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An effective resource management strategy that anticipates server resource utilization and appropriately 

distributes the load is recommended in order to address these problems and enhance data center 

performance. By reducing the number of servers in use, facilitating virtual machine migrations, and 

optimizing resource utilization, it helps save power. To reduce the likelihood of service level agreement 

(SLA) violations and performance degradation caused by either oveloded or under loaded servers and 

virtual machines.  Resources for software applications can now be dynamically altered as needed thanks 

to the growth of cloud computing. Since better resource consumption can lead to increased scalability as 

well as significant cost and energy savings, effective resource management is crucial in cloud computing. 

The flexibility of cloud resources allows clients to dynamically increase and decrease their resource 

demands over time. However, predefined virtual machine sizes and variable resource requirements result 

in underutilization of resources, load imbalances, and high power consumption. The goal of this research 

is to develop a hybrid technique by combining Grey Wolf with algorithms. The hybridization processes 

take place in the Grey Wolf portion, when the Cat Swarm initialization process takes the place of the 

startup phase. The virtual machine (VM) section's data selection is enhanced by this substitution. The 

Grey Wolf and Cat Swarm algorithms are two examples of optimization algorithms. The evaluation 

criteria that are used are makespan, throughput, degree of imbalance, and turnaround time with degree 

of imbalance. The recommended approach outperforms alternative algorithms in each of these metrics. 

The proposed hybrid strategy resulted in 0.3% increase overall performance. Potential directions for 

future research include testing the proposed approach in larger and more complex data distribution in 

cloud data centers. 

Povzetek: Predstavljen je izvirni hibridni algoritem HGWCA, ki združuje dva algoritma: Grey Wolf 

Optimizer in Cat Swarm Optimization za učinkovitejše razporejanje nalog in zmanjšanje porabe časa v 

oblačnih podatkovnih centrih. 

 

1 Introduction 
The term "cloud computing" refers to the provision of 

pay-as-you-go on-demand services via the internet. 

Instead of using a conventional computer system or any 

other local devices, it allows you to handle files online. 

The cloud is a network of interconnected virtual machines 

with distributed, parallel systems that may deliver and 

offer computing resources on demand. "Cloud computing" 

refers to anything that involves offering hosted services 

via the internet. Private, public, hybrid, and community 

clouds are the four types of cloud deployment models. 

Numerous cloud service providers are accessible, and 

each one offers a unique collection of cloud services. 

Platform as a Service (PaaS), Infrastructure as a Service 

(IaaS), Software as a Service (SaaS), and Storage as a 

Service (STaaS), Cloud computing models that provide a 

range of services to customers include Security as a 

Service (SECaaS), Data as a Service (DaaS), Test  

 

Environment as a Service (TEaaS), and Backend as a  

Service (BaaS) [1]. Software as a Service (SaaS) offers 

software services online, with the service provider 

managing software maintenance and updates. IaaS enables 

virtualized access to actual resources, whereas PaaS offers 

tools for managing and developing applications. Instead of 

buying their own devices, businesses can rent storage 

capacity thanks to STaaS. Security services like intrusion 

detection and authentication are included in SECaaS. 

Regardless of one’s location, DaaS makes it possible to 

access data whenever there is a need for it. Through the 

internet, TEaaS enables users to access software and 

pertinent data. Developers can concentrate on the frontend 

and application by using BaaS's pre-built backend services 

for mobile applications reasoning [2].  Cloud computing 

has a number of benefits. It gives users access to 

inexpensive systems, removing the need for powerful 

computers and enabling the use of less expensive gadgets. 

Because it makes data and apps accessible from any 
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location at any time, it provides dependability and ease. 

Because they may use cloud computing instead of 

spending money on pricey servers, it also lowers the cost 

of IT infrastructure for businesses. There are less 

maintenance problems and expenses, which means that 

less hardware and software maintenance is needed. Users 

can always get the most recent version of software without 

extra expense or work because to cloud computing's 

smooth software upgrades. By utilizing the combined 

capabilities of linked PCs and servers, it provides more 

processing power [3]-[4]. Cloud storage surpasses the 

constraints of local storage by offering nearly infinite 

capacity. Usage of these resources by making certain that 

workloads are distributed fairly across the servers or 

virtual machines that are available. Better performance 

and resource efficiency in the cloud are ensured by load 

balancing, which helps avoid overloading certain servers 

by dynamically allocating and reallocating computing 

resources based on demand. In a cloud context, load 

balancing is the essential technology to guarantee a fair 

task distribution and effective resource use. One useful 

strategy for cloud data centers to save energy is to 

consolidate virtual machines (VMs). By combining virtual 

machines (VMs) into fewer active physical machines 

(PMs), the VM consolidation technique enables the PMs 

that do not have any VMs to go into a state of dormancy. 

Because a PM uses a lot of energy when it is sleeping, 

Utilizing VM consolidation techniques can assist cloud 

data centers consume less energy, as it is lower than that 

of a PM in its active mode [5]. To reduce waiting time, the 

virtual machine (VM) should react quickly when a tasks is 

sent to the cloud to be processed. However, tasks should 

be distributed among all virtual machines (VMs) in 

parallel to ensure system balance and efficient functioning 

making use of the available resources. This necessitates 

task planning that is assigned and distributed among the 

available resources. When several tasks are assigned to a 

single virtual machine (VM), the assigned activities will 

execute simultaneously across numerous VMs to 

complete the tasks. As a result, the task requirements 

ensure that not every tasks is loaded onto a single 

computer. The system is unbalanced, or the VM will 

restrict access to other VMs, rendering them unreachable 

[6]. Other factors, such as makespan, cost, and resource 

use, must be considered while scheduling in order to avoid 

this. The main goal of allocating among a system's load-

balancing responsibilities is to maximize workload 

distribution among available resources and minimize 

system-processing timing.  Several scholars have 

proposed methods for load balancing in both uniform and 

heterogeneous environments. In order to do this, the 

suggested algorithm in this study split the tasks evenly 

between VM and PM [7]. The structure of the paper is as 

follows: Section 2 presents the latest advancements in 

tasks distribution for hybrid systems for cloud systems. 

Section 3 describes the suggested model, and the 

algorithm created to address the issues and illustrate the 

design of our solutions and allocate resources. Section 4 

describes the procedures, tests, and results and these 

conclusions are present in Section 5. 

 

2 Related work  
In this study, we examine the relevant literature on 

energy management, load balancing, and appropriate 

cloud data center use. In order to evaluate Quality of 

Service (QoS) metrics, a multi-objective task-scheduling 

algorithm that combines Cat Swarm Optimization (CSO) 

with machine learning classifiers such as Support Vector 

Machine (SVM) has been proposed. However, the 

algorithm falls short in terms of classification and 

consideration of other important parameters. Concepts 

like workload prediction and auto-scaling require further 

investigation [8]. A dynamic task scheduling system for 

tasks and cloudlets is suggested by the author [9]. The 

approach seeks to increase acceptance rate, scalability, 

and minimize makespan. However, it is expensive and 

complicated. Future studies will concentrate on load 

balancing strategies that respect privacy. As stated in [10], 

discuss the scheduling of cloud computing applications, 

with an emphasis on response speed and makespan. 

Enhancing these metrics and investigating the 

effectiveness of the MOTSGWO algorithm in an open 

stack setting are their goals.  The Sand Cat Swarm 

Optimization (SCSO) algorithm for global optimization 

problems is introduced in [11]. Although the technique 

can be expensive, it works effectively in a variety of 

engineering design challenges. Additionally, it may find 

use in bioinformatics, machine learning, smart farming, 

logistics, wireless sensor networks, and the Internet of 

Things. For feature selection in classification tasks, a 

binary multi-objective grey wolf optimizer is proposed in 

[12]. With a lower computational cost, the algorithm 

performs better than current methods in terms of features 

reduction and classification error rate. It works well with 

small datasets introduces a clustering technique based on 

RCSO that makes use of SVM and MLP networks. The 

RCSO algorithm performs better than current algorithms 

and may be applied in future tissue cell quantification and 

legal proceedings. An approach for the Urban Transit 

Routing Problem (UTRP) based on Cat Swarm 

Optimization (CSO) is presented in [13]. It is economical 

and successfully resolves the UTRP. However, the values 

of the parameters affect the algorithm's capacity to 

optimize. A Cat Swarm Optimization (CSO) algorithm 

using a subgroup information interaction approach is 

proposed by the author in [14]. It exhibits a faster rate of 

convergence and the capacity to search globally. It will be 

compared to other swarm intelligence algorithms in future 

studies. A Sand Cat Swarm Optimization (SCSO) 

algorithm based on elite collaboration and [15] present 

stochastic variation. Although it increases time 

complexity, it effectively addresses engineering and 

optimization difficulties. For more applications, 

cooperation with other researchers is desired. As 

suggested by [16], a MATLAB task scheduling system 

that reduces makespan and energy usage. Energy and 

execution costs, however, are not taken into account. 

Evaluation of the suggested algorithm in a small-scale 

cluster is the goal of future research.  The enhanced Multi-

Objective Grey Wolf Optimizer (IMOGWO) algorithm 

for edge computing work scheduling is presented in paper 
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[17]. In terms of convergence, diversity, and coverage, 

IMOGWO performs better than current algorithms. The 

algorithm can be used for multi-objective test issues; 

however, it is expensive suggests using the Hybrid Particle 

Swarm Grey Wolf (HPSGW) algorithm to optimize 

automated CNN in [18]. The technique lowers 

computational costs while increasing performance 

accuracy on benchmark datasets. Future studies will 

concentrate on enhancing the optimization procedure by 

adding more hyperactive parameters. A hybrid form of 

MCA and GWO for scheduling the power of smart home 

appliances is presented by [19]. The Power scheduling 

issues are successfully addressed by the GWO-MCA 

hybrid. The goal of future study is to enhance the selection 

process and method's performance. For multi-objective 

optimization problems, [20] suggests a method based on 

the Grey Wolf Optimizer (GWO) with the memeplex 

structure of the Shuffled Frog leaping method (SFLA). 

The method can be used to solve a variety of problems and 

produces competitive results. In order to optimize 

spectrum sensing in cognitive radio networks, [21] 

presents the Multi-Objective Modified Grey Wolf 

Optimization (MOMGWO) algorithm. In spectrum 

sensing, MOMGWO has excellent coverage, 

convergence, and performance. The Multi-Objective Grey 

Wolf Optimizer (MOGWO) method is suggested by [22] 

for the IEEE-30 bus test system. For multi-objective 

problems, MOGWO shows good Pareto-optimal front 

setup and quick convergence. [23] Introduce the 

Fractional Grey Wolf Optimizer (FGMTS). For cloud   

 

Table 1: Related work summary 

 

 

Computing multi-objective tasks scheduling. In addition 

to achieving resource allocation, the FGMTS method 

enhances cloud profitability and performance. However, 

because of the search space, there can be restrictions. The 

multi-objective Grey Wolf Optimizer (MOGWO) for 

near-optimal tasks scheduling in cloud computing is 

presented in paper [24]. The MOGWO performs better 

than alternative approaches and can be improved with 

parallel programming techniques. The summary of related 

work is shown in Table 1. 

The main goal of dynamic task scheduling systems is 

to decrease makespan while improving system scalability; 

however, their algorithms are frequently costly, intricate, 

and made to properly protect sensitive activities. Although 

it is still time-consuming and expensive to install, the 

Multi-Objective Grey Wolf Optimizer (MOGWO) is 

known for reaching the fastest convergence rates and 

providing the best Pareto-optimal front settings, with 

advantages including fuel cost savings. These capabilities 

are extended for multi-objective task scheduling by the 

Ref Methods Parameter Results Limitations Future work 

[25] Dynamic task 

scheduling 

Makespan Well as improving 

scalability 

 Algorithms are 

expensive and 

complicated 

Effectively safeguard 

sensitive task 

[26] Multi objective grey 

wolf optimizer 

(MOGWO) 

Convergence Fastest convergence and 

the best Pareto-optimal 

front setting. Reduce fuel 
cost 

Laborious and costly It is possible to obtain a 

Pareto-optimal front for 

multi-objective  

[27] FGMTS: Fractional 

grey wolf optimizer 

 

Multi-Objective task 

scheduling 

Performance and 

increasing profitability. 

 

Result in faulty 

resource allocation 

for subtask 

 Could be used for other 

datasets 

[28] Task scheduling 
mechanism 

Makespan and energy 
consumption 

It greatly minimizes 
energy consumption and 

makespan 

Energy and execution 
cost are not 

considered 

 Assess the proposed 
algorithm while taking into 

account a small-scale cluster. 

[29] IMOGWO 
algorithm 

Task Scheduling Convergence, diversity 
and coverage. 

Costly  Applied to multi-objective 
test problem 

[30] An algorithm based 

on grey wolf 

optimizer (GWO) 
with memeplex 

structure of the 

shuffled frog leaping 
algorithm (SFLA) 

Multi objective 

optimization 

Multi-objective problems 

and achieve competitive 

or superior results when 
compared to other 

comparison algorithms. 

Complicated It can also be tested on multi-

objective types of real-

world problems such as image 
processing, vehicle routing 

and clustering. 

[31] Cat Swarm 

Optimization 
(CSO)-based 

algorithm 

Optimization,  

scheduling workflow 

CSO based algorithms are 

an excellent choice for 
effectively solving the 

UTRP while also being 

cost-effective. 

The determination of 

parameter values, 
which may be lacking 

in effectiveness. 

 The algorithm aims to 

optimize the cost of the 
service provider while also 

being applicable  

[32] A binary multi-

objective grey wolf 
optimizer for feature 

selection in 

classification 

Features number, 

classification accuracy 

Classification error rate 

though benefiting from a 
lower computational cost. 

Effective for small 

size datasets 

 Minimizing the number of 

features and minimizing the 
error rate simultaneously 

[33]  Multi objective grey 

wolf optimizer 

(MOGWO) 

Throughput, makespan 

and resource 

utilization in cloud 

computing. 

The method outperformed 

all other methods tested 

 Complicated Memory usage during peak 

loads, to improve overall 

efficiency. 
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FGMTS (Fractional Grey Wolf Optimizer), which 

enhances system performance and profitability. However, 

it can occasionally lead to incorrect subtask resource 

allocation, which may be applicable to other datasets. 

However, they frequently ignore the combined effect of 

energy and execution costs, traditional task scheduling 

techniques focus on decreasing makespan and energy 

consumption, restricting their assessment to small-scale 

clusters. By striking a balance between convergence, 

diversity, and coverage, the IMOGWO method 

significantly improves task scheduling. However, because 

of its high computational costs, it is more appropriate for 

controlled multi-objective test problems. Another version 

combines the Grey Wolf Optimizer with the Shuffled Frog 

Leaping Algorithm's (SFLA) structure. It produces 

competitive results in multi-objective optimization, yet it 

is still sophisticated and appropriate for applications such 

as clustering, image processing, and vehicle routing. 

Targets for feature selection using a binary multi-objective 

GWO although it works best with small datasets, it can 

achieve low error rates and lower computing costs by 

decreasing the number of features and increasing 

classification accuracy. Furthermore, throughput, 

makespan, and resource utilization are improved by a 

multi-objective GWO version for cloud computing 

environments, which continuously outperforms 

alternative approaches but struggles with complexity and 

excessive memory use during periods of high load. 

Overall, these techniques tackle different facets of multi-

objective scheduling and optimization problems in cloud 

and workflow contexts; each has particular advantages 

and disadvantages. 

2.1 Problems statement  
The Grey Wolf exploitation strengths are enhanced by 

the Cat Algorithm's exploration skills, resulting in a 

synergistic optimization framework. This hybrid approach 

seeks to allocate workloads across available resources in a 

dynamic manner while tackling several goals, including 

throughput, energy efficiency, and response speed. In a 

fast changing technological world, the incorporation of 

these bio-inspired algorithms into load balancing offers a 

fresh way to get around the drawbacks of current methods, 

improving the scalability and performance of cloud data 

centers. The Cat Algorithm's exploration abilities 

complement the Grey Wolf exploitation capabilities, 

creating a synergistic optimization framework. This 

hybrid strategy aims to dynamically distribute workloads 

across available resources while addressing a number of 

objectives, such as response speed, energy efficiency, and 

throughput. The integration of these bio-inspired 

algorithms into load balancing provides a novel approach 

to overcome the limitations of existing techniques, 

enhancing the scalability and performance of cloud data 

centers in a rapidly evolving technological environment. 

 

3   Proposed algorithm  
A task manager, scheduler, CPU, RAM, storage 

resources, virtualization layer, physical resources, and a 

data center are among the parts of the system shown in 

Figure 1.  

 

 

Figure 1: Proposed approach model 
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The grey wolf optimization algorithm (GWO) is a new 

type of metaheuristic algorithm. In the field of 

engineering, it is most commonly used to tackle 

optimization problems. It is inspired by the hunting and 

social behaviors of grey wolves. It imitates the natural  

Leadership structure and hunting technique of grey 

wolves. Grey wolves do most of their living in packs. In a 

pack of grey wolves, the leadership hierarchy is indicated 

by the four categories of alpha, beta, delta, and omega. 

Each category denotes a different degree of authority and 

leadership within the pack. The dominant member of the 

pack, the alpha wolf, acts as a leader to guide the pack 

through the hunting process. Beta wolves [34] occupy the 

second level of this hierarchy. They are known as 

subordinates and assist. The alpha when creating policies 

during the hunting phase. After the alpha and beta wolves, 

the delta wolf represents the third level of decision-

making authority. The last rung in this ladder is omega 

wolf. That is what scapegoat wolves are. Grey wolves' 

decision-making skills decline in the absence of the 

dominating alpha wolf. The gray wolf Optimizer is mostly 

inspired by this social skill [35]. Grey wolves hunt in three 

repeating stages utilizing a methodical approach. These 

phases include searching, encircling, and assaulting. This 

first phase is called tracking or searching. It is also known 

as the exploration stage.  In a global search arena, the grey 

wolves look for prey. The mathematical the model 

describes how to determine the distance between the grey 

wolf and its prey [36]. It is computed using Equation 1.  

 

 𝐷𝑖𝑠𝑡 = 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓 × 𝐿𝑃  (𝑡) − 𝐿𝐺𝑊 (𝑡))  (1)                             

                                    

Here 𝑐𝑜𝑒𝑓𝑓 provides the coefficient vector; 𝐿𝐺𝑊 (𝑡) 

shows where the grey wolf was in the specified time 

interval t; 𝐿𝑃  shows the location of prey at a specified time 

interval t.  

 

The value of 𝑐𝑜𝑒𝑓𝑓 is calculated using Equation 2. 

 

           𝐶𝑜𝑒𝑓𝑓 = 2 × 𝑅𝑎𝑛(0, 1)                           (2)                                                                             

 

Due to the potential for random task generation and the 

consequent random assignment of tasks to the seeking and 

tracing modes, n has been randomly set as the number of 

dimensions. At each iteration, solutions are computed for 

cats, and their fitness is evaluated relative to other cats, 

until the optimal solution is found. While in the "seeking" 

mode, all cats will enter a resting state, however specific 

behaviors are required to find a cat. The new velocity in 

the tracing mode can be computed using the cats' 

observations and the known initial velocity [37]. You may 

see it below. Due to the potential for random task 

generation and the consequent random assignment of tasks 

to the seeking and tracing modes, n has been randomly set 

as the number of dimensions. At each iteration, solutions 

are computed for cats, and their fitness is evaluated 

relative to other cats, until the optimal solution is found. 

While in the "seeking" mode, all cats will enter a resting 

state, however specific behaviors are required to find a cat. 

The new velocity in the tracing mode can be computed 

using the cats' observations and the known initial velocity, 

you may see it below [38]. 

 

    𝑉𝑒𝑙𝑖
𝑑(𝑡 + 1) = 𝑝 ∗ 𝑉𝑒𝑙𝑖

𝑑(𝑡) + 𝑐 ∗ 𝑟 ∗ (𝑥𝑑
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑑) (3)                                            

                  

In Equation (3), c is a constant, r is a random value 

between 0 and 1, and 𝑉𝑒𝑙𝑖
𝑑(𝑡) is the velocity of the ith at 

during the t-th iteration. The cat is on its top place globally 

at𝑥𝑑
𝑏𝑒𝑠𝑡. Cat location at ith iteration is represented by𝑥𝑖

𝑑. 

 

By using the Equation (4), the location of the cat may

 be modified as follows. 

 

    𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑 + 𝑉𝑒𝑙𝑖
𝑑(𝑡 + 1)                     (4) 

                                                              

Following fitness calculations, solutions must be updated 

with non-dominated cats. These calculations must be 

carried out until cats achieve objectives with an optimal 

value. The termination criterion is used to end the 

algorithm. For the algorithm to work well, a suitable 

termination condition needs to be selected. The number of 

iterations, the degree of improvement, and the running 

time are typical CSO termination criteria [39]. During the 

third phase, grey wolves adjust their locations based on the 

movements of their prey, as shown in equations (1) 

through (6). In the grey wolf, social structure, alpha, beta, 

and delta wolves hold the highest positions and are 

thought to be the finest hunting alternatives. After the prey 

has been surrounded at a specific distance, it is believed 

that the alpha, beta, and delta wolves have a better idea of 

its whereabouts. Consequently, the alpha wolf initiates the 

attack. The prey's position is subsequently updated using 

the alpha, beta, and delta wolves' positions, as 

mathematically demonstrated in equation (5). In contrast, 

the omega wolves follow the guidelines in equation [40] 

and move around the prey intermittently. 

 

𝐷𝑖𝑠𝑡𝑎𝑙𝑝ℎ𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓1  ×  𝐿𝑎𝑙𝑝ℎ𝑎  × (𝑡) − 𝐿(𝑡))   

 𝐷𝑖𝑠𝑡𝑏𝑒𝑡𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓2  ×  𝐿𝑏𝑒𝑡𝑎  × (𝑡) − 𝐿(𝑡))   

𝐷𝑖𝑠𝑡𝑑𝑒𝑙𝑡𝑎= 𝑎𝑏𝑠(𝑐𝑜𝑒𝑓𝑓3  ×  𝐿𝑑𝑒𝑙𝑡𝑎  × (𝑡) − 𝐿(𝑡))   

𝐿1 =  𝐿𝑎𝑙𝑝ℎ𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓1  ×  𝐷𝑖𝑠𝑡𝑎𝑙𝑝ℎ𝑎 

   𝐿2 =  𝐿𝑏𝑒𝑡𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓2  ×  𝐷𝑖𝑠𝑡𝑏𝑒𝑡𝑎                                       

            𝐿3 =  𝐿𝑑𝑒𝑙𝑡𝑎(𝑡) − 𝑐𝑜𝑒𝑓𝑓3  ×  𝐷𝑖𝑠𝑡𝑑𝑒𝑙𝑡𝑎                                      

           𝐿 =
(𝐿1 +𝐿2 + 𝐿3 )

3
                               (5)                                                                            

 

A set of random solutions are used as grey wolves by the 

grey wolf optimizer. Several objective functions are used 

to evaluate a set of randomly selected responses. The 

quality of each solution is represented by the values of a 

fitness function composed of many functions. Alpha, beta, 

and delta wolves stand for the highest three quality 

solutions. The grey wolf optimizer continuously adjusts 

the wolf population's location throughout each cycle. If a 

response improves during an iteration to the extent where 

it outperforms alpha, beta, and delta wolves, the 

corresponding solution is replaced with the new one. 

When a set of stopping conditions is met, the Grey Wolf 

Optimizer stops iterating the solutions [41]. While the 

scheduler distributes resources like CPU, memory, and 
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storage, the task manager organizes tasks. To manage 

virtual machine or networks, the system has a 

virtualization layer and virtualized resources. The 

infrastructure is kept in the data center, and the physical 

resources stand in for the underlying hardware. 

Additionally, Figure 1 mentions the HGWCA algorithm, 

which is suggested to be involved in resource manageme

nt. Tasks are initially considered TK= {T1+T2+T3… 

Tn}. The cloud console must be used to submit these tasks 

to the task manager first. The task management module in 

this configuration needs to assess each task's relative 

priority [42]. Task, and then assess each virtual machine's 

relative significance based on how much power it uses in 

a certain amount of time. It is being tried because there are 

many different types of tasks being brought into the cloud 

platform, and it is crucial to map them to the appropriate 

virtual resources in the cloud. The task scheduler is in 

charge of carrying out this task. A resource manager 

module, which is connected to a task scheduler, keeps tra

ck of resource requests, allocations, and availability on th

e respective physical hosts in the datacenters [43]. Assum

ed in this method are n virtual machines (VMs) with nam

es such as these virtual machines must live in physical 

hosts with names like Vn={V1,V2,V3,……Vn }. 

   𝐻𝑖 = {𝐻1, 𝐻2, 𝐻3, … … 𝐻𝑖}                                                                  

In addition, these hosts are housed in datacenters (called 

centers) with names like    

𝑑𝑗 = {𝑑1, 𝑑2, 𝑑3, … … 𝑑𝑗}.                                      (6)                                                    

 

The architecture in question assigns tasks to virtual 

machines (VMs) by determining the Task Priority and VM 

Priority, respectively, while considering the datacenters’ 

relative power costs [44]. To allocate each task to the best 

virtual machine (VM), a priority calculation must be 

performed because every task has different processing 

needs. The cloud's virtual machine (VM) priority 

computations must take regional variations in power 

prices into consideration because it can be deployed 

anywhere [45]. A technique that first identifies the most 

critical task and then allocates them to virtual machines 

that are most suited to completing those tasks with the 

least amount of energy is used in cloud data centers to 

reduce overall power costs and energy usage. Tasks, 

virtual machines, real hosts, and datacenters can all be 

used to define the problem. The scheduler's purpose is to 

distribute workloads to virtual machines in a way that 

minimizes costs and power consumption [46]. The given 

equation 7 present the hybrid section of the proposed 

algorithm. 

 

𝑉𝑖(0) = { 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝛿 × 𝑅, 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) +
𝑟 × (𝑋 𝑏𝑒𝑠𝑡 − 𝑋 𝑖(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)                                 (7) 

 

 It made a number of assumptions regarding 

datacenters𝑑𝑗, physical hosts𝐻𝑖 , virtual machines 𝑉𝑛 and 

tasks 𝑇𝐾  in order to schedule tasks onto virtual machines. 

It must ascertain the relative significance of virtual 

machines and tasks for this configuration. These settings 

are examined and given a single priority when tasks are 

submitted to the task manager. The scheduler assigns tasks 

to the VMs, and in order to determine priorities, it is 

necessary to ascertain the VMs' present load. The VMs 

perform the tasks that the scheduler allocates, requiring 

the determination of their current load to calculate 

priorities. The equation below demonstrates the 

calculation of the load on all VMs [47]. 

 

𝐿𝑣 = ∑ 𝐿𝑛
𝑞
𝑛=1                                                       (8)   

                                                                                          

The current load on each virtual machine (VM) is 

represented by the variable 𝐿𝑛 since all of the virtual 

machines are meant to be housed within physical hosts; 

the capacity of the hosts must be ascertained after the load 

on each VM has been computed. 

 

𝐿ℎ = 𝐿𝑣
∑ 𝐻𝑘

𝑚
𝑘=1

                                                         (9)                                                                                              

 

The physical host, which is composed of virtual 

machines, is under 𝐿ℎ load. Because the VMs must 

transfer to the next Virtual Machine on the same physical 

host either by starting a new request or to the subsequent 

VM that is already running if there are more tasks than 

they can handle, a load-balancing module is necessary in 

the cloud-computing paradigm. A load balancer can 

accomplish this, but in order to do so, a specific threshold 

value must be set to identify if the system is balanced or 

not. The system's threshold value is identified as follows 

[48]. 

 

𝑇𝐻𝑘 =  𝐿ℎ ∗  𝐻𝐾                                                   (10)                                                                                    

 

Prior to determining whether the system is overloaded, 

under loaded, or balanced, the threshold value is 

established. The load balance is calculated to arrive at this 

conclusion. In the event that a system gets overwhelmed. 

 

𝑉 > 𝑇𝐻𝑘 −  ∑ 𝐿𝑉
𝑛
𝑖=1                                                                                              

If the system is under loaded, then 

𝑉 < 𝑇𝐻𝑘 −  ∑ 𝐿𝑉
𝑛
𝑖=1                                                                                              

If the system is balanced, 

𝑉 = 𝑇𝐻𝑘 −  ∑ 𝐿𝑉
𝑛
𝑖=1                                            (11)  

                                                                                      

To plan work onto appropriate VMs, it is necessary to 

see the processing capabilities of each VM. The 

calculation is as follows [49]. 

 

𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉 = 𝑝𝑟𝑛𝑜 ∗ 𝑝𝑟𝑚𝑖𝑝𝑠                       (12)  

                                                          

The above equation is used to calculate each VM's 

processing capacity, and the results are listed as follows. 

 

𝑇𝑜𝑡𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉 =  ∑ 𝑃𝑟𝑜𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑉
𝑛
𝑖=1         (13)   

                                                 

The requirements for allocating task to virtual 

machines have been determined and computed. The 

priorities for both the tasks and virtual machines have now 

been determined. The aforementioned formula has been 

used to calculate the work's size, and the relationship 

between a task's size and a virtual machine's processing 
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power is what defines its priority. The following is the 

formula [50]. 

 

  𝑇𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑇𝑘

𝑠𝑖𝑧𝑒

𝑃𝑟𝑜𝑐𝑐𝑎𝑝𝑖𝑐𝑖𝑡𝑦𝑉
                                   (14)  

                                                              

Two stages of verification are used to schedule the 

tasks in this work. In order to accurately map tasks onto 

the appropriate virtual machines (VMs), the first step 

entails determining task priorities. To make the mapping 

process easier, VM priorities are then established 

according to power unit cost.  The following algorithm 

based on power unit cost determines VM priority [51].  

  

 𝑉𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑒𝑙𝑒𝑐 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ℎ𝑖𝑔ℎ

𝑒𝑙𝑒𝑐 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑗
𝑑                             (15)  

                                                         

The metrics this tasks address must be identified after 

the priorities have been calculated. Any cloud computing 

task-scheduling system must consider makespan because 

it is a crucial metric to manage in this paradigm. 

Additionally, lowering response time has a significant 

positive impact on cloud providers and users, which in 

turn has an indirect impact on other metrics like energy 

consumption and total power cost. Here is the formula 

[52]. 

 

  𝑚𝑘 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛 + 𝑒𝑘                                     (16)                                                                       

  

4   Experiments and results  
An analysis of the various experimental outcomes 

obtained by applying the recommended methodology is 

presented in this section. A wide range of datasets and 

parameters has been used in numerous experiments and 

testing. A thorough explanation of the study's 

experimental setup provides crucial context for 

understanding the methodology. The general process 

employed in the tests is described through a number of 

precisely specified points. This section provides 

comprehensive documentation of the experimental details 

associated with the proposed model. The primary 

objective of this section is to outline the exact 

configuration that was utilized to conduct the experiment 

as well as the systematic procedures that were followed in 

order to execute the recommended strategy within the 

experimental inquiry. As a result, the experimental setup 

and specifics will be covered in detail in the parts that 

follow. 

 

4.1 Dataset 
 The availability of appropriate datasets, which were 

taken from the AWS (DREAM) database for this study, is 

a crucial component for the scheme's effective 

implementation. The Proposed model performance 

evaluation included a range of virtual machines (VMs) 

and workloads (between 200 and 2000) spread across 

various data centers in the cloud-computing environment.  

 

4.2 Simulation parameters 
A modified CloudSim 3.0 platform was used to 

construct the HGWCA algorithm, and test datasets with 

file sizes between 200 and 400 kilobytes and compliance 

with the standard workload format (SWF) were used. The 

simulation parameters are shown in Table 2. 

 

 
Table 2: Simulation parameter 

Type Parameter Value Type Parameter Value 

Region From 1 to 4 5 Task/Data No. of task 100/1600 

Data 

center 

No. of data 

center 

5 Length of task 100/200/400 

byte 

No. of hosts 100/1000 No. of processor per 

requirement 

250 KB 

Type of manager Time and 

space 

Type of manager Time and space 

Bandwidth 1000 Memory Total memory 204,800 MB 

Virtual 

Machine 

Total no. of 

VM 

30/20/20 No. of processor 4 per VM 

No. of processor 

per VM 

4 Total processor 120 

VM memory 512 Storage memory 100000 Mb 

Bandwidth in bit 1000 Viable memory 10,000 

VM image size 1000 Cloudlets Total no. of task 100/2000 

A variety of parameters and their corresponding values 

pertaining to various system features are included in Table 

2. It contains details about tasks, data centers, regions, 

virtual machine specs, algorithms, and dataset properties. 

The number of data centers, task duration, manager type, 

bandwidth, virtual machine configurations, CPU specs, 

and dataset specifics are a few examples. A thorough 
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summary of these factors is given in Table 2, which also 

offers information on the setup and features of the system. 

 

4.3 Performance metrics 
With an emphasis on important metrics of load 

balancing effectiveness such makespan, throughput, 

turnaround time, and degree of imbalance, the proposed 

model performance was evaluated against that of other 

well-known algorithms, including ABC, MBat, HHO-

ACO, and QMPSO. The following assessment measures 

are employed to examine the performance. These 

measures are described are as:  The time required to 

process every tasks in the designated order is known as the 

make span. The study's primary goal is to reduce the 

makespan time. Makespan can be computed using the 

following formula: 

 

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = (
𝐺𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
) ∗ 100     (17)     

                                        

Throughput is the quantity of data that can be sent and 

received in a given period. Throughput is the average ratio 

at which messages are successfully delivered to their 

intended location. The provided formula [53] can be used 

to compute it. 

 

     𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑜.𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
                                (18)                                                                           

The rate at which tasks are finished in a specified 

amount of time is referred to as throughput. It shows how 

much work is completed or processed in a certain amount 

of time. "Number of Tasks," the numerator of the 

equation, is the total number of tasks finished in the 

allotted time. It shows how much work or tasks have been 

completed successfully. The degree of imbalance 

quantifies the haphazard distribution of cloud workloads 

among virtual machines based on their respective 

capacities. It is usually computed using virtual machine 

task execution times. The provided formula [54] can be 

used to calculate it. 

 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝐷𝑒𝑔𝑟𝑒𝑒 =
Max _𝐶𝑇𝑖𝑚𝑒𝑖−  𝑀𝑖𝑛 _𝐶𝑇𝑖𝑚𝑒𝑖

𝐴𝑣𝑔 _𝐶𝑇𝑖𝑚𝑒𝑖
  (19) 

 

Here, Max _𝐶𝑇𝑖𝑚𝑒𝑖  denotes the maximum 

completion time of tasks on all virtual machines. 

𝑀𝑖𝑛 _𝐶𝑇𝑖𝑚𝑒𝑖 Denotes the minimum completion time of 

tasks on all virtual machines.𝐴𝑣𝑔 _𝐶𝑇𝑖𝑚𝑒𝑖 Denotes the 

minimum completion time of tasks on all virtual 

machines. Imbalance Degree is a measure of how well 

load balancing is working in the cloud. Lower values show 

that Workload on the cloud is properly balanced. While 

higher values demonstrate inefficient, load balancing [55]. 

 

 

 

5  Results and discussions  
With an emphasis on important metrics of load 

balancing effectiveness such makespan, throughput, 

turnaround time, and degree of imbalance, the proposed 

model performance was evaluated against that of other 

well-known algorithms, including PSO, ABC, PSO-

CALBA, M-Bat, HHO-ACO, Proposed model. In 

comparison to other algorithms, the suggested Proposed 

modeled menstruated an impressive 0.98% decrease in 

makespan and a higher accuracy rate of .18%, according 

to the comparative analysis. These results validate the 

feasibility and efficacy of the proposed model in resolving 

load balancing issues in cloud computing settings and the 

result details are given below table 3 present the 

throughput. 

 

 

Table 3: Complete no. of task of different algorithm based on No. of Task 
Given No of Task PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed model 

200 160 165 170 175 186 193 

400 355 365 372 378 385 390 

600 560 570 575 580 588 592 

800 750 770 775 780 786 791 
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Figure 2: Throughput 

 

 

 
 

Figure 3: Throughput 

 

Table 3 and Figure 2 show that the "Proposed model" 

algorithm performs the best based on the provided table. 

In a variety of task counts, it regularly receives the highest 

marks. With 800 tasks, it has a throughput of 791. In 

contrast, the "PSO" algorithm performs the poorest in the 

table provided. In a variety of task counts, it regularly 

receives the lowest scores. With 800 tasks, it has a 

throughput of 750.Thus, of the stated algorithms, the 

Proposed model method performs the best based on the 

data presented, while the PSO algorithm performs the 

poorest.  The "Proposed model" method is clearly the best-

performing algorithm, according to the statistics shown in 

Figure 3. With a throughput of 1794 when the number of 

tasks is 1800, it continuously obtains the highest marks 

across a range of task counts. On the other hand, in the 

provided table, the "PSO" algorithm performs the worst. 

With a throughput of 990 when there are 1800 tasks, it 

consistently receives the lowest scores throughout a range 

of task counts. Therefore, it can be inferred from the 

information given that, among the algorithms indicated, 

the proposed model method performs the best, while the 

PSO algorithm performs the worst. Figure 4 and Table 4 

present the Makespan of the proposed algorithm. 

 

 
                                Figure 4: Makespan 

 

Table 4: Makespan of different algorithm based on no. of virtual machine 

No. of VM PSO ABC PSO-CALBA M-Bat HHO-ACO Proposed model 

10 48 48 46 46 45 

20 100 98 97 97 96 

30 198 196 194 194 192 

40 398 395 390 390 388 
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Figure 5: Comparison no. of VM Vs no task for different 

algorithms 

The "Proposed model" technique is the best one based on 

the data presented in Table 5 and Figure 4, as it 

consistently produces the lowest makespan values for 

varying numbers of virtual machines. With consistently 

greater makespan values than other algorithms, the "PSO" 

algorithm is the worst. This suggests that when it comes 

to reducing execution time, the "Proposed model" 

algorithm outperforms the "PSO" approach. 

 

 
 

         Table 6: Makespan based on no. of task (50-180) 

Data on the number of completed tasks and the 

corresponding makespan (in milliseconds) for various 

algorithms are shown in Table 5 and Figure 5 and 6. The 

"Proposed model" method consistently obtains the lowest 

makespan values for all sets of full tasks, based on the data 

provided. As a result, it can be regarded as the optimal 

method for reducing execution time. 

 

 

Table 5: Makespan based on no. of task  

Algorith

m Name  

Complete 

No of Tasks 

Makespan 

(In Milli 

second) 

Complete 

No of 

Tasks 

Makespan (In 

Milli second) 

Complete 

No of Tasks 

Makespan (In 

Milli second) 

Complete 

No of Tasks 

Makespan (In 

Milli second) 

PSO  200 200 220 220 250 250 280 280 

ABC 200 195 220 218 250 250 280 278 

PSO-

CALBA 

200 194 220 215 250 247 280 275 

M-Bat 200 190 220 210 250 245 280 270 

HHO-

ACO 

200 188 220 207 250 240 280 265 

HGWC

A 

200 185 220 202 250 230 280 262 

Table 5 displays, for a range of parameters, the average 

results produced by numerous writers, including the 

suggested method. For varying task amounts, the authors' 

algorithms—PSO, ABC, PSO-CALBA, M-Bat, HHO, 

and the suggested approach—are assessed.  

 

 

 

 

 

The following are the average results for each algorithm 

across various job quantities: M-Bat (169.63), HHO (167), 

PSO (177.50), ABC (175.13), PSO-CALBA (172.63), and 

the suggested technique (163.25). With lower numbers 

signifying better results, these average values show how 

well each method performs in relation to the given 

parameter. 
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Figure 7: Makespan based on no. of task (200-280) 

 

Data on the number of finished tasks and the 

accompanying makespan (in milliseconds) for various 

algorithms are shown in Figure 7 and Figure 8. Across all 

sets of finished tasks, the "Proposed model" algorithm 

consistently obtains the lowest makespan values, 

demonstrating economical execution time. The "PSO" 

method, on the other hand, continuously displays 

increasing makespan numbers, suggesting a 

comparatively slower execution time. According to this 

data, the "PSO" method performs relatively worse than the 

"Proposed model" approach in terms of minimizing 

execution time. The average turnaround time of several 

algorithms for varying amounts of tasks is shown in Figure 

6 and Table 6. Across all task sets, the "Proposed model" 

algorithm consistently shows the lowest average 

turnaround time, suggesting effective completion. The 

"PSO" method, on the other hand, typically shows greater 

average turnaround time values, suggesting comparatively 

slower task completion. According to these findings, the 

"Proposed model" algorithm does exceptionally well in 

reducing average turnaround time, whereas the "PSO" 

method typically performs worse in this area. 

 

 
Figure 8: Turnaround time of tasks 

 

Data on cloudlet turnaround times for different 

algorithms and task quantities are included in Table 6 and 

Figure 8. The "Proposed model" algorithm's efficiency in 

finishing jobs is demonstrated by the fact that it 

consistently displays the quickest turnaround time values 

for all task sets. The "M-Bat" algorithm performs 

competitively in contrast, whereas the "PSO" and "HHO-

ACO" algorithms typically have greater turnaround times. 

The "Proposed model" algorithm is the most effective at 

reducing cloudlet turnover time overall. 

 

Table 6: Throughput time of tasks 
No. of Task 200 400 800 1200 1600 

PSO 3.5 5.8 6.5 5.1 6.6 

ABC 2.2 2.4 2.1 2.6 2.9 

PSO-CALBA 3.1 4.2 6.7 6.8 8.6 

M-Bat 2.9 2.8 2.8 2.2 3.1 

HHO-ACO 0.67 0.45 0.58 0.99 0.23 

Proposed model 3.4 5.9 6.6 8.1 7.2 
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Figure 9: Throughput time of tasks 

 

Table 7 and Figure 9 analysis show that the algorithms' 

throughput times vary depending on the work quantity. 

Across all task sets, the "HHO-ACO" algorithm 

consistently shows the lowest throughput time values, 

demonstrating its effectiveness in swiftly processing 

cloudlets. On the other hand, when compared to other 

algorithms, the "PSO-CALBA" algorithm typically 

displays higher throughput times, indicating slower 

processing. Across a range of task amounts, the "ABC" 

and "M-Bat" algorithms exhibit competitive performance 

with comparatively shorter throughput times. Although 

the "Proposed model" algorithm's throughput time 

numbers vary based on the number of tasks, it works 

reasonably well. 

 

 

Table 7: Degree of imbalance of cloudlets 
No. of 

Task 

P

S

O 

AB

C 

PSO-

CALB

A 

M-

Bat 

HHO-

ACO 

Proposed 

model 

200 2.

8 

2.6 2.9 2.4 0.66 0.87 

400 3.
4 

2.9 2.3 2.5 1.2 0.8 

800 2.

7 

1.2 1.5 2.2 0.9 0.5 

1200 3 1.8 0.7 1.3 0.31 0.39 

1600 3.

1 

2.2 2.5 0.8 0.21 0.19 

 

 
             Figure 10: Degree of imbalance 

 

It seems that the "Proposed model" algorithm does 

good tasks at attaining a decreased degree of imbalance   

across different task quantities, based on the numbers in 

Table 7 and Figure 10. Table 2 to 7 and Figure 4 to10 

demonstrate that, in comparison to the other methods on 

the list, the suggested approach consistently produces the 

lowest makespan value. The makespan is the amount of 

time needed to do every task in a scheduling problem. The 

algorithm is thought to be more efficient the lower the 

makespan. The superiority of the suggested algorithm 

holds true for tasks varying in size from 100 to 2000. This 

illustrates how resilient and dependable it is when 

managing different workload scenarios. It is regarded as 

the ideal option because it may consistently produce the 

lowest makespan value, demonstrating the best possible 

resource utilization and tasks scheduling. 

 

5  Conclusions and future work 
In conclusion, using the Grey Wolf Optimizer (GWO) and 

Cat Swarm Optimization (CSO) algorithms to boost 

makespan and throughput in cloud data centers has 

produced promising results. It has been shown that using 

these ingenious methods can optimize resource allocation 

and task scheduling, resulting in a reduction of makespan 

and an increase in throughput. The study's findings show 

how effectively GWO and CSO investigate and make use 

of the solution space while accounting for several cloud-

specific characteristics.  
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Through clever resource allocation and job scheduling, 

these algorithms may enhance cloud data center 

performance, leading to higher customer satisfaction and 

productivity. Further research in this area is necessary to 

improve optimization techniques and sustain continuous 

cloud advancement data center operations.  Restrictions In 

order to improve makespan in cloud data centers, this 

study introduces the HGWCA approach, which combines 

Grey Wolf Optimization with Cat Swarm Optimization. 

However, it faces two significant challenges. First off, 

there is not enough testing to determine how well the 

algorithm performs in actual cloud data centers. Second, 

due of its unclear scalability in larger data centers with 

numerous virtual machines, its effectiveness in managing 

extensive cloud settings is questioned. To confirm the 

algorithm's scalability and feasibility, these issues must be 

fixed.  Future studies on improving makespan and 

throughput in cloud data centers can focus on several key 

areas by utilizing GWO and CSO algorithms. Among 

these are the following: enhancing algorithmic techniques 

through machine learning and hybridization; enabling 

dynamic resolution of scalability concerns in large data 

centers; exploring multi-objective optimization to 

consider additional performance objectives; managing 

real-time optimization to deal with evolving 

environments; and conducting practical implementation 

and validation studies to assess practical appropriateness. 

By taking these routes, scholars can contribute to the 

development of more reliable and effective cloud 

computing infrastructures that satisfy the evolving needs 

of cloud data center providers and users. 
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