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This study proposes a novel deep learning framework for bilingual translation similarity detection that 

addresses semantic gaps between structurally different languages through an Adaptive Transformer 

with dynamic masking as the core innovation. The framework features three key components: the 

adaptive transformer with dynamic content-based and structure-aware masking mechanisms that adjust 

attention weights based on cross-lingual semantic relevance, cross-lingual feature representation with 

supervised and unsupervised bilingual embedding alignment strategies, and a multi-dimensional 

similarity measurement framework incorporating semantic, syntactic, and pragmatic dimensions. 

Experiments on three language pairs (English-Chinese, English-German, and English-Urdu) 

demonstrate significant performance improvements, with the proposed method achieving an F1 score of 

0.876 — a 7.2% relative improvement over the best baseline (0.817). Ablation studies confirm that 

adaptive masking and cross-lingual alignment are crucial for handling cultural adaptations and 

non-literal translations. This research has significant applications in machine translation quality 

assessment, cross-lingual information retrieval systems, and multilingual plagiarism detection. 

Povyetek: Raziskava predstavi globoko učenje za detekcijo podobnosti prevodov med različnimi jeziki z 

uporabo prilagodljivega transformatorja, ki upošteva kulturne in strukturne razlike med jeziki. 

 

1  Introduction 

1.1 Research background and significance 

Accurate bilingual translation similarity detection is 

highly valuable in applications including machine 

translation quality assessment, multilingual search 

engines, cross-lingual plagiarism detection, and 

educational language platforms, where determining 

semantic equivalence across languages is crucial for 

system effectiveness. Deep learning techniques now 

address the complexity of cross-lingual semantic 

modeling, enhancing multilingual content searching, 

plagiarism detection, and translation assessment [1]. 

However, limitations persist in intelligent systems that 

can comprehend text across languages and retrieve 

relevant information [2]. Relying heavily on statistics 

and a combination of dictionaries, most approaches 

towards bilingual translation similarity detection are 

stereotypical and lack advanced comprehension of the 

languages' semantics [2]. These methods typically focus 

on shallow features and lexical matching, neglecting 

deep linguistic variations and structural differences 

between languages. The Multi-Resource System 

Transformer demonstrates these methods often come 

with added linguistic costs which, when dealing with less 

popular language pairs, become problematic [2-5]. 

 

Muneer and Nawab worked to fill the gaps lacking in 

using deep technology to compile all the needed 

components [5]. According to research, deep learning 

models are capable of enabling cross-language 

comprehension through the use of machine learning and 

without the need to programme a specific feature [6]. 

Although this advancement aids in building reliable 

systems for deep understanding for machine-operated 

French-English translation, there still remains a 

significant amount of unsolved issues. One of the most 

difficult problems to overcome is the semantic gap 

between languages that possess different linguistic 

structures and cultural differences. Previous research 

stated that achieving real semantic equivalence requires 

models that go beyond capturing lexical correspondences; 

it also requires understanding deeper conceptual 

relationships [4]. Furthermore, many approaches have 

difficulty identifying similarities when there are too 

many paraphrases or culture-bound translations [7]. 

The problem of accurate bilingual translation 

similarity retrieval is not confined only to theoretical 

research, it has practical relevance. In the context of 

machine translation evaluation, similarity retrieval is one 

of the central components of assessing the quality of the 

translation [8]. An intelligent error detection model has 

been demonstrated which relies on accurate computation 

of their similarity to detect potential mistranslations [9]. 
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In addition, in educational settings and in the content 

production industry, the ability to determine translation 

similarity aids in the detection of cross-lingual text reuse 

for correct attribution and copyright infringement. Deep 

learning integration with linguistic knowledge provides 

solutions to existing limitations. This combination 

extends method effectiveness across diverse languages 

and domains [10]. 

1.2 Research objectives 

To address these challenges, this study proposes a 

novel deep learning framework leveraging an Adaptive 

Transformer with dynamic masking and cross-lingual 

feature representation. The main contributions are: (1) an 

adaptive masking mechanism that dynamically adjusts 

attention weights based on cross-lingual semantic 

relevance, (2) a hybrid bilingual embedding alignment 

strategy combining supervised and unsupervised 

methods for effective cross-lingual representation, and (3) 

a multi-dimensional similarity measurement framework 

integrating semantic, syntactic, and pragmatic 

dimensions for comprehensive translation equivalence 

assessment. This study addresses three research 

questions: (RQ1) How can adaptive attention 

mechanisms improve cross-lingual similarity detection 

for structurally divergent language pairs? (RQ2) To what 

extent does bilingual embedding alignment enhance 

semantic representation compared to translation-based 

approaches? (RQ3) Can multi-dimensional similarity 

measurement outperform single-metric approaches for 

detecting cultural adaptations? The objective is to 

develop an adaptive transformer framework achieving 

F1-scores exceeding 0.85 on English-Chinese, 

English-German, and English-Urdu pairs, representing 

minimum 5% improvement over Siamese network 

baselines. Building upon deep learning-based quality 

detection for machine translation [8] and extending 

single vector space representation work [4], the 

hypothesis is that: (H1) dynamic masking will improve 

F1-scores by 3-5% for structurally different language 

pairs; (H2) hybrid bilingual embedding alignment will 

outperform neural MT-based approaches by eliminating 

translation error propagation; and (H3) 

multi-dimensional similarity will achieve 4-7% 

improvement in detecting paraphrased translations. The 

framework will be evaluated using F1-score, BLEU, and 

ROUGE metrics on WMT19, PAWS-X, and OPUS 

datasets, with performance targets of F1>0.84 for 

English-Chinese, F1>0.89 for English-German, and 

F1>0.78 for English-Urdu. Technical contributions 

include adaptive masking algorithms, bilingual 

embedding alignment strategies, and composite 

similarity metrics integrating multiple linguistic 

dimensions. 

1.3 Research framework 

The framework presented in this paper uses many 

components of deep learning to form a singular approach 

towards bilingual translation similarity detection. At its 

center is a bilingual encoder-decoder model based on 

previous research [11] which features a shared encoder 

that creates a language agnostic semantic representation 

and receives inputs from both languages. the framework 

also has a cross-lingual alignment module which 

incorporates both supervised and unsupervised alignment 

techniques in order to effectively align low resource 

languages. For semantic representation, the framework 

implements based on the approach described in [12], 

which uses deep learning together with topological 

techniques to output cross-lingual word vectors. The 

component responsible for calculating the similarity uses 

a multi-dimensional metric that considers semantic, 

syntactic, and pragmatic aspects of translation in its 

evaluation, which aids in overcoming the challenges 

identified by Seki [7] that concern the detection of 

similarities due to over paraphrasing. This study 

proposes a deep learning framework for bilingual 

translation similarity detection that addresses gaps in 

cross-lingual semantic matching. 

2 Literature review 
Existing approaches for bilingual translation 

similarity detection can be broadly categorized into three 

groups: traditional statistical methods that rely on lexical 

overlap and n-gram matching, neural machine 

translation-based approaches that leverage intermediate 

translation steps, and recent deep learning architectures 

employing cross-lingual embeddings and attention 

mechanisms. Each category exhibits distinct strengths 

and limitations when addressing cross-lingual semantic 

equivalence. 

2.1 Traditional translation similarity 

detection methods 

Similarity detection in translation systems has 

undergone remarkable changes over the years, 

particularly in the last few decades where systems were 

built upon statistical methods. Traditional statistical 

approaches including TF-IDF and n-gram matching 

demonstrated practical utility but failed to capture 

semantic relationships in paraphrased or culturally 

adapted translations, achieving limited performance on 

structurally divergent language pairs. Muneer and Nawab 

[5] analyzed these statistical methods for cross-lingual 

text reuse detection between English and Urdu, showing 

their usefulness for some contexts, but also 

demonstrating the challenges that arise from complex 

linguistic transformations. 

Computation-intensive methods needed 

improvement, leading to Structural Information 

integration. Min [13] described a cross-language 

translation algorithm enhanced with word vector and 

syntactic analysis that outperformed mere lexical 

analysis by better capturing word order differences and 

structural divergences. However, these methods relied on 

extensive language-specific rules and parsers, limiting 

scalability across language pairs. As Shajalal and Aono 

[4] noted, even advanced syntax-based techniques 
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struggled with 'free' word order languages due to 

complex or absent structural mappings. 

As new language pairs and domains were added, 

standard methodologies' limitations became more 

apparent. Statistical approaches failed to detect semantic 

similarity in sentences with little lexical overlap [2]. 

Advanced techniques required greater linguistic 

resources unavailable for many low-resourced languages 

[12]. Both approaches constructed arguments at the 

surface level like human translation's first step, defeating 

the goal of distinguishing between machine and human 

translators. Lo and Simard [2] identified this semantic 

gap as a profound challenge to traditional similarity 

measures, especially for cross-lingual equivalence 

requiring deep comprehension. These deficiencies reveal 

that traditional statistical methods fundamentally assume 

structural and lexical similarities across languages, 

severely limiting their effectiveness for typologically 

distant pairs like English–Chinese where semantic 

equivalence manifests through entirely different surface 

realizations. Three critical gaps emerge: (1) inability to 

dynamically adapt attention mechanisms to structural 

divergences between language pairs, (2) reliance on 

static representations that fail to capture cultural 

adaptations and idiomatic expressions, and (3) 

inadequate integration of semantic, syntactic, and 

pragmatic similarity dimensions for comprehensive 

equivalence assessment. 

2.2 Neural machine translation 

Early neural machine translation (NMT) systems 

transformed source language sentences into fixed-length 

vector representations before generating target language 

text [14]. While these models improved semantic 

accuracy over statistical approaches, they struggled with 

long sequences due to information bottlenecks in 

fixed-length encodings. 

An attention mechanism has been implemented to 

tackle this problem by enabling models to concentrate on 

particular portions of the source text when generating 

each word in the translation. This achievement greatly 

enhanced performance on longer sequences and aided in 

more accurate meaning retention across languages. Ju 

and Salvosa showcased how attention-based models 

attended meaningful relationships among words across 

languages for accurate translation [15]. Along with 

improving the translation, the implementation of 

attention gave helpful new information about how 

translation was performed, since the attention weights 

provided source-target mapping in a decipherable form. 

Such interpretability was especially useful concerning 

complicated translation problems. 

Due to ease of scaling and unrivalled performance, 

Transformer-based approaches that emerged in 2017 

became the single most popular framework for neural 

machine translation. These models operate exclusively 

using self-attention and do not make use of any recurrent 

or convolutional operations, enabling them to be run in 

parallel [8]. Chen [8] pointed out the usefulness of 

transformer encoders for translation tasks by training a 

machine translation quality assessment model based on 

deep learning for the transformers. The multi-head 

attention feature of the transformer allows the model to 

focus on information from different representation 

subspaces jointly and, therefore, capture more intricate 

relationships between words across different languages. 

Moreover, as Lei [16] showed with his modified GLR 

algorithm for smart classification in translation models, 

other methods can be incorporated into transformers to 

boost their effectiveness on particular language pairs and 

domains, and, therefore, transformers are exceptionally 

more versatile than previously recognized. 

2.3 Deep learning in similarity detection 

Deep learning has revolutionized cross-lingual 

semantic similarity detection. Siamese networks—twin 

networks processing paired inputs—have proven highly 

effective for this task [10]. Ranasinghe et al. 

demonstrated how these architectures capture meaningful 

language relationships through semantic textual 

similarity [10]. Trained on parallel or comparable 

corpora, they establish cross-lingual semantic 

correspondences with superior accuracy and 

generalizability compared to traditional frameworks. 

Contrastive learning has emerged as the most effective 

training paradigm, minimizing distances between 

semantically identical texts while maximizing distances 

to unrelated ones [6]. Li et al. applied these contrastive 

objectives to create robust representation models [6]. 

This approach performs strongly in translation similarity 

detection because the training objective fundamentally 

aligns with the downstream application requirements. 

Cross-lingual embeddings create unified semantic 

representations across languages, forming the foundation 

of modern similarity detection systems. JP et al. [12] 

described methods for creating cross-lingual word 

vectors for low-resourced languages, addressing a central 

multilingual processing challenge. These embeddings 

represent words or sentences from various languages in a 

common vector space where geometric proximity 

indicates semantic similarity. Recent years have seen 

contextual multilingual models significantly improve 

representations through context and subword techniques 

[2]. Lo and Simard demonstrated that BERT-based 

cross-lingual representations enable unsupervised 

parallel data recognition without requiring parallel 

training corpora. Despite these advances, existing 

approaches exhibit three critical limitations that motivate 

the research: (1) inability to handle idiomatic expressions 

and cultural transpositions due to reliance on lexical 

correspondences, (2) failure to adapt attention 

mechanisms to structural divergences between language 

pairs, and (3) inadequate integration of semantic, 

syntactic, and pragmatic similarity dimensions. Despite 

advances in multilingual models like XLM-R and LaBSE, 

existing approaches remain limited by static attention 

mechanisms that cannot adapt to language-specific 

structural patterns. The proposed adaptive transformer 

framework uniquely addresses these unresolved 

challenges through dynamic masking that learns 
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language-pair-specific attention patterns, thereby filling 

the critical gap in adaptive cross-lingual similarity 

detection. 

Table 1 summarizes the key characteristics and 

limitations of existing approaches reviewed in this 

section. Traditional statistical methods like TF-IDF 

demonstrate computational efficiency but fail 

catastrophically with paraphrased content and cultural 

adaptations, achieving F1-scores below 0.7 for 

structurally divergent language pairs. Neural machine 

translation-based approaches, while capturing some 

semantic relationships, suffer from cascading translation 

errors and computational inefficiency. Contemporary 

deep learning methods, particularly Siamese networks 

with multilingual embeddings, show improved 

performance but remain limited by static attention 

mechanisms that cannot adapt to cross-lingual structural 

variations. 

 

Table 1: Comparison of existing translation similarity detection methods 

Method Category Representative Work Dataset 
Evaluation 

Metrics 

F1-Score 

Range 
Key Limitations 

Statistical 
TF-IDF + Dictionary 

[5] 

OPUS 

English-Urdu 

Precision, 

Recall, F1 
0.60-0.68 

Fails with paraphrasing, 

cultural adaptations 

Syntax-based 
Word Vector + 

Syntactic [13] 

Custom parallel 

corpus 
BLEU, F1 0.70-0.75 

Requires extensive linguistic 

resources 

Neural MT-based 
Translation + 

Similarity [7] 
WMT datasets F1, BLEU 0.77-0.82 

Cascading errors, 

computational overhead 

Deep Learning 
Siamese Networks 

[10] 
STS datasets 

Pearson 

correlation, F1 
0.75-0.84 

Static attention, limited 

cross-lingual adaptation 

Cross-lingual 

Embeddings 

Bilingual Word 

Semantics [4] 

Multiple 

language pairs 
F1, accuracy 0.67-0.79 

Word-level focus, ignores 

structural differences 

 

3  Proposed methodology 

3.1 Adaptive transformer architecture 

The framework extends the transformer architecture 

with cross-lingual components. Unlike Natarajan et al. 

[11], the framework employs a shared encoder that 

processes bilingual texts simultaneously, generating a 

language-agnostic unified semantic representation. The 

architecture is based on an adaptive masking approach in 

which attention values are changed based on verbal 

logical relation instead of position. This is an extension 

of Chen’s work where the author presented a deep neural 

network intelligent quality detection model for machine 

translation [8]. Chen employed fixed attention patterns, 

whereas this framework proposes dynamic attention 

masks that adapt during training to facilitate 

cross-lingual relationship learning. For input sequences 

1 2, ,..., nX x x x=  and 
1 2, ,..., mY y y y=  from source and 

target languages respectively, the adaptive mask 
ijM  is 

computed as: 

 ( ( , ) ( , ))ij i j i jM f x y g x y  = +  (1) 

where 
f  represents the content-based relevance 

function, 
g  captures linguistic structure alignment, 

  is a learnable parameter balancing these components, 

and   is the sigmoid activation function. Both 
f  

and 
g  are implemented as two-layer MLPs with 

ReLU activation and 512 hidden units. The functions 

take concatenated token embeddings and positional 

features as input, respectively. Critically, 
f  employs 

shared parameters across language pairs to capture 

universal semantic relationships, while 
g  uses 

language-pair-specific parameters to accommodate 

structural differences. This hybrid sharing strategy 

enables cross-lingual transfer for semantic understanding 

while adapting to unique syntactic characteristics of each 

language pair. This formulation extends the attention 

mechanisms proposed in transformer architectures [8] 

with the novel adaptive component, allowing the model 

to focus on semantically equivalent portions of the texts 

even when their structural positions differ significantly, 

addressing a key challenge in cross-lingual similarity 

detection identified by Shajalal and Aono [7].The 

adaptive mask M(x,y) is integrated into the standard 

transformer attention mechanism through multiplicative 

application within the softmax computation: 

Attention(Q,K,V) = softmax(QK^T/√d ⊙  M(x,y))V, 

where ⊙  denotes element-wise multiplication and d 

represents the attention dimension. This formalization 

demonstrates how dynamic masking directly modulates 

attention weights based on cross-lingual semantic and 

structural relevance. 

Figure 1 illustrates the adaptive masking mechanism 

with detailed component labeling. The diagram shows 

token embeddings (768-dim), position encodings, 

content-based relevance MLPs (
f ), structural 

alignment MLPs (
g ), attention weight computation, 

and the final adaptive mask generation. Each component 

includes input/output dimensions and data flow paths for 

technical clarity. In the diagram, relevance scores based 

on content semantics across different languages are 

integrated with structural alignment patterns which 

maintain position information. The model implements an 

adaptive weighted attention mask with the capability to 

attend to equivalent parts of texts that are structurally 
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different across languages. This is important for language 

pairs with different syntactic structures such as English 

and Chinese. This functionality addresses a fundamental 

problem in cross-lingual similarity detection as noted by 

Shajalal and Aono [4]. 

 
Figure 1: Adaptive masking mechanism for cross-lingual attention 

 

 

The adaptive transformer generates multi-scale 

representations across token, phrase, and sentence levels. 

These hierarchical outputs are subsequently processed by 

the similarity measurement framework, where local and 

global feature integration occurs during multi-granularity 

similarity computation, following Li et al. [6] who 

demonstrated that cross-linguistic similarity evaluation 

benefits from multiple levels of linguistic analysis. In 

contrast to Li's methodology, which employed a more 

rigid independent approach, the framework offers the 

learners adjustable soft masking parameters for global 

and local features based on the input text characteristics. 

This soft masking is helpful for language pairs of 

different orders, such as English and Chinese, as pointed 

out by Seki [7]. The framework employs distinct 

parameter notation:   for adaptive masking balance, 

wi for multi-granularity weights, and λ/μ/ν for 

multi-dimensional similarity weights, ensuring 

unambiguous mathematical representation throughout. 

3.2 Cross-lingual feature representation 

Effective cross-lingual feature representation is 

crucial for accurate translation similarity detection, as it 

provides the foundation for comparing texts across 

different languages. The approach implements a 

bilingual embedding alignment strategy that unifies 

semantic spaces across languages, building upon the 

methodology proposed by JP et al. [12] for generating 

cross-lingual word vectors for low-resourced languages. 

However, while JP et al. focused primarily on word-level 

alignments, the framework extends this to capture phrase 

and sentence-level alignments as well, resulting in a 

more comprehensive representation of cross-lingual 

semantics. 
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The bilingual embedding alignment process 

employs a two-phase strategy that combines supervised 

and unsupervised methods, inspired by the cross-lingual 

word vector generation approach of JP et al. [12] and the 

bilingually-constrained phrase embeddings work of 

Zhang et al. [17]. In the supervised phase, the method 

leverages parallel dictionaries and sentence pairs to learn 

an initial mapping between language spaces, formulated 

as: 

 
2

2

( , )

arg min | | ( ) ( ) || ( )align W s t

x y P

W W E x E y R W


=  − + 

(2) 

where 
sE  and 

tE  are source and target 

embedding functions respectively, P  is the set of 

parallel word pairs, W  is the linear transformation 

matrix,   is a regularization coefficient, and ( )R W  is 

the regularization term ensuring orthogonality. The 

alignment objective is optimized jointly with the main 

loss (Equation 4) via backpropagation. Orthogonality is 

enforced through SVD-based constraint projection, 

where W is decomposed as UΣV^T and replaced with 

UV^T after each gradient update. This approach is 

similar to the method described by Lo and Simard [2], 

extending it with a more sophisticated regularization 

term that preserves the geometric properties of the 

embedding spaces, which was shown effective in similar 

contexts by Li et al. [6]. The cross-lingual 

representations are initialized using pre-trained 

multilingual BERT (mBERT) embeddings, which 

provide robust baseline semantic understanding across 

languages. The bilingual alignment strategy then jointly 

learns language-specific transformations through the 

supervised mapping objective while maintaining the 

geometric properties of the original embedding space 

through SVD-based orthogonal constraints. 

Contextual semantic mapping extends the 

framework beyond static word embeddings to capture the 

dynamic nature of meaning in context. Inspired by the 

work of Min [13], who combined word vectors with 

syntactic analysis for cross-language translation, the 

approach employs a hierarchical representation that 

captures both local context via convolutional filters and 

global context through recurrent networks. This 

multi-level contextual mapping enables the model to 

disambiguate polysemous words and handle idiomatic 

expressions that pose significant challenges for 

cross-lingual similarity detection, as highlighted by Seki 

[7]. Normalization techniques mitigate issues with the 

statistics of language representations having significant 

differences to ensure features from different languages 

can coexist in the common semantic domain. the method 

utilizes approach that is based on how each particular 

language individually distributes, modifying the 

approach proposed by Ranasinghe et al. [10] for 

semantic textual similarity tasks. This process is central 

in computing similarity, as it ensures that the spatial 

relationship among representations captures their 

semantic relationships and no language peculiar 

statistical attributes. 

3.3 Similarity measurement framework 

To address the deficiencies noted by Seki [7], a 

multi-dimensional similarity measurement framework 

was developed that operates on two complementary axes: 

feature dimensions (semantic, syntactic, and pragmatic 

aspects) and granularity levels (character, word, phrase, 

and sentence units). This dual-axis approach 

demonstrates that translation equivalence requires both 

multi-scale analysis and multi-faceted evaluation, 

particularly for translational paraphrasing involving 

cultural adaptation. 

The multi-granularity computation aggregates 

similarity scores across linguistic scales within each 

feature dimension. The composite similarity score for 

each dimension (semantic, syntactic, or pragmatic) is 

computed as: 

 1

k

composite i i

i

S w S
=

=
 (3) 

where Si represents similarity at the i-th granularity 

level and wi are adaptive weights determined based on 

linguistic characteristics of the input texts. Critically, 

Equation 3 is applied separately to compute each 

component in the final similarity metric: semanticS
, 

structuralS
, and pragmaticS

 are each calculated using this 

multi-granularity aggregation, which are subsequently 

combined through the weighted sum in Equation 5 

(Section 4.2). This multi-granular approach builds upon 

the work of Li et al. [6], who demonstrated that 

cross-linguistic similarity evaluation benefits from 

considering multiple levels of linguistic analysis. 

 
1

( , ) ( , )
k

i i

i

Sim X Y Sim X Y
=

=  (4) 

where 
iSim  represents similarity at the i-th 

granularity level and 
i  are adaptive weights 

determined based on linguistic characteristics of the 

input texts. Character-level captures morphological 

patterns, word-level identifies lexical alignments ("early 

bird" vs. " 早 起 "), phrase-level detects structural 

correspondences ("catches worm" vs. "有虫吃"), and 

sentence-level measures overall coherence. The weights 

wi are learned parameters optimized via gradient descent, 

initialized uniformly and normalized through softmax. 

This multi-granular similarity formulation adapts and 

extends the hierarchical similarity concept introduced by 

Li et al. [6] and incorporates the multi-level analysis 

principles demonstrated effective by Ranasinghe et al. 

[10] for semantic textual similarity tasks.    

Feature fusion strategies combine multiple 

similarity scores through a gated mechanism that 

allocates attention to different dimensions based on input 
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texts. This builds on Wu and Liang's [9] machine 

translation error detection models that incorporate 

various features, though they used pre-defined weights 

for feature combination. The approach implements 

combinable gates that individually modify each 

component's contribution, allowing the model to focus on 

different similarity aspects for various translation types. 

This adapts to Seki's [7] claim that certain languages and 

domains have specific resemblance criteria requirements. 

The most significant contribution is adaptive thresholds 

for resemblance classification across languages and 

domains. Rather than fixed boundaries, the method uses 

that adjusts decision boundaries based on text domain, 

language pair, and other contextual features—essential 

for handling variability in translation practices as 

discussed by Muneer and Nawab [5]. 

Figure 2 presents the complete architecture with 

technical specifications: shared encoder layers 

(12×768-dim), bilingual embedding alignment module 

(SVD projection), multi-head attention blocks (12 heads), 

cross-lingual feature fusion layers, multi-granularity 

similarity computation units 

(character/word/phrase/sentence), and final similarity 

score aggregation. Component interconnections and 

tensor dimensions are explicitly labeled for 

implementation reference. The adaptive transformer 

outputs multi-level representations, which are processed 

by the similarity measurement module where 

local-global feature integration occurs during 

granularity-based similarity computation. This system 

processes source and target language texts through these 

components sequentially to generate a translation 

similarity estimate. The pipeline operates via a training 

procedure (Equation 4) that optimizes model parameters 

using contrastive learning and other diverging objectives. 

This holistic approach improves upon previous systems 

by capturing deep semantic information across languages 

with disparate linguistic structures, as explained earlier. 

 

Source Language Text Target Language Text

Adaptive Transformer Architecture

Adaptive Masking Mechanism
Local Global Feature 

Integration

Cross-lingual Feature Representation

Bilingual Embedding 

Alignment
Contextual Semantic Mapping

Similarity Measurement Framework

Multi-granularity Computation Adaptive Feature Fusion

Translation Similarity 

Score

Eq. (3)

Eq. (2)

Eq. (1)

Training: Eq. (4)

 
Figure 2: Overall architecture diagram 
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The framework employs a two-stage processing 

approach: the adaptive transformer generates multi-scale 

cross-lingual representations, which are subsequently 

utilized by the similarity measurement module for 

local-global feature integration during granularity-based 

similarity evaluation. 

3.4 Model training approach 

The training objective employs a composite loss 

function that combines contrastive, reconstruction, 

alignment, and regularization objectives: 

 

1 2 3total contrastive reconstruction alignment regularizationL L L L L  = +  +  + 

(5) 

where 
contrastiveL  = max(0, margin - spos + sneg) 

represents the margin-based contrastive loss for 

similarity discrimination, spos and sneg denote similarity 

scores for positive and negative pairs respectively, 

reconstructionL  measures embedding reconstruction quality, 

alignmentL  enforces cross-lingual semantic consistency, 

and 
regularizationL  promotes attention sparsity. 

This composite loss function integrates multiple 

learning signals: the contrastive component is adapted 

from Li et al. [6], the reconstruction component draws 

from the encoder-decoder framework of Natarajan et al. 

[11], the alignment objective extends the cross-lingual 

mapping principles of JP et al. [12], and the 

regularization term incorporates sparsity constraints 

inspired by Chen [8]. The contrastive component 

maximally preserves similarity between true translation 

pairs while distorting negative examples, an approach 

that has shown strong performance in similar 

cross-lingual tasks [6]. This in turn improves the model's 

performance in distinguishing texts with semantic 

equivalence from those that do not across different 

languages. The defined loss function has a margin-based 

term for contrastive separation which constrains 

negatively rated pairs and positively rated pairs to a 

certain minimum distance from each other. This distance 

is dynamically modified according to the ease or 

difficulty of the examples which helps the model to 

tackle easier instances while not succumbing to 

overfitting. The alignment enforces parallel 

representation of the texts, and the rest of the semantic 

information is maintained through the encode-decode 

process. The regularization decreases fitting of the model 

to the training data, encourages sparsity of the attention 

weights, thus leading to higher quality interpretable 

models. This intricate loss function tackles the issues 

posed with basic goals set in prior studies which include 

a binary classification task done by Muneer and Nawab 

[5]. 

The optimisation process merges the Adam 

optimisation algorithm with a custom designed learning 

rate schedule based on how training progresses. The 

learning rate is set high at the beginning to facilitate 

faster movement within the parameter space, and 

subsequently lowered to enable refinement of the 

representations. This schedule balances exploration and 

exploitation, guaranteeing efficient convergence toward 

high-quality solutions. The convergence analysis shows 

that with appropriate assumptions, the optimisation 

method guarantees convergence to a local minimum in a 

pre-specified number of iterations, which offers 

assurance about the training process. For low-resource 

language pairs, data augmentation techniques are critical 

in improving the performance and generalisation of the 

model. In the method, the method includes to create 

synthetic parallel data, word dropping with some 

probability, phrase reordering using context free 

grammar, and replacement of words with similar 

meaning in different languages. These steps are applied 

during training in a controlled fashion so that the model 

is able to learn a variety of translations and deal with the 

variability in human translation. This method builds on 

the work by Sharma et al. [14] on neural machine 

translation by using the techniques to the bilingual 

similarity detection task. 

4  Experimental setup 

4.1 Datasets 

To evaluate the framework, the study used three 

diverse datasets with varied language pairs and 

translation types. The primary corpus is the WMT19 

news translation dataset with English-Chinese, 

English-German, and English-Russian parallel texts, 

containing both literal and free translations. the study 

also included PAWS-X for paraphrase identification, 

featuring difficult cases where high lexical overlap 

doesn't indicate semantic equivalence [5]. The WMT19 

dataset contains 150,000 sentence pairs for 

English-Chinese, 200,000 for English-German, with 

balanced distribution of similar (45%) and dissimilar 

(55%) translations across formal news domain text. 

PAWS-X includes 49,401 pairs with high lexical overlap 

challenges, while OPUS English-Urdu comprises 25,000 

pairs representing informal to semi-formal register 

variations. 

For low-resource evaluation, the study followed JP 

et al.'s [12] approach for cross-lingual word vector 

generation in underrepresented languages. the study 

selected the OPUS corpus for English-Urdu, previously 

used by Muneer and Nawab [5] for cross-lingual text 

reuse detection. This tests the framework's effectiveness 

with limited parallel data. the study applied 

language-specific tokenization and subword 

segmentation using Byte-Pair Encoding with a 

50,000-token shared vocabulary, following Ranasinghe et 

al.'s [10] preprocessing for semantic textual similarity 

tasks, while the normalization techniques address 

statistical differences between languages. Similarity 

labels for all datasets were obtained through manual 

annotation by five bilingual experts with linguistics 

backgrounds. Each translation pair was rated on a 5-point 

scale (1=completely different, 5=semantically equivalent) 
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by three randomly assigned annotators. Inter-annotator 

agreement achieved Fleiss' κ = 0.74, indicating 

substantial consistency. Final labels were determined by 

majority vote, with conflicts resolved through discussion. 

The datasets were partitioned into training (70%), 

validation (15%), and testing (15%) sets, with 

stratification maintaining consistent distribution of 

translation similarity levels. the study created 

challenging test subsets featuring structural 

transformations, cultural adaptations, and paraphrased 

content to thoroughly evaluate how the framework 

handles diverse translation scenarios. 

4.2 Evaluation metrics 

The evaluation uses multiple metrics to assess 

translation similarity detection performance. For 

classification accuracy, the study employs precision, 

recall, and F1-score metrics, which Lo and Simard [2] 

showed effective for identifying parallel data in 

cross-lingual contexts. While these metrics evaluate 

distinction between similar and dissimilar translations, 

the study recognizes binary classification metrics alone 

cannot capture translation similarity's nuanced, 

continuous nature. The approach to translation similarity 

detection shares methodological aspects with human 

translation quality estimation frameworks proposed by 

Yuan [18], who similarly employed both feature-based 

and deep learning-based approaches. 

To address this limitation, the study incorporates 

BLEU and ROUGE scores, which Sharma et al. [14] 

employed for evaluating neural machine translation 

systems. While these metrics provide valuable insights 

into lexical similarity, they often fail to capture deeper 

semantic relationships when translations involve 

significant paraphrasing or cultural adaptations. 

Therefore, the study introduces a custom similarity 

metric that integrates both semantic and structural 

components: 

( , ) ( , ) ( , ) ( , )custom semantic structural pragmaticS x y S x y S x y S x y  = + +

 (6) 

where 
semanticS  measures embedding-based 

semantic similarity, 
structuralS  quantifies syntactic 

correspondence using tree-edit distance between 

dependency parses, and evaluates contextual 

appropriateness. Subject to λ + μ + ν = 1. The parameters 

  and v，  are optimized based on 

human-annotated similarity judgments, addressing a key 

limitation identified by Seki [7] regarding the detection 

of similarities in cases of significant paraphrasing. To 

validate the metric's effectiveness, human evaluation was 

conducted with three bilingual experts rating 300 

translation pairs on a 5-point Likert scale. Inter-rater 

agreement achieved Cohen's κ = 0.78, indicating 

substantial consistency. The custom metric demonstrates 

strong correlation with human judgments (Pearson r = 

0.82, p < 0.001), significantly outperforming BLEU (r = 

0.64) and ROUGE (r = 0.59) correlations, confirming its 

reliability for capturing nuanced translation equivalence. 

This multi-dimensional approach provides a more 

comprehensive assessment of translation equivalence 

than traditional metrics, allowing better evaluation of the 

framework's effectiveness in capturing the complex 

nature of cross-lingual relationships. 

4.3 Baseline models 

To assess the framework's effectiveness, the study 

implemented several baseline models. For traditional 

algorithms, the study included TF-IDF cosine similarity 

with dictionary-defined translation, which Muneer and 

Nawab [5] demonstrated as a baseline for cross-lingual 

text reuse detection in English-Urdu languages. Despite 

being a convenient solution, this method fails with 

extensive paraphrasing or structural differences. Baseline 

models include: (1) TF-IDF cosine similarity with 

bilingual dictionary mapping, (2) mBERT with mean 

pooling followed by cosine similarity, (3) Siamese 

networks using pre-trained multilingual BERT 

embeddings with contrastive learning, and (4) neural 

MT-based similarity using Google Translate API 

followed by monolingual similarity computation. All 

baseline implementations followed original paper 

specifications with identical preprocessing and 

evaluation protocols. 

Following neural methodologies, the study executed 

the bilingual word semantics model suggested by 

Shajalal and Aono [4]. This model, which forms the 

basis of deep semantic information incorporation into 

cross-lingual similarity detection, uses bilingual 

embeddings to capture semantic relations between texts 

written in different languages. Furthermore, the study 

applied a state-of-the-art Siamese network architecture 

scaffolded on the work by Ranasinghe et al. [10], who 

proved its usefulness for similarity evaluation of texts 

with different wordings. This model incorporates 

pretrained multilingual BERT embeddings using 

contrastive learning, which establish a strong baseline for 

the evaluation. For the other paradigms, the study applied 

the method for cross-lingual similarity detection using 

machine neural translation systems suggested by Seki [7]. 

This technique first outputs the source text in the target 

language and then calculates the similarity of the text in 

the target language space. It also provides a different 

viewpoint on cross-lingual similarity detection. The 

implementation of all baseline models was done as 

described in the original papers, while the preprocessing 

and training steps were carried out uniformly for all 

models to allow proper evaluation. These challenging 

cases align with observations made by Huy [19], who 

identified similar issues in cross-lingual evidence-based 

strategies for detecting fabrications in neural translation 

systems. 

4.4 Implementation details 

The implementation uses PyTorch for deep learning 

with the Transformers library for pre-trained model 

support. Experiments ran on a computing cluster with 

NVIDIA V100 GPUs (32GB), Intel Xeon processors, 

and 512GB RAM, enabling efficient model training with 
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large datasets. This hardware configuration matches 

Chen's [8] setup for machine translation quality detection, 

allowing meaningful performance comparisons. the study 

determined hyperparameters through grid search and 

validation optimization: 2e-5 learning rate with linear 

warmup over 10% of training steps followed by cosine 

decay, 32 batch size, 128 maximum sequence length, 768 

embedding dimension, 12 attention heads, and 12 

transformer layers. For adaptive masking, the balancing 

parameter β was initialized at 0.7 and optimized during 

training to automatically balance content-based relevance 

and structural alignment based on language pair 

characteristics. Training utilized PyTorch 1.12 with 

Hugging Face Transformers library. Hyperparameters 

include: batch size 32, dropout rate 0.1, weight decay 

0.01, and gradient clipping threshold 1.0. The largest 

model (English-Chinese) required approximately 72 

hours training time, with memory consumption peaking 

at 28GB per GPU. 

The multi-stage training approach was inspired by 

Li et al.'s [6] cross-linguistic similarity evaluation 

methodology. First, the study pretrained encoder 

components on monolingual corpora using masked 

language modeling to establish robust language-specific 

representations. Second, the study focused on 

cross-lingual alignment using parallel data with the 

bilingual embedding alignment objective from Equation 

2. Finally, the study incorporated the full loss function 

from Equation 4, jointly optimizing all components with 

curriculum learning that gradually introduces more 

challenging examples. This provides a stable 

optimization path for cross-lingual tasks, with early 

stopping based on validation performance to prevent 

overfitting. Training required approximately 72 hours for 

the largest language pair, with convergence typically 

after 15-20 epochs. 

5  Results and analysis 

5.1 Performance comparison 

Experimental evaluation shows the framework 

provides consistent and significant performance 

improvements across multiple language pairs. Table 2 

presents comparison results on the primary test set, 

where the framework achieves an average F1-score of 

0.876 across all language pairs, surpassing the best 

baseline by 7.2 percentage points. This improvement is 

most pronounced for structurally different language pairs 

like English-Chinese, where the framework achieves an 

F1-score of 0.842 compared to 0.753 for Siamese 

networks and 0.681 for TF-IDF. 

 

Table 2: Test set comparison results 

Method English-Chinese English-German English-Urdu 

 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

TF-IDF + Dict 0.723 0.644 0.681 0.765 0.722 0.743 0.621 0.587 0.603 

Bilingual Word 

Semantics 
0.779 0.738 0.758 0.812 0.784 0.798 0.683 0.652 0.667 

Neural MT-Based 0.791 0.756 0.773 0.836 0.815 0.825 0.702 0.675 0.688 

Siamese Network 0.814 0.701 0.753 0.854 0.823 0.838 0.728 0.693 0.710 

Proposed Framework 0.857 0.828 0.842 0.912 0.883 0.897 0.796 0.782 0.789 

 

Statistical significance testing using paired t-tests 

confirms that performance improvements are statistically 

significant (p < 0.001) across all language pairs and 

metrics. McNemar's test further validates classification 

accuracy superiority with chi-square values exceeding 

critical thresholds (χ² > 10.83, p < 0.001), demonstrating 

robust statistical evidence for the proposed method's 

effectiveness. 

The performance variations across language pairs 

reflect fundamental typological differences that expose 

the limitations of existing approaches. For typologically 

similar languages (English-German, both Indo-European 

with similar syntactic structures), baseline methods 

achieve relatively competitive performance, with 

Siamese networks reaching F1-scores of 0.838. However, 

for typologically dissimilar pairs (English-Chinese, 

representing alphabetic-logographic and 

analytic-synthetic contrasts), baseline performance 

degrades substantially. TF-IDF achieves only 0.681 

F1-score on English-Chinese compared to 0.743 on 

English-German, illustrating the fundamental limitation 

of lexical overlap methods when dealing with 

structurally divergent languages where semantic 

equivalence manifests through different surface 

realizations. 

The superior performance of the framework on 

English-Chinese (0.842 vs. 0.753 for Siamese networks) 

demonstrates the effectiveness of adaptive mechanisms 

in handling cross-linguistic structural variations. While 

Siamese BERT models apply uniform attention patterns 

across all language pairs, failing to accommodate the 

unique characteristics of logographic-alphabetic 

alignment, the adaptive masking mechanism learns 

language-pair-specific attention patterns (β=0.72 for 

English-Chinese vs. β=0.68 for English-German), 

enabling more precise semantic matching despite 

structural divergence. This computational adaptivity 

directly addresses the linguistic challenge identified in 

the literature review regarding the semantic gap between 

structurally different languages. 

Statistical significance testing using paired t-tests 

confirms that the performance improvements achieved 
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by the framework are statistically significant (p < 0.01) 

across all language pairs and evaluation metrics. The 

effect size analysis reveals particularly substantial 

improvements for challenging cases involving cultural 

adaptations and significant paraphrasing, where 

traditional methods struggle due to low lexical overlap 

despite high semantic equivalence. 

Error analysis reveals that while baseline models 

exhibit particular weaknesses in specific 

scenarios—such as TF-IDF's difficulty with paraphrased 

content or neural MT-based methods' struggles with 

culturally adapted translations—the framework 

maintains more consistent performance across diverse 

translation types. The primary remaining error categories 

include idioms with no direct translation equivalents (12% 

of errors), domain-specific terminology (9%), and cases 

requiring extensive world knowledge (7%). These 

findings highlight areas for future improvement while 

confirming the robustness of the approach to common 

challenges in cross-lingual similarity detection. 

Supplementary experiments on additional language 

pairs, including English-Japanese and English-Arabic, 

confirm the generalizability of the approach, with 

consistent performance improvements observed across 

morphologically and syntactically diverse languages. 

The performance gap between the framework and 

baseline methods widens as linguistic distance increases, 

underscoring the value of the adaptive components for 

handling structurally divergent languages. The superior 

performance stems from three key mechanisms: the 

adaptive masking dynamically adjusts attention 

allocation based on cross-lingual semantic relevance 

rather than positional correspondence, enabling effective 

handling of structural divergences in English-Chinese 

pairs; the hybrid bilingual embedding alignment 

eliminates translation error propagation inherent in 

neural MT-based approaches; and the multi-dimensional 

similarity assessment captures cultural adaptations that 

single-metric methods miss, particularly evident in the 

32-point improvement over TF-IDF for idiomatic 

expressions. 

These results validate the gaps identified in the 

literature review. The 24.1% performance difference 

between the framework and TF-IDF on English-Chinese 

pairs (0.842 vs. 0.681) confirms Muneer and Nawab's [4] 

observation that statistical methods fail with extensive 

linguistic transformations. Similarly, the 8.9% 

improvement over neural MT-based approaches (0.842 

vs. 0.773) substantiates the cascading error problem 

highlighted by Seki [6]. Most significantly, the 

outperformance of Siamese networks by 8.9 percentage 

points directly addresses the static attention limitation 

identified in the analysis of deep learning approaches, 

demonstrating that cross-lingual similarity detection 

requires adaptive mechanisms rather than uniform 

processing across language pairs. 

5.2 Ablation studies 

To quantify the contribution of individual 

components in the framework, the conducted 

comprehensive ablation studies by systematically 

removing or replacing key components. For each 

ablation configuration, the specific component was 

disabled by setting its output to zero (masking) rather 

than dropout, while all remaining parameters were fully 

retrained from the pre-ablation checkpoint for 10 epochs 

to ensure fair comparison. This approach avoids 

confounding effects from frozen layers and provides 

accurate assessment of individual component 

contributions. Table 3 presents the performance impact 

of these modifications on the English-Chinese test set, 

revealing the critical role of the adaptive mechanisms in 

the framework's effectiveness. 

 

Table 3: The impact of modifications on translation 

testing 

Configuration Precision Recall F1-score Δ F1 

Full Framework 0.857 0.828 0.842 - 

w/o Adaptive 

Masking 
0.821 0.802 0.811 -0.031 

w/o Cross-lingual 

Alignment 
0.794 0.782 0.788 -0.054 

w/o Local-Global 

Integration 
0.832 0.813 0.822 -0.020 

w/o 

Multi-dimensional 

Similarity 

0.805 0.793 0.799 -0.043 

w/ Fixed Threshold 0.831 0.796 0.813 -0.029 

 

The removal of the adaptive masking mechanism 

results in a 3.1 percentage point decrease in F1-score, 

with particularly pronounced performance degradation 

on examples involving significant structural differences 

between source and target languages. This confirms the 

importance of dynamically adjusting attention weights 

based on both semantic and structural information. The 

cross-lingual alignment component shows the largest 

individual contribution, with a 5.4 percentage point drop 

in F1-score when replaced with a standard embedding 

approach, highlighting the importance of effective 

cross-lingual semantic mapping for similarity detection. 

Analyzing the contribution of different feature 

types reveals that while semantic features provide the 

foundation for similarity assessment (accounting for 

approximately 65% of the performance gains), structural 

and pragmatic features play crucial complementary roles, 

particularly for language pairs with divergent syntactic 

properties. The multi-granularity similarity computation 

significantly enhances performance by capturing 

relationships at different linguistic levels, with character 

and word-level similarity proving particularly important 

for languages with rich morphology. Sensitivity analysis 

of key parameters reveals that the framework is 

relatively robust to modest variations in hyperparameter 

settings, with performance remaining within 2 

percentage points of optimal when varying the learning 

rate between 1e-5 and 4e-5 or the number of attention 

heads between 8 and 16. The adaptive parameters, such 

as the content-structure balancing coefficient β, 
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converge to different values for different language pairs 

(0.72 for English-Chinese, 0.68 for English-German, and 

0.65 for English-Urdu), demonstrating the framework's 

ability to automatically adapt to the characteristics of 

specific language pairs. 

5.3 Case studies 

Qualitative analysis of specific examples provides 

additional insights into the strengths and limitations of 

the framework. Figure 3 presents a visualization of the 

similarity detection process for a challenging 

English-Chinese example involving significant structural 

transformation and cultural adaptation. While baseline 

methods assign low similarity scores due to minimal 

lexical overlap, the framework correctly identifies the 

high semantic equivalence by focusing on conceptual 

relationships rather than surface form. 

Source (English): The early bird catches the worm. 

Target (Chinese): 早起的鸟儿有虫吃。 [Literal: 

Early rising birds have worms to eat.] 

The visualization reveals how the adaptive masking 

mechanism dynamically adjusts attention weights to 

focus on semantically equivalent portions despite 

structural differences. The attention patterns show strong 

connections between conceptually related terms ("early" 

and "早起", "bird" and "鸟儿", "catches/worm" and "有

虫吃 ") while appropriately handling the structural 

transformations necessitated by linguistic differences. 

For idiomatic expressions and culturally specific 

content, the framework demonstrates particular 

advantages over baseline approaches. Consider the 

following example: 

Source (English): He's feeling under the weather 

today. 

Target (Chinese): 他今天感觉不舒服。 [Literal: 

He feels uncomfortable today.] 

Traditional methods struggle with this example due 

to the idiomatic nature of "under the weather" and its 

non-literal translation. The neural MT-based approach 

achieves partial success by first translating "under the 

weather" but still assigns a relatively low similarity score 

(0.62). the framework correctly identifies the high 

semantic equivalence (similarity score: 0.89) by 

leveraging contextual semantic mapping and pragmatic 

similarity assessment. 

Error pattern analysis revealed several challenging 

cases where the framework still struggles. Cultural 

references without direct equivalents represent a 

persistent challenge, as do highly specialized technical 

terms and cases requiring extensive world knowledge. 

For example: 

Source (English): The legislation passed with flying 

colors. 

Target (Chinese): 该法案以压倒性多数获得通过。 

[Literal: The bill passed with an overwhelming 

majority.] 

In this case, the idiomatic expression "with flying 

colors" is translated to a conceptually equivalent but 

lexically and structurally different phrase in Chinese. 

While the framework significantly outperforms baselines 

on such examples, assigning a similarity score of 0.73 

compared to the average baseline score of 0.41, there 

remains room for improvement in handling such 

culturally specific expressions. 

These examples illustrate the computational and 

linguistic mechanisms underlying baseline failures. In 

the idiom example "The early bird catches the worm" → 

"早起的鸟儿有虫吃 ", TF-IDF achieves only 0.23 

similarity due to minimal lexical overlap between 

"catches" and " 有 " (have), despite high semantic 

equivalence. The method's reliance on surface-form 

matching cannot capture the conceptual relationship 

between "catching worms" and "having worms to eat." 

Neural MT-based approaches partially address this 

through translation but introduce cascading errors, 

achieving 0.67 similarity after mistranslating the 

idiomatic expression. 

The framework succeeds by leveraging three 

computational advantages: (1) adaptive masking focuses 

attention on semantically equivalent concepts rather than 

positional correspondences, learning that "early bird" 

semantically aligns with "早起的鸟儿" despite structural 

differences; (2) bilingual embedding alignment maps 

"catches worm" and "有虫吃" into the same semantic 

space without translation intermediates; and (3) 

multi-dimensional similarity assessment captures 

pragmatic equivalence at the conceptual level. The 

attention visualization reveals quantitative evidence of 

model superiority through intermediate outputs. For the 

"early bird" example, adaptive masking generates 

attention weights of 0.89 ("early"→"早起", 0.82), 0.91 

("bird"→"鸟儿", 0.85), and 0.78 ("catches"→"有", 0.73), 

while baseline Siamese networks achieve only 0.34, 0.41, 

and 0.29 respectively. The content-based relevance 

function fθ outputs [0.94, 0.88, 0.76] for semantic 

alignments, whereas structural alignment gϕ produces 

[0.72, 0.69, 0.58] for positional correspondences. 

Token-level attention maps demonstrate concentrated 

focus on semantically equivalent regions, contrasting 

with diffuse baseline attention patterns that fail to 

capture cross-lingual correspondences. 

Systematic error analysis across all test cases 

reveals three primary failure categories accounting for 

remaining limitations: (1) cultural metaphors and 

idiomatic expressions without direct cross-lingual 

equivalents (23% of errors), where conceptual rather 

than literal translation creates semantic gaps beyond 

current computational modeling; (2) domain-specific 

technical terminology requiring specialized knowledge 

(18% of errors), particularly in legal and medical 

contexts where precision demands exceed general 

semantic understanding; and (3) syntactic ambiguity 

cases where multiple valid interpretations exist across 

languages (15% of errors), highlighting the inherent 

complexity of cross-lingual semantic equivalence 

assessment that necessitates continued human expertise 

in edge cases. 
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5.4 Computational efficiency 

Beyond effectiveness, computational efficiency 

represents an important consideration for practical 

deployment of translation similarity detection systems. 

Table 4 compares the training and inference 

requirements of the framework against baseline methods, 

demonstrating reasonable computational demands 

despite the increased modeling complexity. 

 

Table 4: Comparison of framework training and 

benchmark methods 

Method 

Training 

Time 

(hours) 

Parameters 

(millions) 

Inference 

Time 

(ms/pair) 

Memory 

(GB) 

TF-IDF + 

Dict 
0.5 - 3.2 1.2 

Bilingual 

Word 

Semantics 

7.3 18.4 8.7 2.8 

Neural 

MT-Based 
96.2 175.3 126.4 8.4 

Siamese 

Network 
24.8 110.2 18.3 5.2 

Proposed 

Framework 
42.1 142.6 23.5 6.7 

 

While the framework requires more computational 

resources than simpler approaches, it achieves 

substantially better performance with reasonable 

efficiency tradeoffs. Compared to neural MT-based 

approaches, the framework processes translation pairs 

approximately 5.4 times faster while using 20% less 

memory. The primary computational bottleneck is the 

adaptive masking mechanism, increasing inference time 

by approximately 28%, but providing the largest 

performance improvements for challenging language 

pairs. Through algorithmic optimizations, the study 

reduced from O(n²d) to O(knd), where n is sequence 

length, d is embedding dimension, and k is the average 

number of attended tokens per position (k ≪ n). For 

practical deployment considerations, the framework can 

be configured with different efficiency-performance 

tradeoffs by adjusting the model size and activation 

sparsity. A smaller configuration with 8 transformer 

layers and 8 attention heads reduces memory 

requirements by 40% and inference time by 35% while 

sacrificing only 2.1 percentage points in F1-score, 

representing an attractive option for resource-constrained 

environments. These efficiency characteristics, 

combined with the superior accuracy demonstrated in 

previous sections, confirm the practical viability of the 

approach for real-world applications. These efficiency 

characteristics align with findings by Razaq et al. [20], 

who demonstrated similar computational tradeoffs in 

their neural-based statistical machine translation 

framework for paraphrase generation. 

6  Discussion 

6.1 Comparative evaluation with prior 

approaches 

The experimental results demonstrate substantial 

improvements over methods reviewed in Section 2, with 

performance gains directly attributable to the 

methodological innovations. Compared to statistical 

approaches, the framework achieves 17.4% higher 

F1-scores on English-Chinese pairs (0.842 vs. 0.681 for 

TF-IDF), primarily due to the adaptive transformer's 

ability to capture semantic relationships beyond lexical 

overlap. The dynamic masking mechanism addresses 

structural divergence by learning language-pair-specific 

attention patterns that focus on semantically equivalent 

content despite positional differences in English-Chinese 

syntax. Against neural MT-based approaches, the direct 

similarity computation eliminates cascading translation 

errors while achieving 8.9% improvement (0.842 vs. 

0.773). The bilingual embedding alignment creates 

unified cross-lingual representations without error-prone 

translation intermediates, particularly effective for 

English-Chinese logographic-alphabetic alignment 

through the supervised-unsupervised hybrid approach. 

Most significantly, the framework outperforms Siamese 

networks by 8.9 percentage points (0.842 vs. 0.753) on 

English-Chinese pairs. While Siamese networks employ 

static attention mechanisms, the adaptive masking 

dynamically adjusts attention weights based on 

content-based relevance (β=0.72 for English-Chinese), 

enabling handling of unique structural characteristics. 

The multi-dimensional similarity framework addresses 

paraphrase detection limitations, achieving 0.73 

similarity scores on culturally adapted translations 

compared to baseline methods' 0.41. 

6.2 Key Findings and insights 

Beyond experimental validation, this framework 

enables practical deployment in multilingual search 

engines for semantic document retrieval, academic 

plagiarism detection systems for cross-lingual content 

verification, legal document similarity assessment for 

international treaty analysis, and educational platforms 

for automated translation quality scoring in language 

learning environments. The consistent performance 

improvements reveal fundamental insights about 

bilingual semantic similarity detection: adaptive 

mechanisms can systematically overcome the static 

nature of traditional approaches by learning 

language-pair-specific patterns, validating the hypothesis 

that cross-lingual similarity requires dynamic rather than 

uniform processing. The 7.2% improvement 

demonstrates that capturing cultural adaptations and 

structural divergences through computational adaptivity 

represents a paradigm shift from surface-level matching 

to deep semantic understanding. 
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Multi-dimensional similarity assessment helps 

address culture-specific challenges and paraphrasing. 

Translation functions simultaneously as a lexical transfer, 

utterance, and pragmatic action. Representing 

similarities in these relations achieves better translation 

equivalence than surface-level methods. This insight 

necessitates rethinking cross-lingual relations—moving 

from simplistic term representation to comprehensive 

representation capturing meaning and communicative 

purpose. Technologically, the framework addresses a 

gap in existing solutions by working effectively with 

under-resourced language pairs that lack extensive 

parallel data. Low-resource languages remain 

underrepresented, requiring systems that overcome 

cross-lingual technology accessibility barriers. the 

framework's automated mechanism effectively addresses 

this challenge. Beyond experimental validation, this 

framework enables practical deployment in multilingual 

search engines for semantic document retrieval, 

academic plagiarism detection systems for cross-lingual 

content verification, legal document similarity 

assessment for international treaty analysis, and 

educational platforms for automated translation quality 

scoring in language learning environments. 

6.3 Limitations 

Despite the approach's progress, limitations remain. 

The current strategy struggles with highly idiomatic 

phrases and culture-specific elements lacking direct 

counterparts in other languages. While the 

multi-dimensional similarity assessment partially 

addresses this, cultural untranslatability remains a core 

challenge. Complex idioms, cultural metaphors, and 

context-specific references persist as challenges for 

computational approaches, reflecting the broader 

difficulty of encoding cultural knowledge in 

computational systems. Computational efficiency 

represents another constraint, particularly for 

resource-limited deployment scenarios. Although the 

framework demonstrates reasonable efficiency compared 

to neural MT-based approaches, the computational 

requirements remain substantial compared to simpler 

statistical methods. The adaptive components, while 

critical for performance, introduce additional 

computational overhead that may limit deployment in 

extremely resource-constrained environments or 

real-time applications requiring millisecond-level 

responses. Potential model compression strategies could 

address these limitations, including structured pruning of 

attention heads (reducing from 12 to 8 heads with 

minimal performance loss), 8-bit quantization of 

embedding layers, and knowledge distillation to smaller 

student models. Dynamic inference optimization through 

early exit mechanisms and adaptive computation 

allocation based on input complexity could further 

reduce latency while maintaining accuracy for practical 

deployment scenarios. Finding the optimal balance 

between model complexity and efficiency remains an 

ongoing challenge. The reliance on supervised training 

with parallel data, though reduced compared to 

traditional approaches, still represents a limitation for 

extremely low-resource languages. While the framework 

can function with limited parallel data, its performance 

still correlates with the availability of training examples, 

potentially limiting effectiveness for languages with 

minimal digital presence. This limitation reflects a 

broader challenge in cross-lingual NLP, where the most 

resource-deprived languages—often those most in need 

of technological support—remain the most difficult to 

model effectively. These challenges echo findings by 

Sun [21], who analyzed Chinese machine translation 

training based on deep learning technology and 

identified similar limitations regarding resource 

requirements and cultural adaptation. 

6.4 Future work 

Future research should target specific extensions: 

evaluating performance on additional language families 

including Arabic-French and Hindi-Bengali pairs to 

assess typological generalization, incorporating syntactic 

dependency parsing features to enhance structural 

alignment capabilities, testing robustness on noisy social 

media and informal text to address real-world 

deployment scenarios, and developing few-shot learning 

approaches for rapid adaptation to new language pairs 

with minimal training data. 

7  Conclusion 
This research advances bilingual translation 

similarity detection through a novel paradigm that 

transcends traditional static processing limitations. The 

core innovation lies in adaptive computational 

mechanisms that dynamically adjust to cross-lingual 

structural variations, representing a fundamental shift 

from surface-level lexical matching to deep semantic 

understanding across culturally and structurally 

divergent languages. The integrated framework 

demonstrates three key contributions to the field: 

adaptive attention mechanisms that learn 

language-pair-specific patterns, hybrid embedding 

alignment strategies that eliminate translation error 

propagation, and multi-dimensional similarity 

assessment that captures the full spectrum of translation 

equivalence. These innovations collectively advance 

cross-lingual NLP by providing robust solutions for 

semantic gaps that have long challenged traditional 

approaches. While the framework shows strong 

performance across diverse language pairs, scalability to 

extremely low-resource languages and computational 

efficiency in resource-constrained environments remain 

areas for continued development. This work establishes 

a foundation for next-generation cross-lingual similarity 

detection systems with immediate applications in 

machine translation evaluation, multilingual content 

management, and educational technology, paving the 

way toward more inclusive and accessible cross-lingual 

artificial intelligence. 
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