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The Industrial Era 4.0 has emerged as a response to the changes occurring in the world in a dynamic,
unexpected, and uncertain manner. This situation requires analytical, predictive, and adaptive capabilities
in an intelligent environment. This affects real-world object recognition in vision systems, which are
frequently limited to specific signals. Thereby, it creates an adaptive gap. One potential solution to this
problem is the development of self-adaptive cyber-physical systems (hereafter, SACPS) to enhance
adaptability in recognizing diverse real-world objects. This paper introduces the SACPS model through an
extended machine learning/deep learning model applied to smart glasses, which can detect and calculate
object distances adaptively. The components of the developed model comprise smart glasses, contextual
knowledge, and adaptive requirements based on the SACPS concept. We developed a pre-trained model by
combining the Dist-YOLOv3 algorithm with Xception and an attention layer to obtain more optimal results.
This research compared the new pre-trained model with those from previous research. Based on the
evaluation, the model demonstrates improved performance compared to the baseline when tested on the
KITTI dataset, recording a mean Recall (mRec) of 45.21%, mean Precision (mPrec) of 14.73%, and mean
Average Precision (mAP) of 30.04%. Additionally, the adaptive system's response to increasing light intensity
below 50 revealed good stability, with average post-enhancement brightness reaching 100.0703 (pixel
intensity scale). These results demonstrate the significant potential of our model in handling changing
environments with strong adaptation in diverse real-world object recognition scenarios. In the case of smart
glass, the employment of SACPS can provide good adaptability in predicting distance and increasing light

intensity.

Povzetek: Predstavljen je samo-adaptivni CPS-model za pametna ocala z izboljsanim Dist-YOLOV3, Kjer
Xception in pozornostna plast izboljsSata prepoznavanje objektov in razdalj. Model doseze visji mAP (30.04 %)
ter stabilno prilagajanje pri nizki svetlosti (povprecna osvetlitev 100.07).

1 Introduction

Scholars have declared that the industry 4.0 era is
characterized by volatility, uncertainty, complexity, and
ambiguity. In particular, it accentuates the state of the
world, characterized by rapid change, inadequate
predictability, the absence of a cause-and-effect chain, and
the blurriness of reality. Another problem arises when
providing a real-world object recognition system that
incorporates complexity based on various gestures and
related devices. This can pose challenges for developers.
Additionally, they should ensure that the system can
recognize a wide range of real-world objects. As a result,
the target is to enable the system to learn from the
recognition process it carries out and develop its learning
process to recognize every gesture and device in the real
world. However, the predominant challenge of this
situation is how to respond creatively and employ adaptive
strategies to face the future [1]. Regarding this issue,
Cyber-physical systems (CPS) have emerged as one of the

latest advancements in this era. CPS has been a trending
topic among academics and practitioners [2], [3]. In its
various applications in the real world, CPS can be utilized
to meet distinct system requirements in the Industry 4.0
era [4]. For example, CPS can integrate the virtual and
physical worlds, meeting the predominant characteristics
of Industry 4.0 requirements. However, the operating
environment can vary and cover distinct uncertainties [5].
In this matter, a pivotal feature of the present and future
breakthrough is self-adaptive systems (SAS) [3]. ASis a
system that can modify its behaviors based on changes
occurring either in the environment or within the system
itself. Unfortunately, several gaps remain regarding the
implementation of SAS in CPS, including insufficient
information on the characteristics of SAS, particularly
those related to CPS [3] Later, in the development process,
not all software engineering knowledge can be
implemented [6], Furthermore, not all software
engineering knowledge can be effectively implemented
during the development process [6]. Architectural
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requirements should center on adaptation to inform
appropriate architectural decisions. Antonino et al. [2]
argue that current standard software development
approaches are unable to represent complex contexts.
Hence, they have not been able to introduce fatal
complexity to CPS. Therefore, a contextual modeling
approach is required, namely, modeling system entities
with specific contextual attributes. In particular, SAS in
CPS requires a dynamic context. This occurs because
uncertainty prevents the system from knowing its current
state. An approach to documenting uncertainty that
integrates other artifacts from different perspectives is
required to specifically capture uncertainty [7].

The CPS design should be able to resolve uncertainty at
runtime. Consequently, SAS should be a fundamental
approach for the system to meet its functional and
performance specifications [8]. Zavala E. et al. [5] argue
for the need for distributed runtime models in CPS to
capture operational state and context as a form of
knowledge representation. In this case, the runtime model
is typically implemented through the MAPE-K control
loop, which combines new knowledge through
decentralized operations. Thus, it allows for conflicts [9].
Based on this description, it is necessary to develop a
flexible knowledge structure with a reasoning mechanism
at run-time.

Likewise, CPS presents diverse issues in terms of system
design, implementation, and maintenance. One of the
main issues is the need for adaptive techniques to cope
with a dynamic and constantly changing environment [3].
CPS necessitates a SAS that can monitor and adjust its
behavior based on changes in its environment [4].
Antonino et al. [2] have identified significant required
specifications directly from the adaptive requirements
architecture for CPS and enabled 10T. Conversely, the
implementation of SAS in CPS raises issues regarding
interoperability, integration, and technical assessment in
the system [7].

This paper is aimed at developing a generic model for
adaptive service in CPS to recognize real-world objects.
Combining formalized approaches with the CPS system
metamodel provides the possibility to invigorate semantic
interoperability. Moreover, it can enhance its performance
[8]. The system framework functions to capture and
handle a variety of CPS variability. As a result, developers
can produce products that can be applied to modern
software system environments for the needs of diversified
domains based on the demands of the current world. The
cultivated strategy is to expand the CPS architecture by
embedding the SAS approach through adapting machine
learning/deep learning methods. Technically, it modifies
the Dist-YOLOv3 [10] algorithm by substituting the
original architecture of YOLOV3, namely Darknet53 with
the Xception architecture [11] added with an attention
mechanism layer. The proposed model is represented as a
generic knowledge structure to accommaodate the need for
recognizing various real-world resources and objects. The
adaptability mechanism is determined through a learning
model that can capture instances or concrete CPS services
based on contextual requirements operationalizing at run-
time.
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This model is implemented in the case of smart glasses,

namely combining concepts from object recognition,

SAS, and CPS into one unified whole. The utilization of

object recognition was selected since it can better

comprehend the circumstances and conditions of the
surrounding environment compared to a sensor [12]. SAS
and CPS provide smart glasses with flexibility in
interacting with users and high adaptability while
encountering environments with low light intensity. By
doing so, this study offers a significant impact on the
progress of assistive devices for the visually impaired.

The key contributions of this study are as follows:

1. A novel CPS-based object recognition architecture
for smart glasses that integrates self-adaptive
capabilities to handle environmental uncertainty,
particularly in low-light conditions.

2. Anenhanced version of Dist-YOLOV3, by replacing
the Darknet53 backbone with the Xception
architecture and integrating an attention mechanism
to improve object detection accuracy and distance
estimation.

3. An adaptive light intensity enhancement module
enables the system to dynamically adjust image
brightness, thereby improving detection
performance under poor lighting conditions.

4. Empirical validation on the KITTI dataset,
demonstrating improved performance in terms of
mean Average Precision (mAP), recall, and precision
compared to the original Dist-YOLOv3 model

5. A unified smart glasses framework for visually
impaired individuals, capable of real-time object
recognition, distance estimation, and auditory
notification using text-to-speech.

The remaining sections of this paper encompass
discussing related work (second section), describing the
proposed model (the third section), and discussing
experiments (the fourth section) (e.g. a discussion of the
case study and its evaluation results). Finally, the fifth
section infers the entire results of the work and discusses
future directions of investigative attempts.

2 Related work

Nowadays, researchers have proposed assorted
approaches to address emerging challenges. Grounded in
the investigative results of the most current survey and
technical papers, there have been several requirements
that Self-Adaptive Cyber-Physical Systems should
possess. As an example, studies discussing system
modeling, system evolution, supporting contextual
uncertainty, and system evolution requirements were
conducted by Zavala et al. [5], Antonino et al. [2],
Petrovska et al. [4], Jehn-Ruey Jiang [13] and Habib et al
[14]. Scrutiny emphasizing system learning and
adaptation and handling contextual uncertainty was
performed by Zhou et al.[15], Bur et al. [16], Weyns et al
[17], Ahmed et al. [18], and Sony [19]. Investigative
efforts  focusing on  syntactic and  semantic
interoperability, system collaboration, and integration
between physical and virtual systems, including handling
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contextual uncertainty at run-time were performed by
Kluge [20], Weichhart et al. [21], Casadei et al. [22] and
Aradea et al [23], [24].

Based on a description of reviewed prior scrutiny, Table 1
designates a comparison of related works specified into
design-time and run-time requirements, including their
strengths and weaknesses.

Table 1: Comparison of related works

Works Design-time Run-time
specifications Specifications
Jehn-Ruey ISA-95 architecture, 5C  8C Architecture

Jiang (2018)

architecture
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uncertainty
ontology
Sony (2020) 8C Architecture Lean Six Sigma
(LSS)
Weichhart,et.  Orchestration software  Interoperability run-
al. (2021) model: ad-hoc planning, re-  time model:
planning, BPMN language,  semantic
NgMPPS Engine, interoperability,
syntactic, semantic &  pragmatic
pragmatic modeling interoperability,
REST web service
Weyns, etal.  Crossing Boundaries, Dynamically
(2021) Leveraging the Human, Assured Resilience,
Fluid Modelling, On the Learn Novel Tasks
Fly Coalitions
Casade, etal.  Augmented Collective  Integrating physical
(2021) Digital Twins: holistic, and virtual devices
declarative, and integrated  and meta-models for
system view. self-organizing
Habib, etal. 1IRA (Industrial Internet IMSA
(2022) Reference  Architecture),  (Intelligent
RAMI 4.0 (Reference  Manufacturing
Architecture Model  Systems
Industrie 4.0) Architecture),

Merge of IEC and
ISO standards for
smart
manufacturing.

Zavala et.al. Contextual model, Feedback  control
(2018) modeling reference  loop:  centralized
architecture, hierarchical and  decentralized
inter-intra-collaborative control loops,
machine learning
Zhou, et. al. Matching network MAML (Model-
(2018) architecture with a non-  Agnostic Meta-
parametric differential  Learning)
KNN-like classifier
Antonino Adaptation model terms:  MAPE-K reference:
etal. adaptation context,  stimulus,
(2018) adaptation stimulus,  preconditions,
realization postconditions,
invariants
Petrovska Model knowledge (multi- MAPE-K loops
etal. (2019, agent), observation  (master-slave):
2020) aggregation (run-time  subjective opinion
context), subjective logic  creator, knowledge
(dempster-shafer) aggregator,
cumulative  belief
fusion, cumulative
belief fusion
Kluge (2020) Model-driven: graph  MAPE-K loops:
rewriting rules, role-based  distributed role
context-model: CPS,  runtime:
decentral adaptations:  communicating
decentral role-based  sequential
system processes,
adaptation plan: role
instance model
Bar et. al.  Model run-time:  Computing
(2020) monitoring rules, execution  platform:
planner-optimizer,  code  distributed runtime
generator, distributed  monitoring, model
graph queries update operations,
local search-based
pattern matching
Bandyszak Model-based  approach:  Ontological:
et.al. (2020) modeling behavioral  orthogonal
requirements  (structural  uncertainty models,
operational context), system context &

context uncertainty

and  requirements
ontology,

Table 1 illustrates assorted relevant literature regarding
the requirements for CPS to have adaptability. Based on
Table 1, we identified three groups of methods/approaches
for dealing with the problem of object recognition models
based on CPS. First, methods were adopted to handle
contextual uncertainty, such as those applied by [2], [4],
[5], [13], [14]. Generally, it indicated advantages in
recognizing the context of a CPS environment based on
certain contextual requirements. However, it has not yet
supported comprehensive CPS domain modeling. Second,
focusing on learning mechanisms for system adaptation as
proposed by [15]-[17], [19], [34], [35] they offered
machine learning approaches dedicated to adaptability
based on current learning algorithms. Unfortunately, these
approaches also pay less attention to the needs in modeling
the CPS domain where the system operates. Third,
handling contextual uncertainty as proposed by [20]-[24],
this approach is prepared to perform domain modeling
including handling CPS contextual uncertainty. However,
it has not adopted the learning process optimally. As a
result, there is still a need to increase the optimized value
of these approaches. Grounded in discussions of related
works, investigative gaps remain. It becomes our
motivation to propose a model to fill these gaps. Our
proposal offers a generic model for the adaptability of CPS
services in recognizing real-world objects consisting of
the ability to model the CPS domain through the integrated
cyber system and physical system architectures influenced



374  Informatica 49 (2025) 371-388

by contextual knowledge. Apart from that, increasing the
optimized value of the learning process was executed by
expanding the Dist-YOLOvV3 architecture by modifying
the backbone by embedding the Xception architecture as
a replacement for Darknet53. Further, to capture broader
real-world cues, we accentuate the mechanism layer
between the neck and head of the architecture.

3 Proposed method

The target of our developed generic model can be applied
to recognize a variety of real-world objects in the CPS
environment. Hence, the system framework should be able
to capture and handle various CPS variabilities. The
developed strategy is to expand the CPS architecture with
learning process capabilities for all instances or concrete
CPS services. The adopted approach is SAS through the
development of machine learning/deep learning methods
as a control process at run-time. The mechanism of the
adaptability learning process is determined through the
contextual requirements of the CPS environment
functioning at run-time. Figure 1 displays our proposed
architectural model.

The architecture in Figure 1 is an extension of the
architecture proposed by Habib et al. [14] with additional
modifications to SAS [23], [24] which we have previously
developed, called self-adaptive cyber-physical systems
(SACPS). Our previous model formulated an adaptive
model based on contextual knowledge through a
probabilistic reasoning approach. More specific models
can be viewed in papers [23], [24]. In this paper, we have
built up the model with several adjustments from machine
learning/deep learning methods. The addition of the SAS
component is intended to enable the object recognition
model to adapt to uncertainty originating from contextual
knowledge of a CPS developing environment. Grounded
in the architecture of Figure 1, the development of the
SACPS-based object recognition model is created into a
continuous cycle and the model can continue to self-adapt.
By doing so, the system embedded in the model can
continue to be updated according to the requirements to
handle uncertainty. Specifically, the components of the
SACPS architecture that we propose consist of:

a. Smart Connection

Smart connection was the first stage of the cultivating
processes of an object recognition model. In the smart
connection section, the process of assembling the physical
components for the object recognition model was
conducted. These components were assembled in such a
way that they could be a source of required data collection
to inform the conversion process. The applied components
should be installed properly and connected to other
components. In other words, communication among
components and other devices via the internet network
could be barrier-free. By this description, the data
collection process was carried out in the smart connection
section while preparing to continue to the next section.

Aradea et al.
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Figure 1: SACPS (self-adaptive cyber-physical
system)

b. Data to Information Conversion

This section performed the data conversion process into
information read by machines. The conversion process
could be executed in miscellaneous ways based on the
developed model. In this case, the data conversion process
involved the process in Vagjl et al.'s Dist-YOLOvV3
algorithm [10]. This represented a training process from a
dataset containing images for the object recognition
model. The better the conversion process was carried out
at this stage, the more self-awareness properties the
machine would have.

c. Cyber

This section was involved in collecting some information
from each machine connected to the internet network. The
obtained information was utilized as evaluative materials
to select which machine or model had better performance.
With this in mind, the model with the best performance
was applied to each machine. Supporting data (e.g.
historical data from each machine) were applied to
enhance the performance level of the model.

d. Cognition

At this level, the information-collecting process conducted
at the previous level was used as suggestions for making
decisions for developers. Besides, a simulated process was
also performed on the object recognition model embedded
in the machine to analyze whether the provided results
were appropriate or still required further development.

e. Configuration

This top-level was created to give the machine the ability
to self-configure, self-adjust, and self-optimize. The
configuration process was operationalized by noticing the
results of decisions made from the cognition stage. In
addition, the configuration level was influenced by
contextual knowledge [23], [24] from outside the CPS
environment. Contextual knowledge was employed as a
parameter for system uncertainty which may affect the
machine configuration process whether it is required to
self-configure, self-adjust, or self-optimize.
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In this paper, the SACPS model developed by us will be
applied to the needs of a smart glasses system. Figure 2
signifies our proposed smart glasses architecture based on
SACPS elements as a result of our previous model
extension [23], [24]. Each applied tool in this architecture
will be connected via an internet network connected to the
data center in the cloud. In this paper, the emphasis is
situated on creating a model for smart glasses with object
detection capabilities based on the Dist-YOLOv3
algorithm modified in such a way. Thus, it can produce an
artificial voice output originating from text-to-speech.
Dist-YOLOv3 refers to a variation of the YOLOv3 model
[25] by widening the prediction vector from three values
(p = (b,c,0)) to four values (p = (b,c,0,d) [10]. In
this case, b is the bounding box coordinate (b =
(x,y,w, h)), c is the confidence value for each class, o
states the confidence value for the detected object, and d
is the distance value for the object. Figure 3 showcases
how Dist-YOLO determines the approximate value of the
object distance.

In addition, Dist-YOLOvV3 expands the calculation of loss
function values based on YOLOvV3 by adding loss values
for object distance prediction [10]. Equations (1) and (2)
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demonstrate the difference in the loss function formula
between YOLOvV3 and Dist-YOLOV3.
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Equation (2) demonstrates the calculation in determining
the loss value in Dist-YOLOvV3 [10] as an extension of
equation (1) encompassing the loss value for YOLOv3
[25] by adding up all the existing components, namely
1, (i, j) refers to the value loss for bounding box center
prediction, [,(i,j) refers the loss value for the box
dimension, I5(i,j) is described as the confidence loss,
1,(i,j) is illustrated as the class prediction loss, and
15(i,j) is delineated as the loss value for object distance
prediction. Scrutiny conducted by Vagjl et al [22] proved
that the application of the Dist-YOLOvV3 algorithm can
provide detecting results for an object equipped with a
prediction of the object's distance to the camera.
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Figure 3: Illustration of Dist-YOLOV3 in determining object distance predictions [10]
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Even though it shows a good performance in testing, Dist-
YOLOv3 has quite large loss values. Therefore, a
modification is needed to overcome this problem. This
study offers a solution by applying the Xception
architecture [11] combined with the attention mechanism
layer [26]. The implementation of the Xception
architecture is adopted to replace the YOLOv3 backbone
utilizing the Darknet53 architecture. On the other hand,
the attention mechanism layer is applied to the head
section of the Dist-YOLOvV3 architecture aimed at
enhancing feature representation. In particular, it focuses
attention on more relevant parts of the feature map. Thus,
improving the focus on pivotal information to produce
more accurate predictions can be realized.

Figure 4 reports the implementation of the Xception
architecture and Attention mechanism in the Dist-
YOLOv3 approach. The implementation of Xception was
placed in the backbone to replace the previous backbone,
namely Darknet53. There are three main processes carried
out in this architecture, including the entry flow, middle
flow, and exit flow stages [11]. The entry flow st age
aims at reducing the dimensions of the input image and
extracting basic features through three convolutional
layers (convl, conv2, and conv3) and depthwise separable
convolutions (sepConvl, sepConv2, sepConv3) [11].
Exiting the entry flow, the next image enters the middle
flow section aimed at deepening the network while
maintaining feature information through residual
connections. The final stage is the exit flow intended to
combine the features extracted and process them into the
desired outputs. In this case, the output produced is in the
form of extracted image results performed at three
different resolutions including fl: 13x13x1024, f2:
26x26x512, and f3: 52x52x512.

After the backbone produces the image extraction results
in three image resolutions, the three extractions enter the
neck section with the same functions and layers as in the
Dist-YOLOv3 architecture [10]. Unfortunately, what
makes it different is that before proceeding to the head
section, each result produced by the neck will first be
entered into the attention mechanism layer. In particular,
the process at this layer occurs as in the pseudocode in
Table 2.

The input feature map x € RT*WXC s first linearly
projected into three matrices: Query Q@ = W, - x, Key
K = Wy x, Value V. = W, - x, where W, W, W, €
R¢*4 are learnable weights and d is the attention
dimension. The attention scores are computed using
scaled dot-product attention:

A = softmax (Q' KT) 3)
\/_

k

This produces an attention matrix A € RHEWIXHW)
which determines how much focus each spatial position
should give to others. Finally, the enhanced output is
obtained as:

Xenhanceda = A -V (4)
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This yields a refined feature representation where each
position aggregates information from relevant spatial
contexts, allowing the network to model global
dependencies within the image.

Table 2:
Pseudocode of the attention mechanism process

Attention Mechanism Pattern
Input: Feature Map x € RHEXWXC
1. Project x into Query (Q), Key (K), and Value (V):

Q=W x
K=Wk'x
V=W-x

2. Compute Scaled Dot-Product Attention Scores:

T
A= Softmax(Q \;(Tk)
3. Compute Weighted Feature Representation:
Xenhancea = A -+ V
Output: Enhanced Feature Map x_enhanced

The x value comes from a process in the neck as a result
of combining features from miscellaneous resolutions to
provide a rich and informative feature representation. The
first stage undertaken in this layer is the Calculation of
Attention Weights where the Attention mechanism
calculates the weights for each feature element. This can
be conducted in multiple ways, namely dot product, scaled
dot product, or complex self-attention mechanisms such as
those applied in transformers. Next, in the Weighted Sum
of Features, the input features will be combined with the
calculated weights. This produces a new feature map
where important features are given greater weight. On the
other hand, less important or noisy features are provided
with less weight. Furthermore, the Enhanced Feature Map
strengthens the feature map combined with features from
a lower resolution using the Concatenate layer.

In the diagram from Figure 4, the Backbone (Xception),
Neck (feature decoder with upsampling and convolutional
refinement layers), and the Head that produces the final
object predictions are distinctly separated. The Attention
Mechanism is explicitly positioned after the Neck and
before the Head, ensuring spatial refinement of multi-
scale feature maps prior to prediction. This updated visual
structure aligns with the standard object detection
pipelines and reflects the actual implementation logic
applied in this study.

By adopting this algorithm, it is expected that object
detection will be more representative because it
incorporates the distance element into each detection
process. The model has been formulated by considering
the SACPS cycle. By doing so, the target model can
possess the ability to self-configure, self-adjust, and self-
optimize. As a complement to the model, we also provide
features for monitoring requirements to accommodate the
involvement of the developers. This feature enables
monitoring of the entire model's activities via the internet.
Given this fact, the process of updating and enhancing the
model can be performed currently. Also, it can produce
better models in terms of performance than others.
Furthermore, the requirement for accessible and
uninterrupted data support for both smart glasses and
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monitoring devices remains vital. Therefore, in the
architecture of Figure 2 it is specified that the data will be
stored in a cloud-based data center. With this in mind,
smart glasses and monitoring devices can access the data
at any time as long as they are connected to the internet.
As a form of proposed model validation, an evaluation was
conducted through two scenarios. First, it is operated by
evaluating the object recognition model. Second, it is
conducted by measuring the quality of adaptation
performed by SACPS. Technically, the results of the
model evaluation are visualized using two metrics, such as
Pascal VOC AP and intensity average. The function of the
Pascal VOC AP metric is used to evaluate the Dist-
YOLOv3 modified model. On the other hand, the average
intensity metric is used to calculate the average light
intensity resulting from the adaptive process. By doing so,
the entire results of this evaluation can demonstrate the
entire quality of research related to the development of
SACPS and its implementation process. The proposed
model still opens up avenues for future research as a form
of refinement of its shortcomings. The remaining
shortcomings cover subsequent aspects:

1) A very significant architectural overhaul makes the
program implementation process difficult,

2) Distance measurement still uses historical data on the
label.

3) The YOLOvV3 basic model indicates a large number
of parameters causing the object recognition model
heavy when operated.

4) The adaptive and recognizing process of objects only
supports outdoor areas.

Of these shortcomings, there are several potential
improvements, including replacing the basic YOLOv3
model with the latest model, namely adopting a more
flexible distance calculating concept, and adding an
indoor model to make it more universal.

From a systemic perspective, the proposed architecture
has been developed within the context of a generic Cyber-
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Physical System (CPS) metamodel. Each component in
the proposed pipeline corresponds to a specific layer in a
5C-like CPS architecture [13]: the camera and ambient
sensors represent the Connection layer; the light intensity
adaptation module functions as a preprocessing
mechanism in the Conversion layer; the object recognition
and distance estimation modules form the core of the
Cyber layer, handling perception and decision-making;
and the auditory feedback system aligns with the
Cognition and Configuration layers by providing real-time
responses to the user. Although this paper presents a
specific implementation for object recognition in smart
glasses, the modular and layered design is intended to be
extensible for broader adaptive services in CPS. The
system’s knowledge structure—encompassing perception,
adaptation, and feedback—can be generalized for other
CPS applications that require environment awareness and
user interaction.

More specifically, the Smart Connection layer is
operationalized through the image acquisition system and
data transfer mechanisms that enable the collection of
visual input from the surrounding environment. The Data-
to-Information Conversion layer involves preprocessing
steps, such as adaptive brightness enhancement, and the
object recognition pipeline that transforms raw input into
structured outputs. The Cyber layer consists of deep
learning-based inference (Dist-YOLOv3 [10] with
Xception [11] and attention [26]) and distance estimation
logic, which drive perception and situational awareness.
The Cognition layer is activated when critical cues (such
as proximity or classification confidence) are detected,
allowing the system to assess the contextual relevance of
outputs. Finally, the Configuration layer is reflected in the
auditory notification system, which adapts responses
based on recognition results and environment states. This
layered mapping reinforces the integration of the SACPS
concept within the operational structure of our adaptive
object recognition system.
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Figure 4: Architectural modifications to Dist-YOLOv3
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4 Experiment

The experimental instrument was developed by adopting
the guidelines of Wohlin et al. [27] about experimentation
in software engineering. Table 3 denotes the overall
research design. The elements of aims, object of study,
domain, and focus are targets for defining entire
indispensable aspects in an experiment. Evaluative
questions were a set of questions addressed to characterize
how to assess targets and determine the object being
measured. On the other hand, variables were metrics or
data sets related to each question that should be answered.
This investigation aimed at developing a solution to the
problematic variability in uncertain real-world objects in a
CPS environment characterized by an adaptive strategy to
invigorate the object recognition quality. Specifically, the
object recognition quality encompassed the ability to
identify objects, and distances, and provide sound
notifications to users. Further, this study was also intended
to evaluate the performing specifications of the object
recognition system through measuring loss, validating
loss, precision-recall, and average precision (AP) through
Pascal VOC AP measurements.

Generally, the experimental process was guided by the
domains and elements outlined in Table 3, which include
the adaptive strategy and performance specifications of
the CPS-based object recognition system. The adaptive
strategy was implemented through algorithmic design
within the smart glass’s architecture, focusing on
automatic light intensity adaptation and feature refinement
using attention mechanisms. Meanwhile, the performance
specification evaluation was conducted using quantitative
metrics, including mean Average Precision (mAP), mean
Precision (mPrec), mean Recall (mRec), and loss values,
to measure the accuracy and reliability of object detection
and distance estimation.

Table 3:
Experimental design
Description
Developing a CPS-based object
recognition model by embedding
automatic adaptation (self-
adaptation) capabilities to handle
uncertainty
b. Evaluating the performance of a
CPS-based object recognition
system
Adaptive specification of CPS-
based object recognition model
b. CPS-based object recognition
artifact requirements

Domain Smart glasses
4 Foci a. Adaptive strategy for CPS-based

object recognition systems

b. Performing specifications for CPS-
based object recognition systems

No Elements
1 Aims a.

2 Study a.
Objects

w

5 Evaluative
Questions a.
(PE)

PE:1- To what extent can the CPS-
based object recognition system
maintain accuracy and robustness
under uncertain environmental
conditions (e.g., low light)?
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b. PE2-What is the performing
measure of each artifact element of
the CPS-based object recognition

systems?
6  Variables a. Response (Vi-system failure; V2-
V) system functional and non-
functional strategies; Vs-new
stimulus)

b. Measurement (Vs-Pascal VOC AP
(Average Precision) evaluation)

This experimental framework also considers the intended
application scenario—assistive navigation for visually
impaired individuals. Blind individuals face significant
challenges in recognizing surrounding objects, and our
study aims to address this issue by providing a CPS-based
recognition model that delivers real-time feedback.
Through the proposed architecture, which includes
adaptive brightness enhancement and an optimized deep
learning backbone (Xception), the system is designed to
enhance recognition accuracy and facilitate safer
navigation.

This has become one of the developed applications in the
area of self-adaptive cyber-physical systems. The system
environment, including users (the visually-impaired
people) and all monitoring sources derive from wearable
devices. Table 4 signifies the specifications of the CPS
cases.

Table 4:
Case specification of cyber-physical system

Components
Smart glasses
Context Knowledge

Specifications
BM: User Blindness
C;: Object
C,: Object Distance
C5: Low Brightness
Cv;: Capturing and predicting an
object
Cv,: Even to predict the distance
from the object
Cv5: Even with the brightness
enhancement
Cv,: Even to release a sound
notification

Adaptive
Requirements

Contextual variability showed uncertainty due to discrete
factors, such as unexpected changes, increasing data
volumes, inaccurate information, problematic system and
service infrastructures, and new and unpredictable
situations. Dealing with the case specification in Table 3
(the adaptive process to normal situations), the Cyber-
Physical System detected identified objects in the
surroundings. Context variability (Cv) can be monitored
with Cy, C,, C5 € {Cy4, Cy,, Cys, Cyy}. Each context value,
namely C;,C;€{Cy3, Cy1} means the context of the
object, and Low brightness was processed to meet the
requirements of the event to brightness enhancement and
capture and predict the objects. Context C;, C,, C3VCy, C,
€ {Cy1, Cy,, Cys3, Cyy} means that the context knowledge
obtained will be processed until the system issues a sound
notification. In its application, SACPS makes it possible
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to deal with a number of situations denoted in the
inference model as follows:

Rule-1: if (camera_capture = object) and (object =
has_distance) then system_output = give notified
the user based on an object for navigation.

if (camera_capture = object) and (object
has_low_brightness) then system_output
increase brightness.

Rule-3: if Rule-2 is True then do Rule-1

Rule-2:

Table 5 reveals the algorithm in pseudo-code form for the
SACPS mechanism on the smart glass’s architecture based
on the five existing rules, namely Rule-1 to Rule-3.
Objects (O) would be identified based on context
knowledge C; € {C1, C2, C3}, the results of which
became a reference for the inference of the formulated
model. The process of determining identification was
carried out during monitoring (M) with the output in the
form of Cvi €{Cy, Cy,, Cy3, Cys}. The output would be
sent to the analyzer_manager section which was at the
cognition level (CG).

Table 5:
Sacps adaptive algorithm for smart glasses

Adaptation of CPS Pattern

Input
O« C1,CyC3
Do
Let
O « inference model
/I Monitoring (M)
For O in runtime artifact, do
O « get value C1, Cz2and Caz in runtime artifact
For each values C1, C2 and Cs in SACPS artifact, do
If Cvi in runtime artifact, then
Send information Cvi to analyzer_manager
endif
endfor
endfor

/I Cognition (CG)
For each Cvi in analyzer_manager, do
If Cvi, Cvz, Cvais True, then
If Cviis True, then
Increase brightness from O
Endif
O « predict_object and predict_distance
new_decision «— O
else
O « the object cannot be detected
new_decision « empty
endif
endfor

/I Configuration (CF)

If CG contain new_decision, then
System «— release a sound notification
For each system in runtime artifact, do

Send information to M
endfor

endif
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Next, Cvi in analyzer_manager was processed in the
Cognition (CG) section to obtain a new decision from the
results obtained in M. This process was executed by
analyzing Cv; which would produce a new decision O. The
output from CG was in the form of a decision command
for the configuration (CF) section. If new_decision
contains a new decision, the system will issue a
notification sound as the final result of the process of
object detection.

The model development process was conducted based on
an extension of the machine learning/deep learning
method of John et al. [28] adapted to the requirements of
this investigation. Hence, the development stages had
been determined as represented in Figure 5.

Reguireament
Specification

Y

Pre-Processing

L 4

Experiment/Developing

Y

Deployment

L 4

Operational

Figure 5: Development stages

The experimental process requires an investigative
environment to meet every experimental need while being
performed. Therefore, it is necessary to prepare
appropriate specifications to fulfill experimental needs.
Hence, the obtained results are maximal. The required
specifications for the training process are adjusted to the
requirements of the Dist-YOLOv3 algorithm Vagjl et al.
[10] referring to the specifications of the employed device.
The required specification consists of (a) Python 3.9.6; (b)
Tensorflow 2.6.0; and (¢) CUDA. The training process
was conducted using a batch size of 2 and a learning rate
of 0.001. The Adam optimizer was used, and training was
performed for a maximum of 40 epochs with early
stopping based on validation mAP. The loss function
combined cross-entropy loss for object classification and
smooth L1 loss for distance estimation. The Xception
backbone was initialized with pretrained ImageNet
weights to leverage transfer learning. Additionally, a
single-head self-attention block with an embedding
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dimension of 256 was integrated into the detection head.
Query, key, and value matrices were generated via 1x1
convo lutions, followed by layer normalization and
ReLU activation for feature refinement.

The utilized data for the model creation process originated
from a dataset created by KITTI (Karlsruhe Institute of
Technology and Toyota Technological Institute) Geiger et
al. [25]. The dataset was called KITTI 3D Object
Detection Evaluation 2017. It refers to a data set covering
3D objects. Also, it consisted of 7481 training data and
7518 test data. The data pre-processing process was
executed by following the steps proposed by Vajgl et al.
[10] as manifested in Figure 6. The data were separated
into two parts, namely training data and test data obtained
from the training data section of the KITTI Dataset. This
occurred due to only the data in the training section
containing distance values. As a result, the actual distance
was required to be compared with the predicted distance
from the detection results for testing purposes. The
emphasis of preprocessing was on label processing
containing prominent information for the training process.
Information (e.g. bounding box points, class index, and
distance value) were elements that should be included in
label annotations.

In the experimental stage, the training process was carried
out by making adjustments to the employed architecture.
The Darknet53 architecture was substituted by the
Xception architecture [11] with the addition of an
attention mechanism layer proven to improve the
performance of the applied architecture in YOLO [26],
[27], [28]. In proving that the created model is better than
the model of Vajgl et al. [10], we compared the pre-trained
model from this study with the pre-trained model available
at https://gitlab.com/EnginCZ/yolo-with-distance
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established by Vajgl et al. [10]. This comparison aims to
compare state-of-the-art methods discussed in the related
work section, particularly the work of Vajgl et al. [10].
Figure 7 illustrates the difference in train loss and
validation loss values.

KITTI Dataset
[ Image Label ]4—[ H Image Data ]
Label Preparation for
Training

¥ L] i
[Deﬂne B;:gir;;!mg Box] [ Define Class Index ] [ Add Distance Value ]

[ ]

Figure 6: Pre-processing data

Split to Train Data
and Test Data

The employment of an additional layer in the form of an
attention mechanism has been proven to reduce the loss
value to a greater extent than without adding this layer.
Figure 7 designates the difference in loss values with the
results of train loss and validation loss reaching 16,031
and 17,565. These results are quite different from the pre-
trained model results of Vajgl et al. [10]. The next
comparison is related to the Pascal VOC AP (Average
Precision) evaluation measurement for each class. These
measurements are usually applied to evaluate the
performance of object detection models [33]. This is an
attempt to enhance the proposed SACPS detecting model.

Comparison of Train Loss and Validation Loss Values

EE Train Loss

Val Loss 23.239

16.031

15 4

Loss Values

10 1

Our Model

DistYOLOV3[22]

24.0

17.565

Our Model Dist-YOLOV3[10]

Model

Figure 7: Comparison of train loss and validation loss
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Comparison of mPrec, mRec, and mAP

45.21
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Dist-YOLOv3[10]
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Metrics

Figure 8: Comparison of mPrec, mRec, and mAP values

Figure 8 indicates a comparative detecting performance
based on Pascal VOC AP measurements with a threshold
or Intersection over Union (loU) of 0.5. The model
developed in this study was superior in evaluation results
with mPrec, mRec, and mAP values of 14.73%, 45.21%,
and 30.04% respectively observed. This proves that the
pre-trained model can detect objects that exist properly.
Hence, it enables to increase in the mAP value greater than
the original model [10] available on public links.
However, due to the limitations of existing devices, we
can only use a batch number of 2 so the training process is
time-consuming.

To further evaluate the optimization behavior of the
proposed model, we conducted a convergence analysis
based on the training and validation loss values recorded
over 40 epochs. This analysis aims to assess whether the
training process led to stable convergence and to identify
any signs of overfitting or instability that might affect the
model's generalization capability.

As depicted in the loss convergence curves in Figure 9, the
training loss decreased steadily and stabilized at
approximately 16.03, indicating proper convergence.
Although the validation loss initially started at a high
value due to uncalibrated predictions, it consistently
declined over 40 epochs, eventually reaching a value of
23.24. This trend confirms the model's effective learning
of generalizable features without significant overfitting.
The relatively high absolute loss values are attributed to
the multi-objective nature of the loss function and
unnormalized scaling.

Training and Validation Loss Convergence Curve (40 Epochs)

504 —e— Training Loss
Validation Loss

m 13 15 17 19 21 23 25 27 29 31 33 35 37 B

Epoch

Figure 9: Training and validation loss convergence curve

After reaching a better pre-trained model compared to the
pre-trained model [10], we then carried out experiments
on context knowledge and adaptive requirements on C,, C5
€ {Cy3, Cy1}- The experiment was conducted by detecting
images with low light intensity. The utilized light intensity
level was based on the average RGB value. Hence, we
gained an equation to calculate the increased new light
intensity in equation (5).
Liew = Ioia X F ®)

Where I,,,,, was the new intensity updated based on I,
multiplied by F, where F was the factor enhancing the light
intensity with F > 1, equation (5) was employed if
the I,;4 < 50. Also, it manifested which value was taken
from the average light intensity value in the images.
Furthermore, the F value would be adjusted to the old
intensity value detected with F € {F > 1}. Briefly, we
conducted experiments with images indicating an average
light intensity below 50. Technically, Table 6 describes
the changing results of the intensity of the utilized images.
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The experiment in Table 6 discloses good adaptive results
because the improvement in the intensity value was
adjusted to the previous light intensity value. This was
aimed at avoiding the damage of the obtained information
results in the detected images. In addition, excessively
increasing the intensity could damage the existing color
composition and could create noise in the image. The
scenario of Cy, C; €{Cy3, Cy,} was effectively performed
to increase the light intensity in the image on average by
100.0703.

Figure 10 shows increased light intensity conducted by the
system based on miscellaneous schemes from C;
containing various values of old brightness (I,;4). The
resulting new brightness (I,,.,,) would not be increased
excessively even though the I,,; value was close to the
value of 50 as represented by Table 6 in the 25th sample.
The I_new value produced a fairly stable value if 1,;; €
{I,1a > 25}. However, the I,,.,, value underwent unstable
changes when the I,,;; € {I,;4 < 10} value. The stability
of the 1_newvalue has a very prominent role in the final
results of object and distance predictions. This was proven
in the 4th sample experiment for I,;; < 10 and the 17th
sample for I,;; > 25.

Table 6:
Results of adaptation of Cy5 light settings

No. Sample Light Intensity Light Intensity
before (I,14) after (Iew)

1 3.3443 67.4892
2 5.5522 83.6164
3 7.7493 77.9420
4 8.7250 87.4341
5 9.9340 99.1287
6 11.1267 67.5903
7 14.2915 86.0231
8 16.4727 98.8303
9 18.6484 110.8143
10 19.8362 113.6794
11 22.0120 88.2736
12 25.3866 101.8137
13 27.5531 109.3286
14 28.5278 111.4813
15 29.7263 113.5586
16 31.8851 95.8494
17 36.2576 108.2096
18 37.4274 110.3538
19 38.4252 112.0422
20 39.6189 113.5254
21 41.8004 100.2741
22 45.1630 107.8529
23 47.3357 110.9795
24 48.3229 112.2473
25 49.5122 113.4192

Average light intensity after (I,,,,,) 100.0703
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Brightness Enhancement Comparison
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Figure 10: Brightness enhancement comparison

(b)
Figure 11: (a) 4" sample with a light intensity value of
8.7250. (b) 17" sample with a light intensity value of
36.2576.

Figure 11 illustrates the input images of the 4th and 17th
samples, both of which have undergone light intensity
enhancement. These two examples represent different
segments of the I, range: the 4th sample with I,,;,; < 10,
and the 17th sample with I,,; = 45. As depicted in
Figure 13, the subsequent outputs—aobject prediction and
distance estimation—exhibited markedly different
behaviors under the same enhancement procedure. In the
case of the 4th sample, the original image was extremely
dark, making essential visual features such as edges and
textures virtually indiscernible. Upon applying light
intensity scaling, the image became noticeably brighter,
but at the cost of amplifying noise and artifacts. This led
to unstable or erroneous object detection, with the model
often missing or misclassifying key targets.

Furthermore, distance prediction in this sample was
unreliable due to the distortion introduced by aggressive
enhancement from such a low baseline. By contrast, the
17th sample, with moderately low lighting, retained a
sufficient amount of visual information. The light
adjustment process yielded a stable and visually coherent
image (I,,.,v), resulting in more accurate object detection
and consistent distance estimation. This comparison
demonstrates that while the proposed model exhibits
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improved robustness under typical low-light conditions,
its performance significantly deteriorates when the initial
image intensity falls below a critical threshold
(approximately I,,; < 10). Although the implemented
brightness enhancement method—using a scaling factor
FFF when I,,; < 50—effectively improves visibility in
low-light scenarios, it remains a rule-based and non-
learning approach. This mechanism was chosen to
demonstrate a lightweight, self-triggered adaptation
behavior within the SACPS context. However, the
instability observed in extremely dark cases highlights the
limitations of fixed-rule strategies. Future improvements
will involve integrating adaptive, learning-based
enhancement modules (e.g., LLNet, Zero-DCE, or
transformer-based models) that provide more context-
aware correction while mitigating noise and preserving
structural detail, thereby enhancing both object
recognition and distance estimation reliability in diverse
lighting conditions.

To demonstrate that the proposed model outperforms its
predecessors, we conducted an ablation study on four
model configurations:  Dist-YOLOv3 [10], Dist-
YOLOv3+Xception, Dist-YOLOv3+Attention, and Dist-
YOLOv3+Xception+Attention  (Proposed  Method).
Furthermore, to support the model’s generalisation
capability, we evaluated its performance under varying
lighting conditions by simulating reduced illumination on
the KITTI test data. The results of this ablation study are
presented in Table 7.

Table 7:

Ablation study
Model Variant Light mMAP mPrec mRec
Intensity (%) (%) (%)
100% 17.30 6.76 31.92
Dist-YOLOvV3 80% 1548 5.97 29.04
[10] 60% 13.12 4.88 26.04
40% 10.93 3.75 22.01
100% 2361 1125 37.88
Dist-YOLOvV3 80% 21.30 9.94 34.41
+ Xception 60% 18.42 8.11 30.75
40% 15.67 6.42 26.08
100% 2263 10.63 35.82
Dist-YOLOvV3 80% 19.80 8.90 31.99
+ Attention 60% 17.01 7.34 27.45
40% 14.83 6.09 25.17
. 100% 30.04 1473 4521
?‘i‘c\g;:;a‘f’ 80% 2746 13.06 4100
Attention 60% 2485 1130 36.48
40% 21.78 9.64 31.59

The results indicate that both Xception and the attention
mechanism independently improve performance over the
baseline under all lighting conditions. The Xception
architecture in Dist-YOLOv3 proves especially beneficial
in low-light scenarios. The complete model, which
combines both Xception and attention, achieves the best
overall results, demonstrating the effectiveness and

Amplitudo
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robustness of the proposed approach in adaptive object
recognition tasks.

To fulfill the context knowledge and adaptive
requirements in Cy, C,, C3VCy, C, €E{Cyy, Cyz, Cys, Cya}s
the system should be able to produce a sound output of
notification in the form of identified objects in front of it.
These requirements were built through the Google Text to
Speech (gTTS) library covering a sample rate of 22050-
44100 Hz. As a result, it provides clear sound with clear
quality of each pronounced word. A notification will come
out of the system if there is an object that is 5 meters away
in front of you. Figure 12 demonstrates the sound waves
resulting from the detection of objects located 5 meters in
front of the machine.

Waveform Audio

0 05 1 15 2 25
Time (second)

Figure 12: Audio waveforms from system output

The audio waves in Figure 12 illustrate that there is a car
object 5 meters in front of the camera. This indicates one
of the successful final results of detecting and fulfilling the
needs of Cy, C,, C3VCy, CL,E€{Cy1, Cyy, Cy3, Cyya} by all the
experimental scenarios cultivated in this study.

Internal validity refers to the extent to which research
results can be attributed to the manipulation of
independent variables rather than other factors. The threat
to internal validity in this study refers to the irrelevant use
of data in various environments. In this case, these data
refer to the adopted data for the object recognition model
training process. For this reason, it may cause significant
accuracy gaps and reduce the adaptability of the system in
diverse environments.

Construct validity refers to the extent to which a test or
measuring instrument measures a particular concept or
construct. Threats to construct validity encompass
inadequate definitions and supportive effects. The threat
of inadequate definitions is caused by very limited object
classes and the adaptation of the existing classes in the
KITTI dataset. As a result, the model is unable to
recognize objects comprehensively. Besides, this will also
cause the inaccurate object recognition model's metric
measurements. One threat to the supportive effect is that
if other factors (e.g. voice assistance or user interaction
with additional devices) assist in object recognition, the
results may not fully reflect the capabilities of the object
recognition model itself.

Construct validity refers to the extent to which a test or
measuring instrument measures a particular concept or
construct. Threats to construct validity encompass
inadequate definitions and supportive effects. The threat
of inadequate definitions is caused by very limited object
classes and the adaptation of the existing classes in the
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KITTI dataset. As a result, the model is unable to
recognize objects comprehensively. Besides, this will also
cause the inaccurate object recognition model's metric
measurements. One threat to the supportive effect is that
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if other factors (e.g. voice assistance or user interaction
with additional devices) assist in object recognition, the
results may not fully reflect the capabilities of the object
recognition model itself.

The evaluative results, in terms of object recognition and
adaptation, yielded excellent results when measured by
the corresponding metrics. Conversely, this has not ruled
out the possibility of threats to the conclusive validity.
Although it can be inferred that the object recognition
model produced by this research exhibits better
performance than previous models, several cases highlight
the model's shortcomings. One of them is when objects are
closely situated to each other or partially captured by the
camera. This makes the model unable to accurately
recognize what object is being detected. Furthermore, if
adaptive ability is considered successful, there is a
possibility of adaptive failures when the light intensity is
increased. When the adaptation process for increasing
light intensity occurs, the results occasionally indicate an
effect on the image, such as loss of quality in
miscellaneous aspects.

The limited number of employed object classes and the
existing dataset environment have opened new threats to
external validity. Even though the entire evaluation results
of this research are auspicious, it needs to be re-
emphasized that testing miscellaneous environmental
characteristics depends on the data used, so it is highly
recommended to make improvements by adding to the

(b)
Figure 13: (a) Results of increased light intensity, object prediction, and distance prediction in the 4™ sample. (b)
Results of increasing light intensity, object prediction, and distance prediction on the 17" sample

data used, either by adding data from independent
collection results or by combining it with the available
dataset.

5 Discussions

Our model introduces two main architectural
enhancements to the original Dist-YOLOV3: replacing the
Darknet53 backbone with the Xception architecture and
integrating an attention mechanism layer before the head.
These improvements have shown a notable increase in
detection performance. In terms of quantitative
evaluation, our model achieves a mean Average Precision
(mAP) of 30.04%, compared to the baseline mAP of
approximately 17.3% reported by Vajgl et al. [10],
marking a 12.74% improvement. Additionally, the mean
recall increased to 45.21%, and the mean precision
reached 14.73%. We compared the pre-trained model
from this study with the pre-trained model available at
https://gitlab.com/EnginCZ/yolo-with-distance. =~ These
metrics demonstrate a better detection capability in real-
world scenarios, especially in complex environments with
occlusions or variable lighting conditions. The
improvement is primarily due to:
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e  Xception Backbone: With its depthwise separable
convolutions, Xception enables deeper and more
efficient feature extraction than the original
Darknet53. This enables the model to capture fine-
grained spatial features more accurately.

e  Attention Layer: The attention mechanism
selectively emphasizes relevant spatial features and
suppresses irrelevant or noisy ones, improving both
classification and localization accuracy.

However, the performance gain comes at a cost. The
model incurs higher computational complexity, especially
during training, and exhibits higher loss values (16.031
training loss and 17.565 validation loss). This is attributed
to:

e  The use of a small batch size (2) due to limited
hardware resources, which affects training stability
and convergence speed. The inclusion of a distance
loss term, which adds to the total loss function and
increases its numerical magnitude.

e  The use of historical label-based distance data from
KITTI may not perfectly align with real-time
physical constraints.

In addition to detection accuracy, our model also
incorporates a self-adaptive light intensity enhancement
mechanism to address challenges in low-light
environments. This component is crucial for ensuring
visual clarity and maintaining object recognition
performance in varying illumination conditions. The
experimental results indicate that the brightness
enhancement system successfully increases image
intensity in dark environments, with an average post-
adaptation brightness of 100.07, up from initial values of
less than 50. This enhancement is designed to avoid
overexposure by applying a proportional intensity factor
based on the original image brightness. Two
representative cases were highlighted:

o In the 4th sample (initial brightness: 8.72), although
the enhancement increased visibility, it also
introduced noticeable noise and partial information
loss, which negatively affected detection accuracy.

e In the 17th sample (initial brightness: 36.26), the
enhancement achieved more stable brightness with
minimal noise, leading to more accurate object and
distance predictions.

These findings reveal a critical insight: while adaptive
brightness enhancement is beneficial, it must be applied
carefully depending on the original light level. Excessive
enhancement in extremely dark images may degrade the
image quality and impair the detection process. This
aspect reflects a trade-off between adaptation robustness
and prediction accuracy. In future iterations, incorporating
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learned enhancement filters or adaptive gain control
mechanisms may help optimize this process and reduce
noise in low-light scenarios.

Despite the observed improvements, several limitations
remain in the current implementation. First, tuning
hyperparameters—particularly those related to attention
mechanisms and light adaptation thresholds—required a
series of empirical iterations due to the absence of prior
benchmarks in this domain. This process introduces
complexity and may compromise reproducibility if
thorough documentation is not provided. Second,
although the attention layer improves detection accuracy,
it inevitably increases computational load during
inference, which could impact responsiveness—
especially on low-power wearable platforms. While
inference time was not formally measured in this study,
the additional layers are expected to introduce some delay
due to their sequential nature and computational
requirements. Lastly, deployment in varied environments
presents practical challenges: indoor scenes often suffer
from occlusion and low-light noise, while outdoor settings
may include background clutter and high dynamic range
lighting. These differences complicate generalization and
suggest the need for environment-aware calibration in
future iterations.

6 Conclusion and further studies

This paper introduces a CPS-based object recognition
model with automatic adaptive capabilities to address
uncertain real-world objects in a CPS environment
characterized by adaptive strategies. The main focus of the
experiment is on the adaptive strategies of the CPS-based
object recognition system and the performing
specifications of the system. The research results report
that this system can make object recognition better,
notably for blind people during navigating practices. This
experiment was carried out in the context of application
development in the field of self-adaptive cyber-physical
systems (SACPS), particularly in smart glasses. The
utilization of adaptive strategies (e.g. increasing light
intensity and object recognition based on context) has
been fruitful. Increased light intensity is carefully
processed to maintain image quality and avoid noise.

Moreover, this study has successfully developed a
machine learning/deep learning-based object recognition
model superior to previous models. This model can
amplify the mAP value and accuracy value in recognizing
objects. Even though there are limitations to the applied
devices, this improvement signifies a highly significant
result. In particular, the experimental results also denote
that the system can issue a sound notification to its users
when there is an object within five meters in front of them.
Given this fact, it meets the adaptive requirements in a
CPS environment. Overall, this study has fruitfully
developed an adaptive CPS-based object recognition
model that can advance the quality of object recognition,
notably for blind people in the context of smart glasses.
The results of this scrutiny showcase remarkable
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potentials in cultivating the life quality of the blind people
while performing daily activities.

Based on the entire experimental results, some major
findings attracted our attention. As an example, at the
detecting evaluative model stage, the comparison of train
loss and validation loss revealed better results than the
detecting model of Vajgl et al. [10] with average reduction
values of 26.7% and 26.8% respectively. Besides, the
Pascal VOC AP metric indicated that the values of each
metric component had increased for both the mPrec,
mRec, and mAP elements with an average increase of
7.97%, 13.29%, and 12.74%, respectively. Moreover, the
adaptability of our model was represented in the form of
adaptation to changes in light intensity. The evaluative
results indicated that, after the adaptation process, the
average light intensity of the enhanced images reached
100.0703 (1,0, )- This reflects the ability of the proposed
adaptive mechanism to consistently raise low-light image
brightness to an optimal level. Such enhancement
significantly contributed to the improved functionality and
adaptability of the object detection model, particularly in
varying illumination conditions.

Our proposed adaptive strategy has an indispensable role
in the real-world object recognition process based on
broader cues in multiple quality attributes. Among them,
precision, recall, and average accuracy are determined
based on the ability to adapt to the surrounding
environment. This indicates that efforts to resolve the
problems of recognizing real-world objects have been
restricted to certain cues without adaptability.

This paper opens up new opportunities for future
investigation. To illustrate, the adaptive strategy of a CPS-
based object recognition system can be directly employed
based on an effective adaptive environment. In this
experiment, we applied the model to the needs of a smart
glasses system. However, it does not rule out the
possibility of being applied to other system needs in the
real world. Our model has the potential to be applied to
several applications, including autonomous driving, robot
vision, smart doors, and so on.

Shortly, we plan to conduct further experiments to
optimize this adaptive strategy of object recognition to
invigorate its accuracy and performance through a lighter
model when being implemented. As an illustration,
improving adaptability through the addition of adaptive
features (e.g. system failure management, self-scheduled
recognition model updates, and identification of new
object classes) to increase system knowledge. In addition,
replacing the YOLO-based model with the latest version
is one way to optimize the object recognition model.
Applying automatic parameter selection methods in the
training process is the primary step in enhancing such an
object recognition model. Further, we will also upgrade
the designed smart glasses device to be able to provide
thorough and specific features for other needs of blind
people. As part of this plan, we aim to conduct a pilot
usability study involving individuals who are blind or
visually impaired, in collaboration with assistive
technology communities. This will allow us to evaluate
the system’s real-world applicability, user satisfaction,
and interaction flow, which are essential for ensuring its
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practicality and accessibility. In addition, we will validate
the system in more realistic environments for visually
impaired users by employing data from indoor navigation
or close-range object interaction, which are more
representative of real-world scenarios faced during daily
activities.

The impacts and importance of our proposed model are
related to the sustainability of object recognition systems
for long-term needs. Considering that the variety of real-
world cues recognized by a recognition system has the
potential to undergo rapid and unpredictable changes. Our
model offers adaptability to adjust the state of the system
based on specific contexts, notably increased accuracy in
recognizing objects affected by light intensity. Also, this
represents an achievement of the objectives of this work,
namely developing a generic model for adapting CPS
services when recognizing real-world objects as
heterogeneous and strongly influenced by their
environmental conditions.
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