

engineering, it is most commonly used to tackle

optimization problems. It is inspired by the hunting and

social behaviors of grey wolves. It imitates the natural

Leadership structure and hunting technique of grey

wolves. Grey wolves do most of their living in packs. In a

pack of grey wolves, the leadership hierarchy is indicated

by the four categories of alpha, beta, delta, and omega.

Each category denotes a different degree of authority and

leadership within the pack. The dominant member of the

pack, the alpha wolf, acts as a leader to guide the pack

through the hunting process. Beta wolves [34] occupy the

second level of this hierarchy. They are known as

subordinates and assist. The alpha when creating policies

during the hunting phase. After the alpha and beta wolves,

the delta wolf represents the third level of decision-

making authority. The last rung in this ladder is omega

wolf. That is what scapegoat wolves are. Grey wolves'

decision-making skills decline in the absence of the

dominating alpha wolf. The gray wolf Optimizer is mostly

inspired by this social skill [35]. Grey wolves hunt in three

repeating stages utilizing a methodical approach. These

phases include searching, encircling, and assaulting. This

first phase is called tracking or searching. It is also known

as the exploration stage. In a global search arena, the grey

wolves look for prey. The mathematical the model

describes how to determine the distance between the grey

wolf and its prey [36]. It is computed using Equation 1.

 𝐷𝑖𝑠𝑡 = 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓 × 𝐿𝑃 (𝑡) − 𝐿𝐺𝑊 (𝑡)) (1)

Here 𝑐𝑜𝑒𝑓𝑓 provides the coefficient vector; 𝐿𝐺𝑊 (𝑡)

shows where the grey wolf was in the specified time

interval t; 𝐿𝑃 shows the location of prey at a specified time

interval t.

The value of 𝑐𝑜𝑒𝑓𝑓 is calculated using Equation 2.

 𝐶𝑜𝑒𝑓𝑓 = 2 × 𝑅𝑎𝑛(0, 1) (2)

Due to the potential for random task generation and the

consequent random assignment of tasks to the seeking and

tracing modes, n has been randomly set as the number of

dimensions. At each iteration, solutions are computed for

cats, and their fitness is evaluated relative to other cats,

until the optimal solution is found. While in the "seeking"

mode, all cats will enter a resting state, however specific

behaviors are required to find a cat. The new velocity in

the tracing mode can be computed using the cats'

observations and the known initial velocity [37]. You may

see it below. Due to the potential for random task

generation and the consequent random assignment of tasks

to the seeking and tracing modes, n has been randomly set

as the number of dimensions. At each iteration, solutions

are computed for cats, and their fitness is evaluated

relative to other cats, until the optimal solution is found.

While in the "seeking" mode, all cats will enter a resting

state, however specific behaviors are required to find a cat.

The new velocity in the tracing mode can be computed

using the cats' observations and the known initial velocity,

you may see it below [38].

 𝑉𝑒𝑙𝑖
𝑑(𝑡 + 1) = 𝑝 ∗ 𝑉𝑒𝑙𝑖

𝑑(𝑡) + 𝑐 ∗ 𝑟 ∗ (𝑥𝑑
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑑) (3)

In Equation (3), c is a constant, r is a random value

between 0 and 1, and 𝑉𝑒𝑙𝑖
𝑑(𝑡) is the velocity of the ith at

during the t-th iteration. The cat is on its top place globally

at𝑥𝑑
𝑏𝑒𝑠𝑡. Cat location at ith iteration is represented by𝑥𝑖

𝑑.

By using the Equation (4), the location of the cat may

 be modified as follows.

 𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑 + 𝑉𝑒𝑙𝑖
𝑑(𝑡 + 1) (4)

Following fitness calculations, solutions must be updated

with non-dominated cats. These calculations must be

carried out until cats achieve objectives with an optimal

value. The termination criterion is used to end the

algorithm. For the algorithm to work well, a suitable

termination condition needs to be selected. The number of

iterations, the degree of improvement, and the running

time are typical CSO termination criteria [39]. During the

third phase, grey wolves adjust their locations based on the

movements of their prey, as shown in equations (1)

through (6). In the grey wolf, social structure, alpha, beta,

and delta wolves hold the highest positions and are

thought to be the finest hunting alternatives. After the prey

has been surrounded at a specific distance, it is believed

that the alpha, beta, and delta wolves have a better idea of

its whereabouts. Consequently, the alpha wolf initiates the

attack. The prey's position is subsequently updated using

the alpha, beta, and delta wolves' positions, as

mathematically demonstrated in equation (5). In contrast,

the omega wolves follow the guidelines in equation [40]

and move around the prey intermittently.

𝐷𝑖𝑠𝑡𝑎𝑙𝑝ℎ𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓1 × 𝐿𝑎𝑙𝑝ℎ𝑎 × (𝑡) − 𝐿(𝑡))

 𝐷𝑖𝑠𝑡𝑏𝑒𝑡𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓2 × 𝐿𝑏𝑒𝑡𝑎 × (𝑡) − 𝐿(𝑡))

𝐷𝑖𝑠𝑡𝑑𝑒𝑙𝑡𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓3 × 𝐿𝑑𝑒𝑙𝑡𝑎 × (𝑡) − 𝐿(𝑡))

𝐿1 = 𝐿𝑎𝑙𝑝ℎ𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓1 × 𝐷𝑖𝑠𝑡𝑎𝑙𝑝ℎ𝑎

 𝐿2 = 𝐿𝑏𝑒𝑡𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓2 × 𝐷𝑖𝑠𝑡𝑏𝑒𝑡𝑎

 𝐿3 = 𝐿𝑑𝑒𝑙𝑡𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓3 × 𝐷𝑖𝑠𝑡𝑑𝑒𝑙𝑡𝑎

 𝐿 =
(𝐿1 +𝐿2 + 𝐿3)

3
 (5)

A set of random solutions are used as grey wolves by the

grey wolf optimizer. Several objective functions are used

to evaluate a set of randomly selected responses. The

quality of each solution is represented by the values of a

fitness function composed of many functions. Alpha, beta,

and delta wolves stand for the highest three quality

solutions. The grey wolf optimizer continuously adjusts

the wolf population's location throughout each cycle. If a

response improves during an iteration to the extent where

it outperforms alpha, beta, and delta wolves, the

corresponding solution is replaced with the new one.

When a set of stopping conditions is met, the Grey Wolf

Optimizer stops iterating the solutions [41]. While the

scheduler distributes resources like CPU, memory, and

126 Informatica 49 (2025) 121–136 A. Ullah et al.

storage, the task manager organizes tasks. To manage

virtual machine or networks, the system has a

virtualization layer and virtualized resources. The

infrastructure is kept in the data center, and the physical

resources stand in for the underlying hardware.

Additionally, Figure 1 mentions the HGWCA algorithm,

which is suggested to be involved in resource manageme

nt. Tasks are initially considered TK= {T1+T2+T3…

Tn}. The cloud console must be used to submit these tasks

to the task manager first. The task management module in

this configuration needs to assess each task's relative

priority [42]. Task, and then assess each virtual machine's

relative significance based on how much power it uses in

a certain amount of time. It is being tried because there are

many different types of tasks being brought into the cloud

platform, and it is crucial to map them to the appropriate

virtual resources in the cloud. The task scheduler is in

charge of carrying out this task. A resource manager

module, which is connected to a task scheduler, keeps tra

ck of resource requests, allocations, and availability on th

e respective physical hosts in the datacenters [43]. Assum

ed in this method are n virtual machines (VMs) with nam

es such as these virtual machines must live in physical

hosts with names like Vn={V1,V2,V3,……Vn }.

 𝐻𝑖 = {𝐻1, 𝐻2, 𝐻3, … … 𝐻𝑖}

In addition, these hosts are housed in datacenters (called

centers) with names like

𝑑𝑗 = {𝑑1, 𝑑2, 𝑑3, … … 𝑑𝑗}. (6)

The architecture in question assigns tasks to virtual

machines (VMs) by determining the Task Priority and VM

Priority, respectively, while considering the datacenters’

relative power costs [44]. To allocate each task to the best

virtual machine (VM), a priority calculation must be

performed because every task has different processing

needs. The cloud's virtual machine (VM) priority

computations must take regional variations in power

prices into consideration because it can be deployed

anywhere [45]. A technique that first identifies the most

critical task and then allocates them to virtual machines

that are most suited to completing those tasks with the

least amount of energy is used in cloud data centers to

reduce overall power costs and energy usage. Tasks,

virtual machines, real hosts, and datacenters can all be

used to define the problem. The scheduler's purpose is to

distribute workloads to virtual machines in a way that

minimizes costs and power consumption [46]. The given

equation 7 present the hybrid section of the proposed

algorithm.

𝑉𝑖(0) = { 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝛿 × 𝑅, 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) +
𝑟 × (𝑋 𝑏𝑒𝑠𝑡 − 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) (7)

 It made a number of assumptions regarding

datacenters𝑑𝑗, physical hosts𝐻𝑖 , virtual machines 𝑉𝑛 and

tasks 𝑇𝐾 in order to schedule tasks onto virtual machines.

It must ascertain the relative significance of virtual

machines and tasks for this configuration. These settings

are examined and given a single priority when tasks are

submitted to the task manager. The scheduler assigns tasks

to the VMs, and in order to determine priorities, it is

necessary to ascertain the VMs' present load. The VMs

perform the tasks that the scheduler allocates, requiring

the determination of their current load to calculate

priorities. The equation below demonstrates the

calculation of the load on all VMs [47].

𝐿𝑣 = ∑ 𝐿𝑛
𝑞
𝑛=1 (8)

The current load on each virtual machine (VM) is

represented by the variable 𝐿𝑛 since all of the virtual

machines are meant to be housed within physical hosts;

the capacity of the hosts must be ascertained after the load

on each VM has been computed.

𝐿ℎ = 𝐿𝑣
∑ 𝐻𝑘

𝑚
𝑘=1

 (9)

The physical host, which is composed of virtual

machines, is under 𝐿ℎ load. Because the VMs must

transfer to the next Virtual Machine on the same physical

host either by starting a new request or to the subsequent

VM that is already running if there are more tasks than

they can handle, a load-balancing module is necessary in

the cloud-computing paradigm. A load balancer can

accomplish this, but in order to do so, a specific threshold

value must be set to identify if the system is balanced or

not. The system's threshold value is identified as follows

[48].

𝑇𝐻𝑘 = 𝐿ℎ ∗ 𝐻𝐾 (10)

Prior to determining whether the system is overloaded,

under loaded, or balanced, the threshold value is

established. The load balance is calculated to arrive at this

conclusion. In the event that a system gets overwhelmed.

𝑉 > 𝑇𝐻𝑘 − ∑ 𝐿𝑉
𝑛
𝑖=1

If the system is under loaded, then

𝑉 < 𝑇𝐻𝑘 − ∑ 𝐿𝑉
𝑛
𝑖=1

If the system is balanced,

𝑉 = 𝑇𝐻𝑘 − ∑ 𝐿𝑉
𝑛
𝑖=1 (11)

To plan work onto appropriate VMs, it is necessary to

see the processing capabilities of each VM. The

calculation is as follows [49].

𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉 = 𝑝𝑟𝑛𝑜 ∗ 𝑝𝑟𝑚𝑖𝑝𝑠 (12)

The above equation is used to calculate each VM's

processing capacity, and the results are listed as follows.

𝑇𝑜𝑡𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉 = ∑ 𝑃𝑟𝑜𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑉
𝑛
𝑖=1 (13)

The requirements for allocating task to virtual

machines have been determined and computed. The

priorities for both the tasks and virtual machines have now

been determined. The aforementioned formula has been

used to calculate the work's size, and the relationship

between a task's size and a virtual machine's processing

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 127

power is what defines its priority. The following is the

formula [50].

 𝑇𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑇𝑘

𝑠𝑖𝑧𝑒

𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉
 (14)

Two stages of verification are used to schedule the

tasks in this work. In order to accurately map tasks onto

the appropriate virtual machines (VMs), the first step

entails determining task priorities. To make the mapping

process easier, VM priorities are then established

according to power unit cost. The following algorithm

based on power unit cost determines VM priority [51].

 𝑉𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑒𝑙𝑒𝑐 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ℎ𝑖𝑔ℎ

𝑒𝑙𝑒𝑐 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑗
𝑑 (15)

The metrics this tasks address must be identified after

the priorities have been calculated. Any cloud computing

task-scheduling system must consider makespan because

it is a crucial metric to manage in this paradigm.

Additionally, lowering response time has a significant

positive impact on cloud providers and users, which in

turn has an indirect impact on other metrics like energy

consumption and total power cost. Here is the formula

[52].

 𝑚𝑘 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛 + 𝑒𝑘 (16)

4 Experiments and results
An analysis of the various experimental outcomes

obtained by applying the recommended methodology is

presented in this section. A wide range of datasets and

parameters has been used in numerous experiments and

testing. A thorough explanation of the study's

experimental setup provides crucial context for

understanding the methodology. The general process

employed in the tests is described through a number of

precisely specified points. This section provides

comprehensive documentation of the experimental details

associated with the proposed model. The primary

objective of this section is to outline the exact

configuration that was utilized to conduct the experiment

as well as the systematic procedures that were followed in

order to execute the recommended strategy within the

experimental inquiry. As a result, the experimental setup

and specifics will be covered in detail in the parts that

follow.

4.1 Dataset
 The availability of appropriate datasets, which were

taken from the AWS (DREAM) database for this study, is

a crucial component for the scheme's effective

implementation. The Proposed model performance

evaluation included a range of virtual machines (VMs)

and workloads (between 200 and 2000) spread across

various data centers in the cloud-computing environment.

4.2 Simulation parameters
A modified CloudSim 3.0 platform was used to

construct the HGWCA algorithm, and test datasets with

file sizes between 200 and 400 kilobytes and compliance

with the standard workload format (SWF) were used. The

simulation parameters are shown in Table 2.

Table 2: Simulation parameter

Type Parameter Value Type Parameter Value

Region From 1 to 4 5 Task/Data No. of task 100/1600

Data

center

No. of data

center

5 Length of task 100/200/400

byte

No. of hosts 100/1000 No. of processor per

requirement

250 KB

Type of manager Time and

space

Type of manager Time and space

Bandwidth 1000 Memory Total memory 204,800 MB

Virtual

Machine

Total no. of

VM

30/20/20 No. of processor 4 per VM

No. of processor

per VM

4 Total processor 120

VM memory 512 Storage memory 100000 Mb

Bandwidth in bit 1000 Viable memory 10,000

VM image size 1000 Cloudlets Total no. of task 100/2000

A variety of parameters and their corresponding values

pertaining to various system features are included in Table

2. It contains details about tasks, data centers, regions,

virtual machine specs, algorithms, and dataset properties.

The number of data centers, task duration, manager type,

bandwidth, virtual machine configurations, CPU specs,

and dataset specifics are a few examples. A thorough

128 Informatica 49 (2025) 121–136 A. Ullah et al.

summary of these factors is given in Table 2, which also

offers information on the setup and features of the system.

4.3 Performance metrics
With an emphasis on important metrics of load

balancing effectiveness such makespan, throughput,

turnaround time, and degree of imbalance, the proposed

model performance was evaluated against that of other

well-known algorithms, including ABC, MBat, HHO-

ACO, and QMPSO. The following assessment measures

are employed to examine the performance. These

measures are described are as: The time required to

process every tasks in the designated order is known as the

make span. The study's primary goal is to reduce the

makespan time. Makespan can be computed using the

following formula:

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = (
𝐺𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
) ∗ 100 (17)

Throughput is the quantity of data that can be sent and

received in a given period. Throughput is the average ratio

at which messages are successfully delivered to their

intended location. The provided formula [53] can be used

to compute it.

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑜.𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 (18)

The rate at which tasks are finished in a specified

amount of time is referred to as throughput. It shows how

much work is completed or processed in a certain amount

of time. "Number of Tasks," the numerator of the

equation, is the total number of tasks finished in the

allotted time. It shows how much work or tasks have been

completed successfully. The degree of imbalance

quantifies the haphazard distribution of cloud workloads

among virtual machines based on their respective

capacities. It is usually computed using virtual machine

task execution times. The provided formula [54] can be

used to calculate it.

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝐷𝑒𝑔𝑟𝑒𝑒 =
Max _𝐶𝑇𝑖𝑚𝑒𝑖− 𝑀𝑖𝑛 _𝐶𝑇𝑖𝑚𝑒𝑖

𝐴𝑣𝑔 _𝐶𝑇𝑖𝑚𝑒𝑖
 (19)

Here, Max _𝐶𝑇𝑖𝑚𝑒𝑖 denotes the maximum

completion time of tasks on all virtual machines.

𝑀𝑖𝑛 _𝐶𝑇𝑖𝑚𝑒𝑖 Denotes the minimum completion time of

tasks on all virtual machines.𝐴𝑣𝑔 _𝐶𝑇𝑖𝑚𝑒𝑖 Denotes the

minimum completion time of tasks on all virtual

machines. Imbalance Degree is a measure of how well

load balancing is working in the cloud. Lower values show

that Workload on the cloud is properly balanced. While

higher values demonstrate inefficient, load balancing [55].

5 Results and discussions
With an emphasis on important metrics of load

balancing effectiveness such makespan, throughput,

turnaround time, and degree of imbalance, the proposed

model performance was evaluated against that of other

well-known algorithms, including PSO, ABC, PSO-

CALBA, M-Bat, HHO-ACO, Proposed model. In

comparison to other algorithms, the suggested Proposed

modeled menstruated an impressive 0.98% decrease in

makespan and a higher accuracy rate of .18%, according

to the comparative analysis. These results validate the

feasibility and efficacy of the proposed model in resolving

load balancing issues in cloud computing settings and the

result details are given below table 3 present the

throughput.

Table 3: Complete no. of task of different algorithm based on No. of Task
Given No of Task PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed model

200 160 165 170 175 186 193

400 355 365 372 378 385 390

600 560 570 575 580 588 592

800 750 770 775 780 786 791

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 129

Figure 2: Throughput

Figure 3: Throughput

Table 3 and Figure 2 show that the "Proposed model"

algorithm performs the best based on the provided table.

In a variety of task counts, it regularly receives the highest

marks. With 800 tasks, it has a throughput of 791. In

contrast, the "PSO" algorithm performs the poorest in the

table provided. In a variety of task counts, it regularly

receives the lowest scores. With 800 tasks, it has a

throughput of 750.Thus, of the stated algorithms, the

Proposed model method performs the best based on the

data presented, while the PSO algorithm performs the

poorest. The "Proposed model" method is clearly the best-

performing algorithm, according to the statistics shown in

Figure 3. With a throughput of 1794 when the number of

tasks is 1800, it continuously obtains the highest marks

across a range of task counts. On the other hand, in the

provided table, the "PSO" algorithm performs the worst.

With a throughput of 990 when there are 1800 tasks, it

consistently receives the lowest scores throughout a range

of task counts. Therefore, it can be inferred from the

information given that, among the algorithms indicated,

the proposed model method performs the best, while the

PSO algorithm performs the worst. Figure 4 and Table 4

present the Makespan of the proposed algorithm.

 Figure 4: Makespan

Table 4: Makespan of different algorithm based on no. of virtual machine

No. of VM PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed model

10 48 48 46 46 45

20 100 98 97 97 96

30 198 196 194 194 192

40 398 395 390 390 388

130 Informatica 49 (2025) 121–136 A. Ullah et al.

Figure 5: Comparison no. of VM Vs no task for different

algorithms

The "Proposed model" technique is the best one based on

the data presented in Table 5 and Figure 4, as it

consistently produces the lowest makespan values for

varying numbers of virtual machines. With consistently

greater makespan values than other algorithms, the "PSO"

algorithm is the worst. This suggests that when it comes

to reducing execution time, the "Proposed model"

algorithm outperforms the "PSO" approach.

 Table 6: Makespan based on no. of task (50-180)

Data on the number of completed tasks and the

corresponding makespan (in milliseconds) for various

algorithms are shown in Table 5 and Figure 5 and 6. The

"Proposed model" method consistently obtains the lowest

makespan values for all sets of full tasks, based on the data

provided. As a result, it can be regarded as the optimal

method for reducing execution time.

Table 5: Makespan based on no. of task

Algorith

m Name

Complete

No of Tasks

Makespan

(In Milli

second)

Complete

No of

Tasks

Makespan (In

Milli second)

Complete

No of Tasks

Makespan (In

Milli second)

Complete

No of Tasks

Makespan (In

Milli second)

PSO 200 200 220 220 250 250 280 280

ABC 200 195 220 218 250 250 280 278

PSO-

CALBA

200 194 220 215 250 247 280 275

M-Bat 200 190 220 210 250 245 280 270

HHO-

ACO

200 188 220 207 250 240 280 265

HGWC

A

200 185 220 202 250 230 280 262

Table 5 displays, for a range of parameters, the average

results produced by numerous writers, including the

suggested method. For varying task amounts, the authors'

algorithms—PSO, ABC, PSO-CALBA, M-Bat, HHO,

and the suggested approach—are assessed.

The following are the average results for each algorithm

across various job quantities: M-Bat (169.63), HHO (167),

PSO (177.50), ABC (175.13), PSO-CALBA (172.63), and

the suggested technique (163.25). With lower numbers

signifying better results, these average values show how

well each method performs in relation to the given

parameter.

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 131

Figure 7: Makespan based on no. of task (200-280)

Data on the number of finished tasks and the

accompanying makespan (in milliseconds) for various

algorithms are shown in Figure 7 and Figure 8. Across all

sets of finished tasks, the "Proposed model" algorithm

consistently obtains the lowest makespan values,

demonstrating economical execution time. The "PSO"

method, on the other hand, continuously displays

increasing makespan numbers, suggesting a

comparatively slower execution time. According to this

data, the "PSO" method performs relatively worse than the

"Proposed model" approach in terms of minimizing

execution time. The average turnaround time of several

algorithms for varying amounts of tasks is shown in Figure

6 and Table 6. Across all task sets, the "Proposed model"

algorithm consistently shows the lowest average

turnaround time, suggesting effective completion. The

"PSO" method, on the other hand, typically shows greater

average turnaround time values, suggesting comparatively

slower task completion. According to these findings, the

"Proposed model" algorithm does exceptionally well in

reducing average turnaround time, whereas the "PSO"

method typically performs worse in this area.

Figure 8: Turnaround time of tasks

Data on cloudlet turnaround times for different

algorithms and task quantities are included in Table 6 and

Figure 8. The "Proposed model" algorithm's efficiency in

finishing jobs is demonstrated by the fact that it

consistently displays the quickest turnaround time values

for all task sets. The "M-Bat" algorithm performs

competitively in contrast, whereas the "PSO" and "HHO-

ACO" algorithms typically have greater turnaround times.

The "Proposed model" algorithm is the most effective at

reducing cloudlet turnover time overall.

Table 6: Throughput time of tasks
No. of Task 200 400 800 1200 1600

PSO 3.5 5.8 6.5 5.1 6.6

ABC 2.2 2.4 2.1 2.6 2.9

PSO-CALBA 3.1 4.2 6.7 6.8 8.6

M-Bat 2.9 2.8 2.8 2.2 3.1

HHO-ACO 0.67 0.45 0.58 0.99 0.23

Proposed model 3.4 5.9 6.6 8.1 7.2

132 Informatica 49 (2025) 121–136 A. Ullah et al.

Figure 9: Throughput time of tasks

Table 7 and Figure 9 analysis show that the algorithms'

throughput times vary depending on the work quantity.

Across all task sets, the "HHO-ACO" algorithm

consistently shows the lowest throughput time values,

demonstrating its effectiveness in swiftly processing

cloudlets. On the other hand, when compared to other

algorithms, the "PSO-CALBA" algorithm typically

displays higher throughput times, indicating slower

processing. Across a range of task amounts, the "ABC"

and "M-Bat" algorithms exhibit competitive performance

with comparatively shorter throughput times. Although

the "Proposed model" algorithm's throughput time

numbers vary based on the number of tasks, it works

reasonably well.

Table 7: Degree of imbalance of cloudlets
No. of

Task

P

S

O

AB

C

PSO-

CALB

A

M-

Bat

HHO-

ACO

Proposed

model

200 2.

8

2.6 2.9 2.4 0.66 0.87

400 3.
4

2.9 2.3 2.5 1.2 0.8

800 2.

7

1.2 1.5 2.2 0.9 0.5

1200 3 1.8 0.7 1.3 0.31 0.39

1600 3.

1

2.2 2.5 0.8 0.21 0.19

 Figure 10: Degree of imbalance

It seems that the "Proposed model" algorithm does

good tasks at attaining a decreased degree of imbalance

across different task quantities, based on the numbers in

Table 7 and Figure 10. Table 2 to 7 and Figure 4 to10

demonstrate that, in comparison to the other methods on

the list, the suggested approach consistently produces the

lowest makespan value. The makespan is the amount of

time needed to do every task in a scheduling problem. The

algorithm is thought to be more efficient the lower the

makespan. The superiority of the suggested algorithm

holds true for tasks varying in size from 100 to 2000. This

illustrates how resilient and dependable it is when

managing different workload scenarios. It is regarded as

the ideal option because it may consistently produce the

lowest makespan value, demonstrating the best possible

resource utilization and tasks scheduling.

5 Conclusions and future work
In conclusion, using the Grey Wolf Optimizer (GWO) and

Cat Swarm Optimization (CSO) algorithms to boost

makespan and throughput in cloud data centers has

produced promising results. It has been shown that using

these ingenious methods can optimize resource allocation

and task scheduling, resulting in a reduction of makespan

and an increase in throughput. The study's findings show

how effectively GWO and CSO investigate and make use

of the solution space while accounting for several cloud-

specific characteristics.

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 133

Through clever resource allocation and job scheduling,

these algorithms may enhance cloud data center

performance, leading to higher customer satisfaction and

productivity. Further research in this area is necessary to

improve optimization techniques and sustain continuous

cloud advancement data center operations. Restrictions In

order to improve makespan in cloud data centers, this

study introduces the HGWCA approach, which combines

Grey Wolf Optimization with Cat Swarm Optimization.

However, it faces two significant challenges. First off,

there is not enough testing to determine how well the

algorithm performs in actual cloud data centers. Second,

due of its unclear scalability in larger data centers with

numerous virtual machines, its effectiveness in managing

extensive cloud settings is questioned. To confirm the

algorithm's scalability and feasibility, these issues must be

fixed. Future studies on improving makespan and

throughput in cloud data centers can focus on several key

areas by utilizing GWO and CSO algorithms. Among

these are the following: enhancing algorithmic techniques

through machine learning and hybridization; enabling

dynamic resolution of scalability concerns in large data

centers; exploring multi-objective optimization to

consider additional performance objectives; managing

real-time optimization to deal with evolving

environments; and conducting practical implementation

and validation studies to assess practical appropriateness.

By taking these routes, scholars can contribute to the

development of more reliable and effective cloud

computing infrastructures that satisfy the evolving needs

of cloud data center providers and users.

References

[1] Li, P., Li, J., Huang, Z., Li, T., Gao, C. Z., Yiu, S.

M., & Chen, K. (2017). Multi-key privacy-

preserving deep learning in cloud computing. Future

Generation Computer Systems, 74, 76-85.

https://doi.org/10.1016/j.future.2017.02.006

[2] Jivanadham, L. B., Islam, A. M., Katayama, Y.,

Komaki, S., & Baharun, S. (2013, May). Cloud

Cognitive Authenticator (CCA): A public cloud

computing authentication mechanism. In 2013

International Conference on Informatics, Electronics

and Vision (ICIEV) (pp. 1-6). IEEE.

https://doi.org/10.1109/iciev.2013.6572626

[3] Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T.,

& Liatsis, P. (2019). A task scheduling algorithm

with improved makespan based on prediction of

tasks computation time algorithm for cloud

computing. IEEE Access, 7, 160916-160926.

https://doi.org/10.1109/access.2019.2948704

[4] Markovic, D. S., Zivkovic, D., Branovic, I., Popovic,

R., & Cvetkovic, D. (2013). Smart power grid and

cloud computing. Renewable and Sustainable

Energy Reviews, 24, 566-

577. https://doi.org/10.1016/j.rser.2013.03.068

[5] Abid, A., Manzoor, M. F., Farooq, M. S., Farooq, U.,

& Hussain, M. (2020). Challenges and Issues of

Resource Allocation Techniques in Cloud

Computing. KSII Transactions on Internet &

Information Systems, 14(7).

https://doi.org/10.3837/tiis.2020.07.005

[6] Ujjwal, K. C., Garg, S., Hilton, J., Aryal, J., &

Forbes-Smith, N. (2019). Cloud Computing in

natural hazard modeling systems: Current research

trends and future directions. International Journal of

Disaster Risk Reduction, 38, 101188.

https://doi.org/10.1088/1475-7516/2020/07/005

[7] Takahashi, T., Blanc, G., Kadobayashi, Y., Fall, D.,

Hazeyama, H., & Matsuo, S. I. (2012, April).

Enabling secure multitenancy in cloud computing:

Challenges and approaches. In 2012 2nd Baltic

Congress on Future Internet Communications (pp.

72-79). IEEE.

https://doi.org/10.1109/bcfic.2012.6217983

[8] Yang, C., Goodchild, M., Huang, Q., Nebert, D.,

Raskin, R., Xu, Y., ... & Fay, D. (2011). Spatial cloud

computing: how can the geospatial sciences use and

help shape cloud computing? International Journal

of Digital Earth, 4(4), 305-329.

https://doi.org/10.1080/17538947.2011.587547

[9] Abdel-Basset, M., El-Shahat, D., El-Henawy, I., De

Albuquerque, V. H. C., & Mirjalili, S. (2020). A new

fusion of grey wolf optimizer algorithm with a two-

phase mutation for feature selection. Expert Systems

with Applications, 139, 112824.

https://doi.org/10.1016/j.eswa.2019.112824

[10] Zamfirache, I. A., Precup, R. E., Roman, R. C., &

Petriu, E. M. (2022). Policy iteration reinforcement

learning-based control using a grey wolf optimizer

algorithm. Information Sciences, 585, 162-175.

https://doi.org/10.1016/j.ins.2021.11.051

[11] Rodríguez, L., Castillo, O., Soria, J., Melin, P.,

Valdez, F., Gonzalez, C. I., ... & Soto, J. (2017). A

fuzzy hierarchical operator in the grey wolf

optimizer algorithm. Applied Soft Computing, 57,

315-328. Faris, H., Aljarah, I., Al-Betar, M. A., &

Mirjalili, S. (2018). Grey wolf optimizer: a review of

recent variants and applications. Neural computing

and applications, 30, 413-435.

https://doi.org/10.1016/j.asoc.2017.03.048

[12] Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger,

I., Tuba, E., & Tuba, M. (2022). Multi-objective task

scheduling in cloud computing environment by

hybridized bat algorithm. Journal of Intelligent &

Fuzzy Systems, 42(1), 411-423.

https://doi.org/10.3233/jifs-219200

[13] Sundas, A., Badotra, S., Alotaibi, Y., Alghamdi, S.,

& Khalaf, O. I. (2022). Modified Bat Algorithm for

Optimal VM's in Cloud Computing. Computers,

Materials & Continua, 72(2).

https://doi.org/10.32604/cmc.2022.025658

[14] Raghavan, S., Sarwesh, P., Marimuthu, C., &

Chandrasekaran, K. (2015, January). Bat algorithm

for scheduling workflow applications in cloud.

In 2015 International Conference on Electronic

Design, Computer Networks & Automated

134 Informatica 49 (2025) 121–136 A. Ullah et al.

Verification (EDCAV) (pp. 139-144). IEEE.

https://doi.org/10.1109/edcav.2015.7060555

[15] Fahim, Y., Rahhali, H., Hanine, M., Benlahmar, E.

H., Labriji, E. H., Hanoune, M., & Eddaoui, A.

(2018). Load Balancing in Cloud Computing Using

Meta-Heuristic Algorithm. Journal of Information

Processing Systems, 14(3).

https://doi.org/10.1109/cist.2014.7016608

[16] Senthil Kumar, A. M., Padmanaban, K.,

Velmurugan, A. K., Asha Shiny, X. S., & Anguraj,

D. K. (2023). A novel resource management

framework in a cloud computing environment using

hybrid cat swarm BAT (HCSBAT)

algorithm. Distributed and Parallel Databases, 41(1-

2), 53-63. https://doi.org/10.1007/s10619-021-

07339-w

[17] Bin, N. I. N. G., Qiong, G. U., Zhao, W. U., Lei, Y.

U. A. N., & Chun-yang, H. U. (2015). Bats algorithm

research in cloud computing resource scheduling

based on membrane computing. Application

Research of Computers/Jisuanji Yingyong

Yanjiu, 32(3).

https://doi.org/10.4028/www.scientific.net/amr.989-

994.2192

[18] Ganne, A. (2022). Emerging Business Trends in

Cloud Computing. International Research Journal of

Modernization in Engineering Technology, 4(12).

https://doi.org/10.56726/irjmets32082

[19] Gundu, S. R., Panem, C. A., Thimmapuram, A., &

Gad, R. S. (2022). Emerging computational

challenges in cloud computing and RTEAH

algorithm based solution. Journal of Ambient

Intelligence and Humanized Computing, 1-15.

https://doi.org/10.1007/s12652-021-03380-w

[20] Alam, T., Gupta, R., Qamar, S., & Ullah, A. (2022).

Recent applications of Artificial Intelligence for

Sustainable Development in smart cities. In Recent

Innovations in Artificial Intelligence and Smart

Applications (pp. 135-154). Cham: Springer

International Publishing.

https://doi.org/10.1007/978-3-031-14748-7_8

[21] Ullah, A., & Chakir, A. (2022). Improvement for

tasks allocation system in VM for cloud datacenter

using modified bat algorithm. Multimedia Tools and

Applications, 81(20), 29443-29457.

https://doi.org/10.1007/s11042-022-12904-1

[22] Kumar, R., Bhardwaj, D., & Joshi, R. (2022).

Adaptive bat optimization algorithm for efficient

load balancing in cloud computing environment.

In Advances in Computational Intelligence and

Communication Technology: Proceedings of CICT

2021 (pp. 357-369). Singapore: Springer Singapore.

https://doi.org/10.1007/978-981-16-9756-2_35

[23] Li, X., Lu, Y., Fu, X., & Qi, Y. (2021). Building the

Internet of Things platform for smart maternal

healthcare services with wearable devices and cloud

computing. Future Generation Computer

Systems, 118, 282-296.

https://doi.org/10.1016/j.future.2021.01.016

[24] Krishnamoorthy, P. (2021). Performance Analysis of

Hybrid BAT Algorithm and Cuckoo Search

Algorithm [HB-CSA] for Task Scheduling in Mobile

Cloud Computing. Available at SSRN 3997784.

https://doi.org/10.2139/ssrn.3997784

[25] Gundu, S. R., Panem, C. A., & Thimmapuram, A.

(2020). Hybrid IT and multi cloud an emerging trend

and improved performance in cloud computing. SN

Computer Science, 1(5), 256.

https://doi.org/10.1007/s42979-020-00277-x

[26] Ullah, A., Nawi, N. M., & Khan, M. H. (2020). BAT

algorithm used for load balancing purpose in cloud

computing: an overview. International Journal of

High-Performance Computing and

Networking, 16(1), 43-54.

https://doi.org/10.1504/ijhpcn.2020.110258

[27] Ibrahim, L. M., & Saleh, I. A. (2020). A solution of

loading balance in cloud computing using

optimization of bat swarm algorithm. Journal of

Engineering Science and Technology, 15(3), 2062-

2076. https://doi.org/10.5220/000767440058006

[28] Chung, K., & Park, R. C. (2019). Chatbot-based

heathcare service with a knowledge base for cloud

computing. Cluster Computing, 22, 1925-1937.

https://doi.org/10.1007/s10586-018-2334-5

[29] Jian, C., Chen, J., Ping, J., & Zhang, M. (2019). An

improved chaotic bat swarm scheduling learning

model on edge computing. IEEE Access, 7, 58602-

58610. https://doi.org/10.1109/access.2019.2914261

[30] Patil, R., Dudeja, H., & Modi, C. (2019). Designing

an efficient security framework for detecting

intrusions in virtual network of cloud

computing. Computers & Security, 85, 402-422.

https://doi.org/10.1016/j.cose.2019.05.016

[31] Lu, C., Gao, L., & Yi, J. (2018). Grey wolf optimizer

with cellular topological structure. Expert Systems

with Applications, 107, 89-114.

https://doi.org/10.1016/j.eswa.2018.04.012

[32] Gawali, M. B., & Shinde, S. K. (2018). Task

scheduling and resource allocation in cloud

computing using a heuristic approach. Journal of

Cloud Computing, 7(1), 1-16.

https://doi.org/10.1186/s13677-018-0105-

[33] Attaran, M. (2017). Cloud computing technology:

leveraging the power of the internet to improve

business performance. Journal of International

Technology and Information Management, 26(1),

112-137. https://doi.org/10.58729/1941-6679.1283

[34] Singh, P., Dutta, M., & Aggarwal, N. (2017). A

review of task scheduling based on meta-heuristics

approach in cloud computing. Knowledge and

Information Systems, 52, 1-51.

https://doi.org/10.1007/s10115-017-1044-2

[35] Zhang, Y., Liu, Z., Yu, F., & Jiang, T. (2017). Cloud

computing resources scheduling optimisation based

on improved bat algorithm via wavelet

perturbations. International Journal of High-

Performance Systems Architecture, 7(4), 189-196.

https://doi.org/10.1504/ijhpsa.2017.092385

[36] Arunarani, A. R., Manjula, D., & Sugumaran, V.

(2017). FFBAT: A security and cost‐aware

workflow scheduling approach combining firefly

and bat algorithms. Concurrency and Computation:

https://doi.org/10.1109/cist.2014.7016608
https://doi.org/10.1016/j.cose.2019.05.016

Improving Load Balancing Efficiency in Cloud Data Centers Through… Informatica 49 (2025) 121–136 135

Practice and Experience, 29(24), e4295.

https://doi.org/10.1002/cpe.429

[37] Mittal, N., Singh, U., & Sohi, B. S. (2016). Modified

grey wolf optimizer for global engineering

optimization. Applied Computational Intelligence

and Soft Computing, 2016.

https://doi.org/10.1155/2016/7950348

[38] Bouyer, A., & Arasteh, B. (2014). The necessity of

using cloud computing in educational

system. Procedia-Social and Behavioral

Sciences, 143, 581-585.

https://doi.org/10.1016/j.sbspro.2014.07.440

[39] Dillon, T., Wu, C., & Chang, E. (2010, April). Cloud

computing: issues and challenges. In 2010 24th

IEEE international conference on advanced

information networking and applications (pp. 27-

33). Ieee. https://doi.org/10.1109/aina.2010.187

[40] Randles, M., Lamb, D., & Taleb-Bendiab, A. (2010,

April). A comparative study into distributed load

balancing algorithms for cloud computing. In 2010

IEEE 24th International Conference on Advanced

Information Networking and Applications

Workshops (pp. 551-556). IEEE.

https://doi.org/10.1109/waina.2010.85

[41] Ullah, A., Razak, S. F. A., Yogarayan, S., & Sayeed,

M. S. (2025). Modified Neural Network Used for

Host Utilization Predication in Cloud Computing

Environment. Computers, Materials &

Continua, 82(3).

https://doi.org/10.32604/cmc.2025.059355

[42] Remmach, H., Razak, S. F. A., Ullah, A., Yogarayan,

S., Sayeed, M. S., & Mrhari, A. (2025). CNN-Based

Multi-Output and Multi-Task Regression for

Supershape Reconstruction from 3D Point

Clouds. Informatica, 49(5).

https://doi.org/10.31449/inf.v49i5.6863

[43] Ullah, A., Alam, T., Aziza, C., Sebai, D., &

Abualigah, L. (2024). A Hybrid Strategy for

Reduction in Time Consumption for Cloud

Datacenter Using HMBC Algorithm. Wireless

Personal Communications, 137(4), 2037-2060.

https://doi.org/10.1007/s11277-024-11395-7

[44] Alam, T., Gupta, R., Nasurudeen Ahamed, N., Ullah,

A., & Almaghthwi, A. (2024). Smart mobility

adoption in sustainable smart cities to establish a

growing ecosystem: Challenges and

opportunities. MRS Energy & Sustainability, 11(2),

304-316. https://doi.org/10.1557/s43581-024-

00092-4

[45] Ullah, A., Alomari, Z., Alkhushayni, S., Al-Zaleq, D.

A., Bany Taha, M., & Remmach, H. (2024).

Improvement in task allocation for VM and

reduction of Makespan in IaaS model for cloud

computing. Cluster Computing, 27(8), 11407-

11426. https://doi.org/10.1007/s10586-024-04539-8

[46] Alam, T., Ullah, A., & Benaida, M. (2023). Deep

reinforcement learning approach for computation

offloading in blockchain-enabled communications

systems. Journal of Ambient Intelligence and

Humanized Computing, 14(8), 9959-9972.

https://doi.org/10.1007/s12652-021-03663-2

[47] Ouhame, S., Hadi, Y., & Ullah, A. (2021). An

efficient forecasting approach for resource

utilization in cloud data center using CNN-LSTM

model. Neural Computing and

Applications, 33(16), 10043-10055.

https://doi.org/10.1007/s00521-021-05770-9

[48] Clemons, E. K., & Chen, Y. (2011, January).

Making the decision to contract for cloud services:

Managing the risk of an extreme form of IT

outsourcing. In 2011 44th Hawaii International

Conference on System Sciences (pp. 1-10). IEEE.

https://doi.org/10.1109/hicss.2011.292

[49] Yao, J., & He, J. H. (2012, April). Load balancing

strategy of cloud computing based on artificial bee

algorithm. In 2012 8th International conference on

computing technology and information

management (NCM and ICNIT) (Vol. 1, pp. 185-

189). IEEE.

https://doi.org/10.3724/sp.j.1087.2012.0244

[50] Sajid, M., & Raza, Z. (2013, December). Cloud

computing: Issues & challenges. In International

conference on cloud, big data and trust (Vol. 20,

No. 13, pp. 13-15). sn.

https://doi.org/10.1201/b16318-3

[51] Pawar, C. S., & Wagh, R. B. (2013, March).

Priority based dynamic resource allocation in cloud

computing with modified waiting queue. In 2013

International Conference on Intelligent Systems

and Signal Processing (ISSP) (pp. 311-316). IEEE.

https://doi.org/10.1109/issp.2013.6526925

[52] Chauhan, R., & Kumar, A. (2013, November).

Cloud computing for improved healthcare:

Techniques, potential and challenges. In 2013 E-

health and bioengineering conference (EHB) (pp.

1-4). IEEE.

https://doi.org/10.1109/ehb.2013.6707234

[53] Velugoti, S., & Vani, M. P. (2024). An approach

for privacy preservation assisted secure cloud

computation. Informatica, 47(10). https://doi.org/1

0.31449/inf.v47i10.4586

[54] Zhang, R., & Shi, W. (2020). Research on resource

allocation and management of mobile edge

computing network. Informatica, 44(2).

: https://doi.org/10.31449/inf.v44i2.3166

[55] Debbi, H. (2021). Modeling and performance

analysis of resource provisioning in cloud

computing using probabilistic model

checking. Informatica, 45(4).

DOI: https://doi.org/10.31449/inf.v45i4.3308

https://doi.org/10.1016/j.sbspro.2014.07.440
https://doi.org/10.1109/waina.2010.85
https://doi.org/10.32604/cmc.2025.059355
https://doi.org/10.31449/inf.v49i5.6863
https://doi.org/10.1007/s11277-024-11395-7
https://doi.org/10.1557/s43581-024-00092-4
https://doi.org/10.1557/s43581-024-00092-4
https://doi.org/10.1007/s10586-024-04539-8
https://doi.org/10.1007/s12652-021-03663-2
https://doi.org/10.1109/ehb.2013.6707234
https://doi.org/10.31449/inf.v47i10.4586
https://doi.org/10.31449/inf.v47i10.4586
https://doi.org/10.31449/inf.v44i2.3166
https://doi.org/10.31449/inf.v45i4.3308

136 Informatica 49 (2025) 121–136 A. Ullah et al.

