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With the rise of deepfake technologies, detecting fake facial images has become more difficult. Therefore, 

a forensic algorithm based on color and noise features is developed using generative adversarial 

networks for single facial forgery images to optimize extraction accuracy and efficiency. The multi-

prediction partition spatial attention mechanism is simultaneously fused, and a complex processing facial 

forgery image forensics model is designed for multi-image processing, which improves the model's 

attention to forgery areas. The experimental results showed that the model could detect F1 scores of up to 

94.21% for a single image, which was improved by 5.97% and 9.03% on the Celeb-DF dataset compared 

with Xception-DeepLab and DenseNet, respectively. The F1 score on the DFDC dataset was 93.02%, 

which was also 11.4% and 14.68% higher than the two mentioned above. The average forensic time was 

0.29 seconds, which was significantly better than EfficientNet (0.51 seconds) and DenseNet (0.65 

seconds). In the multi-image forensics task, the Area under the Curve (AUC) was the highest at 85.74% 

and the model complexity was the lowest at 80.54%, and the forensics latency was the shortest at 0.28 

seconds, which was comprehensively better than the three mainstream comparison methods. This 

indicates that the proposed model can provide higher detection performance in fake images with different 

qualities and noise interference, and can provide an effective solution for the security verification and 

protection of facial information in future networks. 

Povzetek: Članek predstavi LLF-MPPSA-GAN, dvo-vejični forenzični model za prepoznavanje 

ponarejenih obrazov. Združuje nizkonivojsko barvno-šumno analizo in večnapovedno prostorsko 

pozornost ter dosega odlične rezultate z latenco 0,28 s in visoko robustnostjo na šum. 

 

1 Introduction 
In recent years, technologies such as facial generation, 

face swapping, and enhancement have been widely used 

in film and television production, virtual reality, 

intelligent interaction, and other fields, bringing many 

conveniences to related industries. However, these 

technologies are also abused by criminals for malicious 

purposes such as creating false information, identity 

impersonation, and fraud, posing serious challenges to 

social public safety and personal privacy [1-2]. 

Especially, with the promotion of deep forgery 

technology, the generated fake facial images and videos 

are becoming increasingly realistic, making it difficult 

for traditional manual identification methods and low-

level feature-based detection methods to effectively 

recognize, which poses new challenges to digital media 

forensics and information security. Zhu et al. designed a 

method based on 3D decomposition to highlight hidden 

forgery details to improve the effectiveness of existing 

facial digital information forgery detection. This method 

was more robust than traditional methods and had 

higher detection accuracy for fake facial images [3]. 

Ding et al. found that the deepfake technology of forged 

faces has posed a threat to electronic payments and  

 

identity verification. A countermeasure against deep 

forgery anti-fingerprint attacks was built. The faces  

under this strategy had high distinguishability from real  

faces [4]. Lan et al. adopted discrete cosine transform to 

perceive forgery trace features in the frequency domain 

to improve the detection level of facial forgery image 

information. A deep facial forgery forensics model with 

frequency domain and noise features was constructed. 

The model exhibited high forensic accuracy in multiple 

databases [5]. Liu et al. built a trajectory removal 

network based on adversarial learning to enhance the 

effectiveness of facial forgery forensics in deep forgery 

technology. The proposed trace removal method could 

reduce the detection accuracy of six state-of-the-art deep 

forgery detectors, thereby achieving efficient forensic 

results [6].  

El-Shafai et al. proposed an adaptive unsupervised 

forgery image forensics algorithm by combining 

recurrent neural networks and multi-scale convolutional 

networks. The new method had higher accuracy and 

robustness compared with traditional methods in image 

and video forgery forensics [7]. Lai et al. proposed a 

new active forensics method that utilized pseudo-

Zernike moment robust watermarking to embed 
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information into non-facial regions of video frames to 

enhance the facial swapping detection. This method had 

superior robustness to standard signal processing 

operations and excellent performance in detecting deep 

forgery operations [8]. Sharma et al. proposed a novel 

verification method to improve the authenticity and 

consistency judgment level of existing digital image 

tampering detection in digital photos. After combining 

the dataset standardization, the Generative Adversarial 

Network (GAN) was optimized. The experimental 

results showed that this method exhibited excellent 

processing accuracy and efficiency in verifying multiple 

facial digital photo information in forensic 

investigations, criminal investigations, and intelligence 

systems [9]. Video stitching forgery is an object-based 

intra frame forgery operation. Li et al. believed that 

stitched videos typically contained two different types of 

camera sensor mode noise. Accordingly, a video 

stitching detection and localization strategy based on 

camera fingerprints was proposed to address these two 

types of noise. This scheme could locate the tampered 

area and had high detection accuracy [10]. The 

summarized results for each method are shown in Table 

1. 

 

Table 1: Summary table of different methodologies 

Method/Model Description Metrics/Advantages Limitations 

Zhu X et al. (3D 

Decomposition) 

3D decomposition highlights 

forgery details 
Acc≈91%, robust Not noise-tolerant 

Ding F et al. (Anti-

fingerprint) 

Countermeasure against 

fingerprint attacks 
Recognition ↑ to 88% Weak detail detection 

Lan G et al. (Freq+Noise) 
Frequency-domain forgery feature 

extraction 

AUC≈90%, multi-

dataset 
Sensitive to low-freq 

Liu C et al. (Trace 

Removal) 
Trace removal to degrade detectors Accuracy ↓ by 15% Not a detection method 

El-Shafai W et al. 

(RNN+CNN) 

Unsupervised fusion of RNN and 

CNN 

Image/video 

accuracy >89% 
High training cost 

Lai Z et al. 

(Watermarking) 

Non-face watermark for swap 

detection 

Deepfake detection ↑ 

to 91% 

Requires watermark 

embedding 

Sharma P et al. 

(Improved GAN) 
Standardization + improved GAN 

Forensic F1 

score≈90% 
Poor generalization 

Li Q et al. (Camera 

Fingerprint) 
Camera nose for splicing detection 

Localization 

accuracy >92% 
Limited applicability 

 

In summary, some progress has been made in deep 

forgery forensics, with some methods improving 

detection accuracy and robustness through frequency 

domain feature extraction, adversarial learning, and 

watermark embedding. However, these methods still 

have certain limitations when facing complex forgery 

techniques, lighting, and resolution changes, especially 

on low-level feature extraction and multi-region fusion. 

Therefore, an improved GAN facial forgery forensics 

method that combines low-level feature extraction and 

partition space attention mechanism is proposed, aiming 

to further enhance the practical application value of 

facial forgery forensics and provide an effective 

auxiliary means for subsequent forensic work. The 

innovation of the research lies in optimizing color and 

noise feature extraction in single facial forgery 

detection, and introducing a multi-prediction partition 

spatial attention mechanism in multi-facial forgery 

detection, which improves the model's attention to 

forgery areas. In addition, the study adopts an efficient 

feature fusion strategy to optimize the accuracy and 

computational efficiency of evidence collection in 

complex environments. Compared with existing 

methods, this model performs stably under different 

levels of noise and image quality. The study proposes a 

GAN-based dual-architecture model that can handle 

single- and multi-sided forgery problems under different 

noise and quality conditions, utilizing underlying 

features and spatial attention to improve detection 

performance. 

 

2   Methods and materials 
2.1 Single facial forgery image forensics 

algorithm based on low-level features 
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Figure 1: Forged facial image forensics technology principle. 

In Figure 1, the basic framework of facial forgery 

image forensics has passive and active forensics. Passive 

forensics mainly takes a hierarchical network to classify 

input images, determine whether they are fake faces, and 

analyze them based on subtle differences in the images. 

Active forensics collection involves verifying the 

authenticity of input images, identifying forged images 

by comparing stored real facial images, and further 

detecting them through a forged network [15]. However, 

in cases where the image quality is high or there are 

minimal traces of forgery, traditional forensic algorithms 

may encounter recognition difficulties. In addition, the 

subtle changes in low-level features such as color and 

noise features in forged images are often overlooked, 

resulting in less-than-ideal detection performance of 

forged images [16]. Therefore, based on the GAN 

framework and optimized color and noise features as key 

features, a Low-level Feature-Generative Adversarial 

Network (LLF-GAN) based on GAN for facial forgery 

image forensics is proposed, as shown in Figure 2. 
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Figure 2: LLF-GAN algorithm framework (Discriminator-based model inspired by GAN structure). 

In Figure 2, the LLF-GAN framework mainly 

consists of three core parts, i.e., the feature extraction 

module, the classifier module, and the final discriminant 

module. First, the input image is preprocessed by wavelet 

transformer and decomposed into three color channels, R, 

G, and B, respectively. On this basis, color features and 

noise features are extracted for each channel, 

respectively. Subsequently, the extracted color and noise 

features are jointly input into Multi-layer Convolutional 

Neural Network (ML-CNN), and the embedded High-

Pass Filter (HPF) is used to further enhance the detailed 

features and edge texture, and eliminate the low-

frequency background interference. In other words, ML-

CNN and HPF are not directly applied to the original 

image, but are used to jointly process and enhance the 

extracted color and noise features. Then, these processed 

fused features are fed into a Visual Geometry Group 19-

layer network (VGG19)-based classifier for deep feature 

learning and forgery discrimination. Finally, the classifier 

outputs the forgery probability of the image to determine 

the authenticity of the facial image. Assuming the image 

is in RGB format, color features can be extracted by 

converting it to HSV or YCbCr color space. The image 

color feature extraction is shown in equation (1). 

 ,

1 1
,1 1

M N
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color i j M N
i j
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R
C R

R= =
= =

= −
 

 (1) 

In equation (1), 
colorC  represents the color feature of 

the image. 
,i jR  represents the red channel value of the i -

th and j -th pixels. 
avgR  represents the average value of 

the red channel in the image. M  and N  signify the 

width and height of the image. The noise capture is 

performed through local contrast and local noise, as 

displayed in equation (2). 
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In equation (2), 
noiseC  represents the noise feature. 

,i jI  represents the intensity values of the i -th and j -th 

pixels. 
avgI  represents the average intensity of the image. 

  represents a small constant term. The fused low-level 

features is shown in equation (3). 
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In equation (3), 
fusionF  represents the fused feature. 

  and   respectively represent the weight factors of 
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color features and noise features. In addition, as an 

important part of the entire algorithm framework, ML-

CNN is shown in Figure 3. 
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Figure 3: ML-CNN structure. 

In Figure 3, the ML-CNN structure includes a 

combination of multiple convolutional layers and pooling 

layers, with each convolutional layer using a 3×3 

convolution kernel and non-linear mapping processing 

through ReLU activation function. Each convolutional 

layer is followed by a 2×2 max pooling layer to lower the 

feature map size, and reduce computational complexity, 

and preserve important spatial information. After the 

input layer, ML-CNN performs a series of convolution 

and pooling operations on images with a size of 112×112, 

gradually extracting image features to more abstract 

levels, and ultimately obtaining high-dimensional 

features that can be used for classification. The ML-CNN 

feature extraction is shown in equation (4). 

 , ,

1 1

H W

conv i j i j

I j

C W F b
= =

=  +  (4) 

In equation (4), 
convC  signifies the feature after 

convolution operation. 
,i jW  represents the convolutional 

kernel. 
,i jF  represents the color and noise features after 

fusion processing. H  and W  signify the height and 

width of the input image. b  signifies the bias term. The 

classification calculation for forged images in the 

classifier is shown in equation (5). 
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In equation (5), ( )P y c x=∣  signifies the probability 

that the image belongs to category c . 
cW  and 

cb  signify 

the weights and bias terms of the corresponding category. 

The final formula for determining the output face image 

at this point is shown in equation (6). 

 argma ( ( ))xOutput P y c x= =∣  (6) 

In equation (6), Output  represents the output of the 

classifier. If the probability of ( )P y c x=∣  is high, it 

indicates that the type of image is forged. 

2.2 Construction of a forensic detection 

model for multi-facial forgery images 

in complex scenarios 

After constructing the forensics algorithm design for 

single facial forgery image, the research found that when 

the complexity of forgery image increases or in different 

environmental conditions, such as lighting changes, 

posture changes and image resolution, the traditional 

single feature and single model methods have certain 

challenges [17-18]. Specifically, a single prediction 

method based on low-level features may lead to 

misjudgments when processing high-quality fake images 

due to small differences in color and noise features [19]. 

To enhance the performance of the single forensic 

algorithm, a facial forgery image forensics method based 

on Multi-Prediction Partitioned Spatial Attention-

Generative Adversarial Network (MPPSA-GAN) is 

proposed. This method introduces multiple sub-models 

for multi-angle prediction and combines partition spatial 

attention mechanism to better focus on forgery areas in 

the image. The framework structure of MPPSA-GAN is 

presented in Figure 4. 
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Figure 4: Frame structure of MPPSA-GAN (Discriminator-based model with partitioned attention, inspired by 

adversarial feature modeling). 

In Figure 4, MPPSA-GAN has three main 

components: feature extraction module, multi-stage 

prediction module, and partition space attention module. 

Firstly, the input image undergoes feature extraction 

through the backbone network of Efficient Neural 

Network-B4 (EfficientNet-B4) to obtain preliminary 

image features. Assuming that the input image is I  and 

the preliminary features obtained from feature extraction 

are F , the r  predicted by each sub-model is presented in 

equation (7). 

 
1

( )
n

r i i

i

P f r 
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=   (7) 

In equation (7), 
i  represents the weight coefficient 

of each sub-model. ( )if r  signifies the feature output of 

the i -th sub model on region r .   represents the 

sigmoid activation function. 
rP  signifies the predicted 

probability of forgery in the region. To further enhance 

the spatial attention ability to the forged region, the 

Grouped Spatial Attention (GSA) mechanism is 

introduced to assign spatial features to each channel 

separately. The output of the 
j

-th channel in region r  is 

( )jf r
 and the spatial attention coefficient is j

. The 

spatial attention aggregated feature value of region r  is 

shown in equation (8). 
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In equation (8), m  represents the number of features. 

The local feature weighting process fed to each submodel 

is used to enhance the information representation in the 

region of interest of the forgery by calculating the 

attention map rA
, i.e., the attention value rA

 outputted 

by the GSA is used as a feature channel weighting factor 

embedded in the prediction paths of all sub-models to 

update the feature representations in their regions. 

Finally, all predicted results are fused and finally judged 

by a classifier to output the authenticity of the image. The 

module structure of GSA is shown in Figure 5. 
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Figure 5: Module structure of GSA. 

In Figure 5, the GSA module structure mainly 

consists of multiple processing units. Firstly, the input 

feature map is subjected to global average pooling to 

obtain the global information of each channel. Then, 

normalization is performed to adjust the scale of the 

feature map. Next, the spatial attention map is calculated 

to weight the features of different regions. The weighted 

feature map is used for subsequent processing. The entire 

process effectively captures important spatial regions 

through spatial attention mechanisms and enhances the 

expressive ability and performance in feature fusion. To 

enhance the fused region confidence calculation, the 

study introduces the intra-region feature scoring 

mechanism. The feature responses 
( )kf r

 of all channels 

in region r  are combined with the scoring coefficients 

k  to calculate their aggregation scores rS
. The 

calculation is shown in equation (9). 
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In equation (9), 'r  represents the set of all regions. 

Finally, to realize the overall determination, all the region 

prediction results rP
 are fused with the region weighting 

coefficients r  to output the forgery probability P -rate 

of the overall image, as shown in equation (10). 
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In equation (10), r  denotes the global importance 

weighting factor of region r , which is usually calculated 

by combining r with region scoring rS
 in the GSA 

module. The process embodies a step-by-step weighting 

mechanism from feature channel to region prediction, 

with j
 for spatial attention, k  for channel scoring, 

and r  for region fusion, overall forming a hierarchical 

and clear chain of attention determination. By integrating 

the misclassification of forged images with the spatial 

attention weighting mechanism of the model, a composite 

loss function is constructed, as defined in equation (11). 

( )
1

log( ) (1 ) log(1 )
N

ce r r r

r

L y P y P
=

= −  + −  −  (11) 

In equation (11), 
ry  represents the true label of 

region r , where forged is 1 and true is 0. 
ceL  represents 

cross entropy loss. The research combines the LLF-GAN 

forensic algorithm for single facial forgery images and 

the MPPSA-GAN algorithm for multiple images to 

propose an improved GAN-based complex facial forgery 

image forensic algorithm. The algorithm flow is shown in 

Figure 6. 
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Figure 6: The unified architecture of the LLF-MPPSA-GAN model combining low-level and spatial-attention-based 

forensic branches. 

As illustrated in Figure 6, the algorithm first 

conducts category-specific feature routing on the input 

image. Then, they are fed into two feature extraction 

branches, respectively. If the image is a single facial 

type, it will be processed through the LLF-GAN path, 

and low-level features such as color and noise will be 

extracted by wavelet transform. The feature 

reinforcement will be carried out by ML-CNN, and fed 

into the VGG19 classifier to complete the preliminary 

discrimination. If the image is a multi-facial or a more 

complex structure type, it is fed into the MPPSA-GAN 

path, and global semantic features will be extracted by 

the EfficientNet-B4. Multiple sub-models will process 

the image partition independently. EfficientNet-B4 is 

used to extract global semantic features, and image 

partitions are processed independently by multiple sub-

models, and the forged regions are weighted and 

focused through the GSA module. The output features 

of the two branches are spliced in the fusion module and 

the final discrimination is performed by a unified 

classifier. For the forgery probability of the final output, 

the study sets a threshold of 0.5. If the probability is 

greater than 0.5, it is judged as a forged image. 

Otherwise, it is judged as a real image. The pseudo-code 

of the LLF-MPPSA-GAN algorithm is shown in Figure. 

7. 
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# Input: facial image I

# Output: final forgery probability P_final

# Step 1: Low-level feature extraction via LLF-GAN

I_wavelet = WaveletTransform(I)

[R, G, B] = SplitChannels(I_wavelet)

color_feat = ExtractColorFeatures(R, G, B)

noise_feat = ExtractNoiseFeatures(R, G, B)

low_feat = Concatenate(color_feat, noise_feat)

LLF_feat = ML_CNN(low_feat)

LLF_enhanced = HighPassFilter(LLF_feat)

LLF_output = VGG19Classifier(LLF_enhanced)

# Step 2: Multi-region attention-based inference via MPPSA-GAN

F_init = EfficientNetB4(I)

region_preds = []

region_weights = []

for region r in Regions(F_init):

    # Multi-submodel prediction (Eq. 7)

    P_r = Sigmoid(Sum(w_i * f_i(r) for i in submodels))

    # Spatial attention weighting (Eq. 8, 9)

    A_r = ComputeGSA(r)              # attention map

    S_r = RegionScore(A_r, r)        # weighted region score

    region_preds.append(P_r)

    region_weights.append(S_r)

# Step 3: Region-level prediction fusion (Eq. 10)

P_MPPSA = WeightedAverage(region_preds, region_weights)

# Step 4: Final feature fusion and classification

P_final = FusionClassifier(LLF_output, P_MPPSA)

return P_final

 

Figure 7: Pseudo-code for the LLF-MPPSA-GAN algorithm. 

3 Results 

3.1 Performance testing of a new facial 

forgery image forensics model 

The research sets the CPU to Intel Core i7 3.6GHz, 

GPU to Nvidia GeForce GTX 1080 Ti, memory to 

32GB, and uses Python 3.7 and TensorFlow 2.4 

frameworks for model training and testing. The pre-

training weights used in the modules are all obtained 

based on training on publicly available datasets and are 

fine-tuned in this study to fit the forgery image detection 

task. The pre-trained model of VGG19 is trained on 

ImageNet with about 143.7M parameters. EfficientNet-

B4 is trained on ImageNet with about 19M parameters. 

In LLF-GAN, the classifier adopts the classical VGG19 

network structure, which contains 16 convolutional 

layers and 3 fully connected layers. In MPPSA-GAN, 

the EfficientNet-B4 network, which consists of 

composite scaled convolutional modules with strong 

expressive power, is used as the feature extractor. Both 

are loaded with weights pre-trained on ImageNet and 

fine-tuned for this research task. For both LLF-GAN 

and MPPSA-GAN, cross-entropy loss is used as the 

main training objective function. In the overall 

integration model, the output losses of the LLF path and 

MPPSA path are each given the same weight, i.e., λ1 = 

λ2 = 0.5, and the final loss is the weighted sum of the 

two. 

The experiments are evaluated based on two 

mainstream facial forgery datasets: Celeb-DeepFake 

Dataset (Celeb-DF) (a total of 5,639 videos with about 

590,000 images extracted) and DeepFake Detection 

Challenge Dataset (DFDC) (19,000 images selected 

from it). The data is divided into 70% training set, 15% 

validation set, and 15% test set. The training process 

uses random level flipping and luminance adjustment 

for data enhancement, the total number of training 

rounds is 80, and the optimizer uses Adam (with an 

initial learning rate of 1e-4). Five-fold cross-validation is 

adopted. The experimental results are shown in Table 2. 

The mean ± standard deviation (std) of each metric is 

used to evaluate the generalization ability of the method. 

Both are loaded pre-trained weights on ImageNet and 

fine tuned them for this research task. 

 

Table 2: Performance metrics results under five-fold cross-validation 

Fold Precision (%) Recall (%) F1 score (%) Accuracy (%) 

Fold 1 93.82 91.02 92.41 92.63 

Fold 2 94.36 92.85 93.22 93.17 

Fold 3 94.12 90.98 92.51 92.69 

Fold 4 93.74 92.41 93.06 93.08 

Fold 5 94.01 91.66 92.71 92.78 

Mean ± standard deviation 94.01 ± 0.22 91.78 ± 0.67 92.78 ± 0.31 92.84 ± 0.25 
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From Table 2, the proposed model showed good stability 

and robustness in five-fold cross-validation on the DFDC 

dataset. The fluctuations of each index in different folds 

were small, with the average precision reaching 94.01%, 

recall 91.78%, F1 score 92.78%, and accuracy 92.84%. 

The standard deviations were all controlled within 1%, 

showing that the model had consistent and excellent 

detection performance under different data divisions. This 

further validated the generalization ability of the 

proposed model, indicating its good adaptability and 

reliability in real complex environments. The study first 

conducts value validation on the two types of 

hyperparameters that have the greatest impact on model 

performance, namely the spatial attention weight 

coefficient 
j  and the weight coefficient of individual 

features 
k . The test results are shown in Figure 8. 
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Figure 8: Hyperparameter selection test result. 

Figure 8 (a) displays the spatial attention weight 

coefficient selection test. Figure 8 (b) displays the weight 

coefficient selection test for a single feature. From Figure 

8 (a), as the spatial attention weight coefficient increased 

from 0.2 to 0.8, the detection accuracy fluctuated. The 

coefficients of 0.6 and 0.8 could achieve an accuracy of 

0.7 at 250 iterations, while the highest accuracy was 0.8 

at 0.4. In Figure 8 (b), when the weight coefficient of a 

single feature was 0.7, the accuracy reached 0.6 after 300 

iterations, while it was only 0.55 when it was 0.1. The 

accuracy at 0.3 and 0.5 was 0.75 and 0.8, respectively. 

Higher or lower spatial attention weight coefficients and 

individual feature weight coefficients can lead to poor 

detection accuracy. When the spatial attention weight 

coefficient was 0.4 and the weight coefficient of a single 

feature was set to 0.5, the detection accuracy is 

significantly improved. In addition, the research conducts 

ablation tests on the combined model, as displayed in 

Figure 9. 

0

0.2

0.4

0.6

0.8

1.0

50
Number of iterations

A
cc

u
ra

c
y

(a) Ablation aCcuracy testing

100 150 200 250 300 350 400

(b) Ablation calculation cost test

GAN MPSSA-GAN

LLF-GAN LLF-MPSSA-GAN

50 100 150 200 250 300 350 400
0

5

10

15

20

25

C
a
lc

u
la

ti
o

n
 c

o
st

/M
B

Number of iterations

EfficientNet-B4

GAN MPSSA-GAN

LLF-GAN LLF-MPSSA-GAN

EfficientNet-B4

 

Figure 9: Ablation test results. 

 

Figure 9 (a) displays the ablation test results under 

the DFDC. Figure 9 (b) displays the ablation test results 

under the Celeb-DF dataset. In Figure 9, the LLF-

MPPSA-GAN model had the fastest convergence speed 
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in terms of accuracy improvement, reaching about 0.9 in 

about 150 iterations, and continued to lead the other 

models in the subsequent stages. In contrast, even after 

400 iterations of the standard GAN model, its accuracy 

still did not exceed 0.85 and its convergence was 

significantly lagging. Meanwhile, in terms of 

computational cost changes, although the resource 

consumption of LLF-MPPSA-GAN was slightly higher 

than that of a single model, it consistently maintained a 

controllable growth during the iteration process and had a 

higher cost-effectiveness in terms of accuracy 

improvement, reflecting a better efficiency-performance 

balance. Combining the results of the two figures, it is 

verified that the proposed fusion model has strong 

convergence stability and resource utilization advantages 

while improving detection performance. The research 

introduces advanced forensic algorithms for comparison, 

such as Xception-DeepLab Network (Xception-

DeepLab), EfficientNet, and Densely Connected 

Convolutional Network (DenseNet), Swin Transformers, 

Two-stream Convolutional and Long Short-Term 

Memory Networks (Two-stream CNN+LSTM). 

Precision, Recall, F1 score, and average forensic time are 

taken as indexes. Table 3 displays the results. 

Table 3: Performance comparison of different facial forgery forensics algorithms on benchmark datasets. 

Dataset Model 
Precision 

/ % 

Recall 

/ % 

F1 score 

/ % 

Average time 

spent on 

depositions / s 

p 

DFDC 

Xception-DeepLab 
87.98 ± 

0.3 

83.86 ± 

0.4 

81.62 ± 

0.5 
0.36 <0.01 

EfficientNet 
86.33 ± 

0.3 

82.91 ± 

0.3 

80.88 ± 

0.4 
0.51 <0.01 

DenseNet 
81.82 ± 

0.4 

77.25 ± 

0.5 

78.34 ± 

0.5 
0.65 <0.01 

Swin Transformer 
88.94 ± 

0.3 

85.13 ± 

0.4 

84.71 ± 

0.4 
0.47 <0.01 

Two-stream CNN+LSTM 
90.03 ± 

0.2 

86.57 ± 

0.3 

85.34 ± 

0.3 
0.52 <0.01 

Our model 
94.36 ± 

0.2 

91.68 ± 

0.2 

93.02 ± 

0.2 
0.28 / 

Celeb-DF 

Xception-DeepLab 
82.17 ± 

0.4 

81.07 ± 

0.5 

88.24 ± 

0.5 
0.35 <0.01 

EfficientNet 
82.93 ± 

0.4 

83.39 ± 

0.3 

81.88 ± 

0.4 
0.48 <0.01 

DenseNet 
83.98 ± 

0.3 

83.72 ± 

0.4 

85.18 ± 

0.4 
0.59 <0.01 

Swin Transformer 
85.11 ± 

0.2 

84.02 ± 

0.3 

86.64 ± 

0.3 
0.43 <0.01 

Two-stream CNN+LSTM 
86.85 ± 

0.3 

85.91 ± 

0.3 

88.42 ± 

0.3 
0.46 <0.01 

Our model 
95.21 ± 

0.2 

93.02 ± 

0.2 

94.21 ± 

0.2 
0.29 / 

 

According to Table 3, both Swin Transformer and 

Two-stream CNN+LSTM showed superior detection 

performance among the selected comparison methods on 

both DFDC and Celeb-DF datasets. Specifically, the F1 

score of Two-stream CNN+LSTM on the DFDC dataset 

reached 85.34%, which was slightly higher than that of 

Swin Transformer (84.71%), and both of them were 

significantly better than traditional methods such as 

DenseNet and Xception-DeepLab. Meanwhile, the 

proposed LLF-MPPSA-GAN still had the most 

outstanding performance on the two datasets, with F1 

scores of 93.02% and 94.21% on DFDC and Celeb-DF, 

respectively, which were significantly higher than all the 

comparison models. In addition, the computational 

efficiency of the model also had an obvious advantage. In 

terms of average forensic time, the proposed model 

achieved the fastest inference speed with 0.28s and 0.29s, 

which was better than Swin Transformer (0.47s / 0.43s) 

and Two-stream CNN+LSTM (0.52s / 0.46s), indicating 

that the proposed method maintained the high accuracy 

and has strong real-time performance and deployment 

potential. All results pass the two-tailed t-test with p-

values less than 0.01, indicating that the performance 

improvement was statistically significant. 

3.2 Simulation testing of a new facial forgery 

image forensics model 

To evaluate the performance of a new facial forgery 

image forensics model, six types of facial forgery images 

are randomly obtained from the DFDC and pre-processed 
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to ensure the validity of the image data. The research 

compares forensic detection of six types of images with 

different qualities, taking Area under Curve (AUC) as the 

indicator, as displayed in Figure 10. 
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Figure 10: Forensic detection AUC results of forged images of different qualities. 

Figure 10 displays the AUC results of forensic 

detection for low-quality forged images, normal quality 

forged images, and high-quality forged images. In Figure 

10, the proposed model performed the best in low-quality 

forged images, with an AUC value of 68.34%, which was 

superior to Xception-DeepLab, EfficientNet, and 

DenseNet, with improvements of 28.23%, 23.77%, and 

10.95%, respectively. In normal quality forged images, 

the AUC value of the proposed model was 75.56%, once 

again surpassing other models, especially when dealing 

with small samples, with an improvement of 28.32%. In 

high-quality forged images, the AUC of the proposed 

model reached the highest, at 85.74%, proving the high 

accuracy in dealing with high-quality forged images. 

Compared with Xception-DeepLab, EfficientNet, and 

DenseNet, the AUC values increased by 15.81%, 

11.76%, and 9.87%. The proposed model has obvious 

advantages in various quality forged images, especially in 

detecting high-quality images, where the improvement in 

AUC value reflects its strong adaptability and robustness. 

The study conducts confusion tests on four types of 

forgery: emotion exchange, identity exchange, attribute 

editing, and global facial generation. The results are 

shown in Figure 11. 
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Figure 11: Confusion test results. 

Figure 11(a) shows the Xception-DeepLab test 

results for the four types of forgery image confusion. 

Figure 11(b) shows the EfficientNet test results for the 

four types of forgery image confusion. Figure. 11(c) 

shows the DenseNet test results for the four types of 

forgery image confusion. Figure 11(d) shows the 

research method test results for the four types of forgery 

image confusion. From Figure. 11, the ability of the 

proposed model to distinguish four types of forgery 

types (expression exchange, identity replacement, 

attribute editing, and full-facial generation) was 

significantly better than the other models. In contrast, 

Xception-DeepLab, EfficientNet, and DenseNet had 

significant confusion between identity substitution and 

attribute editing with high error rates, especially in the 

full-facial generation task where the confounding 

judgment was particularly prominent. In addition, the 

proposed model maintained high accuracy on cross-

recognition in all categories, especially showing clearer 

boundaries between expression swapping and attribute 

editing, which significantly reduced type confusion. 

This indicates that the proposed fusion model has 

stronger fine-grained recognition ability and structural 

discrimination, and can effectively deal with complex 

and diverse counterfeiting techniques. Taking the 

Receiver Operating Characteristic curve (ROC) as an 

indicator, the results are shown in Figure 12.
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Figure 12: Statistical results of AUC indicators. 
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Figure 12(a) shows the ROC curves of different 

models in the public data, and Figure 12(b) shows the 

ROC curves of different models in the unpublished data. 

The horizontal axis represents the false-positive rate and 

the vertical axis represents the true-positive rate. The 

larger the AUC, which is enclosed by the ROC curve 

and the horizontal and vertical coordinates, the better the 

model performance. From Figure 12, the proposed 

model achieved optimal performance in both data 

conditions, with AUC values of 0.91 and 0.87, which 

were significantly higher than Xception-DeepLab (0.82 / 

0.77), EfficientNet (0.84 / 0.79) and DenseNet (0.85 / 

0.80). Especially in the non-public data test, the 

proposed model still maintained a large advantage, 

indicating its stronger robustness and generalization 

ability. Overall, the fusion structure not only improves 

the recognition accuracy on public forged images, but 

also significantly enhances its adaptability when facing 

unknown forged samples. The forged facial images with 

low noise, normal noise and high noise are detected 

using forensic Mean Average Precision (mAP), model 

complexity, and forensic delay as metrics. The results 

are shown in Table 4. The detection performance on 

low-noise, moderate-noise, and high-noise forged facial 

images is evaluated using mAP, model complexity, and 

processing latency, as presented in Table 4. All noises 

were added using a Gaussian distribution simulation, 

with different standard deviations set to correspond to 

low (σ = 5), medium (σ = 15), and high (σ = 30) noise 

intensities, respectively, and superimposed on the RGB 

channel of the image to generate interference samples.

Table 4: Robustness evaluation of forensic algorithms under varying noise conditions. 

Type of 

noise 
Model mAP/% 

Model 

complexity/% 

Delayed 

depositions/% 
FLOPs(G) 

Memory 

(MB) 
p 

Low 

noise 

Xception-

DeepLab 

89.34 ± 

0.4 
88.67 0.34 12.4 698 <0.01 

EfficientNet 
90.12 ± 

0.3 
89.34 0.37 10.8 645 <0.01 

DenseNet 
91.44 ± 

0.3 
90.22 0.32 13.5 732 <0.01 

Our model 
92.98 ± 

0.2 
80.54 0.28 9.3 528 / 

Normal 

noise 

Xception-

DeepLab 

88.23 ± 

0.4 
87.46 0.35 12.4 698 <0.01 

EfficientNet 
89.56 ± 

0.3 
88.97 0.31 10.8 645 <0.01 

DenseNet 
90.87 ± 

0.3 
89.12 0.33 13.5 732 <0.01 

Our model 
93.12 ± 

0.2 
83.88 0.29 9.3 528 / 

High 

noise 

Xception-

DeepLab 

84.56 ± 

0.5 
83.12 0.36 12.4 698 <0.01 

EfficientNet 
85.12 ± 

0.4 
84.78 0.32 10.8 645 <0.01 

DenseNet 
86.34 ± 

0.4 
85.54 0.34 13.5 732 <0.01 

Our model 
89.23 ± 

0.3 
81.67 0.35 9.3 528 / 

 

According to Table 4, under different types of noise 

interference, the proposed LLF-MPPSA-GAN model 

showed strong stability and advantages in terms of mAP 

value, model complexity, and delayed forensic 

performance. Taking high noise environment as an 

example, the proposed model still achieved 89.23% mAP, 

which was better than Xception-DeepLab (84.56%), 

EfficientNet (85.12%), and DenseNet (86.34%), and the 

complexity of the model stayed at 81.67%, which was 

much lower than the average of other models at about 

85%-90%, verifying its lightweight and low-cost 

performance. This indicates the effectiveness of the 

lightweight design strategy. In terms of delayed forensics, 

the proposed model achieved the shortest forensics time 

under all types of noise conditions, with a minimum of 

only 0.28s, which further highlighted its real-time 

response capability. In addition, the research method is 

statistically examined on the mAP results of all the 

comparison models under three noise levels. The p-values 

obtained from two-tailed independent samples t-tests 

were less than 0.05, which indicated that the advantages 

of the research model on noise robustness are statistically 

significant. 
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4 Discussion 
Aiming at the current facial forgery detection problems of 

insufficient multi-region sensing ability, low feature 

detail extraction efficiency, and poor robustness in 

complex environments, the study proposes a two-branch 

improved GAN forensic model, LLF-MPPSA-GAN, 

which integrates low-level feature extraction and multi-

prediction partition spatial attention mechanism. The 

experimental results showed that on two mainstream 

datasets, DFDC and Celeb-DF, both achieved F1 scores 

of over 93% and mAP of over 89%, significantly 

outperforming DenseNet and Swin Transformer. Both 

achieved F1 scores over 93%, mAP stayed above 89% in 

multiple noisy environments, and the average inference 

time was as low as 0.28 seconds, which was significantly 

better than methods such as DenseNet, EfficientNet, and 

Swin Transformer. In a single image path, LLF-GAN, 

which fuses color and noise, enhances fine-grained 

feature perception and effectively locates low-frequency 

residual forgery traces. MPPSA-GAN combines the 

global semantic understanding of EfficientNet with the 

local weighting mechanism of GSA, enhancing the 

accuracy of multi region forgery recognition and 

improving the ability to capture edge contours and 

microstructural changes. Compared with the single-

branch forgery recognition framework using attention 

convolution proposed by Lin K et al., the two-way 

parallel mechanism proposed in this paper significantly 

mitigates the ambiguous model recognition and weak 

local response when oriented to multi-class forgery 

scenarios [20]. Meanwhile, the feature scoring 

mechanism based on multi-stage fusion improves the 

accuracy of determining the forgery in different regions, 

further verifying the adaptability of the weight allocation 

strategy on complex samples. Despite the multi-module 

combination, the overall complexity of the model is still 

controlled at about 81%, and the inference latency is no 

more than 0.35 seconds, which possesses strong 

deployment efficiency and edge device adaptability. 

Especially under non-public data and high noise 

conditions, the AUC remains above 0.87, indicating its 

good generalization ability. Subsequently, the model can 

be further compressed and distillation or quantization 

strategies can be introduced to adapt to the real-time 

forensic task of embedded platforms, In addition, it can 

also enhance the recognition stability of dynamic video 

forgery and occlusion interference scenes. 

5 Conclusion 
A two-branch facial forgery forensic model LLF-

MPPSA-GAN fusing low-level feature extraction and 

multi-prediction partitioned spatial attention mechanism 

was proposed to construct discriminative paths for single 

facial images and multi-region complex forgery 

scenarios, respectively and determine image authenticity 

through branch fusion. Experimental results showed that 

the method achieved better detection performance than 

existing methods on multiple benchmark datasets, and 

exhibited good stability and robustness in terms of noise 

interference, forgery type differentiation, and 

computational efficiency. The model can be widely used 

in the fields of social platform content censorship, 

judicial image appraisal, identity verification security, 

etc. It provides a feasible technical basis for the practical 

deployment of forgery forensics system while improving 

the practicality of deep forgery detection technology. 

6 Future work and limitations 
Although the proposed LLF-MPPSA-GAN model 

performs well on multiple datasets and test tasks, there 

are still several limitations that need to be emphasized. 

First, the current method performs forgery identification 

based on single-frame images, which is difficult to 

effectively capture cross-frame information changes, 

limiting the ability to detect dynamic video forgery. 

Second, the experiments are mainly based on two public 

datasets, Celeb-DF and DFDC, which cover common 

types of forgeries, but there are some limitations in the 

sample distribution and forging means. This may lead to 

model overfitting in real complex environments, and the 

generalization ability still needs to be further verified. In 

addition, for anomalous forgery images generated by 

other novel generative models (e.g., StyleGAN3 or 

Diffusion model), the detection robustness of the model 

has not been fully evaluated, and there may be 

misjudgments. Future work can consider introducing a 

multi-scale attention mechanism based on the 

Transformer structure to enhance cross-region feature 

interaction capability. A video level forensic framework 

can be constructed by combining multi-modal 

information such as audio synchronization, speech 

consistency, etc., to improve the perception depth of 

deepfake scenes. Zero sample or small sample forgery 

recognition methods can be explored to enhance the 

adaptability of the model to unknown forgery samples, 

thereby expanding its deployment value and practicality 

in real security scenarios. 
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