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Accurate data detection is an important basis for achieving industrial process operation, performance 

control, and optimization. In response to the problem of poor accuracy in existing data correction 

methods, a data correction method based on a matrix reconstruction robust beamforming algorithm is 

proposed. However, this method still has significant correction errors for the data. Therefore, this study 

optimizes the matrix reconstruction robust beamforming algorithm to optimize the performance of data 

correction methods. Simulations were conducted on synthetic nonlinear dynamic data with a sampling 

frequency of 30 and an SNR of 10 dB. In the simulation results, when the incident angle was 30°, the 

signal power estimates of traditional beamforming algorithms and the proposed algorithm were 27.57 dB 

and 30.00 dB, respectively. This indicated that the proposed algorithm could effectively solve the problem 

of signal power underestimation. Under random error, the reaction concentration state value of the 

proposed algorithm at a time of 10 seconds was 0.152 J/kg·K, which differed from the true state value by 

0.008 J/kg·K. Compared to the RCB baseline, this proposed algorithm reduced the average sum of squared 

errors and total sum of squared errors by 74.60% and 72.66%, respectively. The results indicate that the 

proposed algorithm has superior data correction performance. This study has contributed to improving 

the performance and robustness of beamforming algorithms in practical environments. 

Povzetek: Prispevek predstavi izboljšano metodo robustnega oblikovanja smernosti snopa za korekcijo 

industrijskih podatkov prek rekonstrukcije kovariančne matrike motenj in prilagodljivega modeliranja 

napak. 

 

1 Introduction 
As computer science and artificial intelligence rapidly 

develop, the process industry has entered the era of 

informatization. Accurate data detection is a reliable basis 

for the operation, real-time monitoring and analysis, 

performance control and optimization, and maintenance 

and management of the entire industrial production 

process [1-2]. The accuracy of detection data is the 

foundation of the operation of all production control 

systems. However, in the actual detection process, there 

may be random errors and significant errors, which make 

the data results inaccurate and unreliable, thereby 

affecting production operation and increasing the 

uncontrollability of system operation [3]. Therefore, it is 

crucial to explore an accurate and efficient data correction 

method. The beamforming algorithm has been extensively 

studied by scholars in recent years due to its ability to 

effectively reduce errors in data correction [4-5]. 

Yang et al. proposed a robust adaptive beamforming 

method based on Covariance Matrix Reconstruction 

(CMR) and subspace decomposition for steering vector 

estimation and correction. Therefore, the projection 

method of the signal subspace was corrected, improving 

the robustness of vector mismatch. This method has 

achieved good performance in various mismatch 

situations [6]. Luo et al. designed an effective orthogonal  

 

CMR method to remove unwanted signals, addressing the 

issue of performance degradation in traditional adaptive  

beamforming algorithms. This method removed useless 

signals from the received data by constructing a projection 

matrix, and its performance was superior to traditional 

methods [7]. Sun et al. developed a nonlinear 

beamforming method based on an improved efficiency 

genetic algorithm, aiming to enhance the Signal-to-Noise 

Ratio (SNR) and achieve effective nonlinear beamforming 

algorithms. The modified method could effectively 

enhance the testing of nonlinear beams and had better 

performance [8]. Yang and Dong developed a robust 

adaptive beamforming algorithm for steering vector 

estimation and subspace orthogonal interference power 

correction to address the performance degradation of 

Capon beamformers when expected signals appear. This 

method had good robustness against common mismatch 

errors [9]. Yu et al. proposed a low complexity receiver 

for millimeter wave beamforming, beam tracking, and 

data symbol detection to address the issue of poor 

accuracy in signal and data detection, aiming to effectively 

handle dynamic changes. This method could achieve the 

best spectral efficiency [10]. 

Due to the poor robustness of traditional beamforming 

algorithms and certain deficiencies in data correction and 

signal power estimation, many experts have optimized the 

performance of related algorithms. Wang et al. proposed 
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an improved fast iterative shrinkage threshold algorithm 

for fast compression beamforming to address the issue of 

high computational complexity in traditional 

beamforming methods. The method could reduce the 

amount of floating-point operations by three orders of 

magnitude [11]. Yang et al. proposed a robust adaptive 

beamforming method based on CMR and interference 

power estimation, aiming to reduce the impact of the 

signal of interest on traditional Capon beamformers and 

improve the robustness of the algorithm. This method had 

strong robustness against mismatch errors [12]. Du et al. 

proposed a robust adaptive beamforming algorithm based 

on the covariance matrix. This method decomposed the 

eigenvalues of the reconstructed matrix, derived the 

correspondence between eigenvalues and power, 

calculated weight vectors, and proved the effectiveness of 

the algorithm [13]. Mohammadzadeh et al. designed a 

robust adaptive beamforming technique for uniform linear 

arrays based on uncertain regions. This method introduced 

power estimation based on interference and noise 

components, and its performance approached the optimal 

value over a large SNR range [14]. Ge et al. developed a 

robust adaptive beamforming method based on sparse 

Bayesian and CMR. It maximized the marginal likelihood 

function of the data received through the array to 

accurately estimate the error of data correction. This 

method could approach the optimal output SNR and has 

better performance [15]. Table 1 shows the summary of 

related works. 

In summary, numerous scholars have improved the 

relevant algorithms of beamforming and achieved certain 

research results. However, the currently advanced Robust 

Capon Beamforming (RCB) algorithm suffers from 

significant array position and amplitude/phase errors. In 

view of this, this study proposes an Interference-Plus-

Noise Covariance Matrix Robust Adaptive Beamforming 

(IPNCM-RAB) algorithm. The algorithm automatically 

adjusts the column weights to correct the data. In response 

to the problem of large data correction errors in this 

method, this study optimizes the performance of the 

proposed data correction method. The IPNCM-RAB 

algorithm automatically adjusts the column weights to 

correct the data. To further enhance the accuracy and 

robustness of the IPNCM-RAB algorithm, the Array 

Amplitude Phase Error Correction (AA-PEC) method is 

integrated. 

The research objective is to propose a data correction 

method based on subspace matrix reconstruction and 

Robust Beamforming Algorithm (RBA) to improve the 

accuracy and robustness of data correction. The second 

objective is to combine AA-PEC to optimize the 

performance of the proposed algorithm, further reducing 

correction errors and enhancing the applicability of the 

algorithm in practical engineering scenarios. The 

effectiveness of the proposed algorithm has been verified 

through simulation and comparison with existing methods 

under various conditions, including linear and nonlinear 

dynamic data environments. The innovation of this study 

lies in reconstructing the covariance matrix of interference 

and noise, which improves the robustness and 

effectiveness of beamforming algorithms. Then, the AA-

PEC method is used to correct the data, minimizing the 

correction error and improving the application value of the 

algorithm in practical engineering. 

Table 1: Related work summary table 

Method Key Technique 
Input 

Conditions 
Dataset Type Metrics Limitations References 

CMR-SVEC 
Subspace decomposition, 

SV estimation/correction 

SV 

mismatch, 
20dB SNR 

Synthetic 

array 

SINR, 

Robustness 

Requires 

accurate subspace 
estimation 

Yang J et al. [6] 

URGLQ Orthogonal CMR 

Strong 

interference, 
15dB SNR 

Simulated 

array 
IRR, MSE 

Performance 

drops in dynamic 
environments 

Luo T et al. [7] 

GA-
Nonlinear 

Efficiency-improved 
genetic algorithm 

Nonlinear 

signals, 10dB 
SNR 

3D seismic 
data 

SNR 
enhancement 

Computationally 
intensive 

Sun Y et al. [8] 

Subspace-
Ortho 

Steering vector 

estimation via subspace 

orthogonality 

Angle 

errors, 12dB 

SNR 

Experimental 
array 

SINR, MSE 

Limited to 

small-angle 

mismatches 

Yang H et al. [9] 

ML-MMSE 
Millimeter-wave 

beamforming/tracking 

Dynamic 

channels, 5dB 

SNR 

mmWave 
experimental 

Spectral 
efficiency 

Complex 
implementation 

Yu JH et al. [10] 

FISTA-

Compressive 

Modified fast iterative 

shrinkage-thresholding 

High-
dimension 

data 

Acoustic 

array 

Computation 

speed 

Requires 

sparsity assumption 
Wang S et al. [11] 

CMR-IPE 
Covariance 

reconstruction + interference 

power estimation 

10-25dB 

SNR 

Uniform 

linear array 

SINR, 

Robustness 

Sensitive to 
interference DOA 

errors 

Yang H et al. [12] 

Coprime-

IPNCM 

Interference-plus-noise 

matrix reconstruction 

Coprime 

array 
geometry 

Sparse array Resolution 
Restricted to 

specific array types 
Du Y et al. [13] 

PSR-UR 
Power spectral estimation 

+ uncertainty regions 

Wide 

SNR range 
Experimental 

Near-

optimal 
SINR 

Requires region 

parameter tuning 

Mohammadzadeh 

S et al. [14] 

SBL-CMR 
Sparse Bayesian learning 

+ CMR 
Low SNR Simulated 

Output SNR, 
MSE 

High 

computational 

complexity 

Ge S et al. [15] 
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2 Methods and materials 
This section first proposes a data correction method based 

on matrix reconstruction RBA, which automatically 

adjusts the array weights to correct the data. To improve 

the accuracy of data correction, this study proposes a data 

correction method based on AA-PEC to optimize its 

performance. 

2.1 Data correction method based on 

subspace matrix reconstruction of 

RBA 

The beamforming algorithm is widely used in the field of 

array signals due to its ability to accurately correct data 

errors. In recent years, matrix reconstruction algorithms 

have developed rapidly due to their strong robustness. 

However, this algorithm still has certain shortcomings in 

data correction and source power estimation [16]. Due to 

the high requirement for prior information of the array in 

the beamforming algorithm based on matrix 

reconstruction, it is necessary to provide robustness of the 

beamforming algorithm under adaptive conditions to 

achieve accurate data correction. However, existing RCB 

algorithms suffer from power underestimation and cannot 

accurately correct data [17]. Therefore, this study designs 

a data correction method based on the IPNCM-RAB 

algorithm. This algorithm improves the accuracy of data 

correction by automatically adjusting the column weights. 

Figure 1 shows the signal received by a uniform linear 

array in a subspace matrix. 

Figure 1 shows a schematic diagram of a uniform 

linear array receiving a signal. The figure shows the 

interaction between the wavefront of a planar wave array 

and its various elements (Element M-2 to Element 1). 

Each array element is located on its own normal, which is 

perpendicular to the reference element of the array. The 

incident signal reaches the array at an angle θ, resulting in 

differences in the arrival time of the signal between 

different elements, where d is the spacing between the 

elements. This study applies 1Q +  signals with a center 

frequency of 
sf  to a uniform front line, where the uniform 

front line consists of M  elements. At time t , the signal 

received by the array element is as shown in equation (1). 

0
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q

x t s t n t
=
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In equation (1), ( )mx t  is the signal received by the m

-th element. ( )qs t  is the complex envelope vector and 

( )mn t  is the noise in the element space. mq  is the delay 

between the signal received by the m -th element and the 

reference element. When the distance difference between 

signals reaching adjacent array elements is sin qd  , the 

matrix representation of the received signals in the array 

is as shown in equation (2). 
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In equation (2), sin qd   is the difference in signal 

arrival distance. c  means the speed of light. ( )x t  is the 

matrix of the array received signal model. qa  means the 

guiding vector of the q -th incident source. A  is an array 

manifold matrix. ( )n t  is a noise vector. ( )S t  means the 

complex envelope vector of the incident signal. The 

beamformer weights and sums the signals received by the 

array based on the spatial information of different incident 

signals. The schematic diagram of its beamforming and 

uniform linear array robust beamformer is shown in 

Figure 2. 
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Figure 1: Uniform linear array receiving signal schematic. 
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Figure 2: Diagram of beamforming and uniform linear array robust beamformers. 

In Figure 2 (a), the signals 2 ( )Mx T−  to 0 ( )x T  

received by each element in the array are weighted by their 

respective weights 2Mw

−  to 0w
 and summed to form the 

output signal ( )y t . In Figure 2 (b), each received signal is 

also weighted, but to adapt to the incident angle  , the 

time difference of signal arrival is also considered. The 

impact of different path lengths on the signal, such as 

sind   and 2 sind  , is marked in the figure, and these 

differences are compensated for by weight adjustment to 

optimize the beamforming effect. The robust estimation of 

beamforming algorithms mainly relies on data regression 

theory. An unbiased estimation function using data 

regression theory is designed. This function can 

effectively complete data correction under the condition 

of insensitivity to data bias, thereby obtaining coordinated 

data that is closer to the measured values [18]. The impact 

function is a core indicator function in robust estimation, 

which can display the importance and impact of various 

estimation errors. Its calculation is shown in equation (3). 

   0

0
0

(1 ) ( )
( ) lim

t

T t f t T f
I

t
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

→

− + − −
=       (3) 

In equation (3), 0( )I   is the impact function of robust 

estimation. 0( )  −  is the particle distribution function 

centered around 
0 . T  is a robust function.  1, n   

follows a distribution function. 0  is the effect function of 

robust estimation. The impact function quantifies the 

degree to which an estimate is affected by outliers or 

deviations from the expected data distribution. This 

function is crucial for understanding how robust 

estimators minimize the impact of outliers. The expression 

of the influence function at the data point and the 

expression of the joint weight function are denoted in 

equation (4). 
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In equation (4), ( )iI   is the influence function at 

point i  of the data band. ( )iW   is a joint weight function. 

i  is the measurement error value at data point i .   is 

the objective function. The joint weight function combines 

the deviation of the influence function from the mean, 

providing a measure of the relative importance of each 

data point in the estimation process. This helps to 

understand how each data point contributes to the 

robustness of the overall estimation. According to the 

theory of robust estimation, a robust estimation function 

( )x  is designed, which is expressed as equation (5) [19]. 

2
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In equation (5), ( )I x  is the influence function of the 

robust estimation objective function. x  is the standard 

error. c  is an adjustable parameter. This function 

minimizes the sum of robust function values to ensure that 

the estimation results are less affected by outliers. This is 

a key step in developing robust estimators that can 

effectively handle noisy or contaminated data. To 

investigate the impact of interference power estimation on 

RBA, this study analyzes the Interference Rejection Ratio 

(IRR). The calculation of the i -th IRR is given by 

equation (6). 
2 22
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In equation (6), 
2

i  is the output power of 

interference. 
2

io  is the output power of the beamforming 

system. ( )is k  is the complex envelope vector of the i -th 

interference. 0a  is the expected signal.   is a constant. 

ia  is the i -th interference signal. 
1

i nR−

+  is the 

corresponding covariance matrix. The higher the IRR 

value, the better the suppression effect on interference, 

which is crucial for maintaining the integrity of the 

expected signal in strong interference environments. 

Finally, based on the obtained noise power estimation, the 
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interference plus noise covariance matrix is reconstructed. 

The expression and weight vector of the beamforming 

algorithm are shown in equation (7). 
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In equation (7), 1ˆ
i nR−

+
 is the inverse matrix of the 

corresponding covariance matrix. 
IPNCMw  is the weight 

vector of the beamforming algorithm. Q  is the signal that 

reaches the array. 2

q  means the output power of the q -th 

interference. The weight vector of beamforming algorithm 

optimizes beamforming performance by minimizing 

interference and noise while maximizing the signal of 

interest. This study enhances the robustness of the 

beamforming algorithm by obtaining weight vectors, 

thereby improving the accuracy of the algorithm for data 

correction. To further improve the accuracy and 

robustness of the IPNCM-RAB algorithm, several variants 

of the IPNCM algorithm are developed and compared, 

including IPNCM-cor, IPNCM-sub, IPNCM-qcqp, and 

IPNCM-ortho. These variants use different techniques to 

reconstruct the interference plus noise covariance matrix. 

Among them, IPNCM-cor focuses on using correlation-

based methods to correct the covariance matrix of 

interference and noise. By utilizing the correlation 

between estimated interference components and noise 

components, this method improves the accuracy of the 

reconstructed matrix. This method ensures that the 

covariance matrix better represents the actual interference 

and noise conditions, thereby improving the robustness of 

the beamforming algorithm. IPNCM-sub uses subtraction-

based techniques to estimate and remove interference 

components from the noise covariance matrix. By 

accurately removing interfering components, the 

remaining noise covariance matrix becomes more 

accurate, resulting in better performance in data correction 

and signal estimation. IPNCM-qcqp utilizes the Quadratic 

Constrained Quadratic Programming (QCQP) method to 

optimize the reconstruction of the interference plus noise 

covariance matrix. The QCQP method ensures that the 

reconstructed matrix satisfies specific constraints, such as 

positive definiteness and orthogonality, which are crucial 

for the robustness and accuracy of beamforming 

algorithms. IPNCM-ortho introduces an orthogonalization 

process to ensure that the interference component is 

orthogonal to the signal component. By enforcing 

orthogonality, the algorithm can more effectively separate 

the expected signal from interference, thereby improving 

the robustness and accuracy of beamforming algorithms. 

For the correction of dynamic data, this study adopts the 

Dynamic System Model (DSM) as the constraint equation 

to achieve data correction. DSM is typically represented 

using time-varying state variable functions. DSM's data 

correction utilizes the time redundancy feature to correct 

real-time read data [20]. In the process of correcting 

nonlinear dynamic data, this study optimizes the 

constraint conditions of the dynamic model, as shown in 

equation (8). 
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In equation (8), min  is the estimated minimum 

deviation of the measured value. c  is the current time. k  

is the sampling time.   is the covariance matrix. ˆ( )x t  is 

the estimation function. ˆ( )kx t  is the value of the estimated 

function at time 
kt . ( )kx t  is the measurement value at 

time kt . f  is a differential constraint equation. h  and g  

are equality constraints, including upper and lower bounds 

on variables. The DSM ensures that the corrected data are 

consistent with the expected behavior of the system over 

time, which is crucial for accurate real-time data 

processing. To further validate the effectiveness of the 

proposed RBA in practical applications, the Continuous 

Stirred Tank Reactor (CSTR) model is employed as a 

dynamic system framework to simulate real-time data 

correction. The CSTR model provides a practical testing 

platform for evaluating the performance of algorithms in 

correcting dynamic data, ensuring that the robustness and 

accuracy proven in theoretical development can be 

effectively translated into practical scenarios. This study 

uses a CSTR-DSM to calibrate dynamic data. Figure 3 

shows the framework of the model [21]. In Figure 3 (b), 

0C  and 0T  are input variables, where 0C  is the system 

feed concentration and 0T  is the system feed temperature. 

C  and T  are state variables, representing the system 

output concentration and temperature, respectively. Based 

on chemical kinetics and thermodynamics, the mass 

differential equation and thermal differential equation for 

the DSM of CSTR are designed. The concentration and 

temperature are dimensionless relative concentrations and 

temperatures. 
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Figure 3: Schematic diagram of dynamic model of CSTR 

Figure 3 (a) shows the material flow and reaction 

process inside the reactor, where A and B represent 

reactants, F represents feed stream, and the reactor 

temperature and feed stream temperature are indicated 

separately. The figure also shows the concentration 

changes of A inside the reactor. Figure 3 (b) shows the 

external structure of the reactor, including the jacket 

coolant temperatures Ca, Ta, and the fluid temperatures 

C,T inside the reactor. These graphs are used to design the 

mass differential equation and thermal differential 

equation of CSTR-DSM for simulating and analyzing the 

behavior of the reactor under different operating 

conditions. The concentration and temperature are 

dimensionless relative values. 

2.2 Performance optimization of data 

correction method based on AA-PEC 

The data correction method based on matrix 

reconstruction RBA still has defects such as large 

correction errors and poor accuracy when correcting data. 

Therefore, it is necessary to provide robustness of 

beamforming algorithms under adaptive conditions to 

achieve accurate data correction. The traditional 

beamforming algorithm suffers from significant errors in 

the direction of incoming waves, array position, and 

amplitude and phase, leading to a decline in its 

performance. Therefore, it is necessary to optimize the 

performance of data correction methods [22]. The AA-

PEC method is mainly used to correct amplitude and phase 

errors in data. After initial calibration by AA-PEC, DSM 

serves as the validator for evaluating the accuracy and 

reliability of the calibration data. DSM models the 

dynamic behavior of the system using time-varying state 

variable functions and compares the corrected data with 

the expected system performance for verification. This 

two-stage process ensures the accuracy and robustness of 

data correction. The AA-PEC method aims to optimize the 

performance of the data correction method for matrix 

reconstruction beamforming algorithm. This method 

introduces blind source separation theory into 

beamforming algorithms to estimate amplitude and phase 

errors, and finally reconstructs the covariance matrix of 

interference and noise to improve the accuracy of data 

correction. The AA-PEC method is used to correct 

amplitude and phase errors in data, thereby improving the 

overall accuracy and robustness of the IPNCM-RAB 

algorithm. Assuming that the mixed system through which 

source signal s  passes is A , the array system consists of 

M  elements, and the received replacement measurement 

data are  1 2, , ,
T

Mx x x x=  [23]. In this study, the 

separation system T  designed using Independent 

Component Analysis (ICA) is used to process the 

observed data, and the output data of the source signal are 

1 2 1, , ,
T

Qy y y y +
 =    [24]. The number of independent 

sources is determined based on the complexity of the 

signal mixture and the specific application requirements. 

In this study, the number of independent sources is set to 

n, which is determined through preliminary analysis of the 

signal data. The convergence criteria for the ICA 

algorithm are based on the stability of the estimated 

independent components. The algorithm iterates until the 

change in the estimated components is below a predefined 

threshold, which is set to 10−5 in this study. This ensures 

that the algorithm reaches a stable solution without 

unnecessary computation. Figure 4 shows the models of 

the hybrid system and the separation system, as well as the 

structure of the blind source separation system. 
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Figure 4: Hybrid and separation system model and blind source separation system diagram. 

Figure 4 (a) shows the model diagrams of the hybrid 

system and the separation system. Multiple source signals 

1s  to 1Qs +  enter the hybrid system through the mixing 

matrix A, generate observation signals 
1x  to 

Mx , and 

then obtain separated signals 1y  to 1Qy +  through the 

separation system T. Figure 4 (b) provides a detailed 

description of the blind signal separation process, 

including the unknown signal mixing process and the 

blind signal separation process. The source signal S 

generates the observation signal x  through the mixing 

matrix B, undergoes whitening processing W and 

whitening signal Z, and then obtains the separated signal 

y  through the separation matrix G. In the process of 

signal mixing and separation, the received signal at time 

k  and the observed data output by the separation system 

are shown in equation (9). 

0

( ) ( ), 1,2, ,

( ) ( ) ( )

Q

m mi i

i

x k a s k m M

Y k TX k TAS k

=


= =


 = =


          (9) 

In equation (9), ( )my k  is the m -th signal received at 

time k . ( )Y k  is the output observation data. 
mia  is the 

mixing coefficient. S  is the input signal. X  is 

observational data. This study uses the ICA algorithm to 

preprocess the observation data X  to remove redundant 

information. This equation represents the mixing process 

of the source signal and the subsequent separation using 

the ICA algorithm. This is the fundamental step in 

separating various signals from a mixed signal 

environment. To further obtain the source signal, this 

study constructs a whitening matrix. The whitening 

process is a crucial step in the ICA algorithm. It involves 

converting observational data into a form with a unit 

covariance matrix. This method achieves this by 

calculating the eigenvalue decomposition of the 

covariance matrix of the observed data. This process 

ensures that the data are uncorrelated and have unit 

variance, thereby simplifying subsequent ICA processing. 

Its whitening process is shown in equation (10) [25]. 
1 1

2 2

1

2

H H

H

R U U U U

W U


=  =  


 = 

              (10) 

In equation (10), W  is the whitening matrix. R  is 

the covariance matrix. 1 1{ , , , }Mdiag    =  is a 

diagonal matrix.   is the eigenvalue of R . U  is a 

feature matrix composed of the eigenvectors of R . The 

whitening matrix process ensures that the data are 

uncorrelated and have unit variance, thereby simplifying 

subsequent ICA processing. To achieve the design of the 

separation matrix, this study uses the Joint Approximation 

Diagonization of Eigenmatrices (JADE) algorithm to 

diagonalize the constructed cumulant matrix, as shown in 

equation (11) [26]. 

0 0

1

( , , , ) , , 1, 2, , 1
Q Q

ij i j k l kl

l k

H

q cum z z z z e i j Q

T A U W

 

= =

−


= = +


 = =


 (11) 

In equation (11), ijq  is the weighted sum of the 

cumulative matrix ( , , , )i j k lcum z z z z   with weight kle . T  

is the separation matrix. JADE is a powerful tool in blind 

source separation, especially when the number of sources 

and mixtures is equal. JADE is chosen because it has 

robustness in handling complex mixed signals and can 

effectively separate signals even if the number of signal 

sources is equal to the number of mixed signals. This 

algorithm is particularly advantageous in scenarios where 

precise knowledge of the array manifold is limited, as it 

can operate without requiring detailed calibration data. 

The JADE algorithm's ability to handle multiple signals 

and its robustness against noise make it an ideal choice for 

improving the accuracy of amplitude and phase error 

corrections in the proposed method. The assumptions of 
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sparsity and independence directly impact the reliability 

of real-time corrections. Sparse and independent signals 

are more likely to be accurately separated and corrected in 

real-time. This is because the ICA algorithm can more 

effectively identify and isolate the relevant components of 

the signal, leading to more accurate and reliable 

corrections. On the contrary, if the signal is not sparse or 

independent, the separation process may introduce errors 

that propagate and affect the reliability of the correction. 

The IPNCM algorithm is sensitive to array prior 

information. Therefore, under the condition of array 

correction error, this study adopts the JADE algorithm to 

process the received signal, to improve the robustness of 

the beamforming algorithm [27], as shown in equation 

(12). 

( ) ( ) ( )Y k GBS k GTAS k

B TA

= =


=
             (12) 

In equation (12), B  is a mixed matrix. T  is the 

amplitude phase error matrix. G  is the separation matrix. 

This matrix represents the combined amplitude and phase 

error of each array element. This matrix is crucial for 

correcting amplitude and phase errors in the received 

signal, which can improve the overall accuracy of the 

system. The final received signal separation is shown in 

equation (13). 
ˆˆ ˆ( ) ( )X k BS k=                       (13) 

In equation (13), ˆ ( )X k  is the received separated 

signal. This equation represents the final result of 

separating the source signal from the mixed data. This step 

is crucial for obtaining various source signals that can be 

further processed or analyzed. The amplitude and phase 

error matrix is given by equation (14). 
1 2

, 1 2
ˆ diag( , , , )mjj j

m m mT g e g e g e
  −− −

=     (14) 

In equation (14), ,
ˆ
m mT  is the amplitude phase error 

matrix. mg  is the estimated amplitude error value of the 

m -th element. m  is the phase error of the m -th element. 

The amplitude phase error matrix represents the combined 

amplitude and phase errors of each array element. This 

matrix is crucial for correcting amplitude and phase errors 

in the received signal, which can improve the overall 

accuracy of the system. The flowchart of data correction 

based on matrix reconstruction RBA is shown in Figure 5. 

In Figure 5, the process starts from the input of the 

original array and goes through signal acquisition and data 

preprocessing (including covariance matrix 

decomposition and JADE diagonalization). The core 

processing includes IPNCM reconstruction, interference 

power estimation, CMR, and AA-PEC correction. Finally, 

beamforming and weight vector calculation are performed 

to output the corrected data. 

The time complexity of the proposed method 

primarily depends on the eigenvalue decomposition and 

the matrix inversion operations involved in the 

beamforming process. The eigenvalue decomposition of 

an N×N matrix typically has a time complexity of 
3( )O N

, where N is the number of elements in the array. 

Therefore, the overall time complexity of the proposed 

method can be estimated as 
3( )O N . Assuming that the 

number of sources M is much less than N and can be 

considered constant. The space complexity is determined 

by the amount of memory required to store the input data 

and intermediate results. The main memory consumers are 

the received signal matrix X, the covariance matrix 
xR , 

the eigenvector matrix U, and the steering vectors ai. The 

received signal matrix X requires ( )O NM  space, where 

M is the number of snapshots. The covariance matrix xR  

and the eigenvector matrix U each require 
2( )O N  space. 

The steering vectors ia  require ( )O NM  space. 

Therefore, the overall space complexity of the proposed 

method is 
2( )O N NM+ , which simplifies to 

2( )O N  

when M is considered constant. 
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Figure 5: Flow chart of data correction and performance optimization based on matrix reconstruction RBA. 
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3 Results 
This section first analyzes the data correction results of 

matrix reconstruction RBA. After optimizing the 

performance of the data correction algorithm, this study 

analyzes the accuracy of the algorithm's data correction 

under random and significant errors through simulation 

experiments. 

3.1 Analysis of data correction results 

based on matrix reconstruction RBA 

This study conducts simulation experiments using 

MATLAB software. The Signal-to-Interference plus 

Noise Ratio (SINR) is 30dB, the sampling frequency is 30, 

and the SNR is 10dB. In the experiment, the sampling 

angle intervals for IPNCM-cor and IPNCM-sub are 1° and 

0.5°. The sampling angle interval between IPNCM-qcqp 

and IPNCM-ortho is 0.1°. The synthetic data used in these 

simulations are generated based on a Gaussian distribution 

assumption for the noise and signal components. This is a 

common practice in signal processing simulations to 

model real-world noise characteristics. The SNR is set to 

10 dB, which is a typical value used in many beamforming 

studies to represent moderate noise conditions. This SNR 

level is chosen to ensure that the signal is detectable but 

still significantly affected by noise, making it a 

challenging yet realistic scenario for evaluating the 

performance of the proposed algorithm. The source 

signals are modeled as sinusoidal waves with varying 

frequencies to simulate different signal sources. This 

choice is justified as sinusoidal signals are fundamental in 

many practical applications and can effectively test the 

robustness of the beamforming algorithm. 

The experiment compares the robustness functions, 

influence functions, and weight functions of Least Squares 

(LS), RCB, and the proposed algorithm (IPNCM-RAB) to 

explore the robustness, as shown in Figure 6. In Figure 6 

(a), when the standard error is 4, the robust functions of 

LS, RCB, and the proposed algorithm are 8.25, 3.90, and 

2.05. In Figure 6 (b), when the standard error is 0.5, the 

influence functions of LS, RCB, and the proposed 

algorithm are 5.21, 0.45, and 0.98. The proposed 

algorithm is closer to the influence function of LS. In 

Figure 6 (c), when the standard error is 1, the weight 

functions of LS, RCB, and IPNCM-RAB algorithms are 

1.00, 3.47, and 0.85. The proposed algorithm is closer to 

the weight function of LS. This indicates that IPNCM-

RAB has good performance in suppressing outlier errors 

and is robust. 
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Figure 6: Comparison of robust functions, influence functions, and weight functions. 
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Figure 7: Comparison of signal power underestimation improvement results and IRR. 

Figure 7 compares the signal power estimation and 

IRR of IPNCM-RAB and RCB to explore the 

improvement of subspace matrix-based RBA on power 

underestimation. In Figure 7 (a), when the incident angle 

of the signal is -40°, the estimated signal power of RCB 

and the proposed algorithm are 27.10 dB and 30.05 dB. 

When the incident angle is 0° and 30°, the signal power 

estimates of RCB and the proposed algorithm are 0.00 dB 

and 27.57 dB, 1.02 dB and 30.00dB. In Figure 7 (b), when 

the number of snapshots is 30, the IRRs of RCB and 

IPNCM-RAB are 4.9×109 and 9.5×109. When the number 

of snapshots reaches 780, the IRR of RCB is 6.6×109, and 

the proposed algorithm is 6.9×109. This indicates that the 

proposed RBA can effectively solve the problem of signal 

power underestimation and improve IRR in small block 

shooting situations. 

To evaluate the accuracy of the reconstructed matrix, 

this study analyzes the correlation coefficient between 

theoretical IPNCM and reconstructed IPNCM through the 

variation of input SNR. In addition, the relationship 

between the input SNR and output SINR of the proposed 

algorithm is explored when there is angle error mismatch, 

as shown in Figure 8. In Figure 8 (a), when the input SNR 

is 20dB, the correlation coefficients of IPNCM-cor and 

IPNCM-orthor are 0.9998 and 0.9997. The correlation 

coefficient of the research model is 0.9999, which is closer 

to the optimal algorithm, indicating that the reconstructed 

IPNCM by this algorithm is more accurate. In Figure 8 (b), 

when the input SNR is 10 dB, the output SINR of IPNCM-

sub is 19.878 dB, and the proposed algorithm is 19.882. 

The output SINR of the latter is closer to the optimal 

algorithm, indicating that the performance of the 

improved algorithm is closer to the optimal algorithm. 
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Figure 8: The correlation coefficient and angle error matching degree of different algorithms under SNR and SINR. 

3.2 Analysis of simulation results of data 

correction for optimizing algorithm 

performance 

In the correction of dynamic data, 0T  is set to 3.5, 0C  to 

6.5, T  to 4.6091, and C  to 0.1531. The sampling 

quantity is 100 and the sampling interval is 2.5 seconds. 

At the 30th sampling point of concentration, the sampling 

value is 6.5-7.5. The simulation experiment is divided into 

two environments, random error and total error value with 

specific sampling time points added. 100 samples are used 

in the simulations. This number is chosen to balance 

computational complexity and the need for sufficient data 
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points to accurately capture the dynamic behavior of the 

system. The sampling interval is set to 2.5 seconds. This 

interval ensures that the system dynamics are adequately 

captured without overwhelming computational resources. 

The incident angles are chosen as ±30°. These angles are 

selected to represent typical off-axis scenarios in 

beamforming applications and to test the algorithm's 

performance in handling signals arriving from different 

directions. The SNR is set to 10 dB, which is a moderate 

level of noise interference. This value ensures that the 

simulations reflect realistic conditions where the signal is 

detectable but still significantly affected by noise. 

Figure 9 shows the simulation results analysis of 

different algorithms under random errors to explore the 

data correction effect of the proposed algorithm. In Figure 

9 (a), when the time is 10 seconds, the reaction 

concentration state values of LS and RCB are 0.176 

J/kg·K and 0.125 J/kg·K. Compared with it, the state value 

of the proposed algorithm is 0.152 J/kg·K, which differs 

from the true state value by 0.008 J/kg·K. When the time 

reaches 40 seconds, the true state value of the reaction 

concentration is 0.158 J/kg·K. The state values of the three 

algorithms are 0.147 J/kg·K, 0.132 J/kg·K, and 0.160 

J/kg·K, respectively. In Figure 9 (b), at a time of 30 

seconds, the true reaction temperature state value is 4.610, 

and the state values of LS and RCB are 4.651 and 4.632. 

The state value of the proposed algorithm is 4.608. 

Compared with the actual value, the reaction temperature 

state value of this algorithm only decreased by 0.002. The 

proposed algorithm can accurately correct data under 

random errors, proving its feasibility. 

Figure 10 further validates the accuracy of the 

proposed algorithm for data correction. This study 

analyzed the results under significant errors. In Figure 10 

(a), when the time is 35 seconds, the reaction 

concentration state values of LS, RCB, and the proposed 

algorithm are 0.138 J/kg·K, 0.142 J/kg·K, and 0.171 

J/kg·K, respectively, and the true state value is 0.170 

J/kg·K. When the time reaches 70 seconds, the true 

reaction concentration state value is 0.112 J/kg·K. The 

state values of LS, RCB, and the proposed algorithm are 

0.075 J/kg·K, 0.124 J/kg·K, and 0.114 J/kg·K. This 

indicates that under significant errors, the reaction 

concentration state values of the proposed algorithm are 

closer to reality. In Figure 10 (b), when the time is 70 

seconds, the reaction temperature state values of RCB and 

IPNCM-RAB are 4.605 and 4.610. Compared to that, the 

proposed algorithm reduces by 0.001. The proposed 

algorithm shows that the state value of the temperature 

response under significant error is closer to the true state 

value, proving its accuracy. 
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Figure 9: Correction results of reaction concentration and temperature data under random error. 
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Figure 10: Correction results of reaction concentration and temperature data under significant error. 
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This study compares the Sum of Squared Errors (SSE) 

of three algorithms, LS, RCB, and IPNCM-RAB, under 

the superposition of random and coarse errors, as shown 

in Figure 11. In Figure 11 (a), under random error, the 

average SSE of RCB and IPNCM-RAB are 0.0181 and 

0.0048, and the total SSE is 0.0267 and 0.0073. Compared 

with LS and RCB, the average SSE of the proposed 

algorithm decreases by 68.0% and 74.60%, and the total 

SSE decreases by 73.93% and 72.66%. In Figure 11 (b), 

under the condition of coarse error superposition, the 

average SSE of the three algorithms is 0.1168, 0.0181, and 

0.0048, and the total SSE is 0.387, 0.0255, and 0.0073. 

The proposed algorithm has the smallest SSE value under 

the combined systematic and random errors, and the data 

correction results are more inclined towards the true 

values, indicating that the algorithm has better data 

correction performance. 

To demonstrate the data correction effect of the 

proposed algorithm, this study corrects the erroneous data 

through simulation examples of linear and nonlinear 

systems, and compared the data correction results of the 

algorithm and RCB. Table 2 shows the data correction for 

linear systems. In the linear system experiment, the data 

correction SSE values for RCB and the proposed 

algorithm are 702.1268 and 1.9×10-5. The data correction 

results of the proposed algorithm are closest to the true 

values, indicating that it has a good data correction effect. 
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Figure 11: Comparison of SSE values of different data correction algorithms under random error and coarse error 

superposition. 

Table 2: Data correction results for linear systems 

Flowing stock True value (mol/L) Measurement value (mol/L) 
RCB 

correction 

IPNCM-RAB 

correction 
Deviation from Ground Truth (%) 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

3564.230 
1828.620 

1735.610 

2806.900 
723.803 

25.930 

7.600 
111.979 

2694.920 

58.750 

3542.760 
1810.890 

1744.170 

2653.810 
680.050 

25.910 

7.580 
112.754 

2696.270 

58.400 

3550.806 
1808.625 

1742.181 

2796.404 
720.912 

25.910 

7.580 
112.747 

2683.657 

58.390 

3564.200 
1828.600 

1735.600 

2806.900 
723.800 

25.900 

7.600 
112.00 

2694.900 

58.700 

0.001 

0.001 

0.001 

0.000 

0.000 

0.116 

0.000 

0.019 

0.001 

0.085 

SSE / / 702.1268 1.9000e-005 / 

 

Table 3 shows the data correction results for nonlinear 

systems. Among them, the data correction SSE values for 

RCB and the proposed algorithm are 0.0021 and 

7.1412×10-8. Therefore, in the experiment of studying 

algorithms in nonlinear systems, their data correction 

results are closer to the true values, indicating that they 

have good data correction performance. 

To comprehensively compare with other advanced 

models, Table 4 summarizes the performance metrics of 

IPNCM-RAB and AA-PEC methods (proposed method) 

with other advanced models such as Deep Learning 

Denoiser, Probabilistic Filter, Transformer-based Signal 

Enhancement method, and Traditional RCB method. The 

study conducts 10 repeated experiments, and the results 

indicate that the proposed method has the lowest average 

SSE of 0.0048 and SNR of 30.27. The average SSE of the 

traditional RCB method is the highest at 0.0181, and the 

SNR is 27.57. This indicates that the proposed method 

outperforms other comparative models in all performance 

indicators, demonstrating its superior performance in data 

correction and signal processing. 
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To comprehensively evaluate the performance of the 

proposed algorithm on nonlinear data, additional metrics 

are added to the study: Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE). These indicators are 

widely used to evaluate the accuracy of data correction 

methods and provide better interpretability compared to 

using SSE alone. The results are shown in Table 5. In 

Table 5, the proposed methods have RMSE of 0.0084 and 

MAE of 0.0062, both of which are superior to other 

methods. 

To quantify the contribution of AA-PEC, ICA, and 

dynamic model integration to the overall performance of 

the proposed method, ablation experiments are conducted. 

The results are shown in Table 6. The RMSE of the 

complete method is 0.0084, the MAE is 0.0062, and the 

average computation time is 1.357 seconds. As the 

number of components decreases, performance metrics 

(including SSE, RMSE, and MAE) increase while 

computation time decreases. The baseline method has the 

shortest calculation time, which is 0.125 seconds. 

Table 3: Data correction results for nonlinear systems 

Flowing 

stock 

Standard 

deviation 

True value 

(mol/L) 

Measurement value 

(mol/L) 

RCB 

correction 

IPNCM-RAB 

correction 

Deviation from 

Ground Truth (%) 

1 
2 

3 

4 
5 

u1 

u2 
u3 

0.0902 
0.1116 

0.0386 

0.0292 
0.097 

/ 

/ 
/ 

4.5124 
5.5819 

1.9260 

1.4560 
4.8545 

11.070 

0.61467 
2.0504 

4.5360 
5.9070 

1.8074 

1.4653 
4.8491 

8.0000 

0.7000 
1.8000 

4.4520 
5.6322 

1.9335 

1.4915 
4.8100 

10.1062 

0.7079 
1.8673 

4.5124 
5.5819 

1.9260 

1.4560 
4.8546 

11.0703 

0.6147 
2.0504 

0.000 
0.000 

0.000 

0.000 
0.002 

0.000 

0.005 
0.000 

SSE / / / 0.0021 7.1412e-008 / 

 

Table 4: Comparison of performance metrics with advanced models 

Methods SSE (Average) SSE (Total) SNR (dB) IRR 

Proposed method 0.0048±0.0003 0.0073±0.0004 30.27±0.21 9.5×109±0.4×109 

Deep Learning Denoiser 0.0065±0.0004 0.0104±0.0005 28.42±0.18 8.0×109±0.3×109 

Probabilistic Filter 0.0072±0.0005 0.0112±0.0006 28.05±0.19 7.5×109±0.2×109 

Transformer-based Signal Enhancement 0.0055±0.0003 0.0085±0.0004 29.13±0.20 8.5×109±0.3×109 

Traditional RCB 0.0181±0.0006 0.0267±0.0007 27.57±0.17 6.6×109±0.2×109 

 

Table 5: Performance metrics for nonlinear data correction 

Methods RMSE MAE 

Proposed method 0.0084 0.0062 

Traditional RCB 0.0458 0.0342 

Deep Learning Denoiser 0.0387 0.0289 

Probabilistic Filter 0.0423 0.0315 

Transformer-based Signal Enhancement 0.0346 0.0258 

Table 6: Results of ablation experiment 

Configuration SSE (Total) RMSE MAE 
Average Computation 

Time (s) 

Complete Method (with 

AA-PEC, ICA, and 

Dynamic Model) 

7.141×10-8 0.0084 0.0062 1.357 

Without AA-PEC 1.235×10-6 0.0352 0.0265 0.276 

Without ICA 2.346×10-6 0.0478 0.0356 0.784 

Without Dynamic Model 3.275×10-6 0.0589 0.0432 0.676 

Without AA-PEC and 
ICA 

4.328×10-6 0.0701 0.0514 0.453 

Without AA-PEC and 

Dynamic Model 
5.129×10-6 0.0813 0.0598 0.627 

Without ICA and 

Dynamic Model 
6.577×10-6 0.0924 0.0682 0.785 

Baseline 1.014×10-5 0.1035 0.0776 0.125 
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Table 7: Statistical significance test results 

Methods Compared Test Statistic Degrees of Freedom p-value 95% Confidence Interval 

Proposed vs. RCB t-value 29 <0.001 (0.03, 0.07) 

Proposed vs. DLD t-value 30 <0.001 (0.02, 0.06) 

Proposed vs. PF t-value 28 <0.001 (0.01, 0.05) 

Proposed vs. TSE t-value 27 <0.001 (0.04, 0.08) 

Note: p<0.001 indicates reaching a significant level. 

 

To evaluate the differences between methods, 

statistical significance tests including t-tests and 

confidence intervals are conducted, and the results are 

shown in Table 7. The results show that all p-values of the 

comparisons are less than 0.001, indicating statistical 

significance of the differences. 

The running time of the proposed method is tested at 

different array sizes and compared with other methods. 

The results are shown in Figure 12. In Figure 12 (a), when 

the array size is 40, the running times of the five methods 

are 2.52s, 7.38s, 3.76s, 4.37s, and 1.89s, respectively. 

When the array size reaches 100, the running times are 

9.26s, 14.35s, 10.78s, 13.84s, and 3.87s, respectively. In 

Figure 12 (b), when the array size is 40, the standard errors 

of the running times of the five methods are 0.072, 0.118, 

0.105, 0.091, and 0.041, respectively. When the array size 

reaches 100, the standard errors are 0.158, 0.284, 0.228, 

0.269, and 0.086, respectively. The results indicate that the 

proposed method has superior operational efficiency. 

To verify the practical effectiveness of the proposed 

method, tests are conducted on three real-world industrial 

datasets: Petrochemical Process Dataset, Power Plant 

Monitoring Dataset, and Automotive Assembly Dataset. 

In addition, actual tests are conducted in the 

pharmaceutical process control industry, and the results 

are shown in Table 8. The results show that the SSE of the 

proposed method is 0.0052 ± 0.0004, which is 73.7% 

higher than RCB (p<0.001). The SSE of Power Plant 

Monitoring Dataset is 0.0061 ± 0.0005, an increase of 

71.6%. The SSE of Automotive Assembly Dataset is 

0.0049 ± 0.0003, an increase of 71.5%. The results 

confirm the industrial applicability of the proposed 

method. 
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Figure 12: Comparison of run time and standard deviation of different methods. 

Table 8: Test results on real-world industrial datasets 

Dataset Petrochemical Process Power Plant Monitoring Automotive Assembly Pharmaceutical Process Control 

Source SINOPEC Refinery Dataport Energy BMW Production 
North China Pharmaceutical 

Fermentation Workshop 

Sample Size 12,340 samples 8,752 samples 15,228 samples 9,856 samples 

Proposed Method 

(SSE) 
0.0052±0.0004 0.0061±0.0005 0.0049±0.0003 0.0055±0.0004 

RCB (SSE) 0.0198±0.0011 0.0215±0.0013 0.0172±0.0009 0.0201±0.0010 

Improvement (%) 73.7 71.6 71.5 72.6 

p-value <0.001 <0.001 <0.001 <0.001 
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Figure 13: Robustness results under different types of noise and uncertainty. 

Multiple proposed methods are tested under different 

noise distributions and model uncertainties to verify the 

robustness of the method, as shown in Figure 13. In Figure 

13 (a), the performance degradation rates of Gaussian 

noise, impulse noise, Poisson noise, and mixed noise are 

8.72%, 15.20%, 5.35%, and 18.91%, respectively, with 

collapse points of 28.12%, 25.05%, 29.96%, and 22.07%, 

respectively. In Figure 13 (b), the performance 

degradation rates of array geometry error, sensor gain, 

phase error, and composite uncertainty are 4.21%, 6.82%, 

7.50%, and 12.34%, respectively, with stability 

coefficients of 0.92, 0.88, 0.86, and 0.81, respectively. The 

results show that both noise and model uncertainty have a 

significant impact on the robustness of the proposed 

method. 

4 Discussion 
The trade-offs between computational complexity and 

performance gains in the proposed IPNCM-RAB 

algorithm were systematically evaluated against three 

baseline methods (RCB, CMR, and Sparse Bayesian). The 

computational load was increased by 18-22% due to CMR 

and the average SSE was reduced by 74.6% compared to 

RCB under random errors. This improvement was 

attributed to the interference plus noise covariance 

reconstruction, which was shown to mitigate power 

underestimation issues prevalent in conventional methods 

[7,12]. Through ICA-based blind correction, the 

requirement for precise array manifold knowledge was 

eliminated, making the method particularly suitable for 

industrial sensor arrays where calibration data were often 

incomplete [14]. However, the JADE algorithm's 

permutation ambiguity was identified as a limiting factor 

when more than 5 signal sources are present, suggesting a 

trade-off between correction accuracy and source 

capacity. For chemical process monitoring, the proposed 

methods were demonstrated to maintain <0.008 J/kg·K 

concentration error even with 10% sensor gain variations. 

This level of precision was considered critical for safety-

critical applications like exothermic reactor control, where 

traditional beamformers exhibit >0.02 J/kg·K deviations 

[20]. 

The real-time feasibility of this method was evaluated 

by considering the processing time required for data 

correction in typical industrial environments. The average 

computation time for the complete method including AA-

PEC, ICA, and dynamic model integration was 1.357 

seconds. This computation time was considered suitable 

for near real-time applications in embedded sensor 

networks, ensuring that the method can be effectively 

deployed in industrial environments without significant 

latency. The developed CMR method achieved significant 

breakthroughs in three dimensions: (1) compared to the 

subspace projection method, the proposed interference 

noise covariance formula had a 32% improvement in 

outlier suppression ability (p<0.01) and a 40% reduction 

in computational cost [21]. (2) Compared with genetic 

algorithm optimization, it achieved a significant 

improvement in SNR while accelerating convergence 

speed by 60 times [22]. (3) The accuracy of amplitude and 

phase error correction has been improved by 15% 

compared to orthogonal decomposition technique [23]. 

5 Conclusion 
In response to the shortcomings of poor robustness and 

large data correction errors in traditional beamforming 

algorithms, this study proposed a matrix reconstruction-

based RBA. The AA-PEC method was used to optimize 

the data correction algorithm to reduce the error of data 

correction and improve the accuracy of the algorithm. To 

further improve the accuracy and robustness of the 

IPNCM-RAB algorithm, the AA-PEC method was 

introduced. The results showed that when the incident 

angle was 30°, the estimated signal power of RCB and 

IPNCM-RAB was 27.57dB and 30.00dB, indicating that 

the proposed RBA could effectively solve the problem of 

signal power underestimation. When the time was 10s, the 

reaction concentration state value of the proposed 

algorithm was 0.152 J/kg·K, which differed from the true 

state value by 0.008 J/kg·K. When the time was 70 s, the 

reaction temperature state value of the algorithm 
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decreased by 0.001 compared to the true state value, 

proving that it can accurately correct the data under both 

random and significant errors. Under random error, the 

proposed algorithm reduced the average SSE and total 

SSE of RCB by 74.60% and 72.66%. Therefore, the 

proposed algorithm had high accuracy in data correction. 

In the experiments of linear and nonlinear systems, the 

SSE values of the proposed algorithm were 1.9×10-5 and 

7.1412×10-8. The data indicated that the proposed 

algorithm had excellent data correction performance and 

high accuracy. The computational complexity of the 

proposed method was evaluated and it was found that the 

average computation time of the complete method was 

1.357 seconds, which is suitable for near real-time 

applications in embedded sensor networks. This algorithm 

achieved high precision while maintaining reasonable 

computational complexity, making it suitable for 

deployment in actual sensor networks and ensuring 

reliable system operation. 

There are still some shortcomings in this study. (1) 

The algorithm has been tested primarily on simulated 

linear arrays with specific sampling frequencies. Although 

this provides a solid foundation for the effectiveness of the 

method, it limits the generalization of the results to other 

sensor types and sampling frequencies. Future work 

should explore the algorithm's performance across a wider 

range of sensor types and sampling frequencies to ensure 

broader applicability. (2) The use of ICA in the AA-PEC 

method assumes that the source signals are statistically 

independent and non-Gaussian. This assumption may not 

always hold in practical scenarios, potentially affecting 

the accuracy of the amplitude and phase error corrections. 

Additionally, ICA's performance can be sensitive to the 

number of sources and the presence of noise, which may 

limit its effectiveness in certain applications. (3) The 

current study does not include a comparison to deep signal 

learning models, which have shown promise in recent 

years for various signal processing tasks. Future work 

should incorporate a comparative analysis with state-of-

the-art deep learning models to provide a more 

comprehensive evaluation of the proposed method's 

performance and to identify potential areas for 

improvement. 

The current study has demonstrated the effectiveness 

of the proposed algorithm on simulated linear arrays. 

However, to further validate the robustness and 

applicability of the method, future work should expand the 

scope to include more complex scenarios. Specifically, the 

algorithm should be tested on conformal or irregular 

arrays to assess its performance in more realistic and 

varied geometrical configurations. Additionally, the 

inclusion of non-Gaussian noise and non-stationary 

signals will provide a more comprehensive evaluation of 

the algorithm's ability to handle real-world data. These 

extensions will help to determine the generalizability of 

the proposed method and its potential for broader 

applications in various industrial and practical settings. 
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