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Traditional methods of athlete training plan formulation often rely on the coach's experience and expert 

judgment, leading to challenges in dynamically adjusting training plans to athletes' real-time performance 

and physical conditions. Such static approaches can cause issues like overtraining or undertraining, 

affecting athletes' overall performance. This paper introduces a deep reinforcement learning (DRL) 

framework, leveraging real-time data analysis to optimize personalized training plans and automatically 

generate intelligent competition strategies. By utilizing the Deep Deterministic Policy Gradient (DDPG) 

algorithm within the Actor-Critic framework, the study employs a state-of-the-art implementation with 

hyperparameters such as a learning rate of 0.001, batch size of 64, and discount factor (gamma) of 0.99. 

The key action spaces are defined, including training load (intensity), frequency, and rest intervals, while 

the reward function is tailored to balance training stress and performance improvement. Additionally, a 

Long Short-Term Memory (LSTM) model is integrated to analyze time-series data, refining strategies 

based on dynamic performance feedback. Experimental results show that the DDPG-based approach 

significantly improves athletes' performance by 12% in key metrics, such as shooting accuracy, and 

maintains the athletes' Training Stress Balance (TSB) in a healthy positive range over a 90-day training 

cycle. The LSTM-based game strategies, tested in simulated basketball playoff scenarios, outperform 

traditional strategies, increasing the final score by 13 points (104 vs. 91), demonstrating substantial 

improvements in competitive performance and strategy optimization. 

Povzetek: Ta raziskava uvaja DDPG-LSTM okvir za optimizacijo individualnih športnih treningov in 

generiranje tekmovalnih strategij, kar vodi k 12-odstotnemu izboljšanju uspešnosti in 13 točkam višji 

zmagi. 

 

 

1   Introduction 
In modern sports training, improving athletes' 

competitive level has become an important research topic. 

The design [1-2] and optimization [3-4] of athletes' 

training plans are one of the key factors to improve their 

competitive performance. Traditional training methods 

mostly rely on the experience of coaches and the judgment 

of experts to cultivate athletes' abilities through 

standardized training plans. Although these methods have 

improved athletes' performance to a certain extent, 

standardized training plans cannot meet individual needs 

due to differences in each athlete's physical condition, 

training background, sports skills, etc. In addition, 

athletes' physical condition, fatigue, and competitive state 

can change during training, which makes it difficult to 

adjust training plans and competition strategies in real 

time, affecting training results and competition 

performance. Traditional training methods have the risk of 

overtraining and undertraining, and can easily lead to 

athletes failing to perform at their best in key competitions. 

Therefore, how to dynamically adjust training plans based 

on real-time data of athletes, flexibly adjust training plans, 

ensure the optimization of training effects, and 

automatically generate personalized competition 

strategies in an intelligent way are the core issues that need 

to be solved in the current sports training field. 

Many studies have attempted to optimize training 

plans and competition strategies through artificial 

intelligence technology [5]. Data-driven [6] methods, 

machine learning [7] and deep learning [8] have been 

widely used in training monitoring and performance 

prediction of athletes, analyzing their physiological data, 

training data and competition performance to predict their 

training effects or injury risks. Traditional machine 

learning methods mostly rely on feature extraction, and 

predict future performance by analyzing athletes' 

historical data. These methods often ignore the dynamic 

changes of athletes during training and are difficult to 

flexibly adjust based on real-time data. Although 

reinforcement learning has achieved remarkable results in 

some fields, its application in sports training is relatively 

limited. Some studies use reinforcement learning to 

optimize athletes' training plans. Due to the complexity of 

the reinforcement learning model training process and the 

training data requirements, these methods often face the 
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problem of high computing resource consumption and 

long training process. The current research difficulties are 

how to effectively deal with the continuous action space 

in athlete training, how to design a suitable reward 

function to motivate the correct training behavior, and 

how to deal with high-dimensional training decisions. As 

an important branch of reinforcement learning, DRL [9-

10] combines the powerful feature extraction capabilities 

of deep learning technology and the decision optimization 

mechanism of reinforcement learning, providing a new 

solution. Through DRL, the athlete's training process can 

be regarded as a dynamic decision-making problem, the 

training plan can be adjusted according to real-time 

feedback, the training strategy can be gradually optimized, 

and personalized competition strategies can be 

automatically generated according to the athlete's 

performance. 

In order to overcome the limitations of traditional 

methods, this paper adopts the DDPG [11] algorithm in 

DRL to optimize athletes’ training plans and competition 

strategies. DDPG is based on the actor-critic [12] 

architecture and can handle continuous action spaces and 

adapt to various dynamic decision-making problems in 

training. By constructing the state space of basketball 

players, factors such as training load, duration, and 

frequency can be adjusted in real time to achieve the best 

training effect. At the same time, a reward function is 

designed based on training feedback, so that the model can 

dynamically optimize the training process according to the 

individual differences of athletes, ensuring that athletes 

can receive effective guidance during the training process. 

The DDPG model optimizes the training load and 

generates personalized game strategies through 

continuous feedback during training to improve the 

performance of athletes in actual games. In combination 

with the LSTM model [13], real-time data analysis 

optimizes personalized training plans. To verify the 

effectiveness of the method, this paper designed a 

comparative experiment. By comparing it with traditional 

training methods and other models, the advantages of the 

DRL model in optimizing basketball player training were 

verified. The experimental results show that the DDPG-

based training program is significantly superior to 

traditional training methods in improving training effects, 

enhancing the adaptability of competition strategies and 

improving athlete performance. 

In recent years, artificial intelligence techniques have 

achieved remarkable progress in the domain of sports 

training and related fields. To address individual 

differences and dynamic needs of athletes, Zahran, El-

Beltagy, and Saleh proposed a conceptual framework for 

generating adaptive training plans. Their approach 

integrates a rule-based engine with data-driven models to 

provide real-time adjustments of training load based on 

physiological and performance feedback, thereby 

enhancing both effectiveness and safety of training 

sessions [37]. 

Meanwhile, generative adversarial networks (GANs) 

have demonstrated significant potential for producing 

context-specific training plans. Tan and Chen employed 

GANs to automatically learn the complex mappings 

among different sports disciplines, training environments, 

and athlete proficiency levels. Through adversarial 

training between a generator and a discriminator, their 

method generates highly personalized and practicable 

training programs, leading to improved training efficiency 

and athlete satisfaction across multiple sports [41]. 

Beyond the realm of sports coaching, machine 

learning is also being used to evaluate the impact of 

research policies on academic performance. Zhao and 

Wang developed predictive models based on decision 

trees and ensemble learning to quantify how various 

policy measures—such as funding allocation and 

evaluation criteria—affect publication output and citation 

rates. Their findings offer quantitative guidance for 

universities and funding agencies aiming to optimize 

policy frameworks [38]. 

Cross-modal affect recognition, another core AI 

technology in multimedia interaction, has found 

applications in monitoring athletes’ emotional states 

during training. Kumar and Aruldoss introduced an 

advanced optimal fusion mechanism that leverages 

attention networks to deeply integrate audio and video 

features, enabling precise detection of athletes’ emotions 

in real time. This capability supports psychological 

intervention and immediate feedback during training 

sessions [39]. 

Securing data transmission in networked 

environments is equally critical for wearable devices and 

sensor systems in sports. Touhami and Belghachi 

proposed a secure LOADng routing protocol based on 

fuzzy logic, which uses fuzzy inference to assess node 

trustworthiness and effectively guard against black-hole 

attacks and data tampering. Their scheme significantly 

enhances reliability of data transport in IoT-based sports 

monitoring networks [40]. 

Finally, Pashaie, Mohammadi, and Golmohammadi 

reviewed the evolution of coaching strategies empowered 

by AI, tracing developments from early statistical tools to 

modern deep learning and intelligent optimization 

algorithms. They argue that future coaching will 

increasingly rely on multimodal data fusion and real-time 

decision support to deliver personalized, scientific, and 

systematic training assistance that unlocks the full 

potential of athletes [42]. 

2. Related Works 

Research on athlete training program design has 

always focused on improving athletes' competitive 

performance and their training effects. Many scholars 

have focused on how to design training plans based on 

athletes’ physiological data and competition performance 

to improve athletic performance. Researchers such as 

Romaniszyn P [14] used physiological load analysis based 

on traditional physical models to determine training 

intensity and frequency, but these methods cannot be 

adjusted in real time and are difficult to adapt to changes 

in athletes’ conditions. Researchers such as Demsar U [15] 

have attempted to combine psychological data and use 

behavioral analysis models to understand the impact of 

athletes’ mental state on their performance. This type of 

research usually focuses on psychological factors and 

ignores the combined impact of physical and technical 
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factors. Zheng C [16] and other scholars have adopted 

machine learning models to try to optimize training 

programs by analyzing large amounts of data. Cronin N J 

[17] and other scholars have tried to use convolutional 

neural networks to analyze athletes' movements and 

technical indicators, and combined deep learning to 

perform regression analysis on training and competition 

data to predict athletes' performance. However, such 

methods often fail to take into account the dynamic 

adjustment of training load, resulting in limited 

effectiveness in practical applications. Singh B [18] and 

others studied the use of reinforcement learning to adjust 

the training strategy by building a reward mechanism, but 

many models cannot handle continuous action spaces, 

limiting their application in dynamic environments. Some 

scholars have tried to optimize training decisions through 

model training. Huang R [19] used Q-learning and deep Q 

networks to adjust the training plan. However, most of 

these methods are based on discrete action spaces and 

have difficulty handling complex training decision 

problems. Muni M K [20] studied a method based on the 

combination of fuzzy logic and neural networks to adjust 

the training scheme, attempting to improve the 

adaptability of the training strategy through uncertainty 

analysis. This method may face the problem of high 

computational complexity when dealing with complex 

training scenarios. Other researchers have used algorithms 

based on time series prediction. Tran L [21] used LSTM 

to analyze athletes' training history in order to predict 

future performance, but their adaptability and real-time 

performance still need to be improved. Although many 

methods have been proposed and have achieved certain 

results, most methods still have difficulty adapting to the 

dynamic adjustment and personalized needs in training, 

lack sufficient flexibility and personalized adjustment 

capabilities, and are difficult to meet the needs of efficient 

training and game strategy optimization. Table 1 provides 

a comparative overview of existing approaches in athlete 

training optimization and performance enhancement. 

Various methodologies, such as physiological load 

analysis, behavioral and psychological data analysis, 

machine learning, and reinforcement learning, have been 

explored, each with its strengths and limitations. Studies 

like Romaniszyn P [1] and Demsar U [2] focus on static 

models, with limited adaptability to real-time conditions, 

while others like Singh B [18] and Huang R [19] 

successfully optimize training under specific scenarios but 

struggle with continuous action spaces and dynamic 

environments. LSTM models, as used by Tran L [21], 

excel in time-series prediction but lack real-time 

adaptability. In contrast, the current work leverages a 

DDPG-based DRL approach, offering real-time 

adjustments and personalized strategies, resulting in a 12% 

improvement in athlete performance. However, the 

research is still limited to basketball and requires further 

testing across different sports. This comparison 

underscores the need for a more flexible, real-time, and 

dynamic training optimization model, which the proposed 

DDPG-based method addresses. 

 

Table 1: Comparison of existing approaches in athlete training optimization and performance enhancement 

Author(s) Method Dataset 
Evaluation 

Metric(s) 
Results Limitations 

Romaniszyn P 

[1] 

Physiological 

load analysis 

using physical 

models 

Not specified 

Training 

intensity and 

frequency 

Can determine 

load intensity 

but lacks real-

time 

adaptability 

Limited to 

static 

conditions, no 

personalized 

adaptation 

Demsar U [2] 

Behavioral 

analysis with 

psychological 

data 

Psychological 

and 

performance 

data 

Performance 

improvements 

Focus on 

mental state, 

but ignores 

physical and 

technical 

factors 

Limited scope, 

fails to 

integrate 

dynamic 

training 

variables 

Zheng C [16] 

Machine 

learning 

regression 

analysis 

Historical 

athlete data 

Performance 

prediction, 

injury risk 

Predictive but 

lacks real-time 

adjustment 

capability 

Static 

prediction 

without 

dynamic 

feedback 

Singh B [18] 

Reinforcement 

learning (Q-

learning, 

DQN) 

Athlete 

training data 

Training load, 

performance 

Good 

optimization 

under static 

conditions, but 

struggles with 

continuous 

action spaces 

Inability to 

handle 

complex 

dynamic 

environments 

Huang R [19] 

Q-learning for 

training plan 

adjustment 

Not specified 

Training load, 

performance 

improvement 

Successful in 

discrete action 

spaces but 

Cannot handle 

continuous 

action spaces, 
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limited in 

dynamic 

scenarios 

limited 

generalization 

Tran L [21] 

LSTM for 

performance 

prediction 

Athlete 

training 

history 

Performance, 

fatigue levels 

Suitable for 

time-series 

data, yet lacks 

adaptability 

Limited to 

short-term 

history, 

struggles with 

real-time 

changes 

This Work 

DDPG-based 

DRL for 

personalized 

training 

Athlete 

performance, 

real-time data 

Training 

Stress Balance 

(TSB), 

shooting 

accuracy 

Improves 

performance 

by 12%, 

optimizes 

training load 

with adaptive 

strategies 

Limited to 

basketball 

performance, 

needs broader 

testing 

This paper addresses the shortcomings of existing 

methods in athlete training optimization by employing the 

DDPG (Deep Deterministic Policy Gradient) algorithm, a 

deep reinforcement learning (DRL) approach capable of 

handling continuous state and action spaces. The primary 

research question is how DDPG can optimize personalized 

training plans in real-time, adapting to athletes' dynamic 

performance data. The goal of the research is to design a 

DRL-based model to optimize training load, frequency, 

and intensity, preventing overtraining and undertraining 

while enhancing overall performance. This is achieved 

through real-time data collection, dynamic adjustments of 

training variables, and a reward function that optimizes the 

training process based on athlete feedback and 

competition performance. 

The study also integrates the LSTM (Long Short-

Term Memory) model to capture complex time-series data, 

further enhancing the adaptability and effectiveness of 

personalized game strategies. The second research 

question explores how DDPG-based optimization impacts 

performance metrics such as Training Stress Balance 

(TSB), fatigue management, and long-term performance. 

The third question addresses how combining LSTM 

improves the generation of adaptive competition strategies. 

Lastly, the paper compares the performance results of the 

DDPG-based approach with traditional methods, aiming 

to demonstrate its superiority in optimizing both training 

plans and game strategies. This integrated approach 

ensures athletes perform optimally, with strategies that 

dynamically adapt to real-time conditions during both 

training and competition. 

 

3   Introducing the DRL framework 
3.1 DDPG Algorithm 

Deep reinforcement learning (DRL) represents a 

pivotal advancement in artificial intelligence by marrying 

the representational power of deep learning with the 

decision-making framework of reinforcement learning. 

Rather than depending on labeled datasets, DRL agents 

learn optimal strategies through direct interaction with 

their environment, receiving reward signals that guide 

continuous refinement. This approach excels at handling 

complex, high-dimensional input spaces—far beyond the 

reach of conventional supervised methods. 

The Deep Deterministic Policy Gradient (DDPG) 

algorithm exemplifies DRL’s policy-optimization 

capabilities. By integrating deep neural networks with 

deterministic policy gradients, DDPG is uniquely suited to 

high-dimensional, continuous action domains—making it 

an ideal choice for tailoring athletic training regimens and 

crafting in-game strategies. DDPG employs two 

interconnected networks: an Actor, which proposes 

specific actions or training directives, and a Critic, which 

evaluates those actions and delivers feedback. Through 

their ongoing interplay, the Actor refines its policy to 

maximize expected rewards, while the Critic sharpens its 

evaluation, resulting in a continuously improving, data-

driven training strategy. 

 

 
Figure 1: DDPG framework 

 

The DDPG algorithm operates in conjunction with 

the (Actor--Critic) model framework. From Figure 1, the 

Actor model outputs action a to interact with the 

environment, and generates the next state based on action 

a in a simulation environment. The two models use 

different optimization networks, namely the policy 

network and the Q-value network. The actor stores the 

state transition process in the replay memory buffer as the 

data set for training the online network. N data are 

randomly sampled from the replay memory buffer as the 

online policy network and calculated. The model is 

optimized using the Adam optimizer. 

The Critic uses a value function (Q-value function) 

to evaluate the quality of each action generated by the 

Actor. The goal of the Q-value function is to estimate the 
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long-term benefits of taking a certain action in a certain 

state. The Q-value function is updated through the 

Bellman equation [22]: 

Q′(st, at) = rt + γ ⋅ Q(st+1, at+1) (1) 

Among them, rt is the immediate reward after taking 

an action in the current state, and γ is the discount factor, 

which represents the weight of future rewards. Critic 

continuously optimizes the Q value function by 

minimizing the mean square error loss function, so that the 

estimated Q value approaches the actual long-term return. 

MSE =
1

N
∑  N
i=1 (yi − ŷi)

2 (2) 

yi = ri + γQ′(si+1, μ
′(si+1|θ

μ′)|θQ
′
) (3) 

The Actor adjusts its strategy by maximizing the Q 

value provided by the Critic. In DDPG, the Actor 

determines the optimal strategy through the probability 

distribution function, and obtains the best action for the 

current state according to the probability distribution at 

each step. The action generated is a random strategy. 

J(πθ) = ∫  
S
pπ(s) ∫  

A
πθ(s, a)r(s, a)dads =

Es∼pπ,a∼πθ[r(s, a)] (4) 

∇θJ(πθ) = ∫  
S
ρπ(s) ∫  

A
∇θπθ(s, a)Q

π(s, a)dads =

Es∼ρπ,a∼πθ[∇θlog⁡ πθ(a|s)Q
π(s, a)] (5) 

Since DDPG is applicable to continuous action 

space, its optimization process is updated by the following 

gradient formula: 

∇θμJ ≈ 𝔼st∼ρ
μ[∇θμμ(st)∇aQ(st, a; θ

Q)] (6) 

Among them, θμ  is the network parameter of the 

Actor, ρμ  represents the behavior strategy, μ(st)  is the 

action selected by the Actor in the current state, and 

Q(st, a; θ
Q) is the Q value evaluated by the Critic. 

The DDPG algorithm introduces a soft update 

method to update the target network, which can also be 

called the exponential moving average (EMA) [23]. The 

introduction of the target network effectively avoids the 

gradient explosion or vanishing problem, and 

continuously optimizes the weight of the target network 

through the soft update method. 

Actor updates the target network: 

θμ
′
= τθμ + (1 − τ)θμ

′
 (7) 

Critic updates the target network: 

θQ
′
= τθQ + (1 − τ)θQ

′
(8) 

Use the Critic network directly to calculate the target 

value: 

y = r + γ ⋅ max
a
 Q′(s′, a′; θ−) (9) 

τ is the soft update coefficient; 

Experience replay (Replay Buffer) stores the 

interactive experience in a fixed-capacity experience 

buffer, and randomly extracts samples for learning in 

subsequent training instead of directly using the most 

recent experience. The experience replay mechanism can 

break the time correlation between samples and improve 

data utilization efficiency. The first-in-first-out (FIFO) 

strategy is adopted to ensure that the latest data is 

continuously updated, while maintaining the capacity 

upper limit of the experience pool to ensure that the 

intelligent agent always uses the latest and most diverse 

experience for training. 

ℬ = {(si, ai, ri, si+1)|i ∈ 𝕊} (10) 

Buffer = [x2, x3, … , xN, xN+1] (11) 

In addition, noise exploration [24] is crucial for 

intelligent agents, while deterministic strategies lack 

exploration capabilities. By adding noise to actions that 

simulate human output, intelligent agents can be given 

exploration capabilities. When exploration is insufficient, 

the strategy is easily confined to the local optimum and 

difficult to adapt to complex environments. Excessive 

exploration may lead to unstable training and difficulty in 

convergence. This paper adopts the Ornstein Uhlenbeck 

[25] process as action noise. 

dNt = θ(μ − Nt)dt + σdBt (12) 

B is the standard Brownain motion. 

3.2 Space Parameter Definition 

The design of state space and action space is crucial 

in the DRL framework, which directly determines the 

accuracy of training plan optimization and the scientific 

nature of strategy generation. The multidimensional data 

characteristics of athlete training need to be considered 

during the design process to ensure the model's 

comprehensive perception of the training state and the 

feasibility of the optimization strategy. The state space S 

is represented by the key variables that affect the athlete's 

performance during training, which should cover multiple 

dimensions such as physical fitness, technology, tactics, 

and physiology, and the physical variables can be 

expressed as.Physical Fitness Level: This is quantified 

using specific metrics like VO2 max (for aerobic capacity), 

bench press max (for upper body strength), and vertical 

jump height (for explosive power), which are commonly 

used in sports science to measure an athlete's physical 

condition.Degree of Fatigue: The degree of fatigue is 

measured using creatine kinase (CK) levels, a biomarker 

for muscle damage and recovery, and the Borg Scale for 

Perceived Exertion (RPE), which assesses how hard an 

athlete feels they are working during training or 

competition. These tools provide objective and subjective 

measures of fatigue, ensuring a comprehensive 

understanding of the athlete's condition. 

st = [pt, et, ht, ft, vt] (13) 

Among them, pt is the athlete's physical fitness level; 

et  is the execution accuracy; ht  represents the 

physiological index; ft reflects the degree of fatigue; vt is 

the execution parameter. 

In order to improve the stability of the model, the 

input parameters need to be standardized: 

ŝt =
st−μ

σ
 (14) 

The action space A defines the system-controllable 

training adjustment variables, covering key factors such as 

training load, time, and content. 

at = [It, Tt, Ct] (15) 

It represents the training intensity, which is adjusted 

according to the exercise load model; Tt is the duration of 

each training session; Ct is the training content. Different 

athletes have different training contents. 

In order to make the value range of the action within 

a reasonable range to avoid ineffective or overtraining, 

normalization is usually used: 

ât =
at−amin

amax−amin
 (16) 
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amax and amin are the upper and lower limits of the 

action variables, ensuring that the training parameters are 

adjusted within a scientific range. 

3.3 Reward Mechanism Design 

The core purpose of the reward mechanism [26] is to 

provide a feedback signal for agent intelligent training, 

enabling it to continuously adjust its strategy according to 

the state of the environment and action selection. A 

reasonable mathematical formula can be used to quantify 

the performance of athletes in training and competition, 

and use this as a basis to guide the learning process of the 

intelligent system. The design of the reward mechanism 

usually includes multiple aspects: technical movements, 

training load, physiological state, game strategy, etc. The 

performance of each aspect can be converted into a reward 

or punishment signal. 

1) Technical movement reward: In basketball 

training, shooting accuracy, running route accuracy, 

passing accuracy, etc., can all become standards for 

evaluating technical movements: 

Rtech =
Number⁡of⁡Hits

Total⁡Shots
 (17) 

2) Physiological state reward: The control of 

physiological state is crucial. Overtraining may lead to 

fatigue accumulation of athletes, while too little training 

may affect the training effect: 

Rphys = −α ⋅ (HeartRate − Threshold)2 (18) 

3) Training load bonus: Training load that is too high 

or too low can have a negative impact on an athlete’s 

performance: 

Rload =
IdealLoad−Current⁡Load

MaxLoad−MinLoad
 (19) 

4) Game strategy rewards: During the game 

simulation, the reward function can be designed based on 

the offensive and defensive performance of the athletes: 

Rstrategy = β ⋅ Offensive⁡Scoring⁡Rate + γ ⋅

Defensive⁡Success⁡Rate (20) 

In order to improve the adaptability of the reward 

mechanism and avoid excessive concentration of rewards 

in a certain period of time and affect the overall effect, the 

time decay mechanism is introduced. Through time decay, 

the system can ensure that the system pays attention to the 

long-term training effect: 

Rt
′ = Rt ⋅ e

−λt (21) 

3.4 LSTM Model 

LSTM consists of four key gate units: Forget Gate, 

Input Gate, Candidate Memory Cell and Output Gate. At 

each time step, these gates together determine how data is 

passed within the LSTM unit. The three gates control the 

memory state of the previous information, input 

information, and output information, thereby ensuring that 

the network can better learn long-distance dependencies. 

The LSTM model is shown in Figure 2. 

 

 
Figure 2: LSTM model framework 

 

The forget gate determines how much memory 

information from the previous moment is retained. The 

input of the forget gate is the hidden state ht−1  of the 

previous moment and the input xt of the current moment. 

ft = σ(Wf ⋅ [ht−1, xt] + bf) (22) 

The input gate determines the degree of retention of 

input information by judging the importance of the current 

input information: 

it = σ(Wi ⋅ [ht−1, xt] + bi) (23) 

The candidate memory unit generates a new 

candidate memory vector C
~

t, which combines the current 

input information and the hidden state information of the 

previous moment, and is output through the tanh 

activation function [27]. Its function is to generate the 

potential memory information of the current moment. 

at = tanh(Waht−1 + Uaxt + ba) (24) 

Ct = Ct−1 ∗ f + it ∗ at (25) 

Among them, tanh is the hyperbolic tangent 

activation function. 

The function of the output gate is to determine how 

much of the memory information at the current moment 

can be passed to the hidden state ht, and how much the 

current output depends on the current memory unit. 

ot = σ(Wo ⋅ [ht−1, xt] + bo) (26) 

ht = ot ⋅ tanh(Ct) (27) 

Combined with the LSTM model's ability to process 

long-term series data, it identifies and captures the impact 

of dynamic changes on athlete performance, automatically 

adjusts training plans or strategies based on training 

history and real-time feedback, and ensures that athletes 

always train in the best training state to avoid overtraining 

or undertraining. 

4. Experimental Design 

4.1 Dataset Collection 

The experiment draws on the open-access 

‘Basketball Player Performance’ dataset hosted on 

Kaggle. After cleaning we retained 500 player-level 

records, each corresponding to a unique athlete. Every 

record contains six quantitative performance attributes—

heart-rate (bpm), sprint speed (m s⁻¹), vertical jump height 

(cm), endurance score (0-100), one-rep-max strength (kg), 

and composite player-efficiency rating—plus a 

categorical label that assigns the athlete to one of three 

programme-effectiveness tiers (low, medium, high). Thus 

the final matrix has 500 × 7 cells (6 numeric features + 1 

class label). 
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Table 2: Athlete data 

NO. 
Heart 

rate(bpm) 
Speed(m/s) 

Jump 

height 
Endurance Strength(kg) 

Player 

efficiency 

1 164 9 39 35 120 18 

2 167 12 27 20 134 29 

3 173 8 39 36 106 15 

4 120 11 35 29 97 15 

5 123 14 33 22 112 16 

6 179 14 24 11 102 21 

7 123 10 24 33 96 27 

8 159 14 23 25 125 13 

9 129 9 39 33 67 15 

10 139 14 25 32 67 21 

… … … … … … … 

Table 2 is a sample of the data set. The corresponding 

training plan is automatically generated by testing various 

training indicators. In order to avoid overfitting, the 

training data and test data are reasonably divided. 70% of 

the data can be used for training the model, 20% for 

verification, and the remaining 10% for testing. At the 

same time, in order to improve the efficiency of data 

utilization, this paper adopts data enhancement technology 

[28] to simulate data changes in different training and 

competition environments through operations such as 

(rotation, scaling, and translation). 

4.2 Data Cleaning 

Data preprocessing is an important step to ensure that 

the model can learn effectively and avoid unnecessary 

interference or noise. In the actual collected data, there 

may be missing records or incomplete data. 

In the case of missing values, linear interpolation [29] 

is used to handle them: 

Xfill = Xt1 +
(Xt2−Xt1)

t2−t1
⋅ (t − t1) (28) 

Among them, Xfill is the missing value after filling; 

In the face of abnormal data values, the IQR method 

(Inter-Quartile Range) [30] is used for processing: 

IQR = Q3 − Q1 (29) 

Outliers are identified by calculating the quartiles of 

the data. The first quartile Q1 and the third quartile Q3 of 

the data are calculated, and then the interquartile 

difference is calculated. When the data point exceeds the 

specified range, it is considered an outlier. 

4.3 Evaluation Indicators 

The design of evaluation indicators is crucial to the 

effective evaluation of model performance. Evaluation 

metrics can not only help analyze the training effect of the 

model, but also quantify the adaptability of the training 

load and strategy generation. 

Cumulative reward value [31]: The higher the 

cumulative reward, the more effective the model training 

scheme is. 

Rtotal = ∑ rt
T
t=1  (30) 

Training performance growth rate [32]: Evaluate 

whether the model can continuously improve the athlete's 

competitive level. 

Grate =
Tend−Tstart

Tstart
 (31) 

4.4 Experimental Design 

(1) Training load evaluation: Determine whether the 

intelligent training scheme generated by the DDPG 

algorithm is effective in avoiding overtraining or 

undertraining. 

(2) Comparative experiment: Compare excellent 

traditional optimization model algorithms to verify their 

optimization capabilities. 

(3) Long-term optimization: Design multiple training 

cycles to analyze the long-term improvement effect of the 

intelligent training scheme. 

(4) Game strategy generation: Compare the 

performance differences between the generated game 

strategy and the traditional strategy. 

5. Results 

This study evaluates whether an intelligent training 

program generated by the DDPG algorithm can effectively 

prevent both overtraining and undertraining, maintain an 

optimal balance between training intensity and recovery, 

and ultimately enhance athletic performance. We employ 

three key metrics: 

Acute Training Load (ATL): Represents the intensity 

and volume of recent training sessions. ATL combines 

both training volume and intensity; elevated ATL values 

typically indicate high recent workloads, which can lead 

to fatigue accumulation. 

Chronic Training Load (CTL): Reflects the intensity 

and volume of long-term training, serving as an index of 

an athlete’s training base or endurance capacity. 

Training Stress Balance (TSB): Quantifies the 

relationship between ATL and CTL. TSB indicates 

whether an athlete is overreaching, recovering, or under 

high load: a negative TSB suggests a fatigued or 

overtrained state, whereas a positive TSB indicates 

sufficient recovery. 



248 Informatica 49 (2025) 241–252 J. Wu 

By monitoring ATL, CTL, and TSB in real time, the 

DDPG-driven program dynamically adjusts training 

prescriptions to keep athletes within an optimal stress–

recovery window, thereby minimizing the risks of both 

exhaustion and stagnation. 

 

 

Table 3: Training load parameters 

Parameter Description 

Intensity How hard the athlete works during training 

Duration The length of training 

Frequency 
The number of times the athlete has 

practiced 

Type of Exercise 
Different types of exercise put different 

loads on the body 

Rest Interval Rest time between training sessions 

Mode of Exercise 
The way you train can affect the load of your 

exercise 

Heart Rate 
Evaluating training intensity through heart 

rate changes 

Fatigue Level 
Assess the level of fatigue in athletes after 

training or competition 

Recovery Time Recovery period after exercise 

Training Goal Athlete training goals 

Table 3 shows the training load evaluation 

parameters. Different factors may affect the training 

effect. By defining the spatial parameters through the 

DDPG algorithm, it is possible to generate effective 

training plans in the face of different factors. As shown in 

Figure 3, after parameter optimization, the generated 

training plan is tested in a 30-day cycle to verify whether 

the training plan can cause excessive fatigue of athletes 

and insufficient training intensity. 

 
Figure 3: Effect of long and short training loads 

 

Figure 3 illustrates the evolution of training load and 

stress balance over the course of the program. The left y-

axis plots the Acute Training Load (ATL) and Chronic 

Training Load (CTL) values, while the right y-axis shows 

the Training Stress Balance (TSB). The x-axis denotes the 

number of training days. 

As the training days progress, the CTL curve exhibits 

a steady upward trend, indicating that the athlete’s long-

term training base and endurance capacity are continually 

strengthening. In contrast, the ATL curve remains 

relatively flat and centered around a moderate level, 

suggesting that daily training intensity is well regulated: 

the athlete maintains a consistent workload without 

experiencing excessive fatigue. Meanwhile, the TSB 

curve rises gradually into positive territory, reflecting a 

favorable balance between stress and recovery. In other 

words, the athlete is neither overreaching nor 

undertraining but is instead in an optimal training state 

with sufficient recovery. 

These results confirm that the DDPG-generated 

training plan successfully adapts to the athlete’s changing 

condition. By dynamically tuning training intensity and 

volume, the program prevents both overtraining and 

undertraining, ensuring that the athlete benefits from a 

balanced, progressive training load throughout the cycle. 

This paper conducts experiments to compare with 

traditional optimization model algorithms. Under the same 

training cycle, athletes are divided into 5 groups, and the 

training plans obtained by different models are trained to 

see their optimization effects. 

 
Figure 4: TSB curves of various model algorithms 

 

Figure 4 compares the TSB values produced by 

various algorithms over the training cycle. The DDPG-

based program maintains the athlete’s TSB in positive 

territory throughout, indicating a well-balanced training 

load, strong recovery, and overall healthy adaptation—

effectively preventing the fatigue associated with overly 

intense regimens. 

In contrast, the Multi-Agent Systems (MAS) 

approach [33] starts with the highest TSB early in the 

cycle but then declines steadily, suggesting that 
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cumulative load eventually overwhelms recovery and 

leads to overtraining. Both the Genetic Algorithm (GA) 

[34] and Clustering Analysis [35] methods show 

promising early performance: GA achieves moderate 

stability, while Clustering Analysis initially trends upward. 

However, as additional factors come into play later in the 

cycle, both approaches fail to sustain positive TSB, 

indicating an inability to adapt intelligently over time. The 

Bayesian model [36] performs worst, with its TSB 

declining continuously—signifying inadequate balance 

between stress and recovery. 

 
Figure 5: Optimization of different training cycles 

Overall, only the DDPG algorithm dynamically 

tailors its training prescriptions to the evolving 

environment and athlete-specific factors—preserving an 

optimal balance between load and recovery and 

substantially reducing the risks inherent in rule-based or 

expert-driven programs. To evaluate its performance over 

extended periods and avoid any one-sided conclusions 

drawn from a short cycle, we further adjusted our 

parameters to test 60-day and 90-day training extensions, 

verifying the model’s ability to optimize long-term athlete 

development. 

Figure 5 depicts the athletes’ performance growth 

rates under extended training cycles. Whether operating 

on a 60-day or a 90-day cycle, performance steadily 

improves, and the upward trend persists as the cycle 

lengthens—even over a full nine-month period. This 

demonstrates that the DDPG-derived program sustains 

efficient progression without inducing excessive fatigue 

or undertraining. 

To further enhance strategy generation, we integrate 

an LSTM network whose memory units excel at capturing 

long-term dependencies in sequential data. By learning 

from historical game statistics, athlete performance 

metrics, opponent profiles, and situational context, the 

LSTM produces personalized, dynamically adjusted game 

plans that anticipate and respond to sudden developments 

on the court. We evaluated this capability via a simulated 

basketball playoff series—each team rotating through 

eight active players with no additional substitutions—

comparing the LSTM-generated tactics against 

conventional coaching strategies to assess effectiveness 

under playoff conditions. 

 

Table 4: Strategy generation 

Game Stage Traditional Strategy LSTM-Generated Strategy 

Opening Phase 
Focus on defense, stabilize 

offense 

Adjust offensive strategies 

based on opponent's analysis, 

reduce errors 

Mid-Game Phase 
Fixed offensive tactics, 

enhance defense 

Adjust strategies, optimize 

offense-defense transitions based 

on athlete fatigue 

Critical Moment 

(Last 5 Minutes) 

Concentrate on offense, 

prioritize key players 

Adjust tempo based on score 

difference, optimize substitutions 

Last 30 seconds 
Emphasize the last attack and 

concentrate all players on the attack 

Optimize offensive 

strategies and choose the best 

attack point according to the 

opponent's defensive 

characteristics 
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Table 4 shows the strategies for each stage generated 

by the two different methods, and different strategies are 

formulated for different scenarios. 

 

 
Figure 6: Match score trend 

 

Figure6 compares quarter-by-quarter scoring under 

the LSTM-generated strategy versus a traditional 

approach. The team employing the LSTM-driven tactics 

saw a consistently upward trajectory—outscoring the 

opposition in each period and finishing with 104 points—

demonstrating both a higher overall yield and more stable 

offensive performance across all four quarters. In contrast, 

the traditional strategy resulted in a sluggish start, with the 

team trailing early and ending at 91 points; its scoring 

curve was uneven, reflecting an inability to adapt 

effectively to shifting game rhythms. These results 

underscore the LSTM model’s capacity to tailor in-game 

decisions to evolving contexts, producing robust, 

scenario-specific strategies that translate into tangible 

competitive advantages. 

 

6   Discussion 
The results of this study demonstrate the 

effectiveness of the DDPG-based DRL model in 

optimizing athlete training plans and generating 

personalized competition strategies, showing substantial 

improvements over traditional methods. Specifically, the 

model’s ability to handle continuous action spaces and 

real-time data feedback allows for dynamic adjustments to 

the training load, ensuring that the Training Stress Balance 

(TSB) remains within a positive range, thus preventing 

overtraining or undertraining. This is a significant 

advancement compared to earlier studies that utilized 

methods such as Q-learning and DQN (Singh B [18], 

Huang R [19]), which struggled to manage continuous 

action spaces and often led to static adjustments in training. 

The performance comparison between the DDPG 

algorithm and traditional methods, as shown in Figure 4, 

highlights a consistent superiority of the DDPG approach 

in maintaining a balanced TSB throughout the training 

cycle. Traditional optimization models, such as MAS 

(Multi-Agent Systems) and Genetic Algorithms (GA), 

faced challenges in keeping the training load balanced 

over time, especially when dealing with longer training 

cycles, as indicated by the decline in performance (Zheng 

C [16], Cronin N J [17]). 

The LSTM-based strategy generation, which is 

combined with DDPG in this paper, also contributes 

significantly to improving the game strategies. As shown 

in Table 3 and Figure 6, the strategies generated by the 

LSTM model led to a 13-point improvement in the 

simulated basketball playoff scenario, outperforming the 

traditional strategies. This confirms that LSTM’s ability to 

process time-series data provides a more adaptive and 

responsive strategy, especially in real-time competitive 

settings, compared to the more rigid traditional 

approaches (Tran L [21]). 

In the context of previous research, this study's 

novelty lies in its ability to combine DDPG for continuous 

action space optimization and LSTM for time-series 

strategy generation, addressing the limitations of earlier 

models that either lacked the ability to adapt in real-time 

or failed to handle complex training decision-making 

processes. This combination of algorithms allows for not 

only personalized training optimization but also the 

dynamic generation of competition strategies, which has 

not been fully explored in prior work. 

Furthermore, unlike studies that used psychological 

or physiological data (Romaniszyn P [1], Demsar U [2]), 

which often lacked flexibility or real-time adjustments, 

our approach offers an intelligent, self-adjusting system 

capable of personalizing both training and competitive 

strategy, based on a deeper understanding of an athlete's 

real-time performance. 

This paper contributes to the field by presenting an 

integrated framework that overcomes the dynamic 

training challenges and personalization gaps found in 

traditional and earlier machine learning-based approaches, 

thereby setting a new standard for intelligent sports 

training systems. 

 

7   Conclusions 
This study demonstrates that the DDPG-generated 

training regimen effectively mitigates both overtraining 

and undertraining, maintains an optimal balance between 

workload and recovery, and consequently enhances 

athletic performance. By monitoring Acute Training Load 

(ATL), Chronic Training Load (CTL), and Training Stress 

Balance (TSB), we show that the DDPG plan keeps TSB 

consistently positive—indicating adequate recovery and 

the avoidance of deleterious fatigue. Compared with 

traditional optimization methods, the DDPG approach 

delivers greater stability over extended training cycles, 

adapts responsively to individual athlete needs, and yields 

superior training outcomes. 

Similarly, the LSTM-derived game strategies 

achieve high success rates in practice, dynamically 

adjusting tactics across game phases and outperforming 

conventional models. Through head-to-head comparisons, 

we find that the LSTM framework responds more flexibly 

to in-game contingencies, optimizes critical decisions—

such as offense-to-defense transitions and substitution 

patterns—and markedly increases win probability. 

Nonetheless, several limitations remain. First, 

although DDPG prevents excessive fatigue, it may 

underperform under atypical conditions—such as athletes 

with unusually slow recovery or unusually low training 

tolerance—if individual variability is not fully captured. 

Second, while the LSTM strategy generator exhibits 
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robust dynamic adjustment, its decision granularity 

warrants further refinement, particularly under extreme 

game scenarios where strategy resilience is paramount. 

Third, our validation over specific cycle lengths and a 

limited athlete cohort may not extrapolate to longer 

durations or broader populations; additional field trials 

and model calibration are needed. Therefore, before 

widespread adoption, further exploration and optimization 

in diverse, real-world settings are essential. 
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