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Underwater images are often affected by various degradation phenomena, such as low contrast, blurred 

details, color distortion, poor clarity, non-uniform illumination, and limited viewing distance. To address 

these issues, this paper proposes a cascaded composite neural network for underwater image 

enhancement, which incorporates a deep learning-based routing mechanism. Three individual neural 

networks, namely UWCNN (UW), Deep Wave-Net (DW), and PUIE-Net (PU), are employed as core 

components, and a method library is constructed using pairwise superimposed serial composite 

enhancement models. This framework is designed to enhance degraded underwater images and 

investigate the performance of the composite models. Experimental evaluations are conducted using 

metrics including PSNR, SSIM, UIQM, and UCIQE. The results indicate that the representative composite 

neural network model DW-PU achieves favorable performance with indicators of 20.495 (PSNR), 0.874 

(SSIM), 3.270 (UIQM), and 0.897 (UCIQE), outperforming current mainstream underwater image 

enhancement models in certain aspects. Comparative analysis of images enhanced by multiple methods 

reveals that, in most underwater scenarios, the DW-PU model can effectively correct the color of 

degraded underwater images, making them more suitable for observing underwater conditions. 

Povzetek: Članek predlaga kaskadni kompozitni nevronski model z učečim usmerjanjem, ki združuje 

UWCNN, Deep Wave-Net in PUIE-Net za izboljšavo podvodnih slik. 

 

1 Introduction 
Clear and high-quality underwater images are critical for 

deep-sea topographic surveys and seabed resource 

investigations, and they have been widely applied in fields 

such as underwater target identification and detection [1]. 

However, due to the influence of the special underwater 

environment, underwater images are often subject to 

degradation, which severely impairs their imaging quality 

and recognition performance. Consequently, there is an 

urgent need for underwater image enhancement 

technologies to restore degraded underwater images and 

obtain clearer ones. 

In recent years, numerous scholars have conducted 

research on underwater degraded image enhancement 

technologies and proposed various methods, among which 

deep learning methods are the most prevalent, as 

exemplified in [2-18]. 

Chen et al. [15] proposed an underwater image 

enhancement framework based on self-attention and 

contrastive learning (UIESC) to address the issues of low 

contrast, color distortion, and blurred details. Local 

features and global dependencies are constructed through  

 

spatial and channel dual attention, while crisscross  

attention is utilized to mitigate the high computational 

complexity of self-attention. Finally, smoothed histogram 

equalization is employed for further optimization to adapt 

to complex and variable underwater scenes. Zhou et al. 

[16] put forward an efficient and fully guided information 

flow network (UGIF-Net) for underwater image 

enhancement. This network accurately approximates color 

information by integrating features from two color spaces 

within a unified framework. Subsequently, a dense 

attention block (DAB) is adopted to guide the network in 

thoroughly extracting color information from both color 

spaces while adaptively perceiving critical color 

information. Galdran et al. [17] leveraged the 

characteristic that the brightness of the dark channel 

decays rapidly in underwater images, taking the brightness 

value of the brightest pixel in the dark channel as the 

background light. Based on this, they derived the 

expression of transmittance and then estimated the 

undegraded underwater images through inverse 

transmittance transformation. Nevertheless, dehazing 

methods are ineffective for underwater image restoration 

due to color attenuation and blue (green) color tones 
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caused by the selective absorption of water and light 

scattering. Yang et al. [18] proposed a new underwater 

image restoration method based on the idea of first 

removing color distortion and then eliminating 

background scattering, aiming to overcome the 

shortcomings of such methods. According to the 

attenuation characteristics of light in water, the 

transmittance of each channel is corrected using the 

relationship between the scattering coefficient and 

wavelength. 

Convolutional neural networks (CNNs) are among 

the most commonly used deep learning structures. CNN 

methods combined with physical models aim to obtain 

more accurate transmission maps through CNN networks, 

thereby generating better underwater images. Fu et al. [2] 

decomposed underwater image enhancement (UIE) into 

distribution estimation and consensus processes and 

proposed a novel probabilistic network (PUIE) that 

combines conditional variational autoencoders with 

adaptive instance normalization to construct enhanced 

distributions. The consensus process is then used to 

predict deterministic outcomes from a set of samples in 

the distribution. By learning the enhanced distribution, 

this method can, to a certain extent, cope with the bias 

introduced in the labeling of reference images. Li et al. [3] 

proposed an underwater image enhancement 

convolutional neural network (CNN) model based on 

underwater scene priors, named UWCNN. By combining 

an underwater imaging physical model with the optical 

properties of underwater scenes, they first synthesized 

underwater image degradation datasets covering a diverse 

range of water types and degradation levels. Then, a 

lightweight CNN model was designed for enhancing each 

type of underwater scene, which was trained using the 

corresponding training data. Finally, this UWCNN model 

was directly extended to underwater video enhancement. 

Sharma et al. [4] incorporated an attentive skip mechanism 

to adaptively refine the learned multi-contextual features. 

The proposed framework, called Deep Wave-Net, is 

optimized using traditional pixel-wise and feature-based 

cost functions. 

1.1  Research gaps 

In the field of underwater image enhancement, composite 

models systematically integrate the advantages of multiple 

individual models through innovative architectures that 

combine enhancement models in series. Such models have 

achieved significant breakthroughs in key technical areas 

including the restoration of underwater image clarity and 

the correction of color distortion thereby addressing 

existing limitations in these domains. Specifically, deep 

learning-based composite models can cascade Retinex 

theory-based image enhancement modules with 

Generative Adversarial Network (GAN) texture 

restoration modules, effectively mitigating the insufficient 

enhancement performance of traditional single models in 

complex aquatic environments and advancing the 

practical application of underwater visual processing 

technologies. Below is a detailed analysis to elaborate on 

our research motivation: 

 Single neural networks such as UWCNN and 

Deep Wave-Net predominantly adopt fixed 

architectures for feature extraction, limiting 

their ability to simultaneously capture the global 

color distribution and local details of underwater 

images. For example, while UWCNN integrates 

a physical model, its shallow network structure 

may fail to extract deep semantic features, 

leading to incomplete color correction in 

complex scenes. Similarly, although Deep 

Wave-Net’s skip connection mechanism enables 

multi-scale feature fusion, a single network 

lacks sufficient adaptability to the unique light 

attenuation patterns inherent in underwater 

environments.  

 Existing single models primarily rely on 

synthetic datasets, which struggle to fully 

simulate the complex degradation processes 

present in real underwater environments. For 

instance, the dataset used to train UWCNN may 

not include images of extremely turbid waters, 

resulting in limited generalization capabilities 

for the model in real-world scenarios. Although 

the composite model proposed in this paper 

combines multiple single models, it does not 

address the domain shift problem between 

training data and real-world scenes. 

 Underwater image enhancement requires 

simultaneous handling of multiple tasks, such as 

contrast enhancement, color correction, and 

noise reduction. Single models often utilize a 

single loss function for optimization, making it 

challenging to balance the objectives of each 

task. For example, optimizing solely for PSNR 

may lead to excessive image smoothing, causing 

the loss of texture details; conversely, focusing 

exclusively on color correction may neglect 

noise suppression. While the PU-DW model 

demonstrates superior performance in 

quantitative metrics, single models generally 

lack designs for multi-task collaborative 

optimization, thereby limiting improvements in 

comprehensive performance. 

The specific research contributions are as follows: 

 A cascaded composite model was proposed: 

To address the limitations of single neural 

networks in extracting features from underwater 

images, an innovative approach was developed 

to connect multiple individual models 

(including UWCNN, Deep Wave-Net, and 

PUIE-Net) into a composite neural network. By 

designing a cascaded architecture, each model is 

assigned specific tasks such as defogging, color 

correction, and contrast enhancement forming 

an orderly processing pipeline that enables 

multi-task collaborative optimization. This 

approach compensates for the inability of single 

models to simultaneously capture global color 

distribution and local details. 

 A learnable routing mechanism was 

implemented: A learnable routing mechanism 
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was integrated into the composite model 

architecture. Through training, this mechanism 

can automatically analyze characteristic 

information of input underwater images, 

including degradation degree, water quality, and 

lighting conditions. Based on these analyses, it 

adaptively selects processing paths across 

different single models and dynamically adjusts 

parameter combinations for each model, thereby 

formulating optimal enhancement strategies for 

diverse underwater scenarios.  
 Efficient processing of degraded images was 

achieved: By combining the cascaded 

composite model architecture with the learnable 

routing mechanism, the model’s computational 

processes and parameter configurations were 

optimized. On one hand, the advantages of 

individual models are leveraged to enable 

parallel processing, reducing computational 

redundancy. On the other hand, the learnable 

routing mechanism intelligently allocates tasks 

to avoid unnecessary computations. This 

approach significantly improves the processing 

efficiency of degraded underwater images 

without compromising enhancement 

performance. 

1.2 Objectives 

This study proposes a series - connected composite 

neural network for underwater image enhancement, 

aiming to achieve superior image enhancement 

performance. Experimental results demonstrate that, in 

complex underwater image enhancement scenarios, the 

series - connected composite network for underwater 

image enhancement outperforms other mainstream 

underwater image enhancement models. Furthermore, the 

systematic structure of this network allows for better 

integration of other underwater image enhancement 

algorithms, enhancing its extensibility. 

1.3 Contributions 

Existing methods in the field all utilize deep learning 

techniques to learn the mapping relationship between low 

- quality input images and high - quality output images. 

Despite differences in their specific implementations and 

technical details, these methods share a core objective: to 

effectively improve the quality of underwater images 

through deep learning. Building on three neural network 

methods UWCNN, Deep Wave - Net, and PUIE Net this 

study explores the feasibility of a Cascade-Based 

composite neural network and proposes a composite 

model based on these three networks. Experiments 

validate that the proposed composite model achieves 

better performance than the original individual models. 

The overall goal of this study is, based on the three 

existing underwater image enhancement neural network 

methods (UWCNN, Deep Wave - Net, and PUIE - Net), 

to explore the feasibility and effectiveness of composite 

neural networks in underwater image enhancement tasks. 

It intends to construct a model that can more efficiently 

address the problem of underwater image quality 

degradation, thereby improving the visual quality and 

application value of underwater images. 

Specific contributions are as follows: 

 A cascaded composite model is proposed. The 

underwater image enhancement models are 

concatenated and integrated to form a composite 

model. This architecture achieves the 

collaborative resolution of degradation 

problems through a staged processing 

mechanism. 

 A learnable routing mechanism is proposed. To 

tackle the issues of feature conflicts and 

computational redundancy in traditional serial 

structures, a gated feature routing module is 

developed. 

 Efficient processing of degraded images is 

realized. By integrating the composite model 

architecture with the learnable routing 

mechanism, the computing process and 

parameter configuration are optimized. This 

enables parallel processing to reduce 

redundancy, and tasks are intelligently allocated 

to avoid unnecessary computations, thus 

improving the efficiency of underwater image 

processing. 

2 Related work 
The PUIE-Net proposed in Reference [2] enhances 

the image's detail processing capability by optimizing 

edge detection and feature extraction through improved 

loss functions. The UWCNN introduced in Reference [3] 

adopts an architecture consisting of convolutional layers 

and pooling layers for underwater image processing. In 

Reference [4], the proposed Deep Wave-Net converts 

wavelength information into data features, aiming to 

perform processing from the perspective of fundamental 

intrinsic data characteristics. The UIESC presented in 

Reference [15] utilizes multi-scale convolution for feature 

extraction, enabling the acquisition of image information 

across different scales. The UGIF-Net proposed in 

Reference [16] generates and processes images based on 

the GAN framework, leveraging the adversarial 

mechanism to enhance image quality. Reference [19] 

introduces UColor, which employs deep learning 

algorithms to adjust RGB channels for color restoration. 
The UGAN proposed in Reference [20] generates 

enhanced images through a generator combined with prior 

knowledge, with the goal of optimizing images using such 

prior information. In Reference [21], SGUIE adopts a 

consistency loss and pseudo-label mechanism, aiming to 

effectively utilize unlabeled data. The CECF introduced in 

Reference [22] integrates a local contrast enhancement 

algorithm and a feature pyramid to fuse features of 

different scales, with the objective of improving the 

comprehensive processing effect of image features. 

Reference [23] presents Semi-UIR, which uses labeled 

data for training and combines pseudo-labels to jointly 

optimize the restoration of damaged images. The UIE-DM 

proposed in Reference [24] dynamically adjusts the 
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network structure and parameters via an environmental 

perception module to adapt to different environments. In 

Reference [25], HCLR-Net processes images by  

combining high-contrast learning and low-rank 

representation. Finally, the UIE-WD introduced in 

Reference [26] integrates image features based on 

weighted decision-making, achieving advantage 

integration through weighting. Table 1 Analysis of related 

work. 

3 Proposed work 

3.1 System method 

In our system, underwater degraded images are evaluated 

by the assessment module, which is designed to determine 

whether the input image is degraded. If classified as a 

normal image, it is directly output. Conversely, if the 

image is identified as degraded by the assessment module, 

it is forwarded to the routing module. Through the 

decision sub-module within the routing module, a 

sequential composite enhancement model from the 

method library is selected for the enhancement process. 

After enhancement, a processed image is generated, which 

then undergoes re-assessment by the image assessment 

module. If this image is judged to be normal, it is output; 

otherwise, it is redirected to the routing module for another 

round of image enhancement operations. The system 

flowchart is shown in Figure 1. 

3.2 Component description 

To achieve our cascaded composite neural network, we 

use multiple underwater image enhancement models as 

components. By connecting these components in series, 

we can form a composite neural network. Therefore, we 

need to analyze the relevant characteristics and functions 

of each component.  

 

Table 1: Analysis of related work 

Reference 
number 

Method Proposed method Limitation 

[2] PUIE-Net 
Improve the loss function to optimize edge  
detection and feature extraction 

It has high requirements for the dataset, and small samples are  
prone to overfitting 

[3] UWCNN 
Adopt a convolutional layer and pooling layer 

architecture 
It has poor adaptability to complex underwater environments,  

low algorithm efficiency and insufficient real-time performance 

[4] DeepWave-Net 
Convert wavelength information into data  
features 

The ability to handle unstructured data is limited and its  
universality is poor 

[15] UIESC 
Features are extracted using multi-scale  

convolution 
The semantic segmentation boundaries are ambiguous, and the  

recognition rate of small targets is low 

[16] UGIF-Net 
Dense attention block (DAB) The training is unstable, prone to mode collapse, and it is  

difficult to balance the realistic and diverse images 

[19] UColor 
Adjust the RGB channels using deep learning a

lgorithms 
The color recovery varies greatly with different water qualities  

and lacks an adaptive mechanism 

[20] UGAN 
The generator combines prior knowledge to  
generate enhanced images 

The training is unstable, prone to mode collapse, and it  is  
difficult to balance the realistic and diverse images 

[21] SGUIE 
Consistency loss and pseudo-labeling  

mechanism 
Unlabeled data has low utilization and the model converges  

slowly 

[22] CECF 
The local contrast enhancement algorithm  
fuses features of different scales with the  

feature pyramid 

Fusion is prone to losing details, which affects image quality 

[23] Semi-UIR 
Repair damaged images by training with  
labeled data and jointly optimizing with  

pseudo-labels 

The repaired area does not match the surrounding area well and 
the effect is unnatural 

[24] UIE-DM 
The environmental perception module  
dynamically adjusts the network structure and 

parameters 

The calculation is complex, the hardware consumption is high  
and the processing is slow 

[25] HCLR-Net 
Combine high-contrast learning with low-rank 

representation 
The feature extraction from complex backgrounds is poor, and  

the low-rank assumption is difficult to satisfy 

[26] UIE-WD 
Make weighted decisions based on image  

features to determine the comprehensive  

advantages 

Weights rely on experience and lack adaptability, making it  

difficult to adapt to diverse scenarios 

 

Figure 1: System flowchart 
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3.2.1 Component description 

Therefore, we conducted numerical comparisons, 

calculating the Peak Signal-to-Noise Ratio (PSNR), 

Structure Similarity Index Measure (SSIM), Underwater 

Colour Image Quality Evaluation (UCIQE), and 

Underwater Image Quality Measure (UIQM) of the 

degraded images after applying different neural network 

enhancement techniques. These metrics were used to 

assess the effectiveness and quality of the image 

enhancement. Thus, we were able to evaluate the 

performance of the image enhancement model. 

SSIM: This is an index used to evaluate the 

similarity between two images, often employed to 

measure the similarity between an image before and after 

distortion. The calculation of SSIM is based on the 

sliding window method, that is, each calculation takes a 

window of size N×N from the image, calculates the SSIM 

index based on the window, traverses the entire image, 

and then takes the average of all window values as the 

SSIM index of the entire image. Let x represent the data 

in the window of the first image, and y represent the data 

in the window of the second image. The similarity of the 

images consists of three parts: ( , )l x y  for brightness, 

( , )c x y  for contrast, and ( , )s x y  for structure. 
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Here, 
x  

and 
y  respectively represent the mean 

values of x and y, 
x  and 

y  respectively represent the 

variances of x and y, 
xy  represents the covariance 

between x and y, 2

1 1( )c k L= , 2

2 2( )c k L=  and 
3 2 / 2c c=  

represent three constants, avoiding division by zero, 
1k  

and 
2k  respectively default to 0.01 and 0.03, L represents 

the range of image pixel values, and 2 1BL = − , B 

represent the number of pixel bits. 

PSNR: It is commonly used to evaluate the degree 

of distortion of compressed images or videos compared 

to the original images or videos. The higher the PSNR, 

the higher the similarity between the compressed image 

and video and the original image and video, and the better 

the quality. MAX represents the maximum value of the 

pixel values after 8-bit image normalization, which is 

255. MSE represents the mean square error. ( , )I i j  

represents the value of the image at pixel position ( , )i j , 

and ( , )R i j  represents the value of the reference image at 

pixel position ( , )i j . 
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UCIQE: UCIQE refers to the evaluation of the color 

quality of underwater images to determine the visual 

performance and effectiveness of the images. The closer 

the value is to 1, the richer the image's color. 
c  

represents the standard deviation of chromaticity, 
lcon

represents the brightness contrast, 
s  

represents the 

color saturation, 
1 2 3, ,c c c

 
represent weighting 

coefficients, and they are usually set as 
1 0.4680c = ,

2 0.2745c = ,
3 0.2576c = . 

UIQM is an indicator used to evaluate the quality of 

underwater images. It combines the color measurement 

indicator UICM, the clarity measurement indicator 

UISM, and the contrast measurement indicator UIConM, 

reflecting the color, clarity and contrast of underwater 

images. Here, 
1 2 3,,w w w  represents the weighting 

coefficient, and it is generally set to 
1 0.5w = ,

2 0.3w = ,

3 0.2w = . 

Evaluation of input image: The input image 
3H W

inI   , where H and W represent the height and 

width of the image respectively, and 3 represents the 

number of RGB channels. By calculating the unified 

evaluation index of image ( )quality inq UIQM I=  quality, 

( )color inq UCIQE I=  color quality index, and [ , ]s H W=  

pixel size of the image. When UIQM < 3, it indicates that 

the image has color distortion. When UCIQE < 0.2, it 

indicates that the image has insufficient color saturation. 

When [ , ] 400 400s H W=   , it indicates that the image 

is too large, and it will consume a certain amount of time 

during image enhancement. 

3.2.2 Module design 

Routing Module: The routing module is a module 

composed of a decision-making module and a method 

library module. When dealing with the selection of multi-

model cascading schemes, we innovatively proposed a 

learnable routing mechanism. The core of this 

mechanism lies in its ability to make intelligent routing 

optimization decisions between subnets. Specifically, 

this mechanism selects the combination model 

processing scheme by training a dedicated routing 

network, based on the underwater image features input 

and the image quality evaluation indicators processed by 

each sub-model. 

Decision Module: The training process of the 

decision module. By designing a loss function L that 

minimizes, we can learn the parameters 
1 1 2 2, , ,W b W b  of 

the decision module. The training process can be 

expressed as D representing the training dataset, which 
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includes the degraded images 
inI  and the corresponding 

enhanced images 
targetI  along with their related 

parameters. 

1 1 2 2, , , ( , )~ 1 1 2 2min ( , ; , , , )
in targetW b W b I I in targetI I W b W b  E D L (7) 

 

The decision-making process of the decision 

module. By obtaining the feature quantities 

[ , , , ]img color qualityx f q q s=  of the input image and through 

the decision function R(x), the probability distribution 
Mp  is output. Here, 

ip  represents the probability of 

the selection method 
iM . This achieves the selection of 

an appropriate composite model method for the image to 

be reinforced by calculating the distribution probability 

1 1soft max( )p W x b= +  of method 
iM  in the method 

library, where 
1

M dW   and 
1

Mb   are learnable 

parameters, and d is the input feature x. The decision-

making mechanism of the routing module is shown in 

Figure 2. 

The underwater image enhancement methods in the 

method library:  

Deep Wave-Net (DW): This model is distinguished 

by its incorporation of an attentive skip mechanism and 

wavelength-aware feature transformation, converting 

wavelength information into discriminative data features 

[4]. This unique characteristic allows it to capture multi-

scale contextual details, especially in scenarios with non-

uniform illumination and blurred textures. Its primary 

function is to refine local details and strengthen edge 

information, complementing the global feature 

processing of preceding components in the cascade. 

UWCNN (UW): This model is built on a 

convolutional neural network architecture that integrates 

underwater scene priors and physical imaging models [3]. 

Its key characteristic is its lightweight structure, enabling 

efficient extraction of low-to-medium level features from 

underwater images. Functionally, it excels in preliminary 

processing tasks such as mitigating mild color distortion 

and enhancing basic contrast, making it suitable as an 

initial component in the cascaded framework to lay a 

foundation for subsequent enhancement steps. 

PUIE-Net (PU): Leveraging a probabilistic network 

design that combines conditional variational 

autoencoders with adaptive instance normalization, this 

model focuses on learning enhanced feature distributions 

[2]. A notable characteristic is its robustness in handling 

complex color degradation, which is attributed to its 

optimized loss function that prioritizes edge preservation 

and fine-grained feature extraction. In the cascaded 

structure, its core function is to perform advanced color 

correction and suppress residual noise, thereby enhancing 

the overall visual quality of images processed by 

upstream components. 

3.3 Model building 

To optimize the selection of multi-model cascading 

schemes, a learnable routing mechanism is employed to 

refine model selection decisions. This mechanism 

involves training a routing network that selects 

enhancement schemes from the method library based on 

the features of input underwater images and the image 

quality evaluation metrics derived from processing by 

each sub-model. The process is as follows: first, feature 

extraction is performed on the input underwater images. 

Subsequently, metrics such as PSNR, SSIM, UIQM, and 

UCIQE are computed for both the extracted features and 

the images processed by each sub-model. These features 

and metrics are then fed into the routing network, 

enabling it to determine the optimal combination of 

model processing schemes. 

Individual enhancement models from the method library 

serve as middleware for the cascaded composite model. 

During the data processing phase, after each neural 

network model enhances the image data, its output is 

processed and used as the input for the next cascaded 

neural network component. By exploring various 

combination strategies of individual neural network 

components, a cascaded neural network composite model 

is constructed. The specific workflow includes dataset 

acquisition, image normalization, sub-model 

enhancement, another round of image normalization and 

sub-model enhancement, and final multi-index 

evaluation of the generated images. Taking the PUIE-

Net-Deep Wave-Net composite model as an example, the 

relevant steps are illustrated in Figure 3.

 

 

Figure 2: Routing module decision-making mechanism 
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Figure 3: Processing flow of composite model 

 

To systematically investigate the performance 

improvements of composite models relative to single 

enhancement models, this paper constructs various 

composite model architectures and acquires relevant data 

through comparative experiments. The specific results are 

presented in Table 2. 

Table 2: Method library composite enhancement model 

table 

 
UWCNN 

(UW) 
PUIE-Net 

(PU) 

Deep Wave-N

et 

(DW) 

UWCNN 
(UW) 

— UW-PU UW-DW 

PUIE-Net 

(PU) 
PU-UW — PU-DW 

Deep Wave-N

et 

(DW) 

DW-UW DW-PU — 

4 Results and discussion 

4.1 Experimental environment 

The experiment was conducted on a system equipped 

with an Intel Core i7 processor, 16GB of RAM, and an 

NVIDIA RTX 4060 graphics card, which provided robust 

computational support for model training and testing. The 

experimental environment was developed based on 

Python 3.10. Specifically, the PyTorch deep learning 

framework was adopted for model construction, while the 

OpenCV library was utilized for image preprocessing and 

postprocessing operations. Additionally, the NumPy and 

Pandas libraries were employed for data processing and 

analysis, and the Matplotlib library was used for data 

visualization. The experimental environment is shown in 

Table 3. 

Table 3: Experimental Environment List 

Configuration Experimental environment 

Intel Core i7 CPU 

16GB Memory size 

NVIDIARTX060 GPU 

Python 3.10 Programing language 

OpenCV Image processing and analysis 

4.2 Data preparation 

The datasets utilized in this study are summarized in Table 

4. The U45 dataset [27] focuses on underwater multi-task 

research and includes image samples exhibiting 

underwater distortion characteristics. The EUVP dataset 

[28] is specifically designed for underwater image 

enhancement tasks, with its data structure comprising 

paired and unpaired data: the former consists of three 

subsets (Underwater Dark, Image Net, and Scenes) 

totaling 24,840 images, which are suitable for supervised 

learning scenarios; the latter contains 6,665 low/high-

quality image pairs, supporting unsupervised or semi-

supervised training. As the first benchmark for real 

underwater scene enhancement, the UIEB dataset [29] is 

divided into a supervised training subset (890 pairs of 

original images and artificially enhanced reference 

images) and a challenge test subset (60 reference-free 

images for evaluating algorithm robustness). The 

Underwater_ImageNet (UWIN) dataset [20] is an open-

source underwater vision dataset extended from the 

traditional ImageNet, integrating the degradation 

characteristics of the underwater environment with the 

semantic diversity of natural images. 

To construct a dataset for training the routing module 

and decision-making module, 500 images were randomly 

selected from each of the EUVP, UIEB, and 

Underwater_ImageNet datasets. Corresponding enhanced 

images were generated using the method library, and the 

degraded and enhanced images were paired. This dataset 

was then split into training, test, and validation sets at a 

ratio of 8:2:2. Additionally, the UIEB dataset was used as 

a benchmark to compare performance with the recently 

proposed outstanding underwater image enhancement 

algorithm UGIF-Net. 

Table 4: The dataset used in the experiment 

Dataset name Reference materials 

U45-[28] 
https://github.com/IPNUISTlegal/underwater-test-

dataset-U45- 

EUVP[29] https://irvlab.cs.umn.edu/resources/euvp-dataset 

UIEB[22] https://li-chongyi.github.io/proj_benchmark.html 

UWIN[20] https://github.com/xinzhichao/underwater_datasets 
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Figure 4: Original image and RGB channel color histogram 

         

         
(a)UW                                             (b)UW-DW                                            (c)UW-PU 

         

         
(d)PU                                               (e)PU-DW                                            (f)PU-UW 
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(g)DW                                              (h)DW-PU                                           (i)DW-UW 

Figure 5: Enhanced image and RGB channel color histogram 

4.3 Numerical experiment 

On the UIEB dataset, numerical experiments were condu

cted using the cascaded underwater image enhancement c

omposite neural network model, with an in-depth analysi

s performed on the color histograms of the RGB channels

 for the output images of each enhancement model. The s

pecific experimental results are presented in Figure 4 and

 Figure 5. 

A comparative analysis of the color histogram of the

 enhanced image in Figure 5, the original image in Figure

 4, and their respective RGB channel color histograms rev

eals that the RGB channel values in the original image's c

olor histogram exhibit significant fluctuations, with the re

d channel showing the most pronounced amplitude. In co

ntrast, for the image enhanced by the proposed model, the

 distribution curves of the RGB channels in the color hist

ogram are more balanced, and the differences in values b

etween channels are significantly reduced. This result int

uitively validates the effectiveness of the image enhance

ment process. From a visual perception perspective, the c

omposite neural network model demonstrates better visua

l adaptability in enhancement effects compared to the sin

gle neural network model, aligning more closely with hu

man visual preferences. 

However, not all models achieve ideal enhancement 

effects. Taking the DW-UW and PU-UW models as exam

ples, the processed images exhibit obvious color discrepa

ncy issues, accompanied by the persistence of low-light p

henomena. Additionally, the color histograms of the enha

nced images still show significant fluctuations, reflecting 

the limitations of these two model types in image enhanc

ement. To achieve an objective and precise evaluation of 

model performance, this study introduces image quality a

ssessment metrics such as PSNR, SSIM, UCIQE, and UI

QM for quantitative analysis of the test images. The speci

fic evaluation results are presented in Table 5 below. 

This study systematically compares the objective pe

rformance of nine underwater image enhancement metho

ds across three standard datasets: EUVP, LSUI, and UWI

N. The experimental results indicate that the DW-PU met

hod exhibits significant advantages: on the LSUI dataset, 

it ranks first with a PSNR of 22.232±0.321 and an SSIM 

of 0.870±0.007; on the EUVP dataset, its PSNR and SSI

M metrics reach 21.247±0.293 and 0.818±0.009, respecti

vely; on the UWIN dataset, it also maintains a leading po

sition, achieving excellent performance with a PSNR of 2

0.619±0.343 and SSIM values of 0.818±0.009 and 0.803

±0.013. 

 

Table 5: Quantitative results of supervised training on the PSNR and SSIM metrics, using the full-reference 

benchmark. The best results are indicated in red, and the second-best results are indicated in blue 

Method 
EUVP LSUI UWIN 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 

DW 21.208±0.217 0.884±0.004 15.515±0.227 0.759±0.006 16.986±0.312 0.798±0.014 

DW-PU 21.247±0.293 0.818±0.009 22.232±0.321 0.870±0.007 20.619±0.343 0.803±0.013 

DW-UW 18.275±0.213 0.762±0.008 14.766±0.210 0.696±0.006 15.948±0.250 0.723±0.012 

PU 13.721±0.252 0.764±0.008 14.031±0.233 0.799±0.007 13.501±0.297 0.733±0.015 

PU-DW 12.389±0.233 0.729±0.008 12.660±0.238 0.778±0.007 11.699±0.260 0.695±0.014 

PU-UW 13.069±0.233 0.693±0.008 13.583±0.217 0.740±0.007 13.087±0.273 0.686±0.012 

UW 13.978±0.255 0.745±0.008 12.956±0.206 0.709±0.007 13.927±0.290 0.719±0.014 

UW-DW 18.371±0.252 0.802±0.008 17.190±0.270 0.840±0.007 16.156±0.269 0.768±0.012 

UW-PU 13.688±0.257 0.730±0.009 14.158±0.236 0.775±0.007 13.529±0.273 0.717±0.012 

 

Table 6: Quantitative results based on no-reference benchmarks with UIQM and UCIQE as indicators. The best result

s are shown in red and the second-best results in blue  

Method 
EUVP LSUI UWIN 

UIQM↑ UCIQE↑ UIQM↑ UCIQE↑ UIQM↑ UCIQE 

DW 2.904±0.037 0.805±0.009 2.947±0.026 1.359±0.060 2.826±0.040 1.265±0.159 

DW-PU 3.086±0.027 1.246±0.142 3.127±0.020 1.016±0.019 2.982±0.031 0.810±0.008 

DW-UW 2.473±0.052 1.192±0.102 2.760±0.033 1.015±0.061 2.511±0.054 1.125±0.134 

PU 3.044±0.028 0.802±0.010 3.092±0.030 0.753±0.014 3.012±0.031 0.772±0.010 

PU-DW 2.977±0.031 0.901±0.012 3.034±0.030 0.817±0.013 2.909±0.030 0.886±0.013 

PU-UW 2.739±0.034 0.882±0.055 2.932±0.029 0.795±0.037 2.765±0.035 0.875±0.065 

UW 2.327±0.050 0.983±0.086 2.429±0.055 0.645±0.041 2.320±0.051 0.921±0.146 
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UW-DW 2.757±0.044 1.153±0.101 2.844±0.042 0.768±0.057 2.727±0.047 1.236±0.204 

UW-PU 3.021±0.029 0.762±0.013 3.110±0.029 0.707±0.013 3.014±0.032 0.729±0.011 

Table 7: Comparison Experimental Results under the UIEB Dataset. The best results are shown in red and the second-

best results in blue 

Method PSNR SSIM UIQM↑ UCIQE↑ 

DW 20.091 0.866 2.888 0.866 

DW-PU 20.495 0.874 3.270 0.897 

DW-UW 24.156 0.746 3.223 0.783 

PU 13.875 0.745 2.790 0.760 

PU-DW 12.835 0.735 3.143 0.830 

PU-UW 13.298 0.689 3.101 0.891 

UW 14.206 0.797 2.721 0.765 

UW-DW 18.767 0.827 2.808 0.868 

UW-PU 14.073 0.727 3.265 0.703 

UGIF-Net 24.466 0.915 3.129 0.622 

Table 6 provides a detailed comparison of the 

performance of cascaded underwater image enhancement 

methods in terms of no-reference evaluation metrics 

across three major datasets: EUVP, LSUI, and UWIN. The 

experimental results reveal that the DW-PU model 

combination exhibits a significant advantage in the UIQM 

metric. It achieves the optimal results of 3.086±0.027 and 

3.127±0.020 on the EUVP and LSUI datasets, 

respectively, and ranks first across all three datasets. 

Table 7 conducts a comprehensive performance 

evaluation of the recent underwater image enhancement 

method UGIF-Net on the UIEB dataset. The experimental 

results indicate that the tandem composite model lags 

slightly behind UGIF-Net in terms of PSNR and SSIM 

metrics. The tandem composite model represented by 

DW-PU achieves a UIQM value of 3.270 and a UCIQE 

value of 0.897, while its PSNR value of 20.495 is slightly 

lower than that of the mainstream method UIESC 

(24.466). Notably, the tandem composite model 

demonstrates unique advantages in color restoration and 

overall image quality improvement, confirming its 

effectiveness in underwater image enhancement tasks. 

To compare the performance differences between 

single and composite neural network models, three single 

models (UWCNN, PUIE-Net, and Deep Wave-Net) and 

six composite models (UW-PU, UW-DW, PU-UW, PU-

DW, DW-UW, and DW-PU) were selected. Experiments 

were conducted using the U45 dataset [27], and the 

specific comparison results are presented in Figure 6. 

 
(a)              (b)               (c)              (d)              (e)               (f)               (g)              (h)               (i)               (j) 

(a)Original (b)UWCNN (c)Deep Wave-Net (d)PUIE-Net (e)UW-DW (f)UW-PU (g)DW-UW (h)DW-PU (i)PU-DW  

(j)PU-UW 

Figure 6: Comparison of enhancement effects of multiple composite models 
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After enhancement processing, the test images exhibit 

significant changes: compared with the original images, 

the enhanced images in column (b) still suffer from color 

distortion; the original image in column (g) was captured 

under low-light conditions, but its details become clearly 

distinguishable after enhancement; the original image in 

column (j) had blurring issues, which are effectively 

alleviated. As intuitively observed from the sample 

images, the cascaded enhancement model demonstrates 

certain advantages. 

5 Conclusion 
This study focuses on analyzing types of image 

degradation and evaluating metrics for enhanced images 

based on a cascaded underwater image enhancement 

composite neural network model. A cascaded underwater 

image enhancement model is constructed, which first 

establishes a routing mechanism to enable model 

allocation for serial enhancement schemes, followed by an 

analysis of the advantages of three underwater image 

enhancement models: UWCNN, Deep Wave-Net, and 

PUIE-Net. To explore the enhancement performance of 

composite models, the method library incorporates 

various serial enhancement model allocation methods, 

including DW-PU, DW-UW, PU-DW, PU-UW, UW-DW, 

and UW-PU. Using the UIEB dataset, experiments 

evaluate images processed by 3 single models, 6 

composite models, and the underwater image 

enhancement algorithm UGIF-Net. Parametric evaluation 

metrics (PSNR and SSIM) and non-parametric evaluation 

metrics (UCIQE and UIQM) are calculated, with 

comparative analysis conducted against the mainstream 

method UGIF-Net. The results indicate that the cascaded 

underwater image enhancement composite neural network, 

exemplified by the DW-PU composite model (PSNR 

20.495, SSIM 0.874, UIQM 3.270, UCIQE 0.897), 

exhibits certain advantages in most scenarios where visual 

quality is a key concern. 
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