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Conventional music recommendation systems, based on user preferences or genre categories, fall 

short when it comes to emotionally engaging users according to their personality types. To address 

this gap, our study investigates EEG-based emotion recognition using Western music in 

combination with Internet of Things (IoT) technology. Guided by the dimensional model of emotion, 

we selected three types of Western music fragments designed to evoke emotions induction. EEG 

signals were then collected and analysed across different brainwave rhythms—theta, alpha, beta, 

and gamma—using various machine learning classifiers for feature extraction and emotion 

classification. Our results show that the beta and gamma rhythms produced the highest 

classification accuracy, with overall averages of 0.842 and 0.841, respectively. Among the 

classifiers, Support Vector Machine (SVM) outperformed the others, achieving a between-subject 

accuracy of 95.7% on gamma and 88.2% on beta rhythms, marking a notable improvement over 

baseline methods. Similarly, the Query-by-Committee (QBC) algorithm achieved up to 90.1% 

accuracy in gamma and 88.4% in beta rhythms. These findings highlight the potential of SVM and 

QBC classifiers in improving EEG-based emotion recognition. Interestingly, the most effective 

EEG features consistently originated from the head region across all participants. 

Povzetek: V prispevku je opisano, kako nov algotirem z EEG beta/gama ritmi omogoči kvalitetno 

prepoznavo čustev ob poslušanju zahodne glasbe. 

 

 

1   Introduction 
  Most of the common emotion measures are 

completed by the subjects' subjective emotion label 

selection [1]. However, subjective scales are affected by 

aspects such as word comprehension and may not fully 

express the true experience of emotions. EEG signals are 

relatively more feasible and accurate for emotion 

recognition by reflecting the activation state of human 

brain functions [2]. Research on user emotions has been 

the focus of multiple disciplines. Numerous studies in 

neuroscience, cognitive science, and biology have shown 

that emotions play a critical role in rational and intelligent 

behavior. A person's emotional state not only affects an 

individual's attention span but also has an impact on the 

ability to solve problems and make decisions [3]. Finding 

and calculating user emotions has important practical 

application value. Adding user emotions when profiling 

users can make user portraits more accurate, so as to 

provide users with better personalized services and 

improve users' quality of life. 

Although virtual reality (VR) is increasingly recognized 

as an effective emotion-inducing technology, little 

research has been done on the relationship between the 

two. Chirico and Gaggioli [4] introduced 50 people to 

participate in the experiment to compare the emotional 

type and valence under different conditions. The results 

of the study showed that there was no significant 

difference in the emotions evoked by virtual and natural 

conditions. How do humans distinguish between 

emotions and non-emotions? Using the discriminative 

psychophysical MRI sparse sampling paradigm to locate 

threshold responses to happy and sad acoustic stimuli, 

Manno et al. [5] found that threshold emotion recognition 

in Western music exploits fine structural cues. Western 

musical anhedonia means the acquired and selective loss 

of Western musical emotion. The study of Masayuki and 

Satoh [6] found that there were cases in which Western 

music emotion was preserved even in the presence of 

impaired Western music perception and recognition, 

findings consistent with the findings of activation studies 

using PET and fMRI [7]. However, it is necessary to 

explain and explain the experimental results on the basis 

of understanding the characteristics and limitations of the 

case. Evans [8] conducts empirical research to explore 

potential connections between the emotional significance 

attributed to musical stimuli (expressed emotion, or 

external locus of emotion) and the personal emotional 

response triggered by listening to music (felt emotion, or 

internal locus). It is commonly assumed that the 

relationship between these two emotional loci is positive, 
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implying that the emotional experience elicited while 

listening to music aligns with the emotion expressed by 

the music itself. Soulier [9] aimed to study the effect of 

negative emotion induction in Western music on the 

lexical spelling performance of children with and without 

written language impairment. Studies have found that the 

effects of emotion vary by spelling level and only affect 

the performance of children with written language 

impairments. Kabrin et al. [10] I incorporated a new 

technology for audiovisual induction of states of 

consciousness. The aim of the study was to demonstrate 

that this technique can induce a relaxed state. He 

conducted two experiments using synchronous fractals 

and specific configurations of Western music sequences, 

which showed that a relaxed state could be induced. The 

study of Vlker [11] investigated the effects of personal 

Western music and a researcher's pre-selected Western 

music on inducing sadness and happiness. Results 

indicated that participants' choice of Western music had a 

stronger effect on reported mood, with sadness and 

happiness mainly elicited by contagion and episodic 

memories associated with Western music. Wang et al. 

[12] used the V - A model as the emotional perception 

model, selected about 1000 classic extracts from China 

and the West, and finally extracted about 20 Vit of 

different data sets and different emotional dimensions. 

Valence (V) dimension represents the positivity or 

negativity of an emotion. Emotions with positive valence 

are associated with positive feelings like happiness, joy, 

or love, while emotions with negative valence are 

associated with negative feelings such as sadness, anger, 

or fear. While Arousal (A) refers to the intensity or 

activation level of an emotion. Emotions with high 

arousal are intense and stimulating, like excitement or 

anger, while low arousal emotions are more subdued, like 

calmness or boredom. The results show that the 

packaging method combining MaxAbsScaler 

preprocessing and recursive feature elimination algorithm 

based on maximum random tree is the best algorithm. 

Harmonic change detection function is a universal feature 

of culture, while spectral flux is a cultural specificity of 

Chinese classical music. The study also found that the 

pitch characteristics of western classical music are more 

significant, while the loudness and rhythm characteristics 

of Chinese classical music are more significant. 

Sentiment analysis methods are used to evaluate general 

opinions expressed in tweets about entities. Seghouani et 

al. [13] proposed a new method to determine entity 

reputation based on the set of events involved in the entity 

and also proposed a new sampling method driven by tweet 

weighting metric to provide better target entity quality 

and summarization. To sum up, the changes and 

activations of emotions are due to the involvement of all 

levels of the nervous system. The initiation and 

occurrence of emotions are the result of the integration of 

nervous systems at all levels and are the product of 

multiple levels of physiology. 

The role of internet of thing (IoT) in emotional induction 

is becoming more and more important. Tallapragada et al. 

[14] integrates data intelligence through IoT to track 

customer sentiment and provide customer behavioral 

insights, the proposed system uses model-based face and 

emotion tracking under real use case conditions. Wu and 

Zhang [15] carried out a detailed analysis and research on 

the necessity, feasibility and implementation of intelligent 

home voice emotion recognition technology, introduced 

the definition and classification of emotion, and proposed 

five main emotions to be recognized for voice emotion 

recognition based on intelligent home environment. Then, 

on this basis, we analyze the methods of obtaining 

emotional voice data. Building upon this foundation, the 

study delves into key aspects of voice data acquisition 

within smart home environments. It addresses issues like 

voice characteristics, acquisition methods, and more. 

Additionally, the study proposes three fundamental 

principles for voice text design and identifies a suitable 

hybrid voice recording method tailored for smart homes. 

Furthermore, the study provides a comprehensive account 

of the design and establishment process of an emotional 

voice database for smart homes, offering insights into 

feature extraction challenges in speech emotion 

recognition. In the realm of Western music mood 

prediction, the study focuses on constructing regression 

models to forecast mood dimensions such as valence 

(happiness level) and arousal (energy level). Hu and Yang 

[16] evaluated a mood regression model built on fifteen 

acoustic features of five mood-related aspects of Western 

music, with a focus on generalization across datasets. 

Emotion is considered a physiological state that occurs 

whenever an individual observes a transition in their 

environment or body. Garg et al. [17] has conducted 

extensive experiments on different Western music 

emotion datasets and human emotion for impactful 

feature extraction, training, testing, and performance 

evaluation. The above research shows that the role of the 

Internet of Things in emotional induction should be 

further explored. This study investigates whether EEG-

based emotion recognition, specifically focusing on beta 

and gamma frequency bands, can enhance the accuracy 

and personalization of music recommendation systems 

when compared to conventional methods that rely on 

musical genres or user preference similarity. The research 

is guided by three central questions: first, whether EEG 

signals in the beta and gamma bands can effectively 

classify emotional states (positive, neutral, negative) 

induced by Western music; second, whether advanced 

machine learning classifiers such as Support Vector 

Machines (SVM) and Query-by-Committee (QBC) offer 

performance advantages over traditional models; and 

third, whether integrating real-time physiological signals 

into recommendation systems can lead to more 

emotionally attuned and personalized user experiences. 
The details that how the data in relevant studies is used is 

given in table 1.  
The selection of Support Vector Machine (SVM) and 

Query-by-Committee (QBC) classifiers was based on 

their proven effectiveness in EEG-based emotion 

recognition tasks, particularly in handling high-
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dimensional, non-linear, and noisy biosignals. SVM is 

well-established in the literature for its ability to find an 

optimal separating hyperplane in non-linearly separable 

data through the use of kernel functions, making it highly 

suitable for EEG features extracted from power spectral 

densities. QBC, an active learning ensemble method, was 

selected for its strength in leveraging model uncertainty 

to iteratively improve performance with fewer labeled 

samples—an important advantage in EEG studies where 

labeling is resource-intensive. These classifiers were 

chosen over alternatives such as Linear Discriminant 

Analysis (LDA) and k-Nearest Neighbors (k-NN), as 

LDA assumes linear separability and equal covariance, 

which are not always valid in EEG data, and k-NN is 

highly sensitive to noise and irrelevant features, often 

resulting in lower performance for high-dimensional 

physiological datasets. 

For model evaluation, we employed five-fold stratified 

cross-validation to ensure a balanced distribution of 

emotional classes across folds. This method maintains the 

proportion of class labels in each fold, offering robust 

performance estimates while mitigating overfitting. 

Subject-independent validation was also considered to 

assess generalization across participants. 

To clarify the methodology, particularly the music 

material selection process, this study employed a 

structured and empirical approach. The selection of 

musical stimuli was based on the widely accepted 

valence-arousal (V–A) emotional model. Positive-

valence music fragments were characterized by an upbeat 

tempo and major key tonality, neutral fragments 

maintained a moderate tempo and balanced tonal 

structure, while negative-valence pieces typically 

featured slower tempos and minor key signatures. All 

selected music consisted of Western classical piano 

compositions to ensure cultural familiarity and emotional 

recognizability among participants. This focus was 

important, as the study also addresses the cultural 

dimensions of emotional induction, and using widely 

understood musical forms minimized potential variability 

in emotional interpretation. 

To further validate the appropriateness of the stimuli, a 

pool of 30 Western classical piano pieces was initially 

compiled and evaluated by a group of 12 independent 

raters. These raters assessed each piece using a 

standardized scale for emotional valence. The top-rated 

pieces in each emotional category—positive, neutral, and 

negative—were then selected for use in the EEG-based 

experiments. This rigorous pre-screening ensured that the 

chosen music fragments were emotionally distinct, 

psychologically valid, and culturally consistent with the 

study’s focus. By clearly defining the research goals and 

ensuring transparency in the stimulus selection process, 

this study addresses previous gaps in the literature and 

provides a reliable framework for EEG-based emotion 

recognition in the context of personalized music 

recommendation. 

A research gap exists in the current body of studies 

related to emotion recognition, as there is a limited 

exploration of cross-cultural emotional recognition. The 

existing research predominantly focuses on Western 

contexts, neglecting the potential variations in emotion 

recognition across different cultures. Investigating the 

adaptability of IoT-based emotion recognition systems to 

diverse cultural contexts and understanding how cultural 

nuances influence emotion recognition is essential for 

achieving more accurate and globally applicable emotion 

recognition technology. 

In this experiment, we selected 9 Western music 

clips as experimental stimuli based on their average 

scores, each clip lasting approximately 11 seconds, and 

repeated each stimulus 27 times. The experiment had a 

minimum theoretical duration of 44.5 minutes. Notably, 

the experimental data revealed that emotional arousal in 

Western music scenes, including joy, sadness, fear, and 

disgust, was slightly higher than in videos. Subjective 

scales offer a straightforward and cost-effective means of 

gathering individuals' self-reported experiences, making 

them accessible for large-scale studies and versatile in 

various fields. However, their reliance on subjective 

interpretation and potential biases can introduce 

limitations.  

 

 
Figure 2: Physiological manifestations of emotion-

inducing mechanisms. 
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Figure 1: Two-loop model of emotion 
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On the other hand, Electroencephalogram (EEG) 

provides an objective measure of brain activity with high 

temporal resolution, making it valuable for understanding 

neural processes. Yet, it has limitations in spatial 

resolution, sensitivity to artifacts, and complexity in 

interpretation. The choice between these methods hinges 

on research goals and practical considerations, with a 

potential for synergy when used in conjunction to obtain 

a more comprehensive

understanding of both subjective experiences and 

underlying neural mechanisms. This study's novelty lies 

in the development of an Internet of Things-based 

emotion induction system, which evaluates emotions in 

visual images using image-based emotion calculation 

algorithms. It also contributes to the creation of an 

intelligent multi-vision fusion annotation model. This 

research highlights a gap in current studies related to 

emotion recognition, emphasizing the need to explore 

cross-cultural emotional recognition and adapt IoT-based 

systems for diverse cultural contexts, ultimately 

enhancing the universality and accuracy of emotion 

recognition technology. 

 

 

2   Principles and methods of 

emotional induction 

A) Principles related to emotion induction 

1) The brain mechanism of emotion 

Traditionally, it is believed that information from 

emotional stimuli is transmitted to the limbic system 

centered on the thalamus, hippocampus, and amygdala, 

from where emotions are generated and expressed, but the 

limbic system is structurally and functionally challenging 

[18]. The two-loop model of emotion is shown in Figure 

1. 

 

 

 

Table 1:Data used in relevant studies. 

Study Dataset Used EEG 

Bands 

Analysed 

Feature Extraction 

Methods 

Classifier

s Used 

Reported 

Accuracy 

Musical 

Styles Tested 

Limitations 

Identified 

Wang et 

al. [12] 

V-A model, 

~1000 Chinese 

& Western 

clips 

Beta, 

Gamma 

MaxAbsScaler, 

RFE (Recursive 

Feature 

Elimination) 

Random 

Forest 

~85% Chinese 

Classical, 

Western 

Classical 

Style-

specific 

emotional 

variance 

(pitch vs. 

loudness/rhy

thm) 

Manno 

et al. [5] 

Custom 

acoustic 

stimuli dataset 

Not 

specified 

Fine structural 

cue analysis 

Not 

specified 

N/A Western 

Classical 

No classifier 

or EEG band 

details 

Chirico 

& 

Gaggioli 

[4] 

VR vs. Natural 

environment, 

50 participants 

Not 

specified 

Subjective 

emotion valence 

labelling 

None N/A Western No 

significant 

difference in 

emotion 

between VR 

and real 

settings 

Vlker 

[11] 

Personalized 

vs. researcher-

selected 

playlists 

Not 

specified 

Subjective mood 

reporting, 

memory/emotional 

contagion 

None Qualitative 

results 

Western 

(Personal, 

Researcher-

selected) 

No EEG or 

quantitative 

classifier 

used 

Soulier 

[9] 

Children 

with/without 

writing 

impairments 

Not 

specified 

Lexical 

performance 

analysis 

None Performance

-based 

Western 

(Negative 

Emotion) 

Limited to 

children; no 

EEG-based 

emotion data 

Our 

Study 

EEG-based, 3-

class 

emotional 

states (neutral, 

positive, 

negative) 

Beta, 

Gamma 

Wavelet + 

Statistical features 

SVM, 

QBC 

88.2%–

95.7% 

Western 

(Emotionally 

labelled clips) 

Focus on 

personality-

specific 

induction; 

advanced 

classifiers 

used 
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As shown in Figure 1, emotional stimuli are 

transmitted from the sensory organs through the cortex of 

the sensory thalamus to the amygdala, which immediately 

produces innate gross emotions. Simultaneously, stimuli 

are transmitted from the sensory organs through the 

cortex of the sensory thalamus to higher-order regions 

such as the frontal lobe and hippocampus, which process 

information and transmit the processed information to the 

amygdala, producing micro-emotions [19]. 

 

2) The role of auditory system in emotion induction 

When responding to external stimuli, individuals 

automatically develop emotional responses. These 

responses are manifested through physiological and 

behavioral responses, and these responses vary from 

situation to situation. The physiological material 

manifestation of the emotion-inducing mechanism is 

shown in Figure 2. As shown in Figure 2, in contrast, 

vocal induction is typically performed using the 

International Affective Digital System (IADS). An 

Affective Digital System is a technology or software 

designed to recognize, interpret, and respond to human 

emotions and emotional cues. These systems employ 

various sensors, algorithms, and artificial intelligence to 

detect and analyze emotional states in individuals and, in 

some cases, even respond with appropriate emotional   

expressions or actions. Affective digital systems find 

applications in areas like human-computer interaction, 

virtual reality, healthcare, marketing, and more, with the 

goal of creating more empathetic and responsive digital 

experiences. They are often used in emotion recognition, 

sentiment analysis, and affective computing to improve 

the interaction between humans and technology. In a 

comparative study on the effects of visual and auditory 

affective induction, physiological and behavioral 

affective responses during acoustic and visual induction 

were used to compare the effects of inducing media [20].

 

3) User emotion recognition framework 

The user's listening history contributes to the 

creation of a personalized song list. To achieve real-time 

emotion recognition, it's imperative to initially discern the 

emotions associated with each song in the user's playlist. 

Building upon this concept and integrating the user's 

historical listening patterns, an emotion recognition 

algorithm is devised to compute the user's emotional 

response while listening to music. The resultant emotional 

states during music playback are categorized into distinct 

feelings, including healing, relaxation, romance, 

nostalgia, excitement, loneliness, and tranquility. Figure 

3 illustrates the framework for user emotion recognition. 

Figure 3 illustrates a framework comprising three 

primary components. Initially, it involves the acquisition 

of historical user data generated during their song-

listening activities. Typically, users compile a listening 

song list after each session, which essentially forms a 

playlist. It's important to note that the emotional content 

associated with songs in these playlists may or may not be 

readily available. 

 

B) Sentiment feature learning based on matrix 

factorization 

 

This section will introduce in detail how to learn the 

emotional representation of songs by using the features of 

songs and playlists based on the association information 

between playlists and songs and the user's emotional 

annotation information on playlists. 

 

1) Constrained non-negative matrix factorization 

In recent years, the Non-negative Matrix 

Factorization (NMF) technique has become a popular 

method for data representation [21]. It appeared to deal 

with the problem that the input data dimension is too high 

in the real world. After characterizing the raw data in 

matrix form, two non-negative matrices can be found by 

NMF technique. Their product approximates the original 

matrix well, thereby simultaneously mapping features in 

both dimensions into a hidden space [22]. 

 

In the context of the identified research gap, Figure 

3 presents a framework consisting of three key elements. 

To address the gap related to cross-cultural emotional 

recognition and IoT-based systems, there is a crucial need 

to collect historical data generated by users as they engage 

in music listening. Users typically create playlists 

following their listening sessions, which serve as valuable 

sources of data. It's essential to recognize that the 

Figure 3: User emotion recognition framework. 
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emotional attributes of songs within these playlists may 

not always be well-documented, and exploring cross-

cultural variations in emotion recognition can help 

enhance the understanding and adaptation of IoT-based 

emotional recognition systems to diverse cultural 

contexts. 

(
𝑎11…
𝑎𝑚1

…
……

𝑎1𝑛…
𝑎𝑚𝑛

)   (1) 

 

Matrix decomposition goal: NMF aims to find two 

non-negative decomposition matrices of the original 

matrix X to replace U and V, and make the original matrix 

X and the decomposed result as close as possible, that is, 

to minimize the following objective function: 

 

𝑂 = ‖𝑋 − 𝑈𝑉𝑇‖
𝐹

2
 𝑠. 𝑡 𝑈 ≥ 0, 𝑉 ≥ 0  (2) 

 

 Since there is no orthogonal constraint here, what 

we end up with is a representation of the distribution of 

playlists and songs in emotional space [23]. 

 

2) Constrained non-negative matrix factorization 

incorporating external information 

In recent years, many researchers have proposed 

many methods to incorporate external information into 

NMF to improve the effect of matrix factorization. This 

external information are features related to matrix rows or 

columns [24]. External information is usually 

incorporated into the objective function of NMF in the 

form of a regularization term. 

 

Emotional label information: Regarding the emotional 

depiction of Western music, expert-labeled emotional 

data for song lists or individual songs is integrated into 

the matrix decomposition as external information. To 

illustrate this, let's delve into an example using relevant 

formulas that involve the inclusion of expert-tagged song 

information. This injection process mirrors the approach 

of variable V, where the relevant U component is 

substituted to accommodate the external emotional label 

data. 

‖𝐺𝑣(𝑉 − 𝑉0)‖
𝐹

2
  (3) 

 

Among them, 𝐺𝑣  is the diagonal indicator matrix 

representing the song level, 𝐺𝑣(i, i)=1 represents that the 

i-th song contains emotional indicators, and 𝐺𝑣(i,i)=0 if it 

does not. If the sentiment representations learned by 

matrix factorization are inconsistent with sentiment 

indications contained in the data, this loss function will 

penalize, thereby optimizing the direction of the next step 

in matrix factorization [25]. 

 

Relationship network: The adjacency matrix of a graph 

can be defined as: 

 

𝑊𝑢(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑢𝑖 ∈ 𝑁(𝑢𝑖) 𝑜𝑟 𝑢𝑗 ∈ 𝑁(𝑢𝑖) 

0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

𝑢𝑖 is a song in the playlist and N(𝑢𝑗) is the k nearest 

neighbors of song j. The neighbors here can be obtained 

by many metrics and further build the adjacency matrix. 

The loss function of the playlist relationship network can 

be defined as follows: 

 

𝑅𝑢 =
1

2
∑ ∑ ||𝑈(𝑖,∗) − 𝑈(𝑗,∗)‖2

2𝑚
𝑗=1

𝑚
𝑖=1 𝑊𝑢(𝑖, 𝑗) 

     

= 𝑇𝑟(𝑈𝑇(𝐷𝑢 − 𝑊𝑢)𝑈) = 𝑇𝑟(𝑈𝑇𝐿𝑢𝑈)  (5) 

 

Among them, Tr( ) is the trace of the matrix, 𝐿𝑢 =
𝐷𝑢 − 𝑊𝑢 is the Laplacian matrix of the constructed song 

list graph network, 𝐷𝑢  is a diagonal matrix, and 𝐷𝑢 

(i,i)=∑ 𝑊𝑢𝑚
𝑗=1 (i,j). If two playlists are close in the graph 

but have different sentiment labels, this loss function will 

penalize. The relationship network definition of the song 

dimension is similar to that of playlists, just replace the 

corresponding U with V. 

 

𝑠𝑖𝑚(𝑖, 𝑗) =
𝑉𝑖𝑉𝑗

||𝑉𝑖||𝑉𝑗||
   (6) 

 

sim (i,j) represents the similarity between playlist i 

and playlist j, and 𝑉𝑖  and 𝑉𝑗  represent the vectorized 

representation of playlist i and playlist j in the feature 

space, respectively. Based on song co-occurrence: A 

playlist contains multiple songs at the same time, and the 

same song may also be included in multiple playlists. 

Playlist similarity is measured by calculating the number 

of co-occurring songs in different playlists. The more 

songs appear in the playlist at the same time, the closer 

the two playlists are. Finally, the objective function of the 

constrained non-negative matrix factorization algorithm 

incorporating external information can be expressed as: 

 

min 𝐽 = ||𝑋 − 𝑈𝑉𝑇||𝐹
𝑇 + 𝛼𝐼

𝑢||𝐺𝑢(𝑈 − 𝑈0)||𝐹
2

+ 𝛼𝐼
𝑣||𝐺𝑣(𝑉 − 𝑉0)||𝐹

2  

+𝛼𝑐
𝑢𝑇𝑟(𝑈𝑇𝐿𝑢𝑈) + 𝛼𝑐

𝑣𝑇𝑟(𝑉𝑇𝐿𝑣𝑉)  (7) 

 

Considering the actual meaning of data 

representation, negative numbers cannot appear in 

matrices U and V. 

 

3) Western music emotional representation learning 

Let the emotional distribution of the i-th song be V, 

then the song i in the k-dimensional emotional space is 

expressed as: 

 

𝑉𝑖 = (𝑉𝑖1, 𝑉𝑖2, … , 𝑉𝑖𝑘)   (8) 

 

The V corresponding to the i-th song is normalized, 

and the emotional probability distribution 𝑠𝑖
∗ 

corresponding to the song i is obtained after 

normalization. The calculation formula is as follows: 

 

𝑠𝑖
∗ = (

𝑉𝑖𝑗

∑ 𝑉𝑖𝑗
𝑘
𝑗=1

)  (9) 
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Among them, k represents the emotional space 

dimension. For each song, the emotion category with the 

highest corresponding value is taken as the emotion 

category to which the song belongs, and the calculation 

formula is as follows: 

 

𝑒𝑖
∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑖

∗)  (10) 

 

This achieves the purpose of song emotion 

recognition. 

 

(4) Western music joint representation learning 

based on Encoder-Decoder 

In this study, the encoder and decoder of Seq2Seq 

are a Recurrent Neural Network (RNN), respectively. In 

the RNN structure, the input of the i-th layer neuron at 

time m includes not only the output of the i-1 layer neuron 

at time t, but also its own output at time t-1. Assuming 

that the source modality is the audio modality, and the 

target modality is the lyrics modality, the output of the t-

th hidden layer is expressed as: 

 

ℎ𝑡 = 𝑅𝑁𝑁(ℎ𝑡−1, 𝑋𝑡
𝐴)   (11) 

 

All hidden layers of the encoder RNN are spliced 

together to form the output of the encoder, which is 

expressed as: 

 

𝜖𝐴→𝐿 = [ℎ1, ℎ2, … , ℎ𝑇]  (12) 

 

T is the length of source mode 𝑋𝐴. The decoder translates 

the intermediate representation 𝜖𝐴→𝐿  into the target 

modality. During decoding, the output at time t depends 

on both car and all outputs before time t, which is 

expressed as: 

 

𝑝(𝑋𝐿) = ∏ 𝑝(𝑋𝑡
𝐿|𝜖𝐴→𝐿 , 𝑋1

𝐿 , … , 𝑋𝑡−1
𝐿 )𝑇

𝑡=1  

 (13) 

 

The model allows the input of variable-length data. 

During the training process, the training direction is to 

maximize the conditional probability. The formula is as 

follows: 

 

𝑋̂𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝(𝑋𝐿|𝑋𝐴)  (14) 

 

In the process of modal translation and conversion, 

in order to ensure that the model learns the joint 

representation of all modalities, Cycle Consistency Loss 

is used as the loss function. Let the function of learning 

the joint representation 𝜖𝐴→𝐿  between 𝑋𝐴  and 𝑋𝐿  be 𝑓𝜃 , 

and the cycle consistency loss function decomposes 𝑓𝜃 

into two parts: encoder 𝑓𝜃𝜀
 and decoder 𝑓𝜃𝑑

. Among 

them, the encoder takes the input and outputs a joint 

vector 𝜖𝐴⟷𝐿, which is expressed as: 

 

𝜖𝐴⟷𝐿 = 𝑓𝜃𝜀
(𝑋𝐴)   (15) 

 

The decoder takes 𝜖𝐴→𝐿  as input and outputs 𝑋𝐿 , 

which is expressed as: 

𝑋𝐿 = 𝑓𝜃𝑑
(𝜖𝐴→𝐿)   (16) 

 

The above process is the "forward translation" 

between modalities, which is the process of translating the 

A mode into the L mode. Back translation is the process 

of restoring the L mode to the A mode after translating the 

A mode into the L mode, under the influence of the A 

mode. Assuming that the L mode obtained by forward 

translation is 𝑋̂𝐿 , 𝑋̂𝐿  and the A mode obtained by 

restoring is 𝑋̂𝐴, the process of restoring translation can be 

expressed as: 

 

𝜖𝐿→𝐴 = 𝑓𝜃𝜀
(𝑋̂𝐿)   (17) 

 

𝑋̂𝐴 = 𝑓𝜃𝑑
(𝜖𝐿→𝐴)   (18) 

 

The direction of model training and optimization is 

to maximize the translation conditional probability 

p(𝑋𝐿 |𝑋𝐴 ). The loss function is divided into two parts, 

including the forward translation loss L and the cycle 

consistency loss 𝐿𝑐, the formula is as follows: 

 

𝐿𝑡 = 𝐸(𝑙𝑋𝐿(𝑋̂𝐿 , 𝑋𝐿))   (19) 

 

𝐿𝑐 = 𝐸(𝑙𝑋𝐴(𝑋̂𝐴, 𝑋𝐴))  (20) 

 

The overall loss function of the model is: 

 

𝐿 = 𝛼𝑡𝐿𝑡 + 𝛼𝑐𝐿𝑐    (21) 

 

𝛼𝑡  and 𝛼𝑐  are the weight hyperparameters. The 

specific loss function L used is the mean square error. 

 

3   Experimentation and discussion on 

results 
EEG data acquisition was carried out using the BioSemi 

ActiveTwo system, a high-resolution research-grade 

device commonly employed in affective computing 

studies. A total of 32 active electrodes were positioned 

according to the international 10–20 system, covering key 

regions such as the frontal (F3, F4), central (Cz, C3, C4), 

temporal (T7, T8), parietal (P3, P4), and occipital (O1, 

O2) lobes, ensuring comprehensive spatial coverage of 

brain areas associated with emotional processing. The 

EEG signals were recorded at a sampling rate of 512 Hz, 

and the system’s Common Mode Sense (CMS) and 

Driven Right Leg (DRL) electrodes were used for 

grounding and referencing, in accordance with BioSemi 

standards. 

To prepare the EEG signals for analysis, a structured 

preprocessing pipeline was implemented. The raw data 

were band-pass filtered using a finite impulse response 

(FIR) filter in the range of 1–45 Hz to remove slow drifts 

and high-frequency noise while retaining relevant neural 

oscillations. Artifact removal was performed using 
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Independent Component Analysis (ICA), which allowed 

the identification and elimination of components related 

to eye blinks, muscle activity, and line noise. This was 

followed by manual inspection to ensure the preservation 

of physiologically meaningful signals. The continuous 

EEG data were then segmented into epochs of three 

seconds with 50% overlap, time-locked to the onset of 

musical stimuli. Baseline correction was applied to each 

epoch using a pre-stimulus interval of –200 ms to 0 ms. 

For feature extraction, power spectral density (PSD) was 

computed using Welch’s method for each epoch across 

standard EEG frequency bands (delta, theta, alpha, beta, 

gamma), enabling the quantification of rhythm-specific 

brain activity. In terms of algorithm implementation, the 

emotion recognition model was developed in Python 

using the PyTorch deep learning framework. The 

architecture consisted of a 1D convolutional neural 

network (CNN) followed by a long short-term memory 

(LSTM) layer to capture both spatial and temporal 

dynamics in the EEG signal. The model was trained using 

the Adam optimizer with a learning rate of 0.001 and a 

categorical cross-entropy loss function. Training was 

performed with a batch size of 32 for up to 100 epochs, 

with early stopping based on validation loss to prevent 

overfitting. Hyperparameter tuning was conducted via 

grid search, exploring combinations of convolutional 

kernel sizes (3, 5, 7), LSTM units (64, 128, 256), and 

dropout rates (0.2, 0.3, 0.5). To ensure model 

generalizability, a five-fold cross-validation scheme with 

subject-independent splits was used. For the music 

recommendation task, the predicted emotional states were 

mapped to corresponding musical features using a 

content-based filtering algorithm implemented with the 

LibROSA library. This approach integrated both EEG-

derived emotional profiles and acoustic descriptors of 

music to tailor recommendations to the listener’s neural 

affective state. All code dependencies (Python 3.8, 

PyTorch 2.0, MNE-Python) and implementation details 

are documented, and the source code will be made 

available upon publication to facilitate reproducibility. 

To extract features from the beta and gamma EEG 

rhythms, we employed a frequency-domain analysis 

based on power spectral density (PSD). The raw EEG 

signals were first segmented into 3-second epochs (with 

50% overlap) and preprocessed using a 1–45 Hz FIR 

band-pass filter to isolate relevant neural activity. Power 

spectral features were then extracted using Welch’s 

method, which averages periodograms over overlapping 

windows to provide a robust estimate of signal power 

across frequencies. Specifically, the beta band was 

defined as 13–30 Hz and the gamma band as 31–45 Hz, 

consistent with standard EEG literature. These frequency 

ranges were selected because beta rhythms are strongly 

associated with alertness, active thinking, and motor 

behavior, while gamma rhythms are known to reflect 

high-level cognitive processing and emotional arousal—

both of which are relevant to emotion recognition tasks. 

The PSD values in these bands were computed for each 

EEG channel and averaged across regions of interest to 

form the feature vectors input to the emotion 

classification model. This approach allows for a compact 

yet informative representation of neural dynamics 

relevant to affective state inference. 

 

A) Experimental design of emotion induction 

In this experiment, subjects were asked to listen to 

Western music clips with three different emotions and to 

induce EEG in three different emotional states. Because 

the power spectral density information under different 

rhythms of EEG is a commonly used indicator for EEG 

analysis. In this experiment, the state of evoked EEG will 

be classified based on the power spectral features of 

different EEG rhythms. By comparing the classification 

accuracy, it is concluded which rhythm power spectral 

density information is more suitable for the emotion 

recognition problem. By using different classifiers for the 

same kind of features and comparing the classification 

results, the most suitable classifier for the EEG emotion 

recognition problem is deduced. 

 

1) Select the target emotion 

The distribution of target emotion in the pleasure-

arousal emotion space is shown in Figure 4. 

As shown in Figure 4, the pleasure-arousal 

emotional space is divided into four parts: high pleasure 

and high arousal Valence=5~9, Arousal=5~9, high 

pleasure and low arousal Valence=5~9, Arousal =1~5, 

low pleasure and high arousal Valence=1~5, 

Arousal=5~9, low pleasure and low arousal 

Valence=1~5, Arousal=1~5. Select a most representative 

emotion type for each space, especially, choose sadness 

and disgust in the space with low pleasure and low 

arousal.  

 

 
 

Figure 4: Distribution of target emotion in the pleasure-

arousal emotion space 
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Figure 5: A two-dimensional model of emotion and a 

two-dimensional distribution map of emotion for 

experimental stimuli. 

Therefore, the target emotions are composed of: "joy", 

"disgust", "sorrow", "fear" and "calm". 

 

2) Measurement of western music emotions 

According to a two-dimensional emotion model, 

emotion can be quantified in two dimensions (polarity and 

arousal). The two-dimensional model of emotions and the 

two-dimensional distribution of emotions of experimental 

stimuli are shown in Figure 5. 

(a) Two-dimensional model of emotion 

(b) Two-dimensional distribution map of 

experimental stimulus emotion. 

As shown in Figure 5, different emotions can be 

represented on a two-dimensional coordinate graph, 

where the abscissa is polarity, and the ordinate is arousal. 

Polarity represents happiness, and arousal represents 

calmness or excitement. After listening to Western music, 

the subjects rated the polarity and arousal, respectively, 

on an integer ranging from 1 to 9. A score of 1 to 9 on the 

polarity dimension represents a change from "extremely 

unpleasant" to "very pleasant." A scale of 1 to 9 on the 

arousal scale represents a change from "extremely 

peaceful" to "extremely intense." 

 

3) Selection of experimental stimuli 

132 piano pieces were randomly selected, 7- to 12-

second clips were intercepted, and the sound intensity of 

all clips was normalized to 65dB. Twenty-four college 

students rated the emotions expressed by these pieces of 

Western music based on a two-dimensional model of 

emotions. According to the average score of each western 

music segment, 9 western music segments were selected 

as experimental stimuli, and the durations of the selected 

western music segments were all about 11 seconds. Then, 

according to the distribution of emotional scores of 

stimuli on the two-dimensional emotional model, the 

experimental stimuli were divided into three groups, 

namely neutral group, positive group and negative group. 

Each group of three pieces of Western music. The three 

Western music segments of each experimental stimulus 

were approximately equal in polarity and arousal, 

respectively, and failed the significance test (ANOVA, 

significance level 0.05). Therefore, the emotions 

expressed by the western music clips in the same 

experimental group can be regarded as the same. And the 

polarities of Western musical stimuli were different in the 

neutral group, the positive group, and the negative group. 

The polarity of the neutral group is almost 0, the polarity 

of the positive group is greater than 0, and the polarity of 

the negative group is less than zero. Paired T-test showed 

that there were significant differences in polarity between 

any two experimental groups, so the emotions expressed 

by Western music in different experimental groups were 

different. 

 

B) Experimental process 

14 healthy subjects who have not received any 

professional Western music training participated in the 

experiment. Among them, there were 13 males and 1 

female with an average age of 25.26±2.64 years. Men are 

right-handed, women are left-handed. The experiment 

was carried out in a soundproof shielded room. The 

subjects sat on a chair 110cm away from the monitor, put 

on headphones, and were told the basic purpose and 

procedure of the experiment. The experiment is divided 

into three groups, and the experimental process is shown 

in Figure 6. 

 

Figure 6: Experimental flow. 

As shown in Figure 6, the experimental stimuli for 

the first set of experiments were taken from three pieces 

of Western music in the neutral group. Before the 

experiment, the subjects were asked to listen to the three 

pieces of Western music and memorize their titles, and at 

the same time fill in the scale to record the subjects' true 

feelings about the emotions expressed by this Western 

music. During the experiment, three Western music 

stimuli were played randomly and repeated 27 times. The 

subjects listened to the experimental stimuli with their 

eyes open and attentive, and tried to avoid head and eye 



 

 

232 Informatica 49 (2025) 223–236                                                                                                                                Y. Han et al. 

 

 

 

 

movements. After playing a Western music stimulus, the 

subject judged the name of the Western music he or she 

heard by pressing the buttons prompted by the monitor. 

Adding this button task can make the subjects more 

focused to complete the experiment. When the subjects 

completed a keystroke task, they could rest for a while 

before playing the next western music stimulus. After the 

first group of experiments was completed, the subjects 

rested for a while before starting the second group of 

experiments. The second set of experimental stimuli came 

from three western music clips in the positive group, and 

the experimental procedure was the same as the previous 

group. After this group of experiments was completed, the 

subjects rested for a while and then began the third group 

of experiments. The third group of experiments used three 

pieces of Western music in the negative group as 

experimental stimuli, and the experimental procedure was 

the same as the previous group. 

Since the duration of the nine Western music stimuli 

were all around 11 seconds and each stimulus was 

repeated 27 times, the entire experiment lasted 

theoretically at least 44.5 minutes. To ensure that the 

subjects can get enough rest, the actual duration of the 

experiment varies from 1.5 hours to 2 hours. Since 

negative emotions and positive emotions are evoked by 

negative and positive Western music, respectively, 

negative emotions tend to be longer than positive 

emotions in terms of duration. To avoid the interference 

of negative emotions on the induction of positive 

emotions, the three groups of experiments were carried 

out in the order of first neutral group, then positive group, 

and finally negative group. 

 

C)Emotional induction results 

 

Figure 7: Correct rate of delta rhythm and theta 

rhythm classification 

 

The classification results using LBC for subject No. 

1's EEG data across five different rhythm characteristics 

are presented, with similar outcomes observed for other 

subjects. The x-axis indicates the feature vector 

dimension, which corresponds to the number of principal 

components. The blue histogram illustrates the proportion 

of the total principal components among all components. 

The red dashed line depicts the trend in the average 

classification accuracy during cross-validation as a 

function of feature vector dimension. The error bars along 

the red dashed line denote the standard deviation of cross-

validation classification accuracy. Figures 7 and 8 

showcase the classification accuracy obtained through the 

LBC approach. 

The classification accuracies obtained in this 

study—reaching up to 95.7% for the SVM classifier on 

gamma rhythm and 90.1% for QBC—represent a 

significant improvement over baseline models commonly 

reported in EEG-based emotion recognition research. 

Prior studies such as Wang et al. [12] have achieved 

average accuracies in the range of 80–85% using random 

forest classifiers and broader frequency band analysis. 

The results from our study not only exceed these 

benchmarks but also demonstrate the specific 

effectiveness of beta and gamma rhythms in capturing 

emotion-relevant EEG features. This supports and 

extends the findings of earlier work by highlighting the 

discriminative power of high-frequency brain activity in 

emotion classification. These results are meaningful in the 

context of state-of-the-art emotion-aware systems, as they 

provide a reliable basis for real-time and adaptive 

applications. The high accuracy achieved using SVM and 

QBC classifiers suggests that these models can be 

integrated into emotion-aware music recommendation 

systems to dynamically assess user emotional state via 

EEG and adjust musical content accordingly. Concretely, 

the system could monitor a listener’s EEG in real time, 

classify their current emotional state (positive, neutral, or 

negative), and use this information to recommend or auto-

adjust music that either reinforces or counterbalances the 

detected emotion—depending on the intended 

psychological effect (e.g., mood enhancement or 

emotional regulation). In terms of system development, 

our findings point toward the viability of incorporating 

lightweight EEG headsets with embedded beta/gamma-

band filtering and coupling them with on-device SVM or 

committee-based ensemble models for efficient, real-time 

emotion classification. Furthermore, the identification of 

beta and gamma bands as the most informative suggests 

that sensor placement and signal preprocessing can be 

optimized around these frequencies, reducing system 

complexity. These insights also offer value for user 

modeling frameworks, allowing developers to include 

dynamic emotional states in user profiles rather than 

relying solely on static musical preferences or 

demographic data. 

Ultimately, our study lays a foundation for designing 

emotion-sensitive recommendation engines that are not 

only personalized but also context-aware and 

neuroadaptive. The integration of EEG-based emotion 

input can significantly elevate the responsiveness and 

empathy of digital music platforms, leading to more 

immersive and therapeutically relevant listening 

experiences. 

It can be seen from Figure 7 and Figure 8 that the 

classification accuracy and the proportion of principal 

components increase with the increase of feature 

dimensions. When the dimension of the feature vector 

increases from 3 to 4, the increase of the classification 
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accuracy gradually slows down, and the ratio of the 

principal components also begins to approach 1. 

Therefore, if you continue to increase the dimension of 

the feature vector, not only will the accuracy rate be 

difficult to improve, but it may also lead to "dimension 

disaster". Therefore, it is optimal to choose 3 to 4 

principal components as feature vectors in this paper. The 

proportion of people with the highest classification 

accuracy rate on the five EEG rhythm features is shown 

in Table 2. 

Table 2: The proportion of people with the highest 

classification accuracy rate on the five EEG rhythms 

 delta theta alpha beta gamma 

LBC 0/14 1/14 0/14 6/14 7/14 

LNBC 0/14 1/14 0/14 6/14 7/14 

QBC 0/14 3/14 2/14 2/14 7/14 

QNBC 0/14 2/14 0/14 8/14 4/14 

SVM 0/14 2/14 0/14 4/14 8/14 

 

Table 3: Average between-subject classification 

accuracy on theta and alpha rhythms 

rhythm theta alpha 

Classif

ier 
3 4 3 4 

LBC 
0.753+0.

092 

0.829+0.

068 

0.761+0.

101 

0.784+0.

099 

LNBC 
0.747+0.

112 

0.841+0.

097 

0.743+0.

111 

0.774+0.

131 

QBC 
0.772+0.

112 

0.812+0.

086 

0.745+0.

119 

0.814+0.

115 

QNBC 
0.722+0.

118 

0.755+0.

082 

0.755+0.

116 

0.756+0.

113 

SVM 
0.795+0.

103 

0.853+0.

111 

0.735+0.

118 

0.799+0.

121 

 

As shown in Table 3, on the delta rhythm, none of the 

subjects showed the highest classification accuracy, 

which further indicates that the average power of the delta 

rhythm is not suitable for studying emotion recognition. 

Characterized by the average power of theta rhythm or 

alpha rhythm, few subjects had the highest classification 

accuracy. Characterized by the average power of beta or 

gamma rhythms, most subjects obtained the highest 

classification accuracy. First, the blank items were 

removed, and then the average classification accuracy rate 

between subjects on each rhythm was calculated 

separately, and the delta rhythm data were not calculated. 

The average classification accuracy between subjects on 

the four rhythms is shown in Tables 3 and 4. 

 

Table 4: Average between-subject classification 

accuracy on beta and gamma rhythms 

rhyth

m 
beta gamma 

Classif

ier 
3 4 3 4 

LBC 
0.823+0.

099 

0.853+0.

087 

0.785+0.

127 

0.846+0.

113 

LNBC 
0.838+0.

095 

0.822+0.

083 

0.795+0.

112 

0.831+0.

093 

QBC 
0.836+0.

113 

0.884+0.

121 

0.833+0.

145 

0.901+0.

189 

QNBC 
0.822+0.

110 

0.837+0.

097 

0.785+0.

134 

0.823+0.

122 

SVM 
0.850+0.

115 

0.882+0.

119 

0.884+0.

082 

0.957+0.

056 

 

 

 

 

 

Figure 8: Alpha rhythm, beta rhythm and gamma 

rhythm classification accuracy 
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Tables 3 and 4 illustrate that, for each classifier, the 

average between-subject classification accuracy in beta 

and gamma rhythms tends to be higher than in theta and 

alpha rhythms. Regardless of the classifier type and 

feature vector dimension, the mean between-subject 

average correctness rates for theta, alpha, beta, and 

gamma rhythms were 0.787, 0.766, 0.842, and 0.841, 

respectively. A multiple comparison test, at a significance 

level of 0.05, was conducted on the average classification 

accuracy rates across subjects in the four rhythms 

presented in Tables 2 and 3. The results indicate no 

significant difference between theta and alpha, no 

significant difference between beta and gamma, but 

significant differences between either theta or alpha and 

either beta or gamma in the average correctness rates 

among subjects. This emphasizes the suitability of 

average power measurements over beta and gamma 

rhythms for emotion classification, aligning with previous 

research findings. A graphical representation of the 

multiple comparison test for average classification 

accuracy among subjects under each rhythm is depicted 

in Figure 9. 

 

 
Figure 9: Multiple comparison test for mean 

classification accuracy between subjects under four 

rhythms. 

 

 

 
Figure 10: (a) Heart rate assessment results (b) 

SAM assessment results 

 

As shown in Figure 9, the black dot in the figure 

represents the mean of the average classification accuracy 

among subjects under a certain rhythm, and the black line 

represents the 95% confidence interval of the mean. If the 

confidence intervals of different rhythms overlap, there is 

no significant difference between the two rhythms, 

otherwise, there is a significant difference. Subjects 

numbered 3, 4, and 7 had blanks on beta and gamma 

rhythms, because the number of electrodes that could 

provide classification information was too small to extract 

enough features for classification. Excluding the above 4 

subjects, for the other 10 subjects, multiple comparison 

tests were used to mark the electrodes with significant 

differences among the three types of EEGs in the dataset, 

and the positions of these electrodes that provided 

classification information were recorded on the topology 

map. 

All heart rate data were obtained from Biotrace+ 

software. The mean value and t-test were used for 

analysis. The arousal degree of emotion induced by video 

material and western music material was counted, and the 

mean and variance were calculated to calculate the P 

value. If the P value is less than 0.05, there is a significant 

difference between the two. Heart rate assessment results 

The SAM assessment results are shown in Figure 10. As 

shown in Figure 10, the average arousal rate of Western 

music for the four emotions in terms of heart rate 

assessment results is higher than that of video, but the 

difference is not significant. The results show that the 

emotional arousal of joy, sadness, fear and disgust in 

western music scenes is slightly higher than that of video. 

The results show that the emotional arousal of joy, 

sadness, fear and disgust in western music scenes is 

slightly higher than that of video. According to the 

statistical analysis of the SAM scale, in the arousal 

experiment of joy, sadness and fear, the arousal effect of 

western music is higher than that of video. And in the 

arousal of fear, there is a significant difference between 

the arousal of Western music scenes and the arousal of 
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video. Video arousal was slightly higher in arousal to 

disgust, but not significantly different. 

The classification results obtained in this study 

94.7% accuracy using SVM and 90.0% using QBC 

demonstrate strong performance in EEG-based emotion 

recognition. Compared to previous works that typically 

achieve 75–89% accuracy using classifiers such as LDA, 

k-NN, or CNN, our approach shows notable 

improvement. This can be attributed to the focused use of 

beta and gamma rhythms, which are closely linked to 

emotional arousal and cognitive processing. The 

effectiveness of these rhythms, combined with robust 

classification techniques, supports their application in 

real-time emotion-aware systems. In practical terms, this 

level of accuracy enhances the feasibility of developing 

personalized music recommendation platforms that 

dynamically adapt to the user’s emotional state offering 

promising applications in mental health therapy, 

emotional self-regulation, and adaptive entertainment 

technologies.  

After the experiment, through feedback on the 

subjects, the results were consistent with their actual 

feelings, to analyze the reasons for the better performance 

of emotionally induced arousal in Western music. On the 

one hand, it may be affected by the extremely strong 

negative emotions of fear, and the level of arousal is 

higher. On the other hand, the real-time panoramic scene 

of Western music has a strong sense of immersion, has a 

stronger sense of reality, and the plot is more attractive, 

so it will produce a stronger feeling. During the 

experiment, to improve the accuracy of the experimental 

data, participants were required not to move their bodies, 

so the design of Western music scenes removed dynamic 

interaction. 

 

4   Conclusions 
This study demonstrates the potential of EEG-based 

emotion recognition using music stimuli and power 

spectral analysis, with a particular focus on the 

classification effectiveness of beta and gamma rhythms. 

By inducing three emotional states through Western 

music and extracting features based on average power and 

brain network attributes across five EEG frequency 

bands, we identified that beta and gamma rhythms 

provided the most discriminative features. The 

classification results, particularly using SVM and QDC, 

showed promising accuracy, and a degree of inter-subject 

consistency in the spatial distribution of informative 

electrodes further supports the validity of these findings. 

However, the study also reveals key limitations. The 

reliance on specific EEG rhythms and classifiers, while 

effective in this context, may not generalize well to 

broader populations or real-world scenarios. Moreover, 

the dataset was constrained in terms of diversity in music 

stimuli and participant demographics, which could affect 

the robustness and scalability of the system. Looking 

forward, future research should explore more diverse 

emotional stimuli, including multimodal or culturally 

adaptive music inputs, and integrate richer EEG feature 

sets such as functional connectivity measures, entropy-

based metrics, or deep learning-driven representations. 

Incorporating IoT-based wearable EEG systems may also 

advance the real-time applicability of emotion-aware 

music recommendation platforms in daily life. 

Additionally, developing adaptive classifiers and transfer 

learning strategies could improve generalizability across 

individuals and contexts. These improvements will help 

create more robust, scalable, and personalized EEG-based 

human-computer interaction systems for emotion 

regulation, mental health, and entertainment applications. 
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