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The Industrial Era 4.0 has emerged as a response to the changes occurring in the world in a dynamic, 

unexpected, and uncertain manner. This situation requires analytical, predictive, and adaptive capabilities 

in an intelligent environment. This affects real-world object recognition in vision systems, which are 

frequently limited to specific signals. Thereby, it creates an adaptive gap. One potential solution to this 

problem is the development of self-adaptive cyber-physical systems (hereafter, SACPS) to enhance 

adaptability in recognizing diverse real-world objects. This paper introduces the SACPS model through an 

extended machine learning/deep learning model applied to smart glasses, which can detect and calculate 

object distances adaptively. The components of the developed model comprise smart glasses, contextual 

knowledge, and adaptive requirements based on the SACPS concept. We developed a pre-trained model by 

combining the Dist-YOLOv3 algorithm with Xception and an attention layer to obtain more optimal results. 

This research compared the new pre-trained model with those from previous research. Based on the 

evaluation, the model demonstrates improved performance compared to the baseline when tested on the 

KITTI dataset, recording a mean Recall (mRec) of 45.21%, mean Precision (mPrec) of 14.73%, and mean 

Average Precision (mAP) of 30.04%. Additionally, the adaptive system's response to increasing light intensity 

below 50 revealed good stability, with average post-enhancement brightness reaching 100.0703 (pixel 

intensity scale). These results demonstrate the significant potential of our model in handling changing 

environments with strong adaptation in diverse real-world object recognition scenarios. In the case of smart 

glass, the employment of SACPS can provide good adaptability in predicting distance and increasing light 

intensity. 

     Povzetek: Predstavljen je samo-adaptivni CPS-model za pametna očala z izboljšanim Dist-YOLOv3, kjer 

Xception in pozornostna plast izboljšata prepoznavanje objektov in razdalj. Model doseže višji mAP (30.04 %) 

ter stabilno prilagajanje pri nizki svetlosti (povprečna osvetlitev 100.07).

1 Introduction 
Scholars have declared that the industry 4.0 era is 

characterized by volatility, uncertainty, complexity, and 

ambiguity. In particular, it accentuates the state of the 

world, characterized by rapid change, inadequate 

predictability, the absence of a cause-and-effect chain, and 

the blurriness of reality. Another problem arises when 

providing a real-world object recognition system that 

incorporates complexity based on various gestures and 

related devices. This can pose challenges for developers. 

Additionally, they should ensure that the system can 

recognize a wide range of real-world objects. As a result, 

the target is to enable the system to learn from the 

recognition process it carries out and develop its learning 

process to recognize every gesture and device in the real 

world. However, the predominant challenge of this 

situation is how to respond creatively and employ adaptive 

strategies to face the future [1]. Regarding this issue, 

Cyber-physical systems (CPS) have emerged as one of the  

 

latest advancements in this era. CPS has been a trending  

topic among academics and practitioners [2], [3]. In its 

various applications in the real world, CPS can be utilized 

to meet distinct system requirements in the Industry 4.0 

era [4]. For example, CPS can integrate the virtual and 

physical worlds, meeting the predominant characteristics 

of Industry 4.0 requirements. However, the operating 

environment can vary and cover distinct uncertainties [5]. 

In this matter, a pivotal feature of the present and future 

breakthrough is self-adaptive systems (SAS) [3]. AS is a 

system that can modify its behaviors based on changes 

occurring either in the environment or within the system 

itself. Unfortunately, several gaps remain regarding the 

implementation of SAS in CPS, including insufficient 

information on the characteristics of SAS, particularly 

those related to CPS [3] Later, in the development process, 

not all software engineering knowledge can be 

implemented [6], Furthermore, not all software 

engineering knowledge can be effectively implemented 

during the development process [6]. Architectural 
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requirements should center on adaptation to inform 

appropriate architectural decisions. Antonino et al. [2] 

argue that current standard software development 

approaches are unable to represent complex contexts. 

Hence, they have not been able to introduce fatal 

complexity to CPS. Therefore, a contextual modeling 

approach is required, namely, modeling system entities 

with specific contextual attributes. In particular, SAS in 

CPS requires a dynamic context. This occurs because 

uncertainty prevents the system from knowing its current 

state. An approach to documenting uncertainty that 

integrates other artifacts from different perspectives is 

required to specifically capture uncertainty [7]. 

The CPS design should be able to resolve uncertainty at 

runtime. Consequently, SAS should be a fundamental 

approach for the system to meet its functional and 

performance specifications [8]. Zavala E. et al. [5] argue 

for the need for distributed runtime models in CPS to 

capture operational state and context as a form of 

knowledge representation. In this case, the runtime model 

is typically implemented through the MAPE-K control 

loop, which combines new knowledge through 

decentralized operations. Thus, it allows for conflicts [9]. 

Based on this description, it is necessary to develop a 

flexible knowledge structure with a reasoning mechanism 

at run-time. 

Likewise, CPS presents diverse issues in terms of system 

design, implementation, and maintenance. One of the 

main issues is the need for adaptive techniques to cope 

with a dynamic and constantly changing environment [3]. 

CPS necessitates a SAS that can monitor and adjust its 

behavior based on changes in its environment [4]. 

Antonino et al. [2] have identified significant required 

specifications directly from the adaptive requirements 

architecture for CPS and enabled IoT. Conversely, the 

implementation of SAS in CPS raises issues regarding 

interoperability, integration, and technical assessment in 

the system [7]. 

This paper is aimed at developing a generic model for 

adaptive service in CPS to recognize real-world objects. 

Combining formalized approaches with the CPS system 

metamodel provides the possibility to invigorate semantic 

interoperability. Moreover, it can enhance its performance 

[8]. The system framework functions to capture and 

handle a variety of CPS variability. As a result, developers 

can produce products that can be applied to modern 

software system environments for the needs of diversified 

domains based on the demands of the current world. The 

cultivated strategy is to expand the CPS architecture by 

embedding the SAS approach through adapting machine 

learning/deep learning methods. Technically, it modifies 

the Dist-YOLOv3 [10] algorithm by substituting the 

original architecture of YOLOv3, namely Darknet53 with 

the Xception architecture [11] added with an attention 

mechanism layer. The proposed model is represented as a 

generic knowledge structure to accommodate the need for 

recognizing various real-world resources and objects. The 

adaptability mechanism is determined through a learning 

model that can capture instances or concrete CPS services 

based on contextual requirements operationalizing at run-

time. 

This model is implemented in the case of smart glasses, 

namely combining concepts from object recognition, 

SAS, and CPS into one unified whole. The utilization of 

object recognition was selected since it can better 

comprehend the circumstances and conditions of the 

surrounding environment compared to a sensor [12]. SAS 

and CPS provide smart glasses with flexibility in 

interacting with users and high adaptability while 

encountering environments with low light intensity. By 

doing so, this study offers a significant impact on the 

progress of assistive devices for the visually impaired.  

The key contributions of this study are as follows: 

1. A novel CPS-based object recognition architecture 

for smart glasses that integrates self-adaptive 

capabilities to handle environmental uncertainty, 

particularly in low-light conditions. 

2. An enhanced version of Dist-YOLOv3, by replacing 

the Darknet53 backbone with the Xception 

architecture and integrating an attention mechanism 

to improve object detection accuracy and distance 

estimation. 

3. An adaptive light intensity enhancement module 

enables the system to dynamically adjust image 

brightness, thereby improving detection 

performance under poor lighting conditions. 

4. Empirical validation on the KITTI dataset, 

demonstrating improved performance in terms of 

mean Average Precision (mAP), recall, and precision 

compared to the original Dist-YOLOv3 model 

5. A unified smart glasses framework for visually 

impaired individuals, capable of real-time object 

recognition, distance estimation, and auditory 

notification using text-to-speech. 

 

The remaining sections of this paper encompass 

discussing related work (second section), describing the 

proposed model (the third section), and discussing 

experiments (the fourth section) (e.g. a discussion of the 

case study and its evaluation results). Finally, the fifth 

section infers the entire results of the work and discusses 

future directions of investigative attempts. 

2 Related work 
Nowadays, researchers have proposed assorted 

approaches to address emerging challenges. Grounded in 

the investigative results of the most current survey and 

technical papers, there have been several requirements 

that Self-Adaptive Cyber-Physical Systems should 

possess. As an example, studies discussing system 

modeling, system evolution, supporting contextual 

uncertainty, and system evolution requirements were 

conducted by Zavala et al. [5], Antonino et al. [2], 

Petrovska et al. [4], Jehn-Ruey Jiang [13] and Habib et al 

[14]. Scrutiny emphasizing system learning and 

adaptation and handling contextual uncertainty was 

performed by Zhou et al.[15], Búr et al. [16], Weyns et al 

[17], Ahmed et al. [18], and Sony [19]. Investigative 

efforts focusing on syntactic and semantic 

interoperability, system collaboration, and integration 

between physical and virtual systems, including handling 
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contextual uncertainty at run-time were performed by 

Kluge [20], Weichhart et al. [21], Casadei et al. [22] and 

Aradea et al [23], [24]. 

 

Based on a description of reviewed prior scrutiny, Table 1 

designates a comparison of related works specified into 

design-time and run-time requirements, including their 

strengths and weaknesses. 

 

Table 1: Comparison of related works 

Works Design-time 

specifications 

Run-time 

Specifications 

Jehn-Ruey 

Jiang (2018) 

ISA-95 architecture, 5C 

architecture 

8C Architecture 

Zavala et.al. 
(2018) 

Contextual model, 
modeling reference 

architecture, hierarchical 

inter-intra-collaborative 

Feedback control 
loop: centralized 

and decentralized 

control loops, 
machine learning 

Zhou, et. al. 

(2018) 

Matching network 

architecture with a non-

parametric differential 
KNN-like classifier 

MAML (Model-

Agnostic Meta-

Learning) 

Antonino 
et.al. 

(2018) 

Adaptation model terms: 
adaptation context, 

adaptation stimulus, 

realization 

MAPE-K reference: 
stimulus, 

preconditions, 

postconditions, 
invariants 

Petrovska 

et.al. (2019, 
2020) 

Model knowledge (multi-

agent), observation 
aggregation (run-time 

context), subjective logic 

(dempster-shafer) 

MAPE-K loops 

(master-slave): 
subjective opinion 

creator, knowledge 

aggregator, 
cumulative belief 

fusion, cumulative 

belief fusion 

Kluge (2020) Model-driven: graph 
rewriting rules, role-based 

context-model: CPS, 

decentral adaptations: 
decentral role-based 

system 

MAPE-K loops: 
distributed role 

runtime: 

communicating 
sequential 

processes, 

adaptation plan: role 
instance model 

Búr et. al. 
(2020) 

Model run-time: 
monitoring rules, execution 

planner-optimizer, code 

generator, distributed 
graph queries 

Computing 
platform:  

distributed runtime 

monitoring, model 
update operations, 

local search-based 

pattern matching 

Bandyszak 

et.al.  (2020) 

Model-based approach: 

modeling behavioral 
requirements (structural 

operational context), 

context uncertainty 

Ontological: 

orthogonal 
uncertainty models, 

system context & 

and requirements 
ontology, 

uncertainty 

ontology 

Sony (2020) 8C Architecture Lean Six Sigma 
(LSS) 

Weichhart, et. 

al. (2021) 

Orchestration software 

model: ad-hoc planning, re-

planning, BPMN language, 
NgMPPS Engine, 

syntactic, semantic & 

pragmatic modeling 

Interoperability run-

time model: 

semantic 
interoperability, 

pragmatic 

interoperability, 
REST web service 

Weyns, et.al.  

(2021) 

Crossing Boundaries, 

Leveraging the Human, 

Fluid Modelling, On the 
Fly Coalitions 

Dynamically 

Assured Resilience, 

Learn Novel Tasks 

Casade, et.al. 

(2021) 

Augmented Collective 

Digital Twins: holistic, 
declarative, and integrated 

system view. 

Integrating physical 

and virtual devices 
and meta-models for 

self-organizing 

Habib, et.al. 
(2022) 

IIRA (Industrial Internet 
Reference Architecture), 

RAMI 4.0 (Reference 

Architecture Model 
Industrie 4.0) 

IMSA  
(Intelligent 

Manufacturing 

Systems 
Architecture), 

Merge of IEC and 

ISO standards for 
smart 

manufacturing. 

 

Table 1 illustrates assorted relevant literature regarding 

the requirements for CPS to have adaptability. Based on 

Table 1, we identified three groups of methods/approaches 

for dealing with the problem of object recognition models 

based on CPS. First, methods were adopted to handle 

contextual uncertainty, such as those applied by [2], [4], 

[5], [13], [14]. Generally, it indicated advantages in 

recognizing the context of a CPS environment based on 

certain contextual requirements. However, it has not yet 

supported comprehensive CPS domain modeling. Second, 

focusing on learning mechanisms for system adaptation as 

proposed by [15]–[17], [19], [34], [35] they offered 

machine learning approaches dedicated to adaptability 

based on current learning algorithms. Unfortunately, these 

approaches also pay less attention to the needs in modeling 

the CPS domain where the system operates. Third, 

handling contextual uncertainty as proposed by [20]–[24], 

this approach is prepared to perform domain modeling 

including handling CPS contextual uncertainty. However, 

it has not adopted the learning process optimally. As a 

result, there is still a need to increase the optimized value 

of these approaches. Grounded in discussions of related 

works, investigative gaps remain. It becomes our 

motivation to propose a model to fill these gaps. Our 

proposal offers a generic model for the adaptability of CPS 

services in recognizing real-world objects consisting of 

the ability to model the CPS domain through the integrated 

cyber system and physical system architectures influenced 
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by contextual knowledge. Apart from that, increasing the 

optimized value of the learning process was executed by 

expanding the Dist-YOLOv3 architecture by modifying 

the backbone by embedding the Xception architecture as 

a replacement for Darknet53. Further, to capture broader 

real-world cues, we accentuate the mechanism layer 

between the neck and head of the architecture. 

3 Proposed method 
The target of our developed generic model can be applied 

to recognize a variety of real-world objects in the CPS 

environment. Hence, the system framework should be able 

to capture and handle various CPS variabilities. The 

developed strategy is to expand the CPS architecture with 

learning process capabilities for all instances or concrete 

CPS services. The adopted approach is SAS through the 

development of machine learning/deep learning methods 

as a control process at run-time. The mechanism of the 

adaptability learning process is determined through the 

contextual requirements of the CPS environment 

functioning at run-time. Figure 1 displays our proposed 

architectural model. 

The architecture in Figure 1 is an extension of the 

architecture proposed by Habib et al. [14] with additional 

modifications to SAS [23], [24] which we have previously 

developed, called self-adaptive cyber-physical systems 

(SACPS). Our previous model formulated an adaptive 

model based on contextual knowledge through a 

probabilistic reasoning approach. More specific models 

can be viewed in papers [23], [24]. In this paper, we have 

built up the model with several adjustments from machine 

learning/deep learning methods. The addition of the SAS 

component is intended to enable the object recognition 

model to adapt to uncertainty originating from contextual 

knowledge of a CPS developing environment. Grounded 

in the architecture of Figure 1, the development of the 

SACPS-based object recognition model is created into a 

continuous cycle and the model can continue to self-adapt. 

By doing so, the system embedded in the model can 

continue to be updated according to the requirements to 

handle uncertainty. Specifically, the components of the 

SACPS architecture that we propose consist of: 

 

a. Smart Connection 

Smart connection was the first stage of the cultivating 

processes of an object recognition model. In the smart 

connection section, the process of assembling the physical 

components for the object recognition model was 

conducted. These components were assembled in such a 

way that they could be a source of required data collection 

to inform the conversion process. The applied components 

should be installed properly and connected to other 

components. In other words, communication among 

components and other devices via the internet network 

could be barrier-free. By this description, the data 

collection process was carried out in the smart connection 

section while preparing to continue to the next section. 

 

 

 
 

Figure 1: SACPS (self-adaptive cyber-physical 

system) 

 

b. Data to Information Conversion 

This section performed the data conversion process into 

information read by machines. The conversion process 

could be executed in miscellaneous ways based on the 

developed model. In this case, the data conversion process 

involved the process in Vagjl et al.'s Dist-YOLOv3 

algorithm [10]. This represented a training process from a 

dataset containing images for the object recognition 

model. The better the conversion process was carried out 

at this stage, the more self-awareness properties the 

machine would have. 

 

c. Cyber 

This section was involved in collecting some information 

from each machine connected to the internet network. The 

obtained information was utilized as evaluative materials 

to select which machine or model had better performance. 

With this in mind, the model with the best performance 

was applied to each machine. Supporting data (e.g. 

historical data from each machine) were applied to 

enhance the performance level of the model. 

 

d. Cognition 

At this level, the information-collecting process conducted 

at the previous level was used as suggestions for making 

decisions for developers. Besides, a simulated process was 

also performed on the object recognition model embedded 

in the machine to analyze whether the provided results 

were appropriate or still required further development. 

 

e. Configuration 

This top-level was created to give the machine the ability 

to self-configure, self-adjust, and self-optimize. The 

configuration process was operationalized by noticing the 

results of decisions made from the cognition stage. In 

addition, the configuration level was influenced by 

contextual knowledge [23], [24] from outside the CPS 

environment. Contextual knowledge was employed as a 

parameter for system uncertainty which may affect the 

machine configuration process whether it is required to 

self-configure, self-adjust, or self-optimize. 
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In this paper, the SACPS model developed by us will be 

applied to the needs of a smart glasses system. Figure 2 

signifies our proposed smart glasses architecture based on 

SACPS elements as a result of our previous model 

extension [23], [24]. Each applied tool in this architecture 

will be connected via an internet network connected to the 

data center in the cloud. In this paper, the emphasis is 

situated on creating a model for smart glasses with object 

detection capabilities based on the Dist-YOLOv3 

algorithm modified in such a way. Thus, it can produce an 

artificial voice output originating from text-to-speech. 

Dist-YOLOv3 refers to a variation of the YOLOv3 model 

[25] by widening the prediction vector from three values 

(𝑝 =  (𝑏, 𝑐, 𝑜)) to four values (𝑝 =  (𝑏, 𝑐, 𝑜, 𝑑) [10]. In 

this case, b is the bounding box coordinate (𝑏 =
 (𝑥, 𝑦, 𝑤, ℎ)), c is the confidence value for each class, o 

states the confidence value for the detected object, and d 

is the distance value for the object. Figure 3 showcases 

how Dist-YOLO determines the approximate value of the 

object distance. 

In addition, Dist-YOLOv3 expands the calculation of loss 

function values based on YOLOv3 by adding loss values 

for object distance prediction [10]. Equations (1) and (2) 

demonstrate the difference in the loss function formula 

between YOLOv3 and Dist-YOLOv3. 

 

𝑙 = ∑ ∑ 𝑞𝑖,𝑗[𝑙1(𝑖, 𝑗) +  𝑙2(𝑖, 𝑗) +𝑛𝑎

𝑗=0
𝐺𝑤𝐺ℎ

𝑖=0

𝑙3(𝑖, 𝑗) + 𝑙4(𝑖, 𝑗)]  

(1) 

 

  

𝑙 = ∑ ∑ 𝑞𝑖,𝑗[𝑙1(𝑖, 𝑗) +  𝑙2(𝑖, 𝑗) +𝑛𝑎

𝑗=0
𝐺𝑤𝐺ℎ

𝑖=0

𝑙3(𝑖, 𝑗) + 𝑙5(𝑖, 𝑗)] +  𝑙4(𝑖, 𝑗)  

(2) 

 

 

 

Equation (2) demonstrates the calculation in determining 

the loss value in Dist-YOLOv3 [10] as an extension of 

equation (1) encompassing the loss value for YOLOv3 

[25] by adding up all the existing components, namely 

𝑙1(𝑖, 𝑗) refers to the value loss for bounding box center 

prediction, 𝑙2(𝑖, 𝑗) refers the loss value for the box 

dimension, 𝑙3(𝑖, 𝑗) is described as the confidence loss, 

𝑙4(𝑖, 𝑗) is illustrated as  the class prediction loss, and 

𝑙5(𝑖, 𝑗) is delineated as the loss value for object distance 

prediction. Scrutiny conducted by Vagjl et al [22] proved 

that the application of the Dist-YOLOv3 algorithm can 

provide detecting results for an object equipped with a 

prediction of the object's distance to the camera. 

 

 
Figure 2: Smart glasses architecture 

 

 

 

 
Figure 3: Illustration of Dist-YOLOv3 in determining object distance predictions [10] 
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Even though it shows a good performance in testing, Dist-

YOLOv3 has quite large loss values. Therefore, a 

modification is needed to overcome this problem. This 

study offers a solution by applying the Xception 

architecture [11] combined with the attention mechanism 

layer [26]. The implementation of the Xception 

architecture is adopted to replace the YOLOv3 backbone 

utilizing the Darknet53 architecture. On the other hand, 

the attention mechanism layer is applied to the head 

section of the Dist-YOLOv3 architecture aimed at 

enhancing feature representation. In particular, it focuses 

attention on more relevant parts of the feature map. Thus, 

improving the focus on pivotal information to produce 

more accurate predictions can be realized. 

Figure 4 reports the implementation of the Xception 

architecture and Attention mechanism in the Dist-

YOLOv3 approach. The implementation of Xception was 

placed in the backbone to replace the previous backbone, 

namely Darknet53. There are three main processes carried 

out in this architecture, including the entry flow, middle 

flow, and exit flow stages [11]. The entry flow st age 

aims at reducing the dimensions of the input image and 

extracting basic features through three convolutional 

layers (conv1, conv2, and conv3) and depthwise separable 

convolutions (sepConv1, sepConv2, sepConv3) [11]. 

Exiting the entry flow, the next image enters the middle 

flow section aimed at deepening the network while 

maintaining feature information through residual 

connections. The final stage is the exit flow intended to 

combine the features extracted and process them into the 

desired outputs.  In this case, the output produced is in the 

form of extracted image results performed at three 

different resolutions including f1: 13x13x1024, f2: 

26x26x512, and f3: 52x52x512. 

After the backbone produces the image extraction results 

in three image resolutions, the three extractions enter the 

neck section with the same functions and layers as in the 

Dist-YOLOv3 architecture [10]. Unfortunately, what 

makes it different is that before proceeding to the head 

section, each result produced by the neck will first be 

entered into the attention mechanism layer. In particular, 

the process at this layer occurs as in the pseudocode in 

Table 2. 

The input feature map 𝑥 ∈  ℝ𝐻×𝑊×𝐶  is first linearly 

projected into three matrices: Query 𝑄 =  𝑊𝑞 ·  𝑥, Key 

𝐾 =  𝑊𝑘 ·  𝑥, Value 𝑉 =  𝑊𝑣 ·  𝑥, where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈

 ℝ𝐶×𝑑 are learnable weights and 𝑑 is the attention 

dimension. The attention scores are computed using 

scaled dot-product attention:  

 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄. 𝐾𝑇

√𝑑𝑘

) (3) 

  

This produces an attention matrix 𝐴 ∈  ℝ(𝐻.𝑊)×(𝐻.𝑊) 

which determines how much focus each spatial position 

should give to others. Finally, the enhanced output is 

obtained as: 

 

𝑥𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 =  𝐴 ·  𝑉 (4) 

This yields a refined feature representation where each 

position aggregates information from relevant spatial 

contexts, allowing the network to model global 

dependencies within the image. 

 

Table 2:  

Pseudocode of the attention mechanism process 

Attention Mechanism Pattern 

Input: Feature Map 𝑥 ∈  ℝ𝐻×𝑊×𝐶   

1. Project x into Query (Q), Key (K), and Value (V):   

      𝑄 =  𝑊𝑞 ·  𝑥   

      𝐾 =  𝑊𝑘 ·  𝑥   

      𝑉 =  𝑊𝑣 ·  𝑥   

2. Compute Scaled Dot-Product Attention Scores:   

      𝐴 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 ·
𝐾𝑇

√𝑑𝑘
)   

3. Compute Weighted Feature Representation:   

      𝑥𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 =  𝐴 ·  𝑉    
Output: Enhanced Feature Map x_enhanced 

 
The x value comes from a process in the neck as a result 

of combining features from miscellaneous resolutions to 

provide a rich and informative feature representation. The 

first stage undertaken in this layer is the Calculation of 

Attention Weights where the Attention mechanism 

calculates the weights for each feature element. This can 

be conducted in multiple ways, namely dot product, scaled 

dot product, or complex self-attention mechanisms such as 

those applied in transformers. Next, in the Weighted Sum 

of Features, the input features will be combined with the 

calculated weights. This produces a new feature map 

where important features are given greater weight. On the 

other hand, less important or noisy features are provided 

with less weight. Furthermore, the Enhanced Feature Map 

strengthens the feature map combined with features from 

a lower resolution using the Concatenate layer. 

In the diagram from Figure 4, the Backbone (Xception), 

Neck (feature decoder with upsampling and convolutional 

refinement layers), and the Head that produces the final 

object predictions are distinctly separated. The Attention 

Mechanism is explicitly positioned after the Neck and 

before the Head, ensuring spatial refinement of multi-

scale feature maps prior to prediction. This updated visual 

structure aligns with the standard object detection 

pipelines and reflects the actual implementation logic 

applied in this study. 

By adopting this algorithm, it is expected that object 

detection will be more representative because it 

incorporates the distance element into each detection 

process. The model has been formulated by considering 

the SACPS cycle. By doing so, the target model can 

possess the ability to self-configure, self-adjust, and self-

optimize. As a complement to the model, we also provide 

features for monitoring requirements to accommodate the 

involvement of the developers. This feature enables 

monitoring of the entire model's activities via the internet.   

Given this fact, the process of updating and enhancing the 

model can be performed currently. Also, it can produce 

better models in terms of performance than others. 

Furthermore, the requirement for accessible and 

uninterrupted data support for both smart glasses and 
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monitoring devices remains vital. Therefore, in the 

architecture of Figure 2 it is specified that the data will be 

stored in a cloud-based data center. With this in mind, 

smart glasses and monitoring devices can access the data 

at any time as long as they are connected to the internet. 

As a form of proposed model validation, an evaluation was 

conducted through two scenarios. First, it is operated by 

evaluating the object recognition model. Second, it is 

conducted by measuring the quality of adaptation 

performed by SACPS. Technically, the results of the 

model evaluation are visualized using two metrics, such as 

Pascal VOC AP and intensity average. The function of the 

Pascal VOC AP metric is used to evaluate the Dist-

YOLOv3 modified model. On the other hand, the average 

intensity metric is used to calculate the average light 

intensity resulting from the adaptive process. By doing so, 

the entire results of this evaluation can demonstrate the 

entire quality of research related to the development of 

SACPS and its implementation process. The proposed 

model still opens up avenues for future research as a form 

of refinement of its shortcomings. The remaining 

shortcomings cover subsequent aspects:  

1) A very significant architectural overhaul makes the 

program implementation process difficult, 

2) Distance measurement still uses historical data on the 

label. 

3) The YOLOv3 basic model indicates a large number 

of parameters causing the object recognition model 

heavy when operated. 

4) The adaptive and recognizing process of objects only 

supports outdoor areas. 

 

Of these shortcomings, there are several potential 

improvements, including replacing the basic YOLOv3 

model with the latest model, namely adopting a more 

flexible distance calculating concept, and adding an 

indoor model to make it more universal. 

 

From a systemic perspective, the proposed architecture 

has been developed within the context of a generic Cyber-

Physical System (CPS) metamodel. Each component in 

the proposed pipeline corresponds to a specific layer in a 

5C-like CPS architecture [13]: the camera and ambient 

sensors represent the Connection layer; the light intensity 

adaptation module functions as a preprocessing 

mechanism in the Conversion layer; the object recognition 

and distance estimation modules form the core of the 

Cyber layer, handling perception and decision-making; 

and the auditory feedback system aligns with the 

Cognition and Configuration layers by providing real-time 

responses to the user. Although this paper presents a 

specific implementation for object recognition in smart 

glasses, the modular and layered design is intended to be 

extensible for broader adaptive services in CPS. The 

system’s knowledge structure—encompassing perception, 

adaptation, and feedback—can be generalized for other 

CPS applications that require environment awareness and 

user interaction.  

More specifically, the Smart Connection layer is 

operationalized through the image acquisition system and 

data transfer mechanisms that enable the collection of 

visual input from the surrounding environment. The Data-

to-Information Conversion layer involves preprocessing 

steps, such as adaptive brightness enhancement, and the 

object recognition pipeline that transforms raw input into 

structured outputs. The Cyber layer consists of deep 

learning-based inference (Dist-YOLOv3 [10] with 

Xception [11] and attention [26]) and distance estimation 

logic, which drive perception and situational awareness. 

The Cognition layer is activated when critical cues (such 

as proximity or classification confidence) are detected, 

allowing the system to assess the contextual relevance of 

outputs. Finally, the Configuration layer is reflected in the 

auditory notification system, which adapts responses 

based on recognition results and environment states. This 

layered mapping reinforces the integration of the SACPS 

concept within the operational structure of our adaptive 

object recognition system. 

 

 
 

Figure 4: Architectural modifications to Dist-YOLOv3 
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4 Experiment 
The experimental instrument was developed by adopting 

the guidelines of Wohlin et al. [27] about experimentation 

in software engineering. Table 3 denotes the overall 

research design. The elements of aims, object of study, 

domain, and focus are targets for defining entire 

indispensable aspects in an experiment. Evaluative 

questions were a set of questions addressed to characterize 

how to assess targets and determine the object being 

measured. On the other hand, variables were metrics or 

data sets related to each question that should be answered. 

This investigation aimed at developing a solution to the 

problematic variability in uncertain real-world objects in a 

CPS environment characterized by an adaptive strategy to 

invigorate the object recognition quality. Specifically, the 

object recognition quality encompassed the ability to 

identify objects, and distances, and provide sound 

notifications to users. Further, this study was also intended 

to evaluate the performing specifications of the object 

recognition system through measuring loss, validating 

loss, precision-recall, and average precision (AP) through 

Pascal VOC AP measurements. 

Generally, the experimental process was guided by the 

domains and elements outlined in Table 3, which include 

the adaptive strategy and performance specifications of 

the CPS-based object recognition system. The adaptive 

strategy was implemented through algorithmic design 

within the smart glass’s architecture, focusing on 

automatic light intensity adaptation and feature refinement 

using attention mechanisms. Meanwhile, the performance 

specification evaluation was conducted using quantitative 

metrics, including mean Average Precision (mAP), mean 

Precision (mPrec), mean Recall (mRec), and loss values, 

to measure the accuracy and reliability of object detection 

and distance estimation. 

 

Table 3: 

Experimental design 

No Elements Description 

1 Aims a. Developing a CPS-based object 

recognition model by embedding 

automatic adaptation (self-

adaptation) capabilities to handle 

uncertainty 

b. Evaluating the performance of a 

CPS-based object recognition 

system 

2 Study 

Objects 

a. Adaptive specification of CPS-

based object recognition model 

b. CPS-based object recognition 

artifact requirements 

3 Domain Smart glasses 

4 Foci a.  Adaptive strategy for CPS-based 

object recognition systems 

b. Performing specifications for CPS-

based object recognition systems 

5 Evaluative 

Questions 

(PE) 

 

a. PE1- To what extent can the CPS-

based object recognition system 

maintain accuracy and robustness 

under uncertain environmental 

conditions (e.g., low light)? 

b. PE2-What is the performing 

measure of each artifact element of 

the CPS-based object recognition 

systems?  

6 Variables 

(V) 

a. Response (V1-system failure; V2-

system functional and non-

functional strategies; V3-new 

stimulus) 

b. Measurement (V4-Pascal VOC AP 

(Average Precision) evaluation) 

 

This experimental framework also considers the intended 

application scenario—assistive navigation for visually 

impaired individuals. Blind individuals face significant 

challenges in recognizing surrounding objects, and our 

study aims to address this issue by providing a CPS-based 

recognition model that delivers real-time feedback. 

Through the proposed architecture, which includes 

adaptive brightness enhancement and an optimized deep 

learning backbone (Xception), the system is designed to 

enhance recognition accuracy and facilitate safer 

navigation. 

 

This has become one of the developed applications in the 

area of self-adaptive cyber-physical systems. The system 

environment, including users (the visually-impaired 

people) and all monitoring sources derive from wearable 

devices. Table 4 signifies the specifications of the CPS 

cases. 

 

Table 4:   

Case specification of cyber-physical system 

Components Specifications 

Smart glasses BM: User Blindness 

Context Knowledge 𝐶1: Object 

𝐶2: Object Distance 

𝐶3: Low Brightness 

Adaptive 

Requirements 
𝐶𝑣1: Capturing and predicting an 

object  

𝐶𝑣2: Even to predict the distance 

from the object 

𝐶𝑣3: Even with the brightness 

enhancement 

𝐶𝑣4: Even to release a sound 

notification 

 

Contextual variability showed uncertainty due to discrete 

factors, such as unexpected changes, increasing data 

volumes, inaccurate information, problematic system and 

service infrastructures, and new and unpredictable 

situations. Dealing with the case specification in Table 3 

(the adaptive process to normal situations), the Cyber-

Physical System detected identified objects in the 

surroundings. Context variability (𝐶𝑣) can be monitored 

with  𝐶1, 𝐶2, 𝐶3∈ {𝐶𝑉1, 𝐶𝑉2, 𝐶𝑉3, 𝐶𝑉4}. Each context value, 

namely 𝐶1, 𝐶3∈{𝐶𝑉3, 𝐶𝑉1} means the context of the 

object, and Low brightness was processed to meet the 

requirements of the event to brightness enhancement and 

capture and predict the objects. Context 𝐶1,  𝐶2, 𝐶3˅𝐶1, 𝐶2

∈ {𝐶𝑉1, 𝐶𝑉2, 𝐶𝑉3, 𝐶𝑉4} means that the context knowledge 

obtained will be processed until the system issues a sound 

notification. In its application, SACPS makes it possible 
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to deal with a number of situations denoted in the 

inference model as follows:  

 

Rule-1: if (camera_capture = object) and (object = 

has_distance) then system_output = give notified 

the user based on an object for navigation. 

Rule-2: if (camera_capture = object) and (object = 

has_low_brightness) then system_output = 

increase brightness. 

Rule-3: if Rule-2 is True then do Rule-1 

 

Table 5 reveals the algorithm in pseudo-code form for the 

SACPS mechanism on the smart glass’s architecture based 

on the five existing rules, namely Rule-1 to Rule-3. 

Objects (O) would be identified based on context 

knowledge Ci ∈ {C1, C2, C3}, the results of which 

became a reference for the inference of the formulated 

model. The process of determining identification was 

carried out during monitoring (M) with the output in the 

form of Cvi ∈{𝐶𝑉1, 𝐶𝑉2, 𝐶𝑉3, 𝐶𝑉4}. The output would be 

sent to the analyzer_manager section which was at the 

cognition level (CG). 

 

Table 5:    

Sacps adaptive algorithm for smart glasses 

Adaptation of CPS Pattern 

Input  

O ← C1, C2, C3 

Do  

Let  

O ← inference model 

// Monitoring (M) 

For O in  runtime artifact, do 

    O ← get value C1, C2 and C3 in runtime artifact 

    For each values C1, C2 and C3 in SACPS artifact, do 

          If Cvi in runtime artifact, then 

               Send information Cvi to analyzer_manager 

          endif 

    endfor 

endfor 

 

// Cognition (CG) 

For each Cvi in analyzer_manager, do 

    If Cv1, Cv2, Cv4 is True, then 

        If Cv1 is True, then 

            Increase brightness from O 

        Endif 

        O ← predict_object and predict_distance 

        new_decision ← O 

    else 

         O ← the object cannot be detected 

         new_decision ← empty 

    endif 

endfor 

 

// Configuration (CF) 

If CG contain new_decision, then 

    System ← release a sound notification 

    For each system in runtime artifact, do 

         Send information to M 

    endfor 

endif 

 

 

Next, Cvi in analyzer_manager was processed in the 

Cognition (CG) section to obtain a new decision from the 

results obtained in M. This process was executed by 

analyzing Cvi which would produce a new decision O. The 

output from CG was in the form of a decision command 

for the configuration (CF) section. If new_decision 

contains a new decision, the system will issue a 

notification sound as the final result of the process of 

object detection. 

The model development process was conducted based on 

an extension of the machine learning/deep learning 

method of John et al. [28] adapted to the requirements of 

this investigation. Hence, the development stages had 

been determined as represented in Figure 5. 

 

 

 
 

Figure 5: Development stages 

 

The experimental process requires an investigative 

environment to meet every experimental need while being 

performed. Therefore, it is necessary to prepare 

appropriate specifications to fulfill experimental needs. 

Hence, the obtained results are maximal. The required 

specifications for the training process are adjusted to the 

requirements of the Dist-YOLOv3 algorithm Vagjl et al. 

[10] referring to the specifications of the employed device. 

The required specification consists of (a) Python 3.9.6; (b) 

Tensorflow 2.6.0; and (c) CUDA.  The training process 

was conducted using a batch size of 2 and a learning rate 

of 0.001. The Adam optimizer was used, and training was 

performed for a maximum of 40 epochs with early 

stopping based on validation mAP. The loss function 

combined cross-entropy loss for object classification and 

smooth L1 loss for distance estimation. The Xception 

backbone was initialized with pretrained ImageNet 

weights to leverage transfer learning. Additionally, a 

single-head self-attention block with an embedding 
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dimension of 256 was integrated into the detection head. 

Query, key, and value matrices were generated via 1×1 

convo lutions, followed by layer normalization and 

ReLU activation for feature refinement. 

The utilized data for the model creation process originated 

from a dataset created by KITTI (Karlsruhe Institute of 

Technology and Toyota Technological Institute) Geiger et 

al. [25]. The dataset was called KITTI 3D Object 

Detection Evaluation 2017. It refers to a data set covering 

3D objects. Also, it consisted of 7481 training data and 

7518 test data. The data pre-processing process was 

executed by following the steps proposed by Vajgl et al. 

[10] as manifested in Figure 6. The data were separated 

into two parts, namely training data and test data obtained 

from the training data section of the KITTI Dataset. This 

occurred due to only the data in the training section 

containing distance values. As a result, the actual distance 

was required to be compared with the predicted distance 

from the detection results for testing purposes. The 

emphasis of preprocessing was on label processing 

containing prominent information for the training process. 

Information (e.g. bounding box points, class index, and 

distance value) were elements that should be included in 

label annotations. 

In the experimental stage, the training process was carried 

out by making adjustments to the employed architecture. 

The Darknet53 architecture was substituted by the 

Xception architecture [11] with the addition of an 

attention mechanism layer proven to improve the 

performance of the applied architecture in YOLO [26], 

[27], [28]. In proving that the created model is better than 

the model of Vajgl et al. [10], we compared the pre-trained 

model from this study with the pre-trained model available 

at https://gitlab.com/EnginCZ/yolo-with-distance 

established by Vajgl et al. [10]. This comparison aims to 

compare state-of-the-art methods discussed in the related 

work section, particularly the work of Vajgl et al. [10]. 

Figure 7 illustrates the difference in train loss and 

validation loss values. 

 

 
Figure 6: Pre-processing data 

 

The employment of an additional layer in the form of an 

attention mechanism has been proven to reduce the loss 

value to a greater extent than without adding this layer. 

Figure 7 designates the difference in loss values with the 

results of train loss and validation loss reaching 16,031 

and 17,565. These results are quite different from the pre-

trained model results of Vajgl et al. [10]. The next 

comparison is related to the Pascal VOC AP (Average 

Precision) evaluation measurement for each class. These 

measurements are usually applied to evaluate the 

performance of object detection models [33]. This is an 

attempt to enhance the proposed SACPS detecting model. 

 

 

 

 

Figure 7: Comparison of train loss and validation loss 

https://gitlab.com/EnginCZ/yolo-with-distance
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Figure 8: Comparison of mPrec, mRec, and mAP values 

 

 

Figure 8 indicates a comparative detecting performance 

based on Pascal VOC AP measurements with a threshold 

or Intersection over Union (IoU) of 0.5. The model 

developed in this study was superior in evaluation results 

with mPrec, mRec, and mAP values of 14.73%, 45.21%, 

and 30.04% respectively observed. This proves that the 

pre-trained model can detect objects that exist properly. 

Hence, it enables to increase in the mAP value greater than 

the original model [10] available on public links. 

However, due to the limitations of existing devices, we 

can only use a batch number of 2 so the training process is 

time-consuming. 

To further evaluate the optimization behavior of the 

proposed model, we conducted a convergence analysis 

based on the training and validation loss values recorded 

over 40 epochs. This analysis aims to assess whether the 

training process led to stable convergence and to identify 

any signs of overfitting or instability that might affect the 

model's generalization capability. 

As depicted in the loss convergence curves in Figure 9, the 

training loss decreased steadily and stabilized at 

approximately 16.03, indicating proper convergence. 

Although the validation loss initially started at a high 

value due to uncalibrated predictions, it consistently 

declined over 40 epochs, eventually reaching a value of 

23.24. This trend confirms the model's effective learning 

of generalizable features without significant overfitting. 

The relatively high absolute loss values are attributed to 

the multi-objective nature of the loss function and 

unnormalized scaling. 

 

 
Figure 9: Training and validation loss convergence curve 

 

After reaching a better pre-trained model compared to the 

pre-trained model [10], we then carried out experiments 

on context knowledge and adaptive requirements on 𝐶1, 𝐶3

∈{𝐶𝑉3, 𝐶𝑉1}. The experiment was conducted by detecting 

images with low light intensity. The utilized light intensity 

level was based on the average RGB value. Hence, we 

gained an equation to calculate the increased new light 

intensity in equation (5). 

 

𝐼𝑛𝑒𝑤 = 𝐼𝑜𝑙𝑑 × 𝐹 (5) 

 

Where 𝐼𝑛𝑒𝑤  was the new intensity updated based on 𝐼𝑜𝑙𝑑  

multiplied by F, where F was the factor enhancing the light 

intensity with F > 1, equation (5) was employed if 

the 𝐼𝑜𝑙𝑑 < 50. Also, it manifested which value was taken 

from the average light intensity value in the images. 

Furthermore, the F value would be adjusted to the old 

intensity value detected with 𝐹 ∈ {𝐹 > 1}. Briefly, we 

conducted experiments with images indicating an average 

light intensity below 50. Technically, Table 6 describes 

the changing results of the intensity of the utilized images. 
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The experiment in Table 6 discloses good adaptive results 

because the improvement in the intensity value was 

adjusted to the previous light intensity value. This was 

aimed at avoiding the damage of the obtained information 

results in the detected images. In addition, excessively 

increasing the intensity could damage the existing color 

composition and could create noise in the image. The 

scenario of 𝐶1, 𝐶3∈{𝐶𝑉3, 𝐶𝑉1} was effectively performed 

to increase the light intensity in the image on average by 

100.0703. 

Figure 10 shows increased light intensity conducted by the 

system based on miscellaneous schemes from 𝐶3 

containing various values of old brightness (𝐼𝑜𝑙𝑑). The 

resulting new brightness (𝐼𝑛𝑒𝑤) would not be increased 

excessively even though the 𝐼𝑜𝑙𝑑  value was close to the 

value of 50 as represented by Table 6 in the 25th sample. 

The I_new value produced a fairly stable value if 𝐼𝑜𝑙𝑑 ∈
{𝐼𝑜𝑙𝑑 > 25}. However, the 𝐼𝑛𝑒𝑤  value underwent unstable 

changes when the 𝐼𝑜𝑙𝑑 ∈ {𝐼𝑜𝑙𝑑 < 10} value. The stability 

of the I_newvalue has a very prominent role in the final 

results of object and distance predictions. This was proven 

in the 4th sample experiment for 𝐼𝑜𝑙𝑑 < 10 and the 17th 

sample for 𝐼𝑜𝑙𝑑 > 25. 

 

Table 6:  

Results of adaptation of 𝐶𝑉3 light settings 

No. Sample Light Intensity 

before (𝑰𝒐𝒍𝒅) 

Light Intensity 

after (𝑰𝒏𝒆𝒘) 

1 3.3443 67.4892 

2 5.5522 83.6164 

3 7.7493 77.9420 

4 8.7250 87.4341 

5 9.9340 99.1287 

6 11.1267 67.5903 

7 14.2915 86.0231 

8 16.4727 98.8303 

9 18.6484 110.8143 

10 19.8362 113.6794 

11 22.0120 88.2736 

12 25.3866 101.8137 

13 27.5531 109.3286 

14 28.5278 111.4813 

15 29.7263 113.5586 

16 31.8851 95.8494 

17 36.2576 108.2096 

18 37.4274 110.3538 

19 38.4252 112.0422 

20 39.6189 113.5254 

21 41.8004 100.2741 

22 45.1630 107.8529 

23 47.3357 110.9795 

24 48.3229 112.2473 

25 49.5122 113.4192 

Average light intensity after (𝐼𝑛𝑒𝑤) 100.0703 

 

 
Figure 10: Brightness enhancement comparison 

 

 

 
(a) 

 
(b) 

Figure 11: (a) 4th sample with a light intensity value of 

8.7250. (b) 17th sample with a light intensity value of 

36.2576. 

 

Figure 11 illustrates the input images of the 4th and 17th 

samples, both of which have undergone light intensity 

enhancement. These two examples represent different 

segments of the 𝐼𝑜𝑙𝑑  range: the 4th sample with 𝐼𝑜𝑙𝑑  < 10, 

and the 17th sample with 𝐼𝑜𝑙𝑑  ≈  45. As depicted in 

Figure 13, the subsequent outputs—object prediction and 

distance estimation—exhibited markedly different 

behaviors under the same enhancement procedure. In the 

case of the 4th sample, the original image was extremely 

dark, making essential visual features such as edges and 

textures virtually indiscernible. Upon applying light 

intensity scaling, the image became noticeably brighter, 

but at the cost of amplifying noise and artifacts. This led 

to unstable or erroneous object detection, with the model 

often missing or misclassifying key targets. 

Furthermore, distance prediction in this sample was 

unreliable due to the distortion introduced by aggressive 

enhancement from such a low baseline. By contrast, the 

17th sample, with moderately low lighting, retained a 

sufficient amount of visual information. The light 

adjustment process yielded a stable and visually coherent 

image (𝐼𝑛𝑒𝑤), resulting in more accurate object detection 

and consistent distance estimation. This comparison 

demonstrates that while the proposed model exhibits 
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improved robustness under typical low-light conditions, 

its performance significantly deteriorates when the initial 

image intensity falls below a critical threshold 

(approximately 𝐼𝑜𝑙𝑑 < 10). Although the implemented 

brightness enhancement method—using a scaling factor 

FFF when 𝐼𝑜𝑙𝑑 < 50—effectively improves visibility in 

low-light scenarios, it remains a rule-based and non-

learning approach. This mechanism was chosen to 

demonstrate a lightweight, self-triggered adaptation 

behavior within the SACPS context. However, the 

instability observed in extremely dark cases highlights the 

limitations of fixed-rule strategies. Future improvements 

will involve integrating adaptive, learning-based 

enhancement modules (e.g., LLNet, Zero-DCE, or 

transformer-based models) that provide more context-

aware correction while mitigating noise and preserving 

structural detail, thereby enhancing both object 

recognition and distance estimation reliability in diverse 

lighting conditions. 

To demonstrate that the proposed model outperforms its 

predecessors, we conducted an ablation study on four 

model configurations: Dist-YOLOv3 [10], Dist-

YOLOv3+Xception, Dist-YOLOv3+Attention, and Dist-

YOLOv3+Xception+Attention (Proposed Method). 

Furthermore, to support the model’s generalisation 

capability, we evaluated its performance under varying 

lighting conditions by simulating reduced illumination on 

the KITTI test data. The results of this ablation study are 

presented in Table 7. 

 

Table 7:  

Ablation study 

Model Variant Light 

Intensity 

mAP 

(%) 

mPrec 

(%) 

mRec 

(%) 

Dist-YOLOv3 

[10] 

100% 17.30 6.76 31.92 

80% 15.48 5.97 29.04 

60% 13.12 4.88 26.04 

40% 10.93 3.75 22.01 

Dist-YOLOv3 

+ Xception 

100% 23.61 11.25 37.88 

80% 21.30 9.94 34.41 

60% 18.42 8.11 30.75 

40% 15.67 6.42 26.08 

Dist-YOLOv3 

+ Attention 

100% 22.63 10.63 35.82 

80% 19.80 8.90 31.99 

60% 17.01 7.34 27.45 

40% 14.83 6.09 25.17 

Dist-YOLOv3 

+ Xception + 

Attention 

100% 30.04 14.73 45.21 

80% 27.46 13.06 41.00 

60% 24.85 11.30 36.48 

40% 21.78 9.64 31.59 

 

The results indicate that both Xception and the attention 

mechanism independently improve performance over the 

baseline under all lighting conditions. The Xception 

architecture in Dist-YOLOv3 proves especially beneficial 

in low-light scenarios. The complete model, which 

combines both Xception and attention, achieves the best 

overall results, demonstrating the effectiveness and 

robustness of the proposed approach in adaptive object 

recognition tasks. 

 

To fulfill the context knowledge and adaptive 

requirements in 𝐶1, 𝐶2, 𝐶3˅𝐶1, 𝐶2∈{𝐶𝑉1, 𝐶𝑉2, 𝐶𝑉3, 𝐶𝑉4}, 

the system should be able to produce a sound output of 

notification in the form of identified objects in front of it. 

These requirements were built through the Google Text to 

Speech (gTTS) library covering a sample rate of 22050-

44100 Hz. As a result, it provides clear sound with clear 

quality of each pronounced word. A notification will come 

out of the system if there is an object that is 5 meters away 

in front of you. Figure 12 demonstrates the sound waves 

resulting from the detection of objects located 5 meters in 

front of the machine. 

 

 
Figure 12: Audio waveforms from system output 

 

The audio waves in Figure 12 illustrate that there is a car 

object 5 meters in front of the camera. This indicates one 

of the successful final results of detecting and fulfilling the 

needs of 𝐶1, 𝐶2, 𝐶3˅𝐶1, 𝐶2∈{𝐶𝑉1, 𝐶𝑉2, 𝐶𝑉3, 𝐶𝑉4} by all the 

experimental scenarios cultivated in this study. 

Internal validity refers to the extent to which research 

results can be attributed to the manipulation of 

independent variables rather than other factors. The threat 

to internal validity in this study refers to the irrelevant use 

of data in various environments. In this case, these data 

refer to the adopted data for the object recognition model 

training process. For this reason, it may cause significant 

accuracy gaps and reduce the adaptability of the system in 

diverse environments. 

Construct validity refers to the extent to which a test or 

measuring instrument measures a particular concept or 

construct. Threats to construct validity encompass 

inadequate definitions and supportive effects. The threat 

of inadequate definitions is caused by very limited object 

classes and the adaptation of the existing classes in the 

KITTI dataset. As a result, the model is unable to 

recognize objects comprehensively. Besides, this will also 

cause the inaccurate object recognition model's metric 

measurements. One threat to the supportive effect is that 

if other factors (e.g. voice assistance or user interaction 

with additional devices) assist in object recognition, the 

results may not fully reflect the capabilities of the object 

recognition model itself. 

Construct validity refers to the extent to which a test or 

measuring instrument measures a particular concept or 

construct. Threats to construct validity encompass 

inadequate definitions and supportive effects. The threat 

of inadequate definitions is caused by very limited object 

classes and the adaptation of the existing classes in the 
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KITTI dataset. As a result, the model is unable to 

recognize objects comprehensively. Besides, this will also 

cause the inaccurate object recognition model's metric 

measurements. One threat to the supportive effect is that 

if other factors (e.g. voice assistance or user interaction 

with additional devices) assist in object recognition, the 

results may not fully reflect the capabilities of the object 

recognition model itself. 

 

 
(a) 

 
(b) 

Figure 13: (a) Results of increased light intensity, object prediction, and distance prediction in the 4th sample. (b) 

Results of increasing light intensity, object prediction, and distance prediction on the 17 th sample 

 

 

The evaluative results, in terms of object recognition and 

adaptation, yielded excellent results when measured by 

the corresponding metrics. Conversely, this has not ruled 

out the possibility of threats to the conclusive validity. 

Although it can be inferred that the object recognition 

model produced by this research exhibits better 

performance than previous models, several cases highlight 

the model's shortcomings. One of them is when objects are 

closely situated to each other or partially captured by the 

camera. This makes the model unable to accurately 

recognize what object is being detected. Furthermore, if 

adaptive ability is considered successful, there is a 

possibility of adaptive failures when the light intensity is 

increased. When the adaptation process for increasing 

light intensity occurs, the results occasionally indicate an 

effect on the image, such as loss of quality in 

miscellaneous aspects. 

The limited number of employed object classes and the 

existing dataset environment have opened new threats to 

external validity. Even though the entire evaluation results 

of this research are auspicious, it needs to be re-

emphasized that testing miscellaneous environmental 

characteristics depends on the data used, so it is highly 

recommended to make improvements by adding to the 

data used, either by adding data from independent 

collection results or by combining it with the available 

dataset. 

5 Discussions 

Our model introduces two main architectural 

enhancements to the original Dist-YOLOv3: replacing the 

Darknet53 backbone with the Xception architecture and 

integrating an attention mechanism layer before the head. 

These improvements have shown a notable increase in 

detection performance. In terms of quantitative 

evaluation, our model achieves a mean Average Precision 

(mAP) of 30.04%, compared to the baseline mAP of 

approximately 17.3% reported by Vajgl et al. [10], 

marking a 12.74% improvement. Additionally, the mean 

recall increased to 45.21%, and the mean precision 

reached 14.73%. We compared the pre-trained model 

from this study with the pre-trained model available at 

https://gitlab.com/EnginCZ/yolo-with-distance. These 

metrics demonstrate a better detection capability in real-

world scenarios, especially in complex environments with 

occlusions or variable lighting conditions. The 

improvement is primarily due to: 
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• Xception Backbone: With its depthwise separable 

convolutions, Xception enables deeper and more 

efficient feature extraction than the original 

Darknet53. This enables the model to capture fine-

grained spatial features more accurately. 

• Attention Layer: The attention mechanism 

selectively emphasizes relevant spatial features and 

suppresses irrelevant or noisy ones, improving both 

classification and localization accuracy. 

However, the performance gain comes at a cost. The 

model incurs higher computational complexity, especially 

during training, and exhibits higher loss values (16.031 

training loss and 17.565 validation loss). This is attributed 

to: 

• The use of a small batch size (2) due to limited 

hardware resources, which affects training stability 

and convergence speed. The inclusion of a distance 

loss term, which adds to the total loss function and 

increases its numerical magnitude.  

• The use of historical label-based distance data from 

KITTI may not perfectly align with real-time 

physical constraints. 

In addition to detection accuracy, our model also 

incorporates a self-adaptive light intensity enhancement 

mechanism to address challenges in low-light 

environments. This component is crucial for ensuring 

visual clarity and maintaining object recognition 

performance in varying illumination conditions. The 

experimental results indicate that the brightness 

enhancement system successfully increases image 

intensity in dark environments, with an average post-

adaptation brightness of 100.07, up from initial values of 

less than 50. This enhancement is designed to avoid 

overexposure by applying a proportional intensity factor 

based on the original image brightness. Two 

representative cases were highlighted: 

• In the 4th sample (initial brightness: 8.72), although 

the enhancement increased visibility, it also 

introduced noticeable noise and partial information 

loss, which negatively affected detection accuracy. 

• In the 17th sample (initial brightness: 36.26), the 

enhancement achieved more stable brightness with 

minimal noise, leading to more accurate object and 

distance predictions. 

These findings reveal a critical insight: while adaptive 

brightness enhancement is beneficial, it must be applied 

carefully depending on the original light level. Excessive 

enhancement in extremely dark images may degrade the 

image quality and impair the detection process. This 

aspect reflects a trade-off between adaptation robustness 

and prediction accuracy. In future iterations, incorporating 

learned enhancement filters or adaptive gain control 

mechanisms may help optimize this process and reduce 

noise in low-light scenarios. 

Despite the observed improvements, several limitations 

remain in the current implementation. First, tuning 

hyperparameters—particularly those related to attention 

mechanisms and light adaptation thresholds—required a 

series of empirical iterations due to the absence of prior 

benchmarks in this domain. This process introduces 

complexity and may compromise reproducibility if 

thorough documentation is not provided. Second, 

although the attention layer improves detection accuracy, 

it inevitably increases computational load during 

inference, which could impact responsiveness—

especially on low-power wearable platforms. While 

inference time was not formally measured in this study, 

the additional layers are expected to introduce some delay 

due to their sequential nature and computational 

requirements. Lastly, deployment in varied environments 

presents practical challenges: indoor scenes often suffer 

from occlusion and low-light noise, while outdoor settings 

may include background clutter and high dynamic range 

lighting. These differences complicate generalization and 

suggest the need for environment-aware calibration in 

future iterations. 

6 Conclusion and further studies 
This paper introduces a CPS-based object recognition 

model with automatic adaptive capabilities to address 

uncertain real-world objects in a CPS environment 

characterized by adaptive strategies. The main focus of the 

experiment is on the adaptive strategies of the CPS-based 

object recognition system and the performing 

specifications of the system. The research results report 

that this system can make object recognition better, 

notably for blind people during navigating practices. This 

experiment was carried out in the context of application 

development in the field of self-adaptive cyber-physical 

systems (SACPS), particularly in smart glasses. The 

utilization of adaptive strategies (e.g. increasing light 

intensity and object recognition based on context) has 

been fruitful. Increased light intensity is carefully 

processed to maintain image quality and avoid noise. 

Moreover, this study has successfully developed a 

machine learning/deep learning-based object recognition 

model superior to previous models. This model can 

amplify the mAP value and accuracy value in recognizing 

objects. Even though there are limitations to the applied 

devices, this improvement signifies a highly significant 

result. In particular, the experimental results also denote 

that the system can issue a sound notification to its users 

when there is an object within five meters in front of them. 

Given this fact, it meets the adaptive requirements in a 

CPS environment. Overall, this study has fruitfully 

developed an adaptive CPS-based object recognition 

model that can advance the quality of object recognition, 

notably for blind people in the context of smart glasses. 

The results of this scrutiny showcase remarkable 
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potentials in cultivating the life quality of the blind people 

while performing daily activities. 

Based on the entire experimental results, some major 

findings attracted our attention. As an example, at the 

detecting evaluative model stage, the comparison of train 

loss and validation loss revealed better results than the 

detecting model of Vajgl et al. [10] with average reduction 

values of 26.7% and 26.8% respectively. Besides, the 

Pascal VOC AP metric indicated that the values of each 

metric component had increased for both the mPrec, 

mRec, and mAP elements with an average increase of 

7.97%, 13.29%, and 12.74%, respectively. Moreover, the 

adaptability of our model was represented in the form of 

adaptation to changes in light intensity. The evaluative 

results indicated that, after the adaptation process, the 

average light intensity of the enhanced images reached 

100.0703 (𝐼𝑛𝑒𝑤). This reflects the ability of the proposed 

adaptive mechanism to consistently raise low-light image 

brightness to an optimal level. Such enhancement 

significantly contributed to the improved functionality and 

adaptability of the object detection model, particularly in 

varying illumination conditions. 

Our proposed adaptive strategy has an indispensable role 

in the real-world object recognition process based on 

broader cues in multiple quality attributes. Among them, 

precision, recall, and average accuracy are determined 

based on the ability to adapt to the surrounding 

environment. This indicates that efforts to resolve the 

problems of recognizing real-world objects have been 

restricted to certain cues without adaptability. 

This paper opens up new opportunities for future 

investigation. To illustrate, the adaptive strategy of a CPS-

based object recognition system can be directly employed 

based on an effective adaptive environment. In this 

experiment, we applied the model to the needs of a smart 

glasses system. However, it does not rule out the 

possibility of being applied to other system needs in the 

real world. Our model has the potential to be applied to 

several applications, including autonomous driving, robot 

vision, smart doors, and so on.  

Shortly, we plan to conduct further experiments to 

optimize this adaptive strategy of object recognition to 

invigorate its accuracy and performance through a lighter 

model when being implemented. As an illustration, 

improving adaptability through the addition of adaptive 

features (e.g. system failure management, self-scheduled 

recognition model updates, and identification of new 

object classes) to increase system knowledge. In addition, 

replacing the YOLO-based model with the latest version 

is one way to optimize the object recognition model. 

Applying automatic parameter selection methods in the 

training process is the primary step in enhancing such an 

object recognition model. Further, we will also upgrade 

the designed smart glasses device to be able to provide 

thorough and specific features for other needs of blind 

people. As part of this plan, we aim to conduct a pilot 

usability study involving individuals who are blind or 

visually impaired, in collaboration with assistive 

technology communities. This will allow us to evaluate 

the system’s real-world applicability, user satisfaction, 

and interaction flow, which are essential for ensuring its 

practicality and accessibility. In addition, we will validate 

the system in more realistic environments for visually 

impaired users by employing data from indoor navigation 

or close-range object interaction, which are more 

representative of real-world scenarios faced during daily 

activities. 

The impacts and importance of our proposed model are 

related to the sustainability of object recognition systems 

for long-term needs. Considering that the variety of real-

world cues recognized by a recognition system has the 

potential to undergo rapid and unpredictable changes. Our 

model offers adaptability to adjust the state of the system 

based on specific contexts, notably increased accuracy in 

recognizing objects affected by light intensity. Also, this 

represents an achievement of the objectives of this work, 

namely developing a generic model for adapting CPS 

services when recognizing real-world objects as 

heterogeneous and strongly influenced by their 

environmental conditions. 
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