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Achieving optimal control of Complex Networks is crucial for optimizing network structures and system 

solutions. However, current methods mainly suffer from high computational costs and poor performance. 

Therefore, this study proposes an optimal control model based on Adaptive Dynamic Programming and 

Iterative Algorithm to address these issues. The model uses Global Dual Heuristic Programming as the 

foundation, value iterationas the core optimization technique, and integrates event-triggered mechanism 

and K-means clustering algorithm. The results show that, compared to modelsbased on theHarris Eagle, 

Arithmetic, and Northern Goshawll optimization algorithms, the proposedmethod reduces physical 

indicators (e.g., floating-point operations) of the target network by 15%, ensuring accuracy, while 

achievinga lighter networkand faster convergence. In practical tests, the model is used to optimize the 

YOLOv8 network. The verification using the CIFAR-10 dataset showed that the YOLOv8’s accuracy 

improved by 10.2%, with response time reducedby 15ms and energy consumption for single-image 

recognition cut by 31mJ. These results showthat the proposed model effectively achieves optimal control 

of complex networks, addresses issue like slow speed and high consumption, offers new approaches for 

optimization, and contribute to more efficientcomplex network development. 

Povzetek: Prispevek predlaga model KEAI, ki z združitvijo dinamičnega programiranja, iterativne 

optimizacije in K-means razvrščanja omogoča učinkovitejše in energetsko manj potratno upravljanje 

kompleksnih omrežij. 

 

1 Introduction 
With the development of deep learning, its application has 

been steadily growing. Deep learning transforms complex 

problems across various fields into solvable mathematical 

problems, using deep neural networks to approximate 

functions and find optimal solutions [1-2]. Complex 

networks (CNs) use dynamical methods, graph theory, and 

other techniques to model complex system relationships 

as network structures, with nodes, edges, and 

mathematical relationships through simulation [3]. The 

significance of CNs lies in finding optimal solutions 

through mathematical methods and achieving optimal 

control, which helps solve real-world problems. Thus, 

achieving optimal control of CNs is crucial [4]. However, 

current CNs control methods suffer from low efficiency, 

poor adaptability, and limited scalability, creating an 

urgent need for more efficient and flexible solutions [5]. 

Optimal control improves network accuracy and 

computational speed by adjusting structures and 

parameters. Adaptive Dynamic Programming (ADP) is 

widely used for optimal control of systems, as it can 

optimize network parameters through function 

approximation using neural networks. ADP often  

 

incorporates Iterative Algorithms (IA) to avoid 

"dimensionality explosion" and improve its applicability. 

Therefore, the research proposes a CN optimal control 

framework that integrates ADP and IA, combining the 

strengths of thesealgorithms to develop a model capable 

of meeting both accuracy and efficiencyrequirements. The 

goal is to achieve optimal states in the optimization of 

CNs, enabling fast and effective implementation of 

optimization processes across various CNs, and 

addressing real-world societal challenges. 

2 Related work 
ADP can integrate reinforcement learning and iterative 

methods using neural networks to optimize and control 

various systems. Both domestic and international scholars 

have applied ADP to system optimization in various 

complex fields. For instance, Yang et al., in order to 

address the optimal control problem of systems under the 

Hamiltonian-driven framework, proposed an ADP method 

based on experience replay. This method expresses the 

traditional Hamilton-Jacobi-Bellman equation in a filtered 

form, allowing system parameter optimization even in 

weak excitation environments [6]. To solve the voltage 
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control problem in the real-time current sharing process of 

renewable energy such as wind and solar power, Wang's 

team proposed an ADP-based voltage regulation method 

for renewable energy systems. This method treats the 

voltage regulation problem as an optimal control problem, 

ensuring the maximum utilization of renewable energy 

[7]. Selvaraj and Murugasamy, to improve the accuracy of 

community  

Table 1: Past studies and their comparison of advantages and disadvantages. 

Field Method Advantages Disadvantages Authors 

Enhancing the efficiency of 

experience replay in ADP 

Integration of Hamiltonian 
principle and experience 

replay 

High experience replay 

efficiency 

Depends on specific system 
structures; and sensitive to 

space distribution 

Y. Yang et al. 

[6] 

Sharing and voltage 
regulation in hybrid 

wind/solar systems 

ADPapproach 
High-precision power 

distribution 

Intermittent new energy 
fluctuations may cause 

control delays 

R. Wang et al. 

[7] 

Node optimization of 
complex community 

networks 

Integration of InfoMap and 
Sigmoid Fish Swarm 

Optimization 

High accuracy of results 
Fish swarm algorithm 
require manual tuning and 

high computational cost 

D. Selvaraj et 

al. [8] 

Vibration control for 

helicopter trailing-edge flaps 
Data-driven ADP High method validity 

Relies on specific 

operational data and high 

computational cost 

Y. Chen et al. 

[9] 

Adaptive fault-tolerant 

control for non-minimum 
phase hypersonic vehicles 

ADP-based fault-tolerant 

control 
High model stability 

High model uncertainty and 

potential control failure 

L. Wang et al. 

[10] 

Optimal control of discrete-

time systems in networks 

Distributed optimization 

algorithm 

High applicability and 

repeatability 

Relies on real-time node 

communication; high 
network loss 

S. Battilotti et 

al. [11] 

Safe tracking control with 

unknown dynamics and 
constraints 

Game theory-integrated 

optimal control method 

Ensures safe tracking under 

constraints 

Validity was not verified in a 

dynamic environment 

X. Cui et al. 

[12] 

Optimal control for 

continuous-time unknown 
nonlinear affine systems 

Q-learning algorithm 
No need to rely on the 

system, the method is simple 

Slow convergence in 

continuous state spaces; 
prone to local optima 

S. Yu et al. 

[13] 

High-dimensional optimal 

control for pathfinding 

Neural network-driven high-

dimensional optimal control 
method 

High path finding accuracy 

High computational cost and 

not suitable for dynamic 
environments 

D. Onken et al. 

[14] 

Influence maximization in 
complex networks 

Evolutionary deep 

reinforcement learning 

algorithm 

Improves influence 
propagation efficiency 

High computational cost and 
limited adaptability 

L. Ma et al. 
[15] 

 

monitoring, treatedthe entire community as a CN and each 

member asa node. Based on the sigmoid fish swarm 

optimization algorithm, they proposed an improved CN 

optimal control method for influencing nodes in CN. The 

test results show that the dropout ratesfor this method on 

the Facebook, Twitter, and YouTube dataset are 95%, 

96% and 94% respectively, effectively achieving optimal 

control of community monitoring CN [8]. Yu ’ s team 

applied ADP to control the vibration of a helicopter’s rear 

flap. They proposed a combined framework of ADP and 

reinforcement learning for rear flap vibration control, and 

introduced a non-policy reinforcement learning algorithm 

to determine the optimal control strategy. In practical 

tests, the method achieved Nash equilibrium and 

effectively solved the problem of vibration interference in 

helicopters [9]. Le and Ruiyun, based on ADP’s 

compensation control, proposed action-dependent 

heuristic dynamic programming and applied it to the issue 

of non-minimum phase hypersonic aircrafts affected by 

actuator faults and parameter uncertainties. In simulation 

experiments combining a basic fault-tolerant stable 

controller, the method demonstrated a certain degree of 

effectiveness [10]. 

As CNs have developed, research has focused on how 

to construct networks and optimally control them. Real-

world societal problems can only be solved by achieving 

the optimal state of the abstracted network system. 

Therefore, domestic and international scholars have 

conducted extensive and in-depth research on optimal 

control of CNs. For example, Battilotti, to solve the 

problem of low computational accuracy caused by CNs 

nodes only obtaining local network information, proposed 

an optimal control method based on regulating the 

consensus step number of network nodes. This method 

achieves optimal control of the target network by 

adjusting the length of consensus steps [11]. Cui et al., in 

order to understand the player relationships in multi-

player complex networks, proposed an optimal secure 

tracking control method. This method combines control 

barrier functions with non-policy integral reinforcement 

learning to establish an adaptively updating critic-actor 

neural network, which can effectively perform optimal 

control on player relationship CNs [12]. Yu’s team, to 

achieve optimal control of certain continuous nonlinear 

CNs without dynamic information, proposed a Q-learning 

method based on the Hamiltonian function and optimal 

cost function. This method achieves optimal control of 

CNs without requiring any dynamic information and 

improves control efficiency while reducing control costs 

[13]. The Onken team, to address the dimensionality 

explosion problem in the optimal control process of CNs, 

proposed a neural network-based optimal control method. 

This method integrates the maximum principle with the 

neural network parameterized value function, where the 

neural network adaptively provides the optimal strategy 

function for CNs optimization. Experimental results 

produced high-dimensional approximate solutions for 
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CNs optimal control, alleviating the dimensionality 

explosion problem in the process [14]. Ma et al., 

combining evolutionary algorithms and deep 

reinforcement learning, optimized control for CNs. This 

method optimizes the overall network by activating a 

small subset of the most influential seed nodes and 

provides the most optimized solution for network nodes 

through dynamic Markov  
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Figure 1: Schematic diagram of the structure of GDHP. 

node returns. This method outperforms previous network 

node optimization methods [15]. 

In summary, although progress has been made in the 

research of CNs optimization control methods, existing 

methods still face problems such as poor control 

performance and weak adaptability. The ADP and IA-

based CNs optimal control algorithm has strong 

adaptability, and its unique iterative termination 

mechanism can prevent infinite loops and dimensionality 

explosion in the control system. Therefore, the research 

proposes a CN optimal control framework combining 

ADP and IA, leveragingthe advantages of these 

algorithms. The optimal control model of CN can thus be 

obtained, meeting both accuracy and efficiency 

requirements. It is expected that in the optimization 

process of CN, it can achieve the optimal control of the 

target CN by reducing the physical quantities of the target 

network, optimizing the network nodes and parameters, so 

that the optimized CN can be more efficient and accurate 

when applied to practical problems. 

3 Construction of optimal control 

algorithm model based on adp and 

IA 

3.1 Design of optimal control method 

based on ADP and IA 

ADP finds the optimal performance indicators and 

improvement strategies of the target system through the 

evaluation module and execution module in the algorithm. 

In the process, a neural network is used to apply the 

indicator function and control law, which helps the target 

system approach the optimal solution [16]. To 

accommodate different types of system control, 

researchers have developed various ADP structures based 

on the evaluation module and execution module. The 

study selects Global Dual Heuristic Programming 

(GDHP) as the core structure for complex network 

optimization. GDHP combines the advantages of heuristic 

dynamic programming and dual heuristic dynamic 

programming. Its structure is shown in Figure 1. 

In Figure 1, the evaluation module in GDHP evaluates 

and provides feedback on the operational performance of 

the control objective through the constructed evaluation 

network. The control module generates different iteration 

strategies by adjusting the algorithm or network structure, 

and the execution module applies the strategies generated 

by the control module to the control objective. The output 

of the control module is shown in Equation (1). 

( ) ( ( ))S k W YZ k=   (1) 

In Equation (1), W  represents the weights between 

the control module output layer and the hidden layer, Y  

represents the weights between the hidden layer and the 

output layer, Z  represents the input of the target network, 

and   is the activation function. The output of the 

evaluation module is shown in Equation (2). 

( ) ( ( ))Q k M LN k=   (2) 

In Equation (2), M  represents the weights between 

the evaluation module output layer and the hidden layer, 

L  represents the weights between the hidden layer and 

the output layer, and N  represents the input of the target 

network. The output of the execution module is shown in 

Equation (3). 

( ) ( ( ))O k U JM k=   (3) 
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In Equation (3), U  represents the weights between 

the execution module output layer and the hidden layer, 

J  represents the weights between the hidden layer and 

the output layer, and M  represents the input of the target 

network. The advantage of GDPH lies in combining 

heuristic dynamic programming with dual heuristic 

dynamic programming, using a parallel mechanism of 

dual evaluation modules in itsstructure. The additional 

evaluation module increases the accuracyof 

GDHP’sresults but may introduce more calculation 
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Figure 2: Schematic diagram of ETC working mechanism. 

Event triggering 

mechanism

Global Dual Heuristic 

Programming

Value iteration algorithm

Control module Control objectEvaluation module Executive module

Receiver

If the trigger threshold is reached

Termination 

iteration

Computing module Judgment module

If reach  iteration 

boundary

Renewal  strategy

Update system signal

Update system 

status

Optimized 

control object

System
 

inform
ation

Decision 

information

Value 

information

Discriminant 

information

 

Figure 3: Schematic diagram of EAI workflow. 

processes, slowing down the system’s speed. The Event-

Triggered Control (ETC) mechanism, as a non-periodic 

control mechanism, can update control signals based on 

specific conditions to reduce redundant information, 

optimizing the algorithm’s computational speed and 

memory usage [17]. Therefore, the study integrates ETC 

before GDHP for data control to avoid unnecessary 

computational processes in GDHP. The operation 

mechanism of ETC is shown in Figure 2. 

In Figure 2, when the system remains unchanged, 

ETC outputs a constant control vector based on the 

previous system state. When the system state changes, a 

new set of control variables is output. The system state 

representation method of ETC in this process is shown in 

Equation (4). 

1 ( ) ( ) ( )m m m m m mx f x g x b h x d+ = + +   (4) 

In Equation (4), m  represents the time step, 1mx +  and 

mx  represent the system states at times 1m +  and m , 

respectively. ( )mf x , ( )mg x , and mb  are all dynamic 

differentiable functions, feedback functions, and input 

variables chosenaccording to specific control 

requirements. ( )mh x  represents the output variables, and 

md  represents the external disturbance index. When the 

system state changes, the input variables are updated, as 

shown in Equation (5). 

1( ), [ , )m mi i ib b x m m m +=    (5) 

In Equation (5), 1( )mb x  represents the input variables 

at the moment of system change. At this point, a sudden 

deviation in input variables occurs, as shown in Equation 

(6). 

1, [ , )m mi m i il x x m m m += −   (6) 

In Equation (6), ml  represents the input deviation 

between time steps im  and 1im + . Finally, ETC updates the 

status based on ml  and mx  to obtain the system status at 

time 1mx + , as shown in Equation (7). 

1 ( ) ( ) ( ) ( ) ,m m m m m m m m gx f x g x b l x h x d l l+ = + + +    (7) 
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In Equation (7), 
gl  represents the event-triggered 

threshold. Using GDPH alone for system optimization 

may lead to issue like dimensional explosion and 

infiniteloops, while IA can terminate the algorithm by 

settingamaximum number of iterations or iteration 

boundaries. The Value iteration algorithm (VIA) is an 

optimized IA that is suitable for continuous control in 

large-scale data Spaces. Therefore, the study integrates 

VIA with GDPH. And construct the ADP-VIA optimal 

control algorithm integrated into ETC, named EAI, and 

the process is shown in Figure 3. 

In Figure 3, if the system is in a constant state, the 

ETC mechanism will output a constant control vector.  
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Figure 4: Schematic diagram of the process of CNs construction and optimization control. 

When the system state changes, ETC generates a new 

control vector based on the output deviation caused by the 

state change of the target system, and the system 

stateisupdated accordingly. Later, GDHP completes 

optimal control of the target system through information 

exchange among the three modules, with policy updates 

primarily relying on the value iteration algorithm in the 

evaluation and control module. The theoretical basis of the 

value iteration algorithm is Bellman’s optimal equation. 

The state value function calculation process is shown in 

Equation (8). 

'

( ) ( ) ( , ) ( ' , ) ( ')
a A s S

V s a s r s a p s s a V s 
 

 
= + 

 
    (8) 

In Equation (8), s  represents the current 

environmental state, a  represents the action taken, A  

represents all actions, ( )a s  represents the probability of 

performing action a  among all actions, ( , )r s a  

represents the feedback value after executing action a ,  

represents the degree of influence of the action on future 

states, 's  is the environmental state after executing the 

action, and ( ' , )p s s a  represents the probability of state 

change after executing the action. After IVA, it is placed 

in the GDPH structure. Iterative operations are performed 

on the data output by GDPH, and the optimal solution 

strategy of the target system is obtained by determining 

the maximum value of the equation. The calculation 

method is shown in Equation (9). 

1

'

( ) ( , ) ( ' , ) ( ')K
a A

s S

V s MAX r s a p s s a V s

+




 
= + 

 
   (9) 

In Equation (9), 1( )KV s+  represents the optimal 

solution for all environmental states, In the specific 

process of CN optimal control, the iteration is usually 

terminated by setting the maximum number of iterations 

or boundary conditions to obtain the final optimal 

solution. The optimization strategy set through this 

solution can achieve the optimal control of the target CN. 

3.2 Construction of CNs optimal control 

model based on EAI 

CNs technology defines the target system as a "small 

world," isolating it from the overall society. By analyzing 

the components, information flow, etc., within the "small 

world," an abstract network is constructed. By optimizing 

the control of the "small world," optimization of a certain 

type of problem in society can be achieved [18-19]. 

Therefore, a specific real-world problem can be abstracted 

as an independent CNs to solve it. The specific 

construction and optimization process of CNs is shown in 

Figure 4. 

In Figure 4, when converting a specific societal 

problem into an abstract CNs, the first step is to determine 

the specific boundary of the problem and divide it into 

independent subsystems. Next, a feature analysis of the 

system is performed, extracting components, relationships 

between components, etc. Finally, the abstract CNs are 

constructed based on various elements. Different social 

subsystems or societal problems often have different 

boundaries and components. However, a complete CN 

must include nodes, channels, and interconnections 

between nodes. These elements, along with physical 
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quantities like the number and size of elements, 

collectively determine the properties and state of the entire 

CNs. The degree size represents the density of the 

network, and the calculation method is shown in Equation 

(10). 

1

1 2m

i

i

n
M M

m m=

= =   (10) 

In Equation (10), n  and m  represent the total 

number of nodes and channels in the network, and 
iM  

represents the number of channels around node i . The 

network size can be represented by the average channel 

length, and the calculation method is shown in Equation 

(11). 
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Figure 5: K-means clustering algorithm flow chart. 

1

1
( 1)

2

ij

i j

L d

m m 

=

−
   (11) 

In Equation (11), 
ijd  represents the distance between 

nodes i  and j . The clustering coefficient represents the 

degree of association between nodes, and the calculation 

method is shown in Equation (12). 

2

( 1)

i

i

i i

E
C

M M
=

−
  (12) 

In Equation (12), iE  represents the number of 

channels between node i  and the current node. The 

assortativity coefficient represents the similarity between 

nodes, and the calculation formula is shown in Equation 

(13). 
2

22 2

1
( ) ( )

2

1
( ) ( )

2 2

i i

i i
i ii i

i i

i i

j k
j k

TR
j k j k

T

+
−

=

+
−

 

 

  (13) 

In Equation (13), j  and k  represent the degrees of 

two nodes on the same channel, T represents the total 

number of channels in the entire network. In the CNs 

optimization control process, the CN must first be 

connected to the control algorithm. The establishment of 

data channels is essential for enabling information 

exchange. Later, the control algorithm adjustsindicators 

like the number of nodes, density, and assortativity 

coefficient in the CN through deep learning or function 

iteration to improve metrics like the network’s accuracy 

and computational speed. However, in practical 

applications, CNs are often characterized by many nodes 

and complex components, leading to a heavy 

computational load during optimization. Clustering 

algorithms can help classify similar or identical data based 

on potential data patterns, speeding up the algorithm's 

understanding of the data distribution of the target system 

[20]. Among them, the K-means clustering algorithmis 

simpler, more efficient, and stronger inclassification 

ability than other clustering algorithms. Therefore, the 

study uses K-means to optimize the control algorithm. The 

process of K-means is shown in Figure 5. 

In Figure 5, the clustering algorithm’s idea is to 

classify data based on a particular feature. To apply it to 

the cluster network structure in CNs, the Euclidean 

distance is chosen as the criterion for data classification, 

and the calculation process is shown in Equation (14). 

 

( , ) ( ) ( ), , 1, 2,3...T

i j i j i jD y y y y y y i j n= − − =   (14) 

 

In Equation (14), n  represents the total number of 

data points in the data, and iy  and 
jy  represent the i -th 

and j -th points. After partitioning the data, a criterion 

function is used to describe the similarity between data 

clusters. The study uses the sum of distances from all 

points to the cluster center as the accuracy function. The 

method of calculation is shown in Equation (15). 

 
2

1 1

n n

i j

j i

SSE y c
= =

= −   (15) 
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In Equation (15), 
jc  represents the center of the 

current data cluster, and the smaller SSE  is, the higher the 

similarity of the data in that cluster. By classifying data 

using K-means, the computational load and time for 

subsequent processes are reduced. Finally, K-means and 

EAI are applied to the CN optimal control process, 

resulting in the CNs optimal control model integrating K-

means and EAI (KEAI). The structure of the KEAI model 

is shown in Figure 6. 

In Figure 6, KEAI places the K-means algorithm 

module in front of the original EAI structure. The role of 

the K-means algorithm is to establish a connection 

between KEAI and the target CN and classify the similar 

structures in CN to shorten the connection time. After the 

connection is established, the ETC mechanism pays 

attention to the state changes of CN. During this process, 

the same information is classified for the second time 

through the K-means mechanism to reduce the frequency 

of event triggering. In KEAI, the GDHP structure  
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Figure 6: KEAI model structure diagram. 

Table 2: Experimental environment and configuration. 

Software Hardware 

Operating system Windows 10 CPU Ryzen 7 9800X3D 

Programming language Python 3.8 GPU GeForce RTX 4060 

Deep learning framework PyTorch 2.1 Memory 32 GB RAM 

Data processing Seaborn Storage 128 GB SSD 

Table 3: The preset parameters of each module in the model. 

Parameter Parameter description Parameter value 

Lr Learning rate 1e-4 

Dropout Discard rate 0.5 

Batch_size Lot size 24 

Hidden_dims_f The finance module hides the layer dimension 256 

Hidden_dims_t Text modules hide layer dimensions 384 

Kernel_size Convolution kernel size (2,3,4) 

Concat_size Fusion dimension 192 

Max_length Maximum length of model input 1000*3 

Embed_dim Text embedding dimension 960 

 

 

simulates similar functions and iteratively optimizes 

strategies based on control signals from ETC, and the 

execution module changes the number of nodes, density, 

and other parameters in the target CNs to optimize the CNs 

until the predetermined control goal is achieved or the 

maximum iteration number is reached, completing the 

optimal control of the CNs. 
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4 Verification of CNs optimal control 

model based on ADP and IA 

4.1 Verification of optimal control 

performance of KEAI Model 

To evaluate the optimal control performance of the KEAI 

model for CNs, the study compared it with CN optimal 

control models based on the Harris Hawks Optimization 

(HHO), Arithmetic Optimization Algorithm (AOA), and 

Northern Goshawk Optimization (NGO). During the 

experiment, four models areused to optimize the complex 

systems constructed by the same Convolutional Neural 

Network (CNN) in the same experimental environment. 

The parameter Settings of the proposed model and 

each comparison model during the experiment are shown 

in Table 3. 

In the optimal control of CN, the number of network 

parameters, floating-point numbers and network size are 

physical indicators that affect the operation speed and 

accuracy of the network. Therefore, the number of 

parameters, floating-point numbers and algorithm size of 

the optimized network are statistically analyzed, and the 

results are shown in Figure 7. 

As shown in Figure 7(a), the KEAI model reduced the 

number of parameters in the target network by 14.2% after 

achieving optimal control for the CNs, which was the 

highest value among all the comparison models.  
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Figure 7: Statistics of parameter, floating-point number and algorithm variations changes. 

Note: indicates a slight difference, indicates a significant difference,  indicates a significant difference. 
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Figure 8: Comparison of optimal control effects of various optimization methods. 

Note: indicates a slight difference, indicates a significant difference，  indicates a significant difference

indicates a significant difference. 
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From Figure 7(b), it can be seen that the KEAI model 

reduced the floating-point numbers by 14.9% after 

achieving optimal control for the target CNs, which was 

the highest value among all comparison models. Figure 

7(c) shows that the KEAI model significantly 

outperformed the other comparison models after 

achieving optimal control for the target CN. In summary, 

compared with the HHO model, AOA model and NGO 

model involved in the experiment, the KEAI 

modeldemonstrated stronger optimal control ability, 

particularly in terms of lightweight aspects such as 

redundant data cleaning and channel reduction. To further 

verify the optimal control effect of the KEAI model on the 

target CNs, the accuracy and F1 score changes of the CNs 

after the optimal control of each model were compared, as 

shown in Figure 8. 

As shown in Figure 8(a), the accuracy of the 

unoptimized CN at the end of the iteration was 70.1%, 

while the accuracy of the CNs after optimal control by the 

KEAI model was 83.5%. The accuracy of the target CNs 

after optimal control by the HHO, AOA, and NGO models 

were 81.2%, 74.3%, and 70.5%, respectively. From Figure 

8(b), it can be seen that the F1 score of the CNs optimized 

by the KEAI model at the end of the iteration was 94.7%, 

while the F1 scores of the CNs optimized by the HHO, 

AOA, and NGO models were 88.2%, 88.4%, and 88.9%, 

respectively. The unoptimized network had an F1 score of 

84.5%. In summary, the KEAI model improved the 

accuracy of the target CNs  
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Figure 9: Comparison of time consumption and energy consumption of each model. 
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Figure 10: Optimization results of YOLOv8 network's recognition ability. 

during the optimal control process. Next, to verify the 

efficiency of the KEAI model, the time and energy 

consumption required for optimal control by the four 

models were analyzed, as shown in Figure 9. 

As shown in Figure 9(a), the KEAI model consumed 

3.0 hours for optimal control of the target CNs, while the 

SA model required 4.5 hours, the AOA model required 4.1 

hours, and the HHO model required 4.3 hours. This 

indicates that the proposed KEAI model had a higher 

optimal control efficiency. From Figure 9(b), it can be 

seen that the energy consumed by the KEAI model for 

optimal control of the target CNs was 1.25 kWh, while the 

AOA model consumed 1.63 kWh, the NGO model 

consumed 1.60 kWh, and the HHO model consumed 1.59 

kWh. Additionally, the energy consumption of the KEAI 

model remained relatively stable over time, while the 

energy consumption rate of the other models increased as 

the control proceeded. This indicated that the KEAI model 

had lower energy consumption. 



KEAI: An Adaptive Dynamic Programming and Iterative Optimization… Informatica 49 (2025) 53–66 63 

100

80

60

40

F
ee

d
b

ac
k

 t
im

e(
m

s)

700

650

600

550E
n

er
g

y
 c

o
n

su
m

p
ti

o
n
(m

J)

(a) Comparison of feedback time before and after optimization

(b) Comparison of energy consumption before and after optimization

Average epoch feedback 

time before optimization

Average epoch feedback 

time after optimization

Before 

optimization

After 

optimization

Average epoch energy 

consumption before optimization

Average epoch energy 

consumption after optimization

Before 

optimization

After 

optimization

Bird Cat Deer Dog Horse

Bird Cat Deer Dog Horse

 

Figure 11: Comparison of average feedback time and average energy consumption. 

4.2 Verification of practical effectiveness 

of KEAI Model in CNs optimal control 

After verifying the performance of the KEAI model, the 

study further evaluated its effect in practical applications 

by selecting the YOLOv8 complex network, which was 

constructed for image recognition, as the experimental 

object. The performance of the YOLOv8 network before 

and after optimal control by the KEAI model was 

compared to evaluate its practical application in CNs. The 

experiment chose the CIFAR-10 dataset to validate the 

performance of model, CIFAR-10 dataset is commonly 

used in the field of machine learning, and can be 

downloaded from 

http://www.cs.toronto.edu/~kriz/cifar.html. This dataset 

was collated and released by Alex Krizhevsky, Vinod 

Nair, and Geoffrey Hinton in 2009. It contains a total of 

60,000 images of 32*32 pixels in 10 categories, and all the 

images are RGB three-channel images. When verifying 

the model performance, 500 pictures of birds, cats, deer, 

dogs and horses were selected respectively. Every 50 

pictures were taken as an epoch to compare and verify the 

recognition ability of the YOLOv8 network before and 

after optimization. The results are shown in Figure 10. 

 

As shown in Figure 10(a), the YOLOv8 network was able 

to identify 2005 images with an accuracy of 80.2% before 

optimal control. As indicated in Figure 10(b), after 

optimal control, the YOLOv8 network identified 2258 

images with an accuracy of 90.4%, reflectinga 10.2% 

increase in accuracy. Figures 10(c) and 10(d) show that 

the AUC values of the YOLOv8 network for bird 

recognition before optimization were 0.841, for cats 

0.732, for deer 0.884, for dogs 0.724, and for horses 0.854. 

The AUC values of the optimized YOLOv8 network for 

bird recognition were 0.901, for cats 0.822, for deer 0.942, 

for dogs 0.814, and for horses 0.925. In summary, the 

KEAI model effectively improved the recognition ability 

of the target CNs in practical applications. Next, to verify 

the optimization ability of the KEAI model in terms of 

computational time and resource consumption, the 

average feedback time and average energy consumption 

per epoch were analyzed, as shown in Figure 11. 

As shown in Figure 11(a), through comparison of the 

average feedback time before and after optimization, it can 

be seen that the average response time of the network for 

bird images decreased by 14s, for cat images by 15s, for 

deer images by 12s, for dog images by 10s, and for horse 

images by 11s. This indicated that when the KEAI model 

performs optimal control on complex networks, it 

effectively reduced the computational time of the target 

network. In Figure 11(b), the average energy consumption 

of the YOLOv8 network for bird images decreased by 

27mJ, for cat images by 31mJ, for deer images by 25mJ, 

for dog images by 14mJ, and for horse images by 21mJ. 

This indicates that the KEAI model effectively reduced 

the energy consumption of the target network during 

optimal control. Finally, to verify the general applicability 

of the model in real-world scenarios, the KEAI model was 

used for the commonly used neural networks Evolutionary 

Transformer (Evoformer) in the field of biology and the 

commonly used Schrodinger neural networks Schrodinger 

Network (SchNet)) in the field of chemistry  Physics-

informed Neural Networks (PINNs) commonly used in the 

field of Physics and Dynamic Causal Neural networks 

(DCNN) commonly used in the field of economics, 

Mixture of Experts Neural Network (MoE-NN) 

commonly used in the field of artificial intelligence 

Optimization control experiments were conducted using  

and the Spatio- 
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Figure 12: Comparison of average feedback time and average energy consumption. 

Temporal Graph Convolutional Network (STGCN) 

commonly used in the field of transportation. The changes 

in the accuracy rates of each network are shown in Figure 

12. 

As shown in Figure 12(a), after optimal control by the 

KEAI model, the final accuracy of Evoformer was 92.7%, 

SchNet was 91.8%, PINNs was 89.1%, DCNN was 

94.8%, MoE-NN was 94.4%, and STGCN was 93.5%. 

From Figure 12(b), it can be seen that the accuracy of each 

model increased after optimal control, with the 

improvement ranging from 4% to 5%. The average 

accuracy improvement across all networks was calculated 

to be 4.7%. This indicates that the KEAI model can be 

applied to CNs optimal control in different fields and 

effectively improve the accuracy of the target CNs. 

Overall, the KEAI model achieved a balance of accuracy, 

efficiency, and general applicability in the optimal control 

process of the target CNs, demonstrating strong potential 

for practical applications. Subsequently, to verify the 

model performance at different confidence levels, the 

confidence intervals of the floating-point numbers, 

parameter quantities, and model sizes of the model for 

each CN at different confidence levels were compared, as 

shown in Table 4. 

As shown in the table, at different confidence levels, 

the KEAI model has a good lightweight effect on each 

target CN, and the floating-point number, parameter 

quantity and network size of the target CN are all greater 

than 10%. Moreover, as the confidence level increased, 

the lightweight effect of the KEAI model on the target 

network wasalso enhanced, and the confidence interval 

gradually expands. Among them, when the confidence 

level was 95%, The floating-point reduction rates of KEAI 

for Evoformer, SchNet, PINNs, DCNN, MoE-NN and 

STGCN were 15.1±2.5%, 15.0±1.7%, 13.5±1.9%, 12.5±

1.7%, 18.9± 2.4% and 13.6± 2.2%, respectively. The 

parameter reduction for Evoformer, SchNet, PINNs, 

DCNN, MoE-NN and STGCN was 14.2±2.0%, 14.5±

1.4%, 13.4±1.9%, 12.0±1.5%, 17.5±2.4% and 12.5±

2.0%, respectively. The reduction rates of network size for 

Evoformer, SchNet, PINNs, DCNN, MoE-NN and 

STGCN were 13.6±2.4%, 14.1±1.8%, 13.1±1.7%, 12.1±

1.7%, 17.5±2.4% and 13.2±1.8% respectively. The above 

results indicate that the KEAI model has relatively high 

credibility. 

5 Discussion and conclusion 

5.1 Discussion 

The KEAI model proposed in the research reduced the 

floating-point operations, parameter count, and network 

size of the target network by 14.2%, 14.9% and 15.1% 

respectively in the test experiment. The lightweight effect 

was significantly better than that of the comparison 

models, which was related to the advantage of high 

accuracy of the core GDPH in the KEAI model. 

Meanwhile, this wasconsistent with the results in the study 

of Onken et al. using the optimal control to optimize the 

lightweight index of the target CN [21]. Furthermore, the 

accuracy rate of CNN optimized by the KEAI model has 

increased by 13.4%, further demonstrating that the KEAI 

model has fully exerted the advantages of GDPH and VIA. 
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This wassimilar to the result that Chen et al. proposed the 

optimal control 

 

Table 4: Comparison of the lightweighting effects of the KEAI model under different confidence levels. 

/ 

Confide

nce 
level(%

) 

Evoformer SchNet PINNs DCNN MoE-NN STGCN 

Floating-point 

reduction(%) 

85 11.1±1.4 13.5±1.2 11.2±1.1 10.5±1.0 16.7±1.6 11.3±1.5 

90 13.2±1.7 14.2±1.4 12.2±1.4 11.2±1.2 17.8±1.8 12.5±1.8 

95 15.1±2.5 15.0±1.7 13.5±1.9 12.5±1.7 18.9±2.4 13.6±2.2 

Parameter count 

reduction(%) 

85 12.3±1.6 12.4±1.0 11.1±1.5 10.2±0.9 15.9±1.5 11.2±1.4 

90 13.4±1.9 13.1±1.2 12.4±1.8 11.2±1.2 16.5±2.0 11.4±1.8 

95 14.2±2.0 14.5±1.4 13.4±1.9 12.0±1.5 17.5±2.4 12.5±2.0 

Network size 
reduction(%) 

85 11.8±1.5 13.0±1.2 11.5±1.0 10.3±1.1 15.9±1.4 11.5±1.2 

90 12.5±1.8 13.5±1.6 12.4±1.4 11.1±1.4 16.4±1.9 12.0±1.6 

95 13.6±2.4 14.1±1.8 13.1±1.7 12.1±1.7 17.5±2.4 13.2±1.8 

 

technology of human resource CN based on BP network 

and Logistic regression, which optimally increased the 

recruitment success rate and training effect by 15% [22]. 

In the performance verification of the model itself, the 

processing time and energy consumption of KEAI are 

much lower than those of the comparison model, 

indicating that the ETC mechanism and K-means 

algorithm in the model have played a practical role and 

reduced the total computational load of the model. 

In the practical application test, the KEAI model 

increased the image recognition accuracy of the YOLOv8 

network by 10.2%, indicating that the KEAI model can 

achieve effective optimal control of the target CN, which 

wasconsistent with the results obtained by Xie et al. in the 

study of improving the energy utilization rate of the 

automotive CN through optimal control [23]. In the 

applicability test, the KEAI model has improved the 

accuracy of Evoformer, SchNet, PINNs, DCNN, MoE-

NN and STGCN from different fields. Thiswas due to the 

cluster analysis of the K-means algorithm, which enables 

the KEAI model to effectively achieve data connection 

and parameter control for different CNS. Meanwhile, the 

application of CN and its optimal control in route planning 

and ship navigation in combination with Wan, and the 

Santander team's view of the enterprise's business strategy 

as an example of the CN problem can further illustrate that 

CN was often used to solve various social practical 

problems [24-25]. The KEAI model proposed in the 

research has certain promotion space in reality. 

All the above results indicate that the KEAI model 

proposed in the study integrates the advantages of GDPH, 

the ETC mechanism, VIA, and the K-means algorithm 

very well, and obtains an optimal control model that is 

both fast and accurate. 

5.2 Conclusion 

To enhance the application efficacy of CNs and facilitate 

more effective solutions to practical social problems, this 

study proposes the KEAI model, which takes GDPH as the 

core structural framework and integrates the K-means 

algorithm, ETC mechanism, and VIA. Experimental 

results indicate that the KEAI model significantly 

outperforms comparative models in both lightweight 

processing of target CNs and accuracy improvement, 

while consuming less computational time. Additionally, 

the KEAI model demonstrates strong generalization 

capability, enabling its adaptation to target CNs across 

diverse domains. Overall, the KEAI model optimizes 

various aspects of CN performance by refining 

parameters, nodes, and other structural components, 

ultimately achieving optimal solutions for specific 

problems and showcasing substantial practical relevance. 

However, this research was only conducted under stable 

conditions in the laboratory. The optimal control effect of 

the target CN under the influence of network failures, 

unstable flows, dynamic environments, etc., was not 

considered, nor was the performance of the model under 

different parameter conditions. Therefore, in future 

research, experiments can be carried out to address this 

issue, and the performance of the model in all aspects can 

be continuously improved. 
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