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Underwater images are often affected by various degradation phenomena, such as low contrast, blurred
details, color distortion, poor clarity, non-uniform illumination, and limited viewing distance. To address
these issues, this paper proposes a cascaded composite neural network for underwater image
enhancement, which incorporates a deep learning-based routing mechanism. Three individual neural
networks, namely UWCNN (UW), Deep Wave-Net (DW), and PUIE-Net (PU), are employed as core
components, and a method library is constructed using pairwise superimposed serial composite
enhancement models. This framework is designed to enhance degraded underwater images and
investigate the performance of the composite models. Experimental evaluations are conducted using
metrics including PSNR, SSIM, UIQM, and UCIQE. The results indicate that the representative composite
neural network model DW-PU achieves favorable performance with indicators of 20.495 (PSNR), 0.874
(SSIM), 3.270 (UIQM), and 0.897 (UCIQE), outperforming current mainstream underwater image
enhancement models in certain aspects. Comparative analysis of images enhanced by multiple methods
reveals that, in most underwater scenarios, the DW-PU model can effectively correct the color of
degraded underwater images, making them more suitable for observing underwater conditions.

Povzetek: Clanek predlaga kaskadni kompozitni nevronski model z ucecim usmerjanjem, ki zdruzuje

UWCNN, Deep Wave-Net in PUIE-Net za izboljSavo podvodnih slik.

1 Introduction

Clear and high-quality underwater images are critical for
deep-sea topographic surveys and seabed resource
investigations, and they have been widely applied in fields
such as underwater target identification and detection [1].
However, due to the influence of the special underwater
environment, underwater images are often subject to
degradation, which severely impairs their imaging quality
and recognition performance. Consequently, there is an
urgent need for underwater image enhancement
technologies to restore degraded underwater images and
obtain clearer ones.

In recent years, numerous scholars have conducted
research on underwater degraded image enhancement
technologies and proposed various methods, among which
deep learning methods are the most prevalent, as
exemplified in [2-18].

Chen et al. [15] proposed an underwater image
enhancement framework based on self-attention and
contrastive learning (UIESC) to address the issues of low
contrast, color distortion, and blurred details. Local
features and global dependencies are constructed through

spatial and channel dual attention, while crisscross
attention is utilized to mitigate the high computational
complexity of self-attention. Finally, smoothed histogram
equalization is employed for further optimization to adapt
to complex and variable underwater scenes. Zhou et al.
[16] put forward an efficient and fully guided information
flow network (UGIF-Net) for underwater image
enhancement. This network accurately approximates color
information by integrating features from two color spaces
within a unified framework. Subsequently, a dense
attention block (DAB) is adopted to guide the network in
thoroughly extracting color information from both color
spaces while adaptively perceiving critical color
information. Galdran et al. [17] leveraged the
characteristic that the brightness of the dark channel
decays rapidly in underwater images, taking the brightness
value of the brightest pixel in the dark channel as the
background light. Based on this, they derived the
expression of transmittance and then estimated the
undegraded underwater images through inverse
transmittance transformation. Nevertheless, dehazing
methods are ineffective for underwater image restoration
due to color attenuation and blue (green) color tones
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caused by the selective absorption of water and light
scattering. Yang et al. [18] proposed a new underwater
image restoration method based on the idea of first
removing color distortion and then eliminating
background scattering, aiming to overcome the
shortcomings of such methods. According to the
attenuation characteristics of light in water, the
transmittance of each channel is corrected using the
relationship between the scattering coefficient and
wavelength.

Convolutional neural networks (CNNs) are among
the most commonly used deep learning structures. CNN
methods combined with physical models aim to obtain
more accurate transmission maps through CNN networks,
thereby generating better underwater images. Fu et al. [2]
decomposed underwater image enhancement (UIE) into
distribution estimation and consensus processes and
proposed a novel probabilistic network (PUIE) that
combines conditional variational autoencoders with
adaptive instance normalization to construct enhanced
distributions. The consensus process is then used to
predict deterministic outcomes from a set of samples in
the distribution. By learning the enhanced distribution,
this method can, to a certain extent, cope with the bias
introduced in the labeling of reference images. Li et al. [3]
proposed an underwater image enhancement
convolutional neural network (CNN) model based on
underwater scene priors, named UWCNN. By combining
an underwater imaging physical model with the optical
properties of underwater scenes, they first synthesized
underwater image degradation datasets covering a diverse
range of water types and degradation levels. Then, a
lightweight CNN model was designed for enhancing each
type of underwater scene, which was trained using the
corresponding training data. Finally, this UWCNN model
was directly extended to underwater video enhancement.
Sharma et al. [4] incorporated an attentive skip mechanism
to adaptively refine the learned multi-contextual features.
The proposed framework, called Deep Wave-Net, is
optimized using traditional pixel-wise and feature-based
cost functions.

1.1 Research gaps

In the field of underwater image enhancement, composite
models systematically integrate the advantages of multiple
individual models through innovative architectures that
combine enhancement models in series. Such models have
achieved significant breakthroughs in key technical areas
including the restoration of underwater image clarity and
the correction of color distortion thereby addressing
existing limitations in these domains. Specifically, deep
learning-based composite models can cascade Retinex
theory-based image enhancement modules with
Generative  Adversarial Network (GAN) texture
restoration modules, effectively mitigating the insufficient
enhancement performance of traditional single models in
complex aquatic environments and advancing the
practical application of underwater visual processing
technologies. Below is a detailed analysis to elaborate on
our research motivation:
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Single neural networks such as UWCNN and
Deep Wave-Net predominantly adopt fixed
architectures for feature extraction, limiting
their ability to simultaneously capture the global
color distribution and local details of underwater
images. For example, while UWCNN integrates
a physical model, its shallow network structure
may fail to extract deep semantic features,
leading to incomplete color correction in
complex scenes. Similarly, although Deep
Wave-Net’s skip connection mechanism enables
multi-scale feature fusion, a single network
lacks sufficient adaptability to the unique light
attenuation patterns inherent in underwater
environments.

Existing single models primarily rely on
synthetic datasets, which struggle to fully
simulate the complex degradation processes
present in real underwater environments. For
instance, the dataset used to train UWCNN may
not include images of extremely turbid waters,
resulting in limited generalization capabilities
for the model in real-world scenarios. Although
the composite model proposed in this paper
combines multiple single models, it does not
address the domain shift problem between
training data and real-world scenes.
Underwater image enhancement requires
simultaneous handling of multiple tasks, such as
contrast enhancement, color correction, and
noise reduction. Single models often utilize a
single loss function for optimization, making it
challenging to balance the objectives of each
task. For example, optimizing solely for PSNR
may lead to excessive image smoothing, causing
the loss of texture details; conversely, focusing
exclusively on color correction may neglect
noise suppression. While the PU-DW model
demonstrates  superior  performance  in
guantitative metrics, single models generally
lack designs for multi-task collaborative
optimization, thereby limiting improvements in
comprehensive performance.

The specific research contributions are as follows:

A cascaded composite model was proposed:
To address the limitations of single neural
networks in extracting features from underwater
images, an innovative approach was developed
to connect multiple individual models
(including UWCNN, Deep Wave-Net, and
PUIE-Net) into a composite neural network. By
designing a cascaded architecture, each model is
assigned specific tasks such as defogging, color
correction, and contrast enhancement forming
an orderly processing pipeline that enables
multi-task collaborative optimization. This
approach compensates for the inability of single
models to simultaneously capture global color
distribution and local details.

A learnable routing mechanism was
implemented: A learnable routing mechanism
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was integrated into the composite model
architecture. Through training, this mechanism
can automatically analyze characteristic
information of input underwater images,
including degradation degree, water quality, and
lighting conditions. Based on these analyses, it
adaptively selects processing paths across
different single models and dynamically adjusts
parameter combinations for each model, thereby
formulating optimal enhancement strategies for
diverse underwater scenarios.

» Efficient processing of degraded images was
achieved: By combining the cascaded
composite model architecture with the learnable
routing mechanism, the model’s computational
processes and parameter configurations were
optimized. On one hand, the advantages of
individual models are leveraged to enable
parallel processing, reducing computational
redundancy. On the other hand, the learnable
routing mechanism intelligently allocates tasks
to avoid unnecessary computations. This
approach significantly improves the processing

efficiency of degraded underwater images
without compromising enhancement
performance.

1.2 Objectives

This study proposes a series - connected composite
neural network for underwater image enhancement,
aiming to achieve superior image enhancement
performance. Experimental results demonstrate that, in
complex underwater image enhancement scenarios, the
series - connected composite network for underwater
image enhancement outperforms other mainstream
underwater image enhancement models. Furthermore, the
systematic structure of this network allows for better
integration of other underwater image enhancement
algorithms, enhancing its extensibility.

1.3 Contributions

Existing methods in the field all utilize deep learning
techniques to learn the mapping relationship between low
- quality input images and high - quality output images.
Despite differences in their specific implementations and
technical details, these methods share a core objective: to
effectively improve the quality of underwater images
through deep learning. Building on three neural network
methods UWCNN, Deep Wave - Net, and PUIE Net this
study explores the feasibility of a Cascade-Based
composite neural network and proposes a composite
model based on these three networks. Experiments
validate that the proposed composite model achieves
better performance than the original individual models.
The overall goal of this study is, based on the three
existing underwater image enhancement neural network
methods (UWCNN, Deep Wave - Net, and PUIE - Net),
to explore the feasibility and effectiveness of composite
neural networks in underwater image enhancement tasks.
It intends to construct a model that can more efficiently
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address the problem of underwater image quality
degradation, thereby improving the visual quality and
application value of underwater images.

Specific contributions are as follows:

* A cascaded composite model is proposed. The
underwater image enhancement models are
concatenated and integrated to form a composite
model.  This architecture achieves the
collaborative  resolution of  degradation
problems through a staged processing
mechanism.

* A learnable routing mechanism is proposed. To
tackle the issues of feature conflicts and
computational redundancy in traditional serial
structures, a gated feature routing module is
developed.

» Efficient processing of degraded images is
realized. By integrating the composite model
architecture  with the learnable routing
mechanism, the computing process and
parameter configuration are optimized. This
enables parallel processing to reduce
redundancy, and tasks are intelligently allocated
to avoid unnecessary computations, thus
improving the efficiency of underwater image
processing.

2 Related work

The PUIE-Net proposed in Reference [2] enhances
the image's detail processing capability by optimizing
edge detection and feature extraction through improved
loss functions. The UWCNN introduced in Reference [3]
adopts an architecture consisting of convolutional layers
and pooling layers for underwater image processing. In
Reference [4], the proposed Deep Wave-Net converts
wavelength information into data features, aiming to
perform processing from the perspective of fundamental
intrinsic data characteristics. The UIESC presented in
Reference [15] utilizes multi-scale convolution for feature
extraction, enabling the acquisition of image information
across different scales. The UGIF-Net proposed in
Reference [16] generates and processes images based on
the GAN framework, leveraging the adversarial
mechanism to enhance image quality. Reference [19]
introduces UColor, which employs deep learning
algorithms to adjust RGB channels for color restoration.
The UGAN proposed in Reference [20] generates
enhanced images through a generator combined with prior
knowledge, with the goal of optimizing images using such
prior information. In Reference [21], SGUIE adopts a
consistency loss and pseudo-label mechanism, aiming to
effectively utilize unlabeled data. The CECF introduced in
Reference [22] integrates a local contrast enhancement
algorithm and a feature pyramid to fuse features of
different scales, with the objective of improving the
comprehensive processing effect of image features.
Reference [23] presents Semi-UIR, which uses labeled
data for training and combines pseudo-labels to jointly
optimize the restoration of damaged images. The UIE-DM
proposed in Reference [24] dynamically adjusts the
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network structure and parameters via an environmental
perception module to adapt to different environments. In
Reference [25], HCLR-Net processes images by
combining  high-contrast learning and low-rank
representation. Finally, the UIE-WD introduced in
Reference [26] integrates image features based on
weighted  decision-making, achieving advantage
integration through weighting. Table 1 Analysis of related
work.

3 Proposed work

3.1 System method

In our system, underwater degraded images are evaluated
by the assessment module, which is designed to determine
whether the input image is degraded. If classified as a
normal image, it is directly output. Conversely, if the
image is identified as degraded by the assessment module,
it is forwarded to the routing module. Through the
decision sub-module within the routing module, a
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sequential composite enhancement model from the
method library is selected for the enhancement process.
After enhancement, a processed image is generated, which
then undergoes re-assessment by the image assessment
module. If this image is judged to be normal, it is output;
otherwise, it is redirected to the routing module for another
round of image enhancement operations. The system
flowchart is shown in Figure 1.

3.2 Component description

To achieve our cascaded composite neural network, we
use multiple underwater image enhancement models as
components. By connecting these components in series,
we can form a composite neural network. Therefore, we
need to analyze the relevant characteristics and functions
of each component.

Table 1: Analysis of related work

Ejr];egi?ce Method Proposed method Limitation
2] PUIE-Net Improve the loss function to _optimize edge It has high reqyirements for the dataset, and small samples are
detection and feature extraction prone to overfitting
3] UWCNN Adopt a convolutional layer and pooling layer | It has poor adapta_bi_l ity to complex _ur_1derwater_environments,
architecture low algorithm efficiency and insufficient real-time performance
4] DeepWave-Net Convert wavelength information into data Th_e abilit_y t(_) handle unstructured data is limited and its
features universality is poor
[15] UIESC Features are extracted using multi-scale The ser_‘n_antic segmentation boun_daries are ambiguous, and the
convolution recognition rate of small targets is low
[16] UGIE-Net Dense attention block (DAB) T_he_training is unstable, prone to m0(_ie collqpse, and itis
difficult to balance the realistic and diverse images
[19] UColor Adjt_Jst the RGB channels using deep learning a | The color recovery varies grea}tly with different water qualities
Igorithms and lacks an adaptive mechanism
[20] UGAN The generator compines prior knowledge to T_he_training is unstable, prone to mot_je collgpse, and it is
generate enhanced images difficult to balance the realistic and diverse images
[21] SGUIE Consistt_ency loss and pseudo-labeling Unlabeled data has low utilization and the model converges
mechanism slowly
The local contrast enhancement algorithm Fusion is prone to losing details, which affects image quality
[22] CECF fuses features of different scales with the
feature pyramid
Repair damaged images by training with The repaired area does not match the surrounding area well and
[23] Semi-UIR labeled data and jointly optimizing with the effect is unnatural
pseudo-labels
The environmental perception module The calculation is complex, the hardware consumption is high
[24] UIE-DM dynamically adjusts the network structure and and the processing is slow
parameters
[25] HCLR-Net Combine high—contrast learning with low-rank | The feature extraction_ fro_m c_omplex back_grounds is poor, and
representation the low-rank assumption is difficult to satisfy
Make weighted decisions based on image Weights rely on experience and lack adaptability, making it
[26] UIE-WD features to determine the comprehensive difficult to adapt to diverse scenarios
advantages

Routing module

Degraded Image ‘
image evaluation

decision I‘JI False

A 4 |
| method base Enhanced TBciEE Tur Output
L image evaluation image

Ture

Figure 1: System flowchart
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3.2.1 Component description

Therefore, we conducted numerical comparisons,
calculating the Peak Signal-to-Noise Ratio (PSNR),
Structure Similarity Index Measure (SSIM), Underwater
Colour Image Quality Evaluation (UCIQE), and
Underwater Image Quality Measure (UIQM) of the
degraded images after applying different neural network
enhancement techniques. These metrics were used to
assess the effectiveness and quality of the image
enhancement. Thus, we were able to evaluate the
performance of the image enhancement model.

SSIM: This is an index used to evaluate the
similarity between two images, often employed to
measure the similarity between an image before and after
distortion. The calculation of SSIM is based on the
sliding window method, that is, each calculation takes a
window of size NxN from the image, calculates the SSIM
index based on the window, traverses the entire image,
and then takes the average of all window values as the
SSIM index of the entire image. Let x represent the data
in the window of the first image, and y represent the data
in the window of the second image. The similarity of the
images consists of three parts: 1(x,y) for brightness,

c(x,y) for contrast, and s(x,y) for structure.

Zluxluy + Cl (1)

I(x,y) =
/sz +,u§ +C
20,0, +C
cxy) =t (2)
o, +o, +¢,
+C.
s(x,y) = Ot 3)

0,0, +C;
2u,p, +c)(20,0, +c,) @
(#5 + g +¢) (0 + 0y +¢,)

Here, u, and p, respectively represent the mean

SSIM (x,y) =

values of x and y, o, and o, respectively represent the

variances of x and vy, o

between x and y, ¢, = (k,L)?, ¢, =(k,L)* and ¢, =c,/2
represent three constants, avoiding division by zero, k;
and k, respectively defaultto 0.01 and 0.03, L represents

the range of image pixel values, and L=2%-1, B
represent the number of pixel bits.

PSNR: It is commonly used to evaluate the degree
of distortion of compressed images or videos compared
to the original images or videos. The higher the PSNR,
the higher the similarity between the compressed image
and video and the original image and video, and the better
the quality. MAX represents the maximum value of the
pixel values after 8-bit image normalization, which is
255. MSE represents the mean square error. I(i, j)

represents the value of the image at pixel position (i, j),
and R(i, j) represents the value of the reference image at
pixel position (i, j) .

represents the covariance
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PSNR:lO-Iogm[MAX j (5)

M N
MES =TS S (11, )-R(i 1)) ©)
M-N = j=1
UCIQE: UCIQE refers to the evaluation of the color
quality of underwater images to determine the visual
performance and effectiveness of the images. The closer
the value is to 1, the richer the image's color. o

c

represents the standard deviation of chromaticity, con,
represents the brightness contrast, s represents the
color saturation, c,,c,,c, represent weighting
coefficients, and they are usually set as ¢, =0.4680 ,

¢, =0.2745 ¢, =0.2576 .

UIQM is an indicator used to evaluate the quality of
underwater images. It combines the color measurement
indicator UICM, the clarity measurement indicator
UISM, and the contrast measurement indicator UIConM,
reflecting the color, clarity and contrast of underwater
images. Here, w,w,,w, represents the weighting

coefficient, and it is generally set to w, =0.5,w, =0.3,
w, =0.2.

Evaluation of input image: The input image
I,, e ™2, where H and W represent the height and

width of the image respectively, and 3 represents the
number of RGB channels. By calculating the unified
evaluation index of image q,,, =UIQM(l,) quality,
Ouoior =UCIQE(I,,) color quality index, and s =[H,W]
pixel size of the image. When UIQM < 3, it indicates that
the image has color distortion. When UCIQE < 0.2, it
indicates that the image has insufficient color saturation.
When s =[H,W]>400x400, it indicates that the image

is too large, and it will consume a certain amount of time
during image enhancement.

3.2.2  Module design

Routing Module: The routing module is a module
composed of a decision-making module and a method
library module. When dealing with the selection of multi-
model cascading schemes, we innovatively proposed a
learnable routing mechanism. The core of this
mechanism lies in its ability to make intelligent routing
optimization decisions between subnets. Specifically,
this mechanism selects the combination model
processing scheme by training a dedicated routing
network, based on the underwater image features input
and the image quality evaluation indicators processed by
each sub-model.

Decision Module: The training process of the
decision module. By designing a loss function L that
minimizes, we can learn the parameters W,,b,,\W,,b, of

the decision module. The training process can be
expressed as D representing the training dataset, which
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includes the degraded images |, and the corresponding
enhanced images | along with their related

parameters.

The decision-making process of the decision
module. By obtaining the feature quantities
X =[ g+ Aeotor » Qguaity» S] OF the input image and through

the decision function R(x), the probability distribution
pel™ isoutput. Here, p, represents the probability of

the selection method M, . This achieves the selection of

an appropriate composite model method for the image to
be reinforced by calculating the distribution probability
p =soft max(W,x+b,) of method M, in the method

library, where W, e ™ and b e[ are learnable

parameters, and d is the input feature x. The decision-
making mechanism of the routing module is shown in
Figure 2.

The underwater image enhancement methods in the
method library:

Deep Wave-Net (DW): This model is distinguished
by its incorporation of an attentive skip mechanism and
wavelength-aware feature transformation, converting
wavelength information into discriminative data features
[4]. This unique characteristic allows it to capture multi-
scale contextual details, especially in scenarios with non-
uniform illumination and blurred textures. Its primary
function is to refine local details and strengthen edge
information, complementing the global feature
processing of preceding components in the cascade.

UWCNN (UW): This model is built on a
convolutional neural network architecture that integrates
underwater scene priors and physical imaging models [3].
Its key characteristic is its lightweight structure, enabling
efficient extraction of low-to-medium level features from
underwater images. Functionally, it excels in preliminary
processing tasks such as mitigating mild color distortion
and enhancing basic contrast, making it suitable as an
initial component in the cascaded framework to lay a
foundation for subsequent enhancement steps.

PUIE-Net (PU): Leveraging a probabilistic network
design  that combines conditional variational
autoencoders with adaptive instance normalization, this
model focuses on learning enhanced feature distributions

target

Extract the feature quantity x

Jf‘m-’g = {é (!l'ar)
Input image p it UCIQE(L”)
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rninwl,bl,wz,l:»z E(Im,lmge‘)~D |:L(Iin’ Itarget ;Wl’bI’WZ’bZ):| (7)

[2]. A notable characteristic is its robustness in handling
complex color degradation, which is attributed to its
optimized loss function that prioritizes edge preservation
and fine-grained feature extraction. In the cascaded
structure, its core function is to perform advanced color
correction and suppress residual noise, thereby enhancing
the overall visual quality of images processed by
upstream components.

3.3 Model building

To optimize the selection of multi-model cascading
schemes, a learnable routing mechanism is employed to
refine model selection decisions. This mechanism
involves training a routing network that selects
enhancement schemes from the method library based on
the features of input underwater images and the image
quality evaluation metrics derived from processing by
each sub-model. The process is as follows: first, feature
extraction is performed on the input underwater images.
Subsequently, metrics such as PSNR, SSIM, UIQM, and
UCIQE are computed for both the extracted features and
the images processed by each sub-model. These features
and metrics are then fed into the routing network,
enabling it to determine the optimal combination of
model processing schemes.

Individual enhancement models from the method library
serve as middleware for the cascaded composite model.
During the data processing phase, after each neural
network model enhances the image data, its output is
processed and used as the input for the next cascaded
neural network component. By exploring various
combination strategies of individual neural network
components, a cascaded neural network composite model
is constructed. The specific workflow includes dataset
acquisition, image normalization, sub-model
enhancement, another round of image normalization and
sub-model enhancement, and final multi-index
evaluation of the generated images. Taking the PUIE-
Net-Deep Wave-Net composite model as an example, the
relevant steps are illustrated in Figure 3.

' ™)
Decision function Rix)
p=softmax(Wx+b;)

I.=M(I,)

1,ER™™ G i =UIOM(1,)
S=[H,W]

—
Complex method

L. -

Figure 2: Routing module decision-making mechanism
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Data processing

PIUE-Net

Data processing

Deep WaveNet

Figure 3: Processing flow of composite model

To systematically investigate the performance
improvements of composite models relative to single
enhancement models, this paper constructs various
composite model architectures and acquires relevant data
through comparative experiments. The specific results are
presented in Table 2.

Table 2: Method library composite enhancement model

table
UWCNN PUIE-Net ~ D°eP \é\:ave-N
(uw) (PU) ow)
UWCNN
- Uw-PU UW-DW
(uw)
PUIE-Net
(PU) PU-UW — PU-DW
Deep Wave-N
et DW-UW DW-PU _
(DW)

4 Results and discussion

4.1 Experimental environment

The experiment was conducted on a system equipped
with an Intel Core i7 processor, 16GB of RAM, and an
NVIDIA RTX 4060 graphics card, which provided robust
computational support for model training and testing. The
experimental environment was developed based on
Python 3.10. Specifically, the PyTorch deep learning
framework was adopted for model construction, while the
OpenCV library was utilized for image preprocessing and
postprocessing operations. Additionally, the NumPy and
Pandas libraries were employed for data processing and
analysis, and the Matplotlib library was used for data
visualization. The experimental environment is shown in
Table 3.

Table 3: Experimental Environment List

4.2 Data preparation

The datasets utilized in this study are summarized in Table
4. The U45 dataset [27] focuses on underwater multi-task
research and includes image samples exhibiting
underwater distortion characteristics. The EUVP dataset
[28] is specifically designed for underwater image
enhancement tasks, with its data structure comprising
paired and unpaired data: the former consists of three
subsets (Underwater Dark, Image Net, and Scenes)
totaling 24,840 images, which are suitable for supervised
learning scenarios; the latter contains 6,665 low/high-
quality image pairs, supporting unsupervised or semi-
supervised training. As the first benchmark for real
underwater scene enhancement, the UIEB dataset [29] is
divided into a supervised training subset (890 pairs of
original images and artificially enhanced reference
images) and a challenge test subset (60 reference-free
images for evaluating algorithm robustness). The
Underwater_ImageNet (UWIN) dataset [20] is an open-
source underwater vision dataset extended from the
traditional ImageNet, integrating the degradation
characteristics of the underwater environment with the
semantic diversity of natural images.

To construct a dataset for training the routing module
and decision-making module, 500 images were randomly
selected from each of the EUVP, UIEB, and
Underwater_ImageNet datasets. Corresponding enhanced
images were generated using the method library, and the
degraded and enhanced images were paired. This dataset
was then split into training, test, and validation sets at a
ratio of 8:2:2. Additionally, the UIEB dataset was used as
a benchmark to compare performance with the recently
proposed outstanding underwater image enhancement
algorithm UGIF-Net.

Table 4: The dataset used in the experiment

Dataset name | Reference materials

Configuration Experimental environment U45-[26] https://github.com/IPNUISTlegal/underwater-test-
Intel Core i7 CPU dataset-U45-
16GB Memory size EUVP[29] https://irvlab.cs.umn.edu/resources/euvp-dataset
NVIDIARTX060 GPU UIEB[22] https://li-chongyi.github.io/proj_benchmark.html
Python 3.10 Programing language UWINJ20] https://github.com/xinzhichao/underwater_datasets
OpenCV Image processing and analysis
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Figure 5: Enhanced image and RGB channel color histogram

4.3 Numerical experiment

On the UIEB dataset, numerical experiments were condu
cted using the cascaded underwater image enhancement ¢
omposite neural network model, with an in-depth analysi
s performed on the color histograms of the RGB channels

A comparative analysis of the color histogram of the
enhanced image in Figure 5, the original image in Figure
4, and their respective RGB channel color histograms rev
eals that the RGB channel values in the original image's ¢
olor histogram exhibit significant fluctuations, with the re
d channel showing the most pronounced amplitude. In co
ntrast, for the image enhanced by the proposed model, the
distribution curves of the RGB channels in the color hist
ogram are more balanced, and the differences in values b
etween channels are significantly reduced. This result int
uitively validates the effectiveness of the image enhance
ment process. From a visual perception perspective, the ¢
omposite neural network model demonstrates better visua
| adaptability in enhancement effects compared to the sin
gle neural network model, aligning more closely with hu
man visual preferences.

However, not all models achieve ideal enhancement
effects. Taking the DW-UW and PU-UW models as exam
ples, the processed images exhibit obvious color discrepa
ncy issues, accompanied by the persistence of low-light p

for the output images of each enhancement model. The s
pecific experimental results are presented in Figure 4 and
Figure 5.

henomena. Additionally, the color histograms of the enha
nced images still show significant fluctuations, reflecting
the limitations of these two model types in image enhanc
ement. To achieve an objective and precise evaluation of
model performance, this study introduces image quality a
ssessment metrics such as PSNR, SSIM, UCIQE, and Ul
QM for quantitative analysis of the test images. The speci
fic evaluation results are presented in Table 5 below.

This study systematically compares the objective pe
rformance of nine underwater image enhancement metho
ds across three standard datasets: EUVP, LSUI, and UWI
N. The experimental results indicate that the DW-PU met
hod exhibits significant advantages: on the LSUI dataset,
it ranks first with a PSNR of 22.232+0.321 and an SSIM
of 0.870+0.007; on the EUVP dataset, its PSNR and SSI
M metrics reach 21.247+0.293 and 0.818+0.009, respecti
vely; on the UWIN dataset, it also maintains a leading po
sition, achieving excellent performance with a PSNR of 2
0.619+0.343 and SSIM values of 0.818+0.009 and 0.803
+0.013.

Table 5: Quantitative results of supervised training on the PSNR and SSIM metrics, using the full-reference
benchmark. The best results are indicated in red, and the second-best results are indicated in blue

Method EUVP Lsul UWIN
PSNR{ SSIM? PSNR? SSIM? PSNR{ SSIM1

DW 21.208+0.217 0.884:+0.004 15.515:+0.227 0.759:+0.006 16.98620.312 0.798+0.014
DW-PU 21.247+0.293 0.818+0.009 22.232+0.321 0.870+0.007 20.619+0.343 0.803+0.013
DW-UW 18.275+0.213 0.762:+0.008 14.766+0.210 0.696:0.006 15.948+0.250 0.723+0.012

PU 13.721+0.252 0.764:+0.008 14.031+0.233 0.799+0.007 13.501+0.297 0.733+0.015
PU-DW 12.389+0.233 0.729+0.008 12.660:+0.238 0.778+0.007 11.699:0.260 0.695+0.014
PU-UW 13.069+0.233 0.693:+0.008 13.583+0.217 0.740+0.007 13.087+0.273 0.686+0.012

uw 13.978+0.255 0.745+0.008 12.956+0.206 0.7090.007 13.927+0.290 0.719+0.014
UW-DW 18.371+0.252 0.802:+0.008 17.19020.270 0.840£0.007 16.156:0.269 0.768+0.012
UW-PU 13.688+0.257 0.730:£0.009 14.158+0.236 0.775+0.007 13.529+0.273 0.717+0.012

Table 6: Quantitative results based on no-reference benchmarks with UIQM and UCIQE as indicators. The best result

s are shown in red and the second-best results in blue

Method EUVP LSul UWIN
UIQM1 UCIQE{ UIQM1 UCIQE] UIQM1 UCIQE
DW 2.904:0.037 0.805:0.009 2.947+0.026 1.359:0.060 2.826:0.040 1.265+0.159
DW-PU 3.086:+0.027 1.246+0.142 3.127+0.020 1.016+0.019 2.982:+0.031 0.810+0.008
DW-UW 2.473+0.052 1.192+0.102 2.760+0.033 1.015+0.061 2.511+0.054 1.125+0.134
PU 3.044+0.028 0.802:0.010 3.092:x0.030 0.753+0.014 3.012:+0.031 0.772+0.010
PU-DW 2.977+0.031 0.901+0.012 3.034+0.030 0.8170.013 2.909+0.030 0.886+0.013
PU-UW 2.739+0.034 0.882:x0.055 2.932:+0.029 0.795+0.037 2.765+0.035 0.875+0.065
uw 2.327+0.050 0.983+0.086 2.429+0.055 0.645+0.041 2.320+0.051 0.921+0.146
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UW-DW 2.7574£0.044 1.153+0.101 2.844+0.042 0.768+0.057 2.727+0.047 1.236+0.204
UW-PU 3.021+0.029 0.762+0.013 3.110+0.029 0.707+0.013 3.014+0.032 0.729+0.011

Table 7: Comparison Experimental Results under the UIEB Dataset. The best results are shown in red and the second-
best results in blue

Method PSNR SSIM UIQM1 UCIQET
DW 20.091 0.866 2.888 0.866
DW-PU 20.495 0.874 3.270 0.897
DW-UW 24.156 0.746 3.223 0.783
PU 13.875 0.745 2.790 0.760
PU-DW 12.835 0.735 3.143 0.830
PU-UW 13.298 0.689 3.101 0.891
uw 14.206 0.797 2.721 0.765
UW-DW 18.767 0.827 2.808 0.868
UW-PU 14.073 0.727 3.265 0.703
UGIF-Net 24.466 0.915 3.129 0.622

Table 6 provides a detailed comparison of the
performance of cascaded underwater image enhancement
methods in terms of no-reference evaluation metrics
across three major datasets; EUVP, LSUI, and UWIN. The
experimental results reveal that the DW-PU model
combination exhibits a significant advantage in the UIQM
metric. It achieves the optimal results of 3.086+0.027 and
3.127+0.020 on the EUVP and LSUI datasets,
respectively, and ranks first across all three datasets.

Table 7 conducts a comprehensive performance
evaluation of the recent underwater image enhancement
method UGIF-Net on the UIEB dataset. The experimental
results indicate that the tandem composite model lags
slightly behind UGIF-Net in terms of PSNR and SSIM
metrics. The tandem composite model represented by

DW-PU achieves a UIQM value of 3.270 and a UCIQE
value of 0.897, while its PSNR value of 20.495 is slightly
lower than that of the mainstream method UIESC
(24.466). Notably, the tandem composite model
demonstrates unique advantages in color restoration and
overall image quality improvement, confirming its
effectiveness in underwater image enhancement tasks.

To compare the performance differences between
single and composite neural network models, three single
models (UWCNN, PUIE-Net, and Deep Wave-Net) and
six composite models (UW-PU, UW-DW, PU-UW, PU-
DW, DW-UW, and DW-PU) were selected. Experiments
were conducted using the U45 dataset [27], and the
specific comparison results are presented in Figure 6.

(@) (b) (©) (d) (e

(9)
(a)Original (b))UWCNN (c)Deep Wave-Net (d)PUIE-Net (e)UW DW (HUW-PU (g)DW-UW (h)DW-PU (i)PU-DW
()PU-UW

(h) (i) )

Figure 6: Comparison of enhancement effects of multiple composite models
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After enhancement processing, the test images exhibit
significant changes: compared with the original images,
the enhanced images in column (b) still suffer from color
distortion; the original image in column (g) was captured
under low-light conditions, but its details become clearly
distinguishable after enhancement; the original image in
column (j) had blurring issues, which are effectively
alleviated. As intuitively observed from the sample
images, the cascaded enhancement model demonstrates
certain advantages.

5 Conclusion

This study focuses on analyzing types of image
degradation and evaluating metrics for enhanced images
based on a cascaded underwater image enhancement
composite neural network model. A cascaded underwater
image enhancement model is constructed, which first
establishes a routing mechanism to enable model
allocation for serial enhancement schemes, followed by an
analysis of the advantages of three underwater image
enhancement models: UWCNN, Deep Wave-Net, and
PUIE-Net. To explore the enhancement performance of
composite models, the method library incorporates
various serial enhancement model allocation methods,
including DW-PU, DW-UW, PU-DW, PU-UW, UW-DW,
and UW-PU. Using the UIEB dataset, experiments
evaluate images processed by 3 single models, 6
composite models, and the underwater image
enhancement algorithm UGIF-Net. Parametric evaluation
metrics (PSNR and SSIM) and non-parametric evaluation
metrics (UCIQE and UIQM) are calculated, with
comparative analysis conducted against the mainstream
method UGIF-Net. The results indicate that the cascaded
underwater image enhancement composite neural network,
exemplified by the DW-PU composite model (PSNR
20.495, SSIM 0.874, UIQM 3.270, UCIQE 0.897),
exhibits certain advantages in most scenarios where visual
quality is a key concern.

Funding

This work was supported by the Research Basic Ability
Improvement Project of Middle and Young Teachers in
Colleges and Universities of Guangxi (No. 2024KY 1800),
and the National College Students' Innovation and
Entrepreneurship Training Program (No. 202413639007).

References

[1] Guo J, Li C, Guo C, et al. Research progress of
underwater image enhancement and restoration
methods. Journal of Image and Graphics, 22(3): 273-
287, 2017. https://doi.org/10.11834/jig.20170301

[2] Fu Z, Wang W, Huang Y, et al. Uncertainty inspired
underwater image enhancement. arXiv e-prints,
2022. https://doi.org/10.48550/arXiv.2207.09689.

[3] Li C, Anwar S, Porikli F. Underwater scene prior
inspired deep underwater image and video
enhancement. Pattern Recognition, 98: 107038,

Informatica 49 (2025) 367-378 377

2020.

https://doi.org/10.1016/j.patcog.2019.107038
[4] Sharma P, Bisht I, Sur A. Wavelength-based

Attributed Deep Neural Network for Underwater

Image Restoration. ACM  Transactions on
Multimedia Computing Communications and
Applications, 2023.

https://doi.org/10.1145/3511021

[5] Dong She. Retinex-based Visual Image Enhancement
Algorithm for Coal Mine Exploration Robots.
Informatica, vol. 48, no. 11, pp. 133-146, 2024.
https://doi.org/10.31449/inf.v48i11.6003

[6] Pratima Sarkar, Sourav De, Sandeep Gurung. U-
YOLOvV3: A Model Focused on Underwater Object
Detection. Informatica, vol. 49, no. 6, pp. 87-102,
2025. https://doi.org/10.31449/inf.v49i6.6642

[7] Wala'a Nsaif Jasim, Zainab Najem Nemer, Esra‘a
Jasem Harfash. Implementation of Multiple CNN
Architectures to Classify the Sea Coral Images.
Informatica, vol. 47, no. 1, pp. 43-50, 2023.
https://doi.org/10.31449/inf.v47i1.4429

[8] Deng Z, Zhu L, Hu X, et al. Deep Multi-Model Fusion
for Single-Image Dehazing. IEEE.
https://doi.org/10.1109/ICCV.2019.00254

[9] Cong X, Zhao Y, Gui J, et al. A Comprehensive Survey
on Underwater Image Enhancement Based on Deep
Learning. 2024.
https://doi.org/10.48550/arXiv.2405.19684

[10] Liu L, Wiberg A O J, Myslivets E, et al. Comparison
of One- and Three-Mode Phase-Sensitive
Wavelength Multicasting. Journal of Lightwave
Technology, 34(10): 2491-2499, 2016.
https://doi.org/10.1109/JLT.2016.2529680

[11] Ailong Tang, Ling Wei, Zhiping Ni, Qiuyong Huang.
Multi-Modal Modified U-Net for Text-Image
Restoration: A Diffusion-Based  Multimodal
Information Fusion Approach. Informatica, vol. 49,
no. 2, pp. 319-332, 2024,
https://doi.org/10.31449/inf.v49i2.8245

[12] Lei Y, Yu J, Dong Y, et al. UIE-UnFold: Deep
Unfolding Network with Color Priors and Vision
Transformer for Underwater Image Enhancement.
2024,
https://doi.org/10.1109/DSAA61799.2024.1072284
2

[13] Wang J, Yu L, Tian S, et al. AMFNet: An attention-
guided generative adversarial network for multi-
model image fusion. Biomedical signal processing
and control, 2022.
https://doi.org/10.1016/j.bspc.2022.103990

[14] Lei C, Zhang H, Wang Z, Miao Q. Multi-Model
Fusion Demand Forecasting Framework Based on
Attention Mechanism. Processes 12: 2612, 2024.
https://doi.org/10.3390/pr12112612

[15] Chen R, Cai Z, Yuan J. UIESC: An underwater image
enhancement framework via self-attention and
contrastive learning. IEEE Transactions on Industrial
Informatics, 19(12): 11701-11711, 2023.
https://doi.org/10.1109/T11.2023.3249794


https://doi.org/10.31449/inf.v49i6.6642
https://doi.org/10.31449/inf.v49i6.6642
https://doi.org/10.1109/JLT.2016.2529680
https://doi.org/10.1109/TII.2023.3249794

378  Informatica 49 (2025) 367-378

[16] Zhou J, Li B, Zhang D, et al. UGIF-Net: An Efficient
Fully Guided Information Flow Network for
Underwater Image Enhancement. IEEE Transactions
on Geoscience and Remoter Sensing, 61: 1-17, 2023.
https://doi.org/10.1109/TGRS.2023.3293912.

[17] Galdran A, Pardo D, Picon A, et al. Automatic red-
channel underwater image restoration. Journal of
Visual Communication and Image Representation,
2015, 26: 132-145.

[18] Yang Aiping, Zheng Jia, Wang Jian, et al.
Underwater image restoration based on color cast
removal and dark channel prior. Journal of
Electronics and Information Technology, 2015,
37(11): 2541-2547.

[19] Li C, Anwar S, Hou J, et al. Underwater Image
Enhancement via Medium Transmission-Guided
Multi-Color Space Embedding. IEEE Transactions
on Image Processing, PP(99): 1-1, 2021.
https://doi.org/10.1109/T1P.2021.3076367

[20] Fabbri C, Islam M J, Sattar J. Enhancing underwater
imagery using generative adversarial networks. 2018
IEEE international conference on robotics and
automation (ICRA). IEEE, 2018: 7159-7165.
https://doi.org/10.1109/ICRA.2018.8460552

[21] Qi Q, Li K, Zheng H, et al. SGUIE-Net: Semantic
Attention Guided Underwater Image Enhancement
with Multi-Scale Perception. arXiv e-prints, 31:
6816-6830, 2022.
https://doi.org/10.48550/arXiv.2201.02832.

[22] Cong X, Gui J, Hou J. Underwater organism color
fine-tuning via decomposition and guidance.
Proceedings of the AAAI conference on artificial
intelligence, 38(2): 1389-1398, 2024.
https://doi.org/10.1609/aaai.v38i2.2790

[23] Huang S, Wang K, Liu H, et al. Contrastive semi-
supervised learning for underwater image restoration
via reliable bank. Proceedings of the IEEE/CVF
conference on computer vision and pattern
recognition. 2023: 18145-18155.
https://doi.org/10.48550/arXiv.2303.09101

[24] Tang Y, Kawasaki H, Iwaguchi T. Underwater image
enhancement by transformer-based diffusion model
with non-uniform sampling for skip strategy.
Proceedings of the 31st ACM international
conference on multimedia. 2023: 5419-5427.
https://arxiv.org/abs/2309.03445

[25] Zhou J, Sun J, Li C, et al. HCLR-Net: hybrid
contrastive learning regularization with locally
randomized perturbation for underwater image
enhancement. International Journal of Computer
Vision, 132(10): 4132-4156, 2024.
https://doi.org/10.1007/s11263-024-01987-y

[26] Ma Z, Oh C. A wavelet-based dual-stream network
for underwater image enhancement. ICASSP 2022-
2022 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, 769-
2773, 2022.
https://doi.org/10.48550/arXiv.2202.08758.

[27] Ancuti C, Ancuti C O, Haber T, et al. Enhancing
underwater  images by  fusion. 2011.
https://doi.org/10.1145/2037715.2037753.

Q. Huang et al.

[28] Islam J, Xia Y, Sattar J. Fast Underwater Image

Enhancement for Improved Visual Perception.
International  Conference on Robotics and
Automation. IEEE, 2020.

https://doi.org/10.1109/LRA.2020.2974710.

[29] Li C, Guo C, Ren W, et al. An Underwater Image
Enhancement Benchmark Dataset and Beyond.
IEEE, 2020.
https://doi.org/10.1109/TIP.2019.295524


https://doi.org/10.1609/aaai.v38i2.27903

