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With the rise of deepfake technologies, detecting fake facial images has become more difficult. Therefore,
a forensic algorithm based on color and noise features is developed using generative adversarial
networks for single facial forgery images to optimize extraction accuracy and efficiency. The multi-
prediction partition spatial attention mechanism is simultaneously fused, and a complex processing facial
forgery image forensics model is designed for multi-image processing, which improves the model's
attention to forgery areas. The experimental results showed that the model could detect F1 scores of up to
94.21% for a single image, which was improved by 5.97% and 9.03% on the Celeb-DF dataset compared
with Xception-DeepLab and DenseNet, respectively. The F1 score on the DFDC dataset was 93.02%,
which was also 11.4% and 14.68% higher than the two mentioned above. The average forensic time was
0.29 seconds, which was significantly better than EfficientNet (0.51 seconds) and DenseNet (0.65
seconds). In the multi-image forensics task, the Area under the Curve (AUC) was the highest at 85.74%
and the model complexity was the lowest at 80.54%, and the forensics latency was the shortest at 0.28
seconds, which was comprehensively better than the three mainstream comparison methods. This
indicates that the proposed model can provide higher detection performance in fake images with different
qualities and noise interference, and can provide an effective solution for the security verification and
protection of facial information in future networks.

Povzetek: Clanek predstavi LLF-MPPSA-GAN, dvo-vejicni forenzicni model za prepoznavanje
ponarejenih obrazov. Zdruzuje nizkonivojsko barvno-Sumno analizo in vecnapovedno prostorsko

pozornost ter dosega odlicne rezultate z latenco 0,28 s in visoko robustnostjo na sum.

1 Introduction

In recent years, technologies such as facial generation,
face swapping, and enhancement have been widely used
in film and television production, virtual reality,
intelligent interaction, and other fields, bringing many
conveniences to related industries. However, these
technologies are also abused by criminals for malicious
purposes such as creating false information, identity
impersonation, and fraud, posing serious challenges to
social public safety and personal privacy [1-2].
Especially, with the promotion of deep forgery
technology, the generated fake facial images and videos
are becoming increasingly realistic, making it difficult
for traditional manual identification methods and low-
level feature-based detection methods to effectively
recognize, which poses new challenges to digital media
forensics and information security. Zhu et al. designed a
method based on 3D decomposition to highlight hidden
forgery details to improve the effectiveness of existing
facial digital information forgery detection. This method
was more robust than traditional methods and had
higher detection accuracy for fake facial images [3].
Ding et al. found that the deepfake technology of forged
faces has posed a threat to electronic payments and

identity verification. A countermeasure against deep
forgery anti-fingerprint attacks was built. The faces
under this strategy had high distinguishability from real
faces [4]. Lan et al. adopted discrete cosine transform to
perceive forgery trace features in the frequency domain
to improve the detection level of facial forgery image
information. A deep facial forgery forensics model with
frequency domain and noise features was constructed.
The model exhibited high forensic accuracy in multiple
databases [5]. Liu et al. built a trajectory removal
network based on adversarial learning to enhance the
effectiveness of facial forgery forensics in deep forgery
technology. The proposed trace removal method could
reduce the detection accuracy of six state-of-the-art deep
forgery detectors, thereby achieving efficient forensic
results [6].

El-Shafai et al. proposed an adaptive unsupervised
forgery image forensics algorithm by combining
recurrent neural networks and multi-scale convolutional
networks. The new method had higher accuracy and
robustness compared with traditional methods in image
and video forgery forensics [7]. Lai et al. proposed a
new active forensics method that utilized pseudo-
Zernike moment robust watermarking to embed
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information into non-facial regions of video frames to
enhance the facial swapping detection. This method had
superior robustness to standard signal processing
operations and excellent performance in detecting deep
forgery operations [8]. Sharma et al. proposed a novel
verification method to improve the authenticity and
consistency judgment level of existing digital image
tampering detection in digital photos. After combining
the dataset standardization, the Generative Adversarial
Network (GAN) was optimized. The experimental
results showed that this method exhibited excellent
processing accuracy and efficiency in verifying multiple
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facial digital photo information in  forensic
investigations, criminal investigations, and intelligence
systems [9]. Video stitching forgery is an object-based
intra frame forgery operation. Li et al. believed that
stitched videos typically contained two different types of
camera sensor mode noise. Accordingly, a video
stitching detection and localization strategy based on
camera fingerprints was proposed to address these two
types of noise. This scheme could locate the tampered
area and had high detection accuracy [10]. The
summarized results for each method are shown in Table
1.

Table 1: Summary table of different methodologies

Method/Model

Description

Metrics/Advantages

Limitations

Zhu X etal. (3D
Decomposition)

3D decomposition highlights
forgery details

Acc=91%, robust

Not noise-tolerant

Ding F et al. (Anti-
fingerprint)

Countermeasure against
fingerprint attacks

Recognition 1 to 88%

Weak detail detection

Lan G et al. (Freg+Noise)

Frequency-domain forgery feature

extraction

AUC=90%, multi-
dataset

Sensitive to low-freq

Liu Cetal. (Trace

Trace removal to degrade detectors

Accuracy | by 15%

Not a detection method

Removal)
El-Shafai W et al. Unsupervised fusion of RNN and Image/video . -
(RNN+CNN) CNN accuracy >89% High training cost
Lai Z et al. Non-face watermark for swap Deepfake detection 1 Requires watermark
(Watermarking) detection t0 91% embedding
Sharma P et al. o . Forensic F1 N
(Improved GAN) Standardization + improved GAN SCOre~90% Poor generalization
Li Q et al. (Camera Localization

Fingerprint)

Camera nose for splicing detection

Limited applicability

accuracy >92%

In summary, some progress has been made in deep
forgery forensics, with some methods improving
detection accuracy and robustness through frequency
domain feature extraction, adversarial learning, and
watermark embedding. However, these methods still
have certain limitations when facing complex forgery
techniques, lighting, and resolution changes, especially
on low-level feature extraction and multi-region fusion.
Therefore, an improved GAN facial forgery forensics
method that combines low-level feature extraction and
partition space attention mechanism is proposed, aiming
to further enhance the practical application value of
facial forgery forensics and provide an effective
auxiliary means for subsequent forensic work. The
innovation of the research lies in optimizing color and
noise feature extraction in single facial forgery
detection, and introducing a multi-prediction partition
spatial attention mechanism in multi-facial forgery

detection, which improves the model's attention to
forgery areas. In addition, the study adopts an efficient
feature fusion strategy to optimize the accuracy and
computational efficiency of evidence collection in
complex environments. Compared with existing
methods, this model performs stably under different
levels of noise and image quality. The study proposes a
GAN-based dual-architecture model that can handle
single- and multi-sided forgery problems under different
noise and quality conditions, utilizing underlying
features and spatial attention to improve detection
performance.

2 Methods and materials
2.1 Single facial forgery image forensics
algorithm based on low-level features
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Figure 1: Forged facial image forensics technology principle.

In Figure 1, the basic framework of facial forgery
image forensics has passive and active forensics. Passive
forensics mainly takes a hierarchical network to classify
input images, determine whether they are fake faces, and
analyze them based on subtle differences in the images.
Active forensics collection involves verifying the
authenticity of input images, identifying forged images
by comparing stored real facial images, and further
detecting them through a forged network [15]. However,
in cases where the image quality is high or there are
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minimal traces of forgery, traditional forensic algorithms
may encounter recognition difficulties. In addition, the
subtle changes in low-level features such as color and
noise features in forged images are often overlooked,
resulting in less-than-ideal detection performance of
forged images [16]. Therefore, based on the GAN
framework and optimized color and noise features as key
features, a Low-level Feature-Generative Adversarial
Network (LLF-GAN) based on GAN for facial forgery
image forensics is proposed, as shown in Figure 2.
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Figure 2: LLF-GAN algorithm framework (Discriminator-based model inspired by GAN structure).

In Figure 2, the LLF-GAN framework mainly
consists of three core parts, i.e., the feature extraction
module, the classifier module, and the final discriminant
module. First, the input image is preprocessed by wavelet
transformer and decomposed into three color channels, R,
G, and B, respectively. On this basis, color features and
noise features are extracted for each channel,
respectively. Subsequently, the extracted color and noise
features are jointly input into Multi-layer Convolutional
Neural Network (ML-CNN), and the embedded High-
Pass Filter (HPF) is used to further enhance the detailed
features and edge texture, and eliminate the low-
frequency background interference. In other words, ML-
CNN and HPF are not directly applied to the original
image, but are used to jointly process and enhance the
extracted color and noise features. Then, these processed
fused features are fed into a Visual Geometry Group 19-
layer network (VGG19)-based classifier for deep feature
learning and forgery discrimination. Finally, the classifier
outputs the forgery probability of the image to determine
the authenticity of the facial image. Assuming the image
is in RGB format, color features can be extracted by
converting it to HSV or YCbCr color space. The image
color feature extraction is shown in equation (1).

CO or R (1)
T Z kL Rk,

In equation (1), C_,,, represents the color feature of
the image. R ; represents the red channel value of the i -
th and j-th pixels. R, represents the average value of

the red channel in the image. M and N signify the
width and height of the image. The noise capture is
performed through local contrast and local noise, as
displayed in equation (2).

)

i=1 j=1

Ij av

N )

In equation (2), C represents the noise feature.

I, represents the intensity values of the i-th and j -th

pixels. 1_, represents the average intensity of the image.

avg
€ represents a small constant term. The fused low-level
features is shown in equation (3).

+ pC
— color ﬂ noise (3)
a+pf

represents the fused feature.

fusion —

In equation (3), Fy.
o and S respectively represent the weight factors of
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color features and noise features. In addition, as an
important part of the entire algorithm framework, ML-
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CNN is shown in Figure 3.
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Figure 3: ML-CNN structure.

In Figure 3, the ML-CNN structure includes a
combination of multiple convolutional layers and pooling
layers, with each convolutional layer using a 3x3
convolution kernel and non-linear mapping processing
through ReLU activation function. Each convolutional
layer is followed by a 2x2 max pooling layer to lower the
feature map size, and reduce computational complexity,
and preserve important spatial information. After the
input layer, ML-CNN performs a series of convolution
and pooling operations on images with a size of 112x112,
gradually extracting image features to more abstract
levels, and ultimately obtaining high-dimensional
features that can be used for classification. The ML-CNN
feature extraction is shown in equation (4).

H W
Cconv = ZZWI] : I:i,j +b (4)
1=1 j=1

In equation (4), C,,, signifies the feature after
convolution operation. W, ; represents the convolutional
represents the color and noise features after

fusion processing. H and W signify the height and
width of the input image. b signifies the bias term. The
classification calculation for forged images in the

classifier is shown in equation (5).
W Frugion +b5

Zc. ewJ. Frusion +be:

In equation (5), P(y =cl x) signifies the probability
that the image belongs to category ¢. W, and b, signify
the weights and bias terms of the corresponding category.

kernel. F

P(y=cdl x) = (5)

The final formula for determining the output face image
at this point is shown in equation (6).
Output = argmax(P(y =c| x)) (6)
In equation (6), Output represents the output of the
classifier. If the probability of P(y=cl x) is high, it
indicates that the type of image is forged.

2.2 Construction of a forensic detection
model for multi-facial forgery images
in complex scenarios

After constructing the forensics algorithm design for
single facial forgery image, the research found that when
the complexity of forgery image increases or in different
environmental conditions, such as lighting changes,
posture changes and image resolution, the traditional
single feature and single model methods have certain
challenges [17-18]. Specifically, a single prediction
method based on low-level features may lead to
misjudgments when processing high-quality fake images
due to small differences in color and noise features [19].
To enhance the performance of the single forensic
algorithm, a facial forgery image forensics method based
on Multi-Prediction Partitioned Spatial Attention-
Generative Adversarial Network (MPPSA-GAN) is
proposed. This method introduces multiple sub-models
for multi-angle prediction and combines partition spatial
attention mechanism to better focus on forgery areas in
the image. The framework structure of MPPSA-GAN is
presented in Figure 4.
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Figure 4: Frame structure of MPPSA-GAN (Discriminator-based model with partitioned attention, inspired by
adversarial feature modeling).

In Figure 4, MPPSA-GAN has three main
components: feature extraction module, multi-stage
prediction module, and partition space attention module.
Firstly, the input image undergoes feature extraction
through the backbone network of Efficient Neural
Network-B4 (EfficientNet-B4) to obtain preliminary
image features. Assuming that the input image is | and
the preliminary features obtained from feature extraction
are F, the r predicted by each sub-model is presented in
equation (7).

P=c

iwi -f(r) (7

In equation (7), e, represents the weight coefficient
of each sub-model. f.(r) signifies the feature output of
the i -th sub model on region r . o represents the
sigmoid activation function. P, signifies the predicted
probability of forgery in the region. To further enhance
the spatial attention ability to the forged region, the

Grouped Spatial Attention (GSA) mechanism is
introduced to assign spatial features to each channel

Channel 1
Global
> average e
pooling Channel 2

Input image

Channel 3

separately. The output of the J _th channel in region I is

fj(r) and the spatial attention coefficient is ] . The
spatial attention aggregated feature value of region I' is
shown in equation (8).
p =2 60 ®
Zj:laj

In equation (8), m represents the number of features.
The local feature weighting process fed to each submodel
is used to enhance the information representation in the
region of interest of the forgery by calculating the

attention map A i.e., the attention value A outputted
by the GSA is used as a feature channel weighting factor
embedded in the prediction paths of all sub-models to
update the feature representations in their regions.
Finally, all predicted results are fused and finally judged
by a classifier to output the authenticity of the image. The
module structure of GSA is shown in Figure 5.
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Figure 5: Module structure of GSA.

In Figure 5, the GSA module structure mainly
consists of multiple processing units. Firstly, the input
feature map is subjected to global average pooling to
obtain the global information of each channel. Then,
normalization is performed to adjust the scale of the
feature map. Next, the spatial attention map is calculated
to weight the features of different regions. The weighted
feature map is used for subsequent processing. The entire
process effectively captures important spatial regions

through spatial attention mechanisms and enhances the
expressive ability and performance in feature fusion. To
enhance the fused region confidence calculation, the
study introduces the intra-region feature scoring

mechanism. The feature responses fk (r) of all channels
in region I' are combined with the scoring coefficients

B to calculate their aggregation scores S . The
calculation is shown in equation (9).
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N f (1)
S = kNI 9
' kzz;'b)k [maxr, fk(r')] ©
In equation (9), r' represents the set of all regions.
Finally, to realize the overall determination, all the region
prediction results R are fused with the region weighting

coefficients /7 to output the forgery probability P _rate
of the overall image, as shown in equation (10).

N
YL
r:17r

(10)

In equation (10), 7r denotes the global importance
weighting factor of region I', which is usually calculated
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L . . .
with ! for spatial attention, ’Bk for channel scoring,

and 7" for region fusion, overall forming a hierarchical
and clear chain of attention determination. By integrating
the misclassification of forged images with the spatial
attention weighting mechanism of the model, a composite
loss function is constructed, as defined in equation (11).

L, :_Z(yr log(P,)+(@-vy,)-log@-P))  (11)

In equation (11), y, represents the true label of
region r, where forged is 1 and true is 0. L, represents

cross entropy loss. The research combines the LLF-GAN
forensic algorithm for single facial forgery images and
the MPPSA-GAN algorithm for multiple images to

by combining I with region scoring S in the GSA Proposean ir_nprove(_i GAN-based cpmplex fa(_:ial forgefy
module. The process embodies a step-by-step weighting image forensic algorithm. The algorithm flow is shown in
mechanism from feature channel to region prediction, Figure 6.
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Figure 6: The unified architecture of the LLF-MPPSA-GAN model combining low-level and spatial-attention-based
forensic branches.

As illustrated in Figure 6, the algorithm first
conducts category-specific feature routing on the input
image. Then, they are fed into two feature extraction
branches, respectively. If the image is a single facial
type, it will be processed through the LLF-GAN path,
and low-level features such as color and noise will be
extracted by wavelet transform. The feature
reinforcement will be carried out by ML-CNN, and fed
into the VGG19 classifier to complete the preliminary
discrimination. If the image is a multi-facial or a more
complex structure type, it is fed into the MPPSA-GAN
path, and global semantic features will be extracted by
the EfficientNet-B4. Multiple sub-models will process

the image partition independently. EfficientNet-B4 is
used to extract global semantic features, and image
partitions are processed independently by multiple sub-
models, and the forged regions are weighted and
focused through the GSA module. The output features
of the two branches are spliced in the fusion module and
the final discrimination is performed by a unified
classifier. For the forgery probability of the final output,
the study sets a threshold of 0.5. If the probability is
greater than 0.5, it is judged as a forged image.
Otherwise, it is judged as a real image. The pseudo-code
of the LLF-MPPSA-GAN algorithm is shown in Figure.
7.
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# Input: facial image |

I_wavelet = WaveletTransform(l)

LLF_feat=ML_CNN(low_feat)

F_init = EfficientNetB4(l)
region_preds =[]
region_weights = []

for region r in Regions(F_init):

A_r = ComputeGSA(r)
S_r = RegionScore(A_r, r)

region_preds.append(P_r)
region_weights.append(S_r)

return P_final

# Output: final forgery probability P_final
# Step 1: Low-level feature extraction via LLF-GAN

[R, G, B] = SplitChannels(l_wavelet)

color_feat = ExtractColorFeatures(R, G, B)
noise_feat = ExtractNoiseFeatures(R, G, B)
low_feat = Concatenate(color_feat, noise_feat)

LLF_enhanced = HighPassFilter(LLF_feat)
LLF_output = VGG19Classifier(LLF_enhanced)

# Step 2: Multi-region attention-based inference via MPPSA-GAN

# Multi-submodel prediction (Eq. 7)
P_r = Sigmoid(Sum(w_i * f_i(r) for i in submodels))

# Spatial attention weighting (Eq. 8, 9)
# attention map
# weighted region score

# Step 3: Region-level prediction fusion (Eg. 10)
P_MPPSA = WeightedAverage(region_preds, region_weights)

# Step 4: Final feature fusion and classification
P_final = FusionClassifier(LLF_output, P_MPPSA)

Figure 7: Pseudo-code for the LLF-MPPSA-GAN algorithm.

3 Results

3.1 Performance testing of a new facial
forgery image forensics model

The research sets the CPU to Intel Core i7 3.6GHz,
GPU to Nvidia GeForce GTX 1080 Ti, memory to
32GB, and uses Python 3.7 and TensorFlow 2.4
frameworks for model training and testing. The pre-
training weights used in the modules are all obtained
based on training on publicly available datasets and are
fine-tuned in this study to fit the forgery image detection
task. The pre-trained model of VGG19 is trained on
ImageNet with about 143.7M parameters. EfficientNet-
B4 is trained on ImageNet with about 19M parameters.
In LLF-GAN, the classifier adopts the classical VGG19
network structure, which contains 16 convolutional
layers and 3 fully connected layers. In MPPSA-GAN,
the EfficientNet-B4 network, which consists of
composite scaled convolutional modules with strong
expressive power, is used as the feature extractor. Both
are loaded with weights pre-trained on ImageNet and
fine-tuned for this research task. For both LLF-GAN
and MPPSA-GAN, cross-entropy loss is used as the

main training objective function. In the overall
integration model, the output losses of the LLF path and
MPPSA path are each given the same weight, i.e., A1 =
2 = 0.5, and the final loss is the weighted sum of the
two.

The experiments are evaluated based on two
mainstream facial forgery datasets: Celeb-DeepFake
Dataset (Celeb-DF) (a total of 5,639 videos with about
590,000 images extracted) and DeepFake Detection
Challenge Dataset (DFDC) (19,000 images selected
from it). The data is divided into 70% training set, 15%
validation set, and 15% test set. The training process
uses random level flipping and luminance adjustment
for data enhancement, the total number of training
rounds is 80, and the optimizer uses Adam (with an
initial learning rate of 1e*). Five-fold cross-validation is
adopted. The experimental results are shown in Table 2.
The mean =+ standard deviation (std) of each metric is
used to evaluate the generalization ability of the method.
Both are loaded pre-trained weights on ImageNet and
fine tuned them for this research task.

Table 2: Performance metrics results under five-fold cross-validation

Fold Precision (%0) Recall (%) F1 score (%) Accuracy (%)
Fold 1 93.82 91.02 92.41 92.63
Fold 2 94.36 92.85 93.22 93.17
Fold 3 94.12 90.98 92.51 92.69
Fold 4 93.74 92.41 93.06 93.08
Fold 5 94.01 91.66 92.71 92.78
Mean + standard deviation 94.01 £0.22 91.78 £ 0.67 92.78 £ 0.31 92.84 £0.25
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From Table 2, the proposed model showed good stability
and robustness in five-fold cross-validation on the DFDC
dataset. The fluctuations of each index in different folds
were small, with the average precision reaching 94.01%,
recall 91.78%, F1 score 92.78%, and accuracy 92.84%.
The standard deviations were all controlled within 1%,
showing that the model had consistent and excellent
detection performance under different data divisions. This
further validated the generalization ability of the
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proposed model, indicating its good adaptability and
reliability in real complex environments. The study first
conducts value validation on the two types of
hyperparameters that have the greatest impact on model
performance, namely the spatial attention weight
coefficient «; and the weight coefficient of individual

features g, . The test results are shown in Figure 8.
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Figure 8: Hyperparameter selection test result.

Figure 8 (a) displays the spatial attention weight
coefficient selection test. Figure 8 (b) displays the weight
coefficient selection test for a single feature. From Figure
8 (), as the spatial attention weight coefficient increased
from 0.2 to 0.8, the detection accuracy fluctuated. The
coefficients of 0.6 and 0.8 could achieve an accuracy of
0.7 at 250 iterations, while the highest accuracy was 0.8
at 0.4. In Figure 8 (b), when the weight coefficient of a
single feature was 0.7, the accuracy reached 0.6 after 300
iterations, while it was only 0.55 when it was 0.1. The
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accuracy at 0.3 and 0.5 was 0.75 and 0.8, respectively.
Higher or lower spatial attention weight coefficients and
individual feature weight coefficients can lead to poor
detection accuracy. When the spatial attention weight
coefficient was 0.4 and the weight coefficient of a single
feature was set to 0.5, the detection accuracy is
significantly improved. In addition, the research conducts
ablation tests on the combined model, as displayed in
Figure 9.
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Figure 9: Ablation test results.

Figure 9 (a) displays the ablation test results under
the DFDC. Figure 9 (b) displays the ablation test results

under the Celeb-DF dataset. In Figure 9, the LLF-
MPPSA-GAN model had the fastest convergence speed
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in terms of accuracy improvement, reaching about 0.9 in
about 150 iterations, and continued to lead the other
models in the subsequent stages. In contrast, even after
400 iterations of the standard GAN model, its accuracy
still did not exceed 0.85 and its convergence was
significantly  lagging. Meanwhile, in terms of
computational cost changes, although the resource
consumption of LLF-MPPSA-GAN was slightly higher
than that of a single model, it consistently maintained a
controllable growth during the iteration process and had a
higher  cost-effectiveness in terms of accuracy
improvement, reflecting a better efficiency-performance
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balance. Combining the results of the two figures, it is
verified that the proposed fusion model has strong
convergence stability and resource utilization advantages
while improving detection performance. The research
introduces advanced forensic algorithms for comparison,
such as Xception-DeepLab  Network (Xception-
DeepLab), EfficientNet, and Densely Connected
Convolutional Network (DenseNet), Swin Transformers,
Two-stream  Convolutional and Long Short-Term
Memory  Networks  (Two-stream  CNN+LSTM).
Precision, Recall, F1 score, and average forensic time are
taken as indexes. Table 3 displays the results.

Table 3: Performance comparison of different facial forgery forensics algorithms on benchmark datasets.

. Average time
Precision Recall F1 score
Dataset Model 1% 1% % spent on p
depositions / s
. 87.98 + 83.86 81.62 +
Xception-DeepLab 0.3 04 05 0.36 <0.01
.. 86.33 8291+ 80.88 +
EfficientNet 03 03 04 0.51 <0.01
81.82 + 77.25 + 78.34 +
DenseNet 04 05 05 0.65 <0.01
DFDC . 88.94 + 85.13 + 84.71 +
Swin Transformer 03 04 0.4 0.47 <0.01
90.03 + 86.57 + 85.34 +
Two-stream CNN+LSTM 0.2 03 03 0.52 <0.01
94.36 + 91.68 + 93.02 +
Our model 0.2 0.2 0.2 0.28 /
. 82.17 + 81.07 + 88.24 +
Xception-DeepLab 04 05 05 0.35 <0.01
.. 82.93 + 83.39 + 81.88 +
EfficientNet 04 03 04 0.48 <0.01
83.98 + 83.72 + 85.18 +
DenseNet 03 04 04 0.59 <0.01
Celeb-DF . 85.11 + 84.02 + 86.64 +
Swin Transformer 0.2 03 03 0.43 <0.01
86.85 + 85.91 + 88.42 +
Two-stream CNN+LSTM 03 03 03 0.46 <0.01
95.21 + 93.02 + 94.21 +
Our model 0.2 0.2 0.2 0.29 /

According to Table 3, both Swin Transformer and
Two-stream CNN+LSTM showed superior detection
performance among the selected comparison methods on
both DFDC and Celeb-DF datasets. Specifically, the F1
score of Two-stream CNN+LSTM on the DFDC dataset
reached 85.34%, which was slightly higher than that of
Swin Transformer (84.71%), and both of them were
significantly better than traditional methods such as
DenseNet and Xception-DeepLab. Meanwhile, the
proposed LLF-MPPSA-GAN still had the most
outstanding performance on the two datasets, with F1
scores of 93.02% and 94.21% on DFDC and Celeb-DF,
respectively, which were significantly higher than all the
comparison models. In addition, the computational
efficiency of the model also had an obvious advantage. In

terms of average forensic time, the proposed model
achieved the fastest inference speed with 0.28s and 0.29s,
which was better than Swin Transformer (0.47s / 0.43s)
and Two-stream CNN+LSTM (0.52s / 0.46s), indicating
that the proposed method maintained the high accuracy
and has strong real-time performance and deployment
potential. All results pass the two-tailed t-test with p-
values less than 0.01, indicating that the performance
improvement was statistically significant.

3.2 Simulation testing of a new facial forgery
image forensics model
To evaluate the performance of a new facial forgery

image forensics model, six types of facial forgery images
are randomly obtained from the DFDC and pre-processed
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to ensure the validity of the image data. The research
compares forensic detection of six types of images with

1 DFDCXception-DeepLab

M. Zhang

different qualities, taking Area under Curve (AUC) as the
indicator, as displayed in Figure 10.
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Figure 10: Forensic detection AUC results of forged images of different qualities.

Figure 10 displays the AUC results of forensic
detection for low-quality forged images, normal quality
forged images, and high-quality forged images. In Figure
10, the proposed model performed the best in low-quality
forged images, with an AUC value of 68.34%, which was
superior to Xception-DeepLab, EfficientNet, and
DenseNet, with improvements of 28.23%, 23.77%, and
10.95%, respectively. In normal quality forged images,
the AUC value of the proposed model was 75.56%, once
again surpassing other models, especially when dealing
with small samples, with an improvement of 28.32%. In
high-quality forged images, the AUC of the proposed

model reached the highest, at 85.74%, proving the high
accuracy in dealing with high-quality forged images.
Compared with Xception-DeepLab, EfficientNet, and
DenseNet, the AUC values increased by 15.81%,
11.76%, and 9.87%. The proposed model has obvious
advantages in various quality forged images, especially in
detecting high-quality images, where the improvement in
AUC value reflects its strong adaptability and robustness.
The study conducts confusion tests on four types of
forgery: emotion exchange, identity exchange, attribute
editing, and global facial generation. The results are
shown in Figure 11.
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Figure 11: Confusion test results.
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Figure 11(a) shows the Xception-DeeplLab test
results for the four types of forgery image confusion.
Figure 11(b) shows the EfficientNet test results for the
four types of forgery image confusion. Figure. 11(c)
shows the DenseNet test results for the four types of
forgery image confusion. Figure 11(d) shows the
research method test results for the four types of forgery
image confusion. From Figure. 11, the ability of the
proposed model to distinguish four types of forgery
types (expression exchange, identity replacement,
attribute editing, and full-facial generation) was
significantly better than the other models. In contrast,
Xception-DeepLab, EfficientNet, and DenseNet had
significant confusion between identity substitution and
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attribute editing with high error rates, especially in the
full-facial generation task where the confounding
judgment was particularly prominent. In addition, the
proposed model maintained high accuracy on cross-
recognition in all categories, especially showing clearer
boundaries between expression swapping and attribute
editing, which significantly reduced type confusion.
This indicates that the proposed fusion model has
stronger fine-grained recognition ability and structural
discrimination, and can effectively deal with complex
and diverse counterfeiting techniques. Taking the
Receiver Operating Characteristic curve (ROC) as an
indicator, the results are shown in Figure 12.
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Figure 12(a) shows the ROC curves of different
models in the public data, and Figure 12(b) shows the
ROC curves of different models in the unpublished data.
The horizontal axis represents the false-positive rate and
the vertical axis represents the true-positive rate. The
larger the AUC, which is enclosed by the ROC curve
and the horizontal and vertical coordinates, the better the
model performance. From Figure 12, the proposed
model achieved optimal performance in both data
conditions, with AUC values of 0.91 and 0.87, which
were significantly higher than Xception-DeepLab (0.82 /
0.77), EfficientNet (0.84 / 0.79) and DenseNet (0.85 /
0.80). Especially in the non-public data test, the
proposed model still maintained a large advantage,
indicating its stronger robustness and generalization
ability. Overall, the fusion structure not only improves

M. Zhang

the recognition accuracy on public forged images, but
also significantly enhances its adaptability when facing
unknown forged samples. The forged facial images with
low noise, normal noise and high noise are detected
using forensic Mean Average Precision (mAP), model
complexity, and forensic delay as metrics. The results
are shown in Table 4. The detection performance on
low-noise, moderate-noise, and high-noise forged facial
images is evaluated using mAP, model complexity, and
processing latency, as presented in Table 4. All noises
were added using a Gaussian distribution simulation,
with different standard deviations set to correspond to
low (o = 5), medium (¢ = 15), and high (¢ = 30) noise
intensities, respectively, and superimposed on the RGB
channel of the image to generate interference samples.

Table 4: Robustness evaluation of forensic algorithms under varying noise conditions.

Type of o Model Delayed Memory
noise Model mAP/% complexity/% | depositions/% FLOPs(G) (MB) P
Xception- 89.34 +
DeepLab 04 88.67 0.34 12.4 698 <0.01
EfficientNet | 2012 % 89.34 0.37 108 645 <0.01
Low 0.3
noise DenseNet 91(')4§ * 90.22 0.32 135 732 <0.01
Our model 92693 * 80.54 0.28 9.3 528 /
Xception- 88.23 +
DeepLab 04 87.46 0.35 12.4 698 <0.01
. 89.56 +
Normal EfficientNet 03 88.97 0.31 10.8 645 <0.01
OIS 1 penseNet 906837 * 89.12 0.33 135 732 <0.01
Our model 936122 * 83.88 0.29 9.3 528 /
Xception- 84.56 +
DeepLab 05 83.12 0.36 12.4 698 <0.01
. 85.12 +
High EfficientNet 04 84.78 0.32 10.8 645 <0.01
noise
I DenseNet 8663:' * 85.54 0.34 135 732 <0.01
Our model 8962:‘:’ * 81.67 0.35 9.3 528 /

According to Table 4, under different types of noise
interference, the proposed LLF-MPPSA-GAN model
showed strong stability and advantages in terms of mAP
value, model complexity, and delayed forensic
performance. Taking high noise environment as an
example, the proposed model still achieved 89.23% mAP,
which was better than Xception-DeepLab (84.56%),
EfficientNet (85.12%), and DenseNet (86.34%), and the
complexity of the model stayed at 81.67%, which was
much lower than the average of other models at about
85%-90%, verifying its lightweight and low-cost
performance. This indicates the effectiveness of the
lightweight design strategy. In terms of delayed forensics,

the proposed model achieved the shortest forensics time
under all types of noise conditions, with a minimum of
only 0.28s, which further highlighted its real-time
response capability. In addition, the research method is
statistically examined on the mAP results of all the
comparison models under three noise levels. The p-values
obtained from two-tailed independent samples t-tests
were less than 0.05, which indicated that the advantages
of the research model on noise robustness are statistically
significant.
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4 Discussion

Aiming at the current facial forgery detection problems of
insufficient multi-region sensing ability, low feature
detail extraction efficiency, and poor robustness in
complex environments, the study proposes a two-branch
improved GAN forensic model, LLF-MPPSA-GAN,
which integrates low-level feature extraction and multi-
prediction partition spatial attention mechanism. The
experimental results showed that on two mainstream
datasets, DFDC and Celeb-DF, both achieved F1 scores
of over 93% and mAP of over 89%, significantly
outperforming DenseNet and Swin Transformer. Both
achieved F1 scores over 93%, mAP stayed above 89% in
multiple noisy environments, and the average inference
time was as low as 0.28 seconds, which was significantly
better than methods such as DenseNet, EfficientNet, and
Swin Transformer. In a single image path, LLF-GAN,
which fuses color and noise, enhances fine-grained
feature perception and effectively locates low-frequency
residual forgery traces. MPPSA-GAN combines the
global semantic understanding of EfficientNet with the
local weighting mechanism of GSA, enhancing the
accuracy of multi region forgery recognition and
improving the ability to capture edge contours and
microstructural changes. Compared with the single-
branch forgery recognition framework using attention
convolution proposed by Lin K et al., the two-way
parallel mechanism proposed in this paper significantly
mitigates the ambiguous model recognition and weak
local response when oriented to multi-class forgery
scenarios [20]. Meanwhile, the feature scoring
mechanism based on multi-stage fusion improves the
accuracy of determining the forgery in different regions,
further verifying the adaptability of the weight allocation
strategy on complex samples. Despite the multi-module
combination, the overall complexity of the model is still
controlled at about 81%, and the inference latency is no
more than 0.35 seconds, which possesses strong
deployment efficiency and edge device adaptability.
Especially under non-public data and high noise
conditions, the AUC remains above 0.87, indicating its
good generalization ability. Subsequently, the model can
be further compressed and distillation or quantization
strategies can be introduced to adapt to the real-time
forensic task of embedded platforms, In addition, it can
also enhance the recognition stability of dynamic video
forgery and occlusion interference scenes.

5 Conclusion

A two-branch facial forgery forensic model LLF-
MPPSA-GAN fusing low-level feature extraction and
multi-prediction partitioned spatial attention mechanism
was proposed to construct discriminative paths for single
facial images and multi-region complex forgery
scenarios, respectively and determine image authenticity
through branch fusion. Experimental results showed that
the method achieved better detection performance than
existing methods on multiple benchmark datasets, and
exhibited good stability and robustness in terms of noise

Informatica 49 (2025) 331-340 343

interference, forgery type differentiation, and
computational efficiency. The model can be widely used
in the fields of social platform content censorship,
judicial image appraisal, identity verification security,
etc. It provides a feasible technical basis for the practical
deployment of forgery forensics system while improving
the practicality of deep forgery detection technology.

6 Future work and limitations

Although the proposed LLF-MPPSA-GAN model
performs well on multiple datasets and test tasks, there
are still several limitations that need to be emphasized.
First, the current method performs forgery identification
based on single-frame images, which is difficult to
effectively capture cross-frame information changes,
limiting the ability to detect dynamic video forgery.
Second, the experiments are mainly based on two public
datasets, Celeb-DF and DFDC, which cover common
types of forgeries, but there are some limitations in the
sample distribution and forging means. This may lead to
model overfitting in real complex environments, and the
generalization ability still needs to be further verified. In
addition, for anomalous forgery images generated by
other novel generative models (e.g., StyleGAN3 or
Diffusion model), the detection robustness of the model
has not been fully evaluated, and there may be
misjudgments. Future work can consider introducing a
multi-scale attention ~mechanism based on the
Transformer structure to enhance cross-region feature
interaction capability. A video level forensic framework
can be constructed by combining multi-modal
information such as audio synchronization, speech
consistency, etc., to improve the perception depth of
deepfake scenes. Zero sample or small sample forgery
recognition methods can be explored to enhance the
adaptability of the model to unknown forgery samples,
thereby expanding its deployment value and practicality
in real security scenarios.
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