
https://doi.org/10.31449/inf.v49i32.8813 Informatica 49 (2025) 119–132 119

Adaptive Parallel Processing Algorithm with Dynamic Scheduling for

Large-Scale Data Processing in Cloud Environments:

Implementation and Performance Evaluation

Yingshi Zhang, Dandan Yi, Siyu Wu, Simin Cheng*

The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
*Corresponding Author: Simin Cheng; Email: chengsimin82@163.com

Keywords: cloud computing, data parallel processing, short job priority scheduling, dynamic scheduling, resource

optimization

Received: April 7, 2025

As large-scale data processing tasks continue to grow in volume and complexity, improving the efficiency

of computational resource utilization and task execution performance has emerged as a central challenge

in cloud computing environments. In response, this study proposes an adaptive parallel processing

algorithm that incorporates a dynamic scheduling strategy, designed to optimize task allocation and

execution workflows within distributed systems. To assess the algorithm's performance, experiments were

conducted across three platforms—Amazon Web Services (AWS), Google Cloud, and a local computing

cluster—using three representative large-scale public datasets. These tasks included a structured

classification task using the Kaggle Titanic dataset, an image processing task using the Google Open

Images dataset (which contains over 90 million images), and a text processing task based on the Common

Crawl dataset, which comprises content from billions of web pages. On the Google Cloud platform, the

integration of dynamic scheduling reduced execution time to 13.5 hours. It also demonstrated strong

adaptability and overall system stability, especially when managing complex task distributions and large-

scale data. When paired with the adaptive parallel processing algorithm, the dynamic scheduling strategy

achieved a 5.2× speedup compared to serial execution. This reduced the total processing time from 12

hours to 2.3 hours, while maintaining high resource utilization and stable task scheduling. These findings

underscore the algorithm's substantial potential in enhancing the performance of large-scale data

processing and offer practical implications for algorithmic optimization and resource management in

cloud-based environments.

Povzetek: Predstavljen je adaptivni paralelni obdelovalni algoritem z dinamičnim razporejanjem za

obdelavo velikih podatkov v oblaku. Novost je integracija dinamičnega razporejanja, SJF in učenja z

okrepitvijo, ki izboljša hitrost, izkoriščenost virov in stabilnost obdelave.

1 Introduction

Cloud computing has become a cornerstone of large-

scale data processing due to its robust computational

capabilities, high scalability, and distributed storage

architecture [1]. It is widely adopted by enterprises and

research institutions for managing massive volumes of

data—supporting storage, analysis, and computation to

enhance operational efficiency and inform data-driven

decision-making [2, 3]. Despite its advantages, cloud

computing frameworks continue to encounter substantial

challenges when handling complex data processing tasks,

particularly in areas such as task scheduling, resource

management, and computational efficiency [4].

Contemporary large-scale data processing

frameworks—including Hadoop, Spark, and Flink—have

achieved significant advances in parallel computing and

distributed data storage. However, these systems still

struggle with suboptimal utilization of computing

resources, limited task scheduling strategies, and

insufficient optimization of data locality [5, 6]. In addition

to these intrinsic limitations, the interaction between data

storage and computational processes represents another

major bottleneck in cloud-based data processing

performance. The physical or network distance between

data storage locations and computing nodes plays a critical

role in determining system throughput and overall

computational efficiency [7]. Current data placement and

scheduling strategies often lack effective coordination

between data locality and computation, leading to

increased data transfer overhead, reduced system

throughput, and impaired processing efficiency [8].

Therefore, optimizing data locality—ensuring that

computational tasks are executed as close to the relevant

data as possible—is essential for improving performance

in large-scale cloud computing environments.

Furthermore, load balancing is a key consideration in

optimizing parallel processing algorithms within cloud

systems [9]. Given the heterogeneous nature of tasks—

which may vary widely in both computational complexity

mailto:chengsimin82@163.com

120 Informatica 49 (2025) 119–132 Y. Zhang et al.

and data volume—imbalances in workload distribution

across computing nodes are common. This often results in

some nodes being overloaded while others remain

underutilized, leading to inefficient resource allocation

[10, 11]. Such disparities in workload distribution

diminish overall computational efficiency and can

negatively impact the scalability of cloud-based systems

[12]. Accordingly, the development of effective task

scheduling and load balancing strategies is critical for

maximizing resource utilization and enhancing the

performance of large-scale data processing frameworks.

To address the challenges outlined above, this study

seeks to enhance the efficiency of large-scale data

processing in cloud computing environments by

introducing an adaptive parallel processing algorithm

integrated with a dynamic scheduling strategy. The

algorithm continuously monitors task characteristics and

platform resource states in real time, allowing it to

dynamically adjust task allocation and execution order.

This adaptive mechanism is designed to optimize

processing performance across diverse computing

architectures, including local clusters, Amazon Web

Services (AWS), and Google Cloud. The investigation

centers on four key performance indicators: task execution

time, data throughput, resource utilization, and parallel

speedup. To assess the algorithm’s effectiveness, a series

of experiments Are conducted using multiple real-world

datasets. These experiments compare the proposed

method against several scheduling strategies. In addition

to the dynamic scheduling approach, the study evaluates

alternatives such as Shortest Job First (SJF) and

reinforcement learning-based methods, aiming to identify

their respective strengths and limitations across varying

data scales and task complexities.

The study is guided by the following core questions:

Can the proposed dynamic scheduling strategy

significantly improve parallel processing efficiency across

different task loads and computing environments? To

what extent can the adaptive mechanism regulate

scheduling behavior to optimize both processing speed

and resource utilization? Does the algorithm demonstrate

generalizability and transferability when applied to

various data types, such as images and text? Based on

these questions, the study proposes the following study

hypotheses: H1: The adaptive parallel processing

algorithm demonstrates enhanced robustness and

scheduling efficiency in environments with dynamically

changing resources. H2: The dynamic scheduling

mechanism substantially reduces processing latency and

improves resource utilization, outperforming static

strategies such as SJF. H3: The elasticity of cloud platform

resources plays a critical role in shaping scheduling

strategy performance and serves as a key factor in

determining algorithmic outcomes. This study is

conducted under the following design assumptions: The

tasks involved exhibit a structure that permits parallel

decomposition. The computing platforms used support

programmable interfaces for task scheduling and resource

monitoring. The proposed algorithm is capable of task-

awareness and feedback control, enabling real-time

adjustments to execution strategies. Through

comprehensive experimental comparisons and

performance evaluations, this study demonstrates the

effectiveness and adaptability of the proposed algorithm

within cloud-based environments. The findings provide

both theoretical grounding and practical insights for

advancing resource scheduling methodologies in future

large-scale data processing systems.

2 Literature review
The rapid evolution of cloud computing has

significantly advanced large-scale data processing

technologies, prompting numerous research efforts to

develop optimized frameworks and algorithms. Natesan et

al. [13] introduced a parallel computing model based on

MapReduce, which decomposed tasks into distinct map

and reduced phases to enable efficient distributed

processing. Despite its simplicity and scalability, the

framework’s reliance on disk-based I/O introduced

considerable latency in task scheduling and data transfer,

limiting its performance in high-demand environments.

To address these limitations, Ali El-Sayed Ali et al. [14]

proposed the Spark framework, which introduced the

concept of Resilient Distributed Datasets (RDDs) to

enable in-memory computation. This innovation

significantly reduced I/O overhead and enhanced

computational throughput. Nevertheless, Spark’s

scheduling mechanism continued to suffer from load

imbalance—particularly when handling large-scale

streaming data—leading to inefficient utilization of

computational resources.

Building upon these developments, Wang et al. [15]

proposed the Flink framework, which adopted a data

stream processing paradigm. Flink supports event-driven

real-time computation and enhances system stability

through its incremental checkpointing mechanism. While

Flink demonstrated clear advantages over Spark in stream

processing performance, its batch task resource allocation

strategies remained suboptimal and in need of further

refinement. In an effort to improve task scheduling

efficiency in cloud computing environments, Sandhu et al.

[16] proposed a hybrid optimization approach that

integrated Tabu Search, Bayesian classification, and

Whale Optimization algorithms. This method aimed to

maximize resource utilization and enhance overall cloud

service performance. However, under large-scale parallel

processing conditions, the issue of data skew remained

unresolved, continuing to impact load balancing and

system efficiency.

In the context of task scheduling, Hosseini Shirvani

[17] examined several conventional strategies, such as SJF

and Round-Robin (RR) scheduling. While these methods

are easy to implement and entail minimal computational

overhead, they are ill-suited for heterogeneous

environments. Specifically, they often result in

imbalanced workloads, where certain computing nodes

become overloaded while others remain underutilized. To

overcome these limitations, Mangalampalli et al. [18]

introduced reinforcement learning–based scheduling

techniques, employing algorithms like Deep Q-Networks

(DQN) and policy gradient methods. These approaches

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 121

enable dynamic adaptation to diverse task requirements,

thereby enhancing system throughput. However, they also

introduce high computational complexity and exhibit slow

convergence, particularly when applied to extremely large

datasets.

Further developments include a game-theoretic load

balancing strategy proposed by Yang et al. [19], which

improves computational efficiency by facilitating

dynamic task adjustments through collaborative decision-

making among nodes. Building on this, Wang et al. [20]

proposed a deep reinforcement learning–driven

scheduling algorithm capable of real-time task allocation

adjustments based on system load, leading to better

resource utilization. Nonetheless, these advanced methods

still face persistent challenges in large-scale parallel

processing, including imprecise task granularity, data

skew, and high scheduling overhead [21, 22]. To facilitate

clearer comparative analysis, Table 1 summarizes the

proposed method alongside leading parallel processing

techniques, highlighting their architectural designs,

strengths, weaknesses, and the datasets utilized.

Table 1: Comparative overview of mainstream parallel processing methods

Method Architecture Advantages Disadvantages Dataset(s) Used

Natesan et al.

[13]

MapReduce Simple and stable;

well-suited for large-

scale batch

processing

Heavily reliant on disk I/O;

significant delays in scheduling

and data transfer

Custom big data

simulation

datasets

Ali El-Sayed et

al. [14]

Spark (In-

Memory

Computing)

Supports in-memory

computing with low

I/O overhead

Imbalanced task scheduling;

weak performance in stream

processing

Standard Spark

test datasets

Wang et al.

[15]

Flink (Unified

Batch and

Stream

Processing)

Enables real-time

stream processing

and incremental

checkpoints; high

stability

Suboptimal resource allocation

for batch processing; requires

further optimization

Twitter

streaming data

Sandhu et al.

[16]

Hybrid

scheduling with

Tabu Search,

Bayesian

Classification,

and Whale

Optimization

Algorithm

Improves resource

utilization and

enhances cloud

service performance

High algorithmic complexity and

computational overhead

Cloud

computing

simulation

environment

Hosseini

Shirvani [17]

Static Scheduling

(SJF, RR)

Simple to implement

with low overhead

Poor adaptability to

heterogeneous tasks; low

resource utilization

HPC benchmark

datasets

Mangalampalli

et al. [18]

Reinforcement

Learning-based

Scheduling (e.g.,

DQN)

Dynamically adapts

to task variations;

improves scheduling

flexibility

High algorithmic complexity;

slow convergence; expensive

training process

Cloud-based

video streams

and task

simulation data

Yang et al. [19] Game-Theoretic

Scheduling

Enables dynamic

cooperation among

nodes; enhances

fairness in task

allocation

High communication and

scheduling overhead; difficult to

control task granularity

Simulated server

task data

Wang et al.

[20]

Deep

Reinforcement

Learning-based

Scheduling

Adjusts task

allocation in real

time; improves

throughput

Faces issues with data skew and

scheduling bottlenecks

Large-scale web

logs and crawler

datasets

As summarized in Table 1, although mainstream

parallel processing technologies have achieved notable

success within their respective domains, they continue to

face considerable limitations when applied to large-scale,

heterogeneous data processing environments. Traditional

MapReduce frameworks, for example, rely heavily on

disk-based I/O, leading to high data transmission latency

and inefficient task scheduling—factors that make them

unsuitable for high-performance computing applications.

Spark addresses I/O bottlenecks through in-memory

computing, substantially reducing overhead. However, its

task scheduling mechanism often suffers from load

imbalance and limited resource utilization, particularly in

large-scale streaming contexts. Flink, which integrates

both batch and stream processing, shows advantages in

real-time stream handling and system stability, but still

lacks effective mechanisms for dynamic resource

allocation in batch workloads, thereby limiting its overall

122 Informatica 49 (2025) 119–132 Y. Zhang et al.

efficiency. Graph processing methods improve data

locality and reduce transmission costs, yet persistent

challenges such as data skew and load imbalance restrict

their scalability and effectiveness in complex task

scenarios.

From a scheduling strategy perspective, static

approaches like SJF and Round Robin (RR) are relatively

simple and computationally inexpensive. Nonetheless,

they perform poorly in dynamic, heterogeneous

environments characterized by variable workloads and

task diversity, resulting in suboptimal resource use and

unbalanced computational loads across nodes. More

recent approaches based on reinforcement learning and

game theory have introduced intelligent, adaptive

scheduling mechanisms that enhance system

responsiveness to workload heterogeneity and improve

throughput and resource efficiency. Despite these benefits,

such methods often entail high algorithmic complexity,

slow convergence, and costly training. In real-world large-

scale processing, they still struggle with unresolved issues

such as data skew, scheduling overhead, and challenges in

managing fine-grained task control.

Moreover, current methodologies generally lack

targeted optimization for multimodal, large-scale

datasets—such as those involving both image and text

data—further diminishing scheduling efficiency and

resource utilization. Existing research has yet to offer a

unified framework capable of addressing the dual

challenges of heterogeneous data processing and dynamic,

adaptive scheduling. In response, this study proposes an

adaptive parallel processing algorithm specifically

designed for cloud computing environments. By

integrating a dynamic scheduling strategy with cross-

platform resource optimization, the proposed method

significantly enhances task execution efficiency and

resource utilization, while markedly reducing processing

time. This approach addresses critical bottlenecks in

current systems and contributes both theoretically and

practically to the advancement of large-scale data

processing technologies.

3 Research methodology

3.1 Framework for large-scale data

processing in cloud computing environment

Efficient large-scale data processing in cloud

computing environments requires the seamless integration

of distributed storage, parallel computing, task scheduling,

and load balancing mechanisms to ensure optimal use of

computational resources. To address these demands, this

study proposes an enhanced computing framework, as

depicted in Figure 1. The framework comprises four core

components: a distributed storage system, a network of

computing nodes, a dynamic task scheduling module, and

an intelligent load balancing mechanism. Together, these

components are designed to support scalable, high-

performance parallel processing across diverse and

complex workloads.

User task request

Task scheduling module Load balancing module

Task Splitting Task Migration

Computing Resource

Allocation
Resource Optimization

Compute Execution Layer

Compute Node 1: (Parallel Computing&Data Processing)

Compute Node 2: (Parallel Computing&Data Processing)

Compute Node N: (Parallel Computing&Data Processing)

Data storage layer

Distributed storage systems (HDFS, NoSQL)

Cache layer

Result storage

Store the calculation results in HDFS/database

Figure 1: Large-scale data processing framework in

cloud computing environment

As illustrated in Figure 1, the large-scale data

processing framework proposed in this study is tailored

for deployment within cloud computing environments. It

integrates hierarchical distributed storage with parallel

computing to achieve efficient coordination between data

management and computation. The framework employs a

multi-tiered storage architecture that distributes data

across high-speed caches (e.g., Redis), local disks, and

remote distributed systems such as Hadoop Distributed

File System (HDFS) and NoSQL databases. The caching

layer stores frequently accessed (hot) data to reduce

latency; the local disk layer enables rapid random access

by compute nodes; and the remote distributed storage

layer ensures persistent storage and supports high-

throughput access to massive datasets. To accommodate

diverse computational workloads, the system strategically

selects storage solutions based on task-specific

requirements—leveraging HDFS for efficient sequential

I/O operations and NoSQL for flexible querying.

To further improve computational efficiency, the

framework prioritizes data locality. Enhanced hashing and

range-partitioning algorithms are employed to ensure

balanced data distribution and local clustering of related

records, while replica placement is dynamically optimized

to maximize local data access rates [23]. During

preprocessing, techniques such as data presorting, local

aggregation, and compression encoding are implemented

to alleviate I/O bottlenecks during runtime. The task

scheduling module accounts for both resource utilization

and data distribution across compute nodes, dynamically

adapting task assignments and data migration strategies to

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 123

reduce cross-node traffic and enhance throughput.

At the execution layer, the framework adopts an in-

memory resilient distributed computing model that is

logically decoupled from the storage system, thereby

mitigating disk I/O limitations and accelerating

computation. The scheduling mechanism considers data

locality, node resource availability, and task priority,

enabling preferential assignment of tasks to nodes that

contain or are in close proximity to the required data. A

real-time load balancing mechanism continuously adjusts

task distribution, ensuring equitable and efficient use of

computational resources. Moreover, improved data

partitioning strategies reduce inter-node dependencies and

balance task granularity, further enhancing parallel

processing performance. Final computation results are

stored in a centralized results database to support

subsequent analysis and querying. In conclusion, the

proposed framework enhances large-scale data processing

by combining multi-tiered storage optimization with

intelligent dynamic scheduling. It significantly improves

resource utilization, processing efficiency, and system

scalability, thereby addressing the performance demands

of complex tasks in cloud-based environments.

3.2 Parallel processing algorithm design

The efficient processing of large-scale datasets in

cloud computing environments hinges on the effective

execution of task decomposition, data partitioning,

resource scheduling, and load balancing. To address these

challenges, this study introduces an adaptive parallel

processing algorithm that integrates strategic task

decomposition, optimized resource allocation, and

Dynamic Load Balancing (DLB). This approach is

designed to enhance data processing efficiency while

maintaining system stability under varying workload

conditions. The overall workflow of the proposed

algorithm is illustrated in Figure 2.

Data Input

Data partitioning

Hash based data partitioning

Range based data partitioning

Load balancing and resource allocation

Task scheduling optimization

Task Execution

Task

decomposition

Result Output

Figure: 2 Parallel processing algorithm flow

As shown in Figure 2, task decomposition serves as

the foundation of parallel computing, directly influencing

computational efficiency and the complexity of task

scheduling. In this study, a data block–based

decomposition strategy is employed, whereby the original

dataset D is partitioned into multiple independent data

blocks 𝑑𝑖 , with corresponding subtasks 𝑇𝑖 generated for

parallel execution.

𝐷 = ∑  𝑛
𝑖=1 𝑑𝑖 (1)

The size of the data blocks is constrained by the

available storage and computing resources. In this study,

an adaptive data block sizing strategy was developed

based on the specific characteristics of the datasets. For

image datasets such as Google Open Images, where the

number and size of images within each block are relatively

uniform, a fixed block size of 128 MB was adopted. In

contrast, for text datasets like Common Crawl, the block

size was dynamically adjusted according to text length and

semantic units, ranging from 64 MB to 256 MB. This

approach balances task granularity with computational

load distribution. The strategy ensures that task

decomposition leverages the local storage advantages of

computing nodes while minimizing inter-node data

transfer, thereby improving data access efficiency. The

optimal block size depends on factors such as the total data

volume, memory capacity of compute nodes, and network

bandwidth. Larger blocks reduce scheduling overhead but

may cause load imbalance, whereas smaller blocks

facilitate fine-grained scheduling at the cost of increased

communication overhead. These trade-offs were

experimentally tuned to suit different application

scenarios. Simultaneously, minimizing data dependencies

between tasks is crucial to achieve effective load

balancing across computing nodes, which requires

meeting the following conditions:

∀𝑖, 𝑗, |𝑇𝑖 − 𝑇𝑗| ≈ 0 (2)

The tolerance for load imbalance is defined as

allowing a load deviation within ±5%, a threshold

determined through comprehensive consideration of

performance fluctuations among compute nodes and

system resource constraints observed during

experimentation. This threshold balances flexibility and

efficiency in system scheduling. To further optimize data

access efficiency, this study employs two data partitioning

strategies: hash-based partitioning and range-based

partitioning. When data keys are uniformly distributed and

the key space is large, hash-based partitioning is preferred

to achieve load balancing. Conversely, when data exhibits

clear ordering or range query requirements, range-based

partitioning is employed to enhance query efficiency. A

cost model based on statistical data characteristics is

introduced to evaluate the communication overhead and

computational load of both strategies, thereby

automatically selecting the optimal partitioning scheme.

To address the load imbalance caused by “hot keys” in

datasets with large key values, the hash partitioning

method incorporates virtual nodes. This technique

replicates and disperses hot keys across multiple nodes,

effectively mitigating single-point bottlenecks and

improving overall load balancing. The hash-based method

is particularly suitable for key-value data, such as that

found in NoSQL databases. During computation, data

allocation to different nodes is determined according to

hash values, with the specific formula given as follows:

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝐼𝐷 = 𝐻𝑎𝑠ℎ(𝐾𝑒𝑦)mod𝑛 (3)

Range-based data partitioning is particularly

effective for numerical or time-series data, as it enables

even distribution of data across computing nodes based on

specified value intervals. Following task partitioning, it

124 Informatica 49 (2025) 119–132 Y. Zhang et al.

becomes critical to optimize computational resource

utilization and maintain load balance to prevent

bottlenecks caused by the overloading of individual nodes.

To achieve this, the present study implements a DLB

algorithm, which continuously monitors system

performance and dynamically reallocates tasks based on

real-time load conditions. The DLB module tracks key

performance indicators, including CPU utilization,

memory consumption, and network I/O, and synthesizes

these metrics into a unified load score. This composite

score serves as the primary criterion for scheduling and

resource management decisions. The system samples load

metrics from each node every five seconds and computes

load scores using a weighted function. These scores guide

the dynamic adjustment of task assignments and initiate

task migration when necessary to maintain a balanced

workload across the computing cluster. To minimize

communication overhead, the task migration process

prioritizes data locality, thereby reducing the frequency

and cost of inter-node data transfers. The load of each

computing node is calculated using the following formula:

𝐿𝑜𝑎𝑑𝑖 =
𝑇𝑖

𝐶𝑖
 (4)

𝐿𝑜𝑎𝑑𝑖 represents the load of the i-th computing node.

𝑇𝑖 denotes the current workload of the node. 𝐶𝑖 refers to

the computing capacity of the node, such as CPU and

memory. When the load of a node exceeds the threshold θ,

task migration is triggered. Some computing tasks 𝑇𝑘 are

transferred to a lower-load node j, as shown in Equation

(5) and (6):

𝑇𝑗 = 𝑇𝑗 + 𝛼𝑇𝑘 (5)

𝑇𝑖 = 𝑇𝑖 − 𝛼𝑇𝑘 (6)

The parameter α denotes the adjustment ratio, which

plays a critical role in preventing secondary load

imbalances during task migration. Its value was

empirically optimized through iterative experimentation

to achieve an effective trade-off between the

responsiveness of migration decisions and the overall

stability of resource allocation. The efficiency of task

scheduling is pivotal, as it directly influences system

throughput and computational performance. To further

improve scheduling efficacy, this study introduces an

intelligent task scheduling optimization approach based

on deep reinforcement learning. Specifically, a DQN is

utilized to facilitate adaptive, data-driven task allocation.

The scheduling process is formulated within a

reinforcement learning framework, where the state space

SSS captures system-level metrics—including CPU

utilization, memory consumption, and the current task

queue length for each computing node—while the action

space A comprises decisions related to task assignment

and migration. Through iterative interaction with the

computing environment, the reinforcement learning agent

refines its policy to maximize cumulative rewards,

effectively learning to allocate tasks in a manner that

enhances performance and resource efficiency. The DQN

architecture is composed of a three-layer fully connected

neural network, featuring an input layer, two hidden layers

with 64 neurons each, and an output layer. The hidden

layers employ ReLU (Rectified Linear Unit) activation

functions to introduce non-linearity and improve the

network's representational capacity.

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) −
𝑄(𝑠, 𝑎)] (7)

where (𝑠, 𝑎) represents the Q-value of the task

scheduling policy. α is the learning rate. r denotes the

computing reward, such as reduced processing time. γ is

the discount factor, representing long-term rewards. In the

reinforcement learning framework, s represents the

current system state, a denotes the action taken, y is the

predicted value of the subsequent state, and Q is the

action-value function used to evaluate the quality of an

action given the current state. This formulation facilitates

optimal task allocation by guiding decision-making

towards actions that maximize expected long-term

rewards. By integrating these strategies—including task

decomposition, data partitioning, DLB, and reinforcement

learning–based scheduling optimization—the proposed

adaptive parallel processing algorithm achieves efficient

data processing and effective management of computing

resources within cloud computing environments.

To comprehensively evaluate the performance of the

proposed algorithm, both time complexity and space

complexity were analyzed. The time complexity primarily

depends on the task scheduling and parallel execution

processes. Assuming a total of n tasks and m resource

nodes, the scheduling strategy dynamically allocates tasks

during each scheduling cycle, resulting in an approximate

time complexity of O(n⋅m). In practice, the dynamic

scheduling approach utilizes priority adjustments and

resource utilization optimization to effectively reduce task

waiting times and enhance overall processing efficiency.

Regarding space complexity, the algorithm maintains

task queues, resource state information, and auxiliary data

structures required by the scheduling strategy, leading to a

space complexity of O(n+m). Given the well-designed

data structures, the memory overhead remains manageable,

making the algorithm suitable for large-scale distributed

cloud computing environments. This complexity analysis

demonstrates that the proposed method achieves flexible

scheduling and dynamic resource allocation while

maintaining low computational and memory overheads,

thus supporting efficient parallel processing of large-scale

heterogeneous tasks in cloud settings.

3.3 Algorithm optimization strategy

In large-scale data processing within cloud

computing environments, foundational parallel processing

frameworks and scheduling strategies are indispensable.

However, further enhancements aimed at improving task

execution efficiency, minimizing resource wastage, and

boosting overall system performance are equally critical.

To address these challenges, this study proposes a suite of

algorithmic optimization strategies encompassing data

locality enhancement, task scheduling refinement, and

intelligent task allocation through deep learning

techniques. The integration of these strategies

significantly improves computational efficiency and task

handling capabilities, thereby ensuring the effective

utilization of computing resources when processing large-

scale datasets. A detailed overview of these approaches is

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 125

presented in Figure 3.

Data locality

optimization

Task Scheduling Optimization

Reinforcement

 Learning Scheduling

Intelligent Task Allocation

Deep Learning

 Prediction

Overall Collaborative

Optimization

Efficient Task

Execution and

Resource Utilization

Figure 3: Flow chart of algorithm optimization strategy

for large-scale data processing in cloud computing

environment

First, data locality optimization forms the foundation

of the proposed optimization strategies. Data locality

refers to the relationship between the physical or logical

arrangement of data and the patterns in which it is

accessed. Conventional distributed data processing

architectures frequently encounter bandwidth bottlenecks

and elevated latency due to data transfers across

computing nodes. To mitigate these challenges, this study

employs a data affinity scheduling strategy that optimizes

task allocation by considering both data block access

patterns and the computing capacity of nodes. This

approach places related data on the same or adjacent

computing nodes, thereby minimizing cross-node data

transfers, significantly improving cache hit rates, and

enhancing overall data access efficiency. Specifically, a

distance-based scheduling strategy is applied during data

partitioning. This strategy analyzes the physical locations

of computational tasks relative to their corresponding data

blocks and preferentially schedules tasks on the nodes

storing the relevant data, reducing the cost of remote data

transfers and improving execution efficiency. The affinity

scoring model is constructed based on a data access

frequency matrix and a node-to-data mapping table, while

a weighted graph search algorithm calculates the “affinity”

between each task and computing node. Here, “distance”

is primarily defined by the hop count within the network

topology and the average communication latency between

nodes. This metric is dynamically updated via a topology-

aware module in local clusters, and assessed using

bandwidth measurements and latency statistics in

heterogeneous cloud platforms.

This method differs from conventional affinity

scheduling algorithms in several key aspects: (1) it

introduces a dynamic affinity scoring mechanism rather

than relying on static rules, thereby enhancing scheduling

responsiveness and adaptability; (2) it integrates a

reinforcement learning module during scheduling

optimization to continuously refine affinity model weights

based on historical scheduling feedback; and (3) it

incorporates task priority and resource status to balance

affinity with overall system load, preventing node

congestion that may arise from purely affinity-driven

scheduling.

Second, task scheduling optimization is critical for

enhancing the efficiency of parallel processing.

Traditional scheduling approaches often rely on static

methods or simple RR algorithms, which are insufficient

for addressing dynamic workloads and real-time task

demands. To overcome these limitations, this study

proposes an optimized scheduling strategy based on the

SJF policy. By prioritizing smaller tasks, this approach

reduces resource idle time and task waiting time, thereby

improving system responsiveness and throughput. The

SJF strategy is particularly effective in handling a large

volume of small-scale tasks, making it well-suited to the

shard-based parallel processing architecture proposed in

this study. However, the efficacy of SJF depends on

accurate predictions of task execution times, and its

performance may degrade when task size distributions are

highly uneven or estimation errors are significant.

Therefore, given the dynamic and variable nature of cloud

computing environments, a dynamic adaptive scheduling

algorithm is introduced. This algorithm intelligently

adjusts scheduling strategies based on real-time load

conditions, task priorities, and resource availability. By

doing so, it effectively minimizes task conflicts and

prevents resource bottlenecks, resulting in improved

computational efficiency and enhanced resource

utilization. Furthermore, the system design maintains

modularity and extensibility of the scheduling component,

allowing for seamless switching to alternative policies—

such as priority-based RR or weighted fair scheduling—to

accommodate varying workload scenarios.

Task scheduling is further optimized through the

integration of reinforcement learning algorithms, which

facilitate adaptive and intelligent optimization by

continuously interacting with the system environment.

The primary aim of employing reinforcement learning in

this context is to maximize the system’s long-term

operational efficiency. The algorithm learns dynamically

from task execution patterns and real-time system load

metrics, enabling it to adjust task allocation and refine

scheduling policies accordingly. Critical factors—

including task priority, node workload, task type, and

network latency between nodes—are collectively

evaluated to guide optimal scheduling decisions. This

intelligent approach allows the cloud computing system to

autonomously adapt to fluctuating load conditions,

thereby ensuring efficient resource utilization and

effective task execution. The scheduling optimizer is

implemented using a DQN architecture. This network

consists of an input layer that encodes the state vector,

capturing task requirements and the resource status of

computing nodes. It includes two hidden layers with 64

and 32 neurons, respectively, both employing the ReLU

activation function. The output layer represents the set of

possible scheduling actions. Key training parameters

include a learning rate of 0.001, a discount factor (γ) of

0.9, an experience replay batch size of 64, and a replay

buffer capacity of 10,000. The policy selection employs an

ε-greedy strategy. This architecture effectively balances

convergence speed with the capacity to manage high-

dimensional state spaces, thereby enhancing the

generalizability and performance of the scheduling policy.

Building upon traditional scheduling and data

optimization techniques, deep learning technology further

126 Informatica 49 (2025) 119–132 Y. Zhang et al.

advances intelligent task allocation. Deep learning models

leverage historical scheduling data to predict future load

conditions and task execution durations, enabling more

precise and informed task allocation decisions.

Specifically, deep neural networks analyze and forecast

critical parameters during task execution, allowing

scheduling decisions to be made in real time based on

these predictions. This intelligent scheduling approach not

only minimizes the need for manual intervention but also

significantly enhances the execution efficiency of large-

scale data processing tasks.

Finally, this study proposes an integrated synergy

among the optimization strategies. Data locality

optimization, task scheduling optimization, and intelligent

task allocation operate in concert rather than isolation to

achieve optimal performance. Throughout the

optimization process, data locality considerations are

tightly coupled with task scheduling decisions. The

reinforcement learning model continuously learns from

system feedback and dynamically adjusts task allocation

policies. This integrated approach ensures that task

assignments to computing nodes simultaneously optimize

data access efficiency and resource utilization.

Consequently, the system attains high parallelism with

low latency, rational resource distribution, and maximized

overall resource efficiency.

3.4 Experimental environment and dataset

The experiments were conducted across multiple

cloud computing platforms, including AWS and Google

Cloud, chosen for their flexible resource scheduling

capabilities and high computational efficiency. These

platforms provide ample computing resources suitable for

large-scale data processing tasks. In addition, experiments

were performed on a locally constructed high-

performance computing cluster to evaluate the algorithm’s

performance under constrained resource conditions.

Across these environments, a variety of virtual machine

instances and computing nodes with diverse processing

powers and memory configurations were utilized. To

ensure the reproducibility of the experiments and the

robustness of the findings, each experiment was repeated

multiple times, with comprehensive performance metrics

systematically recorded throughout the testing process.

In the experiments, distributed storage systems were

configured in accordance with the specific characteristics

of each platform. On cloud platforms such as AWS and

Google Cloud, native distributed storage services—

namely AWS S3 and Google Cloud Storage (GCS)—were

employed alongside local caching mechanisms and high-

performance disk storage to implement hierarchical data

storage and facilitate rapid data access. In contrast, the

local cluster environment utilized open-source distributed

file systems, such as the HDFS, to ensure reliable data

storage and efficient retrieval. Computing nodes across all

platforms were uniformly managed and scheduled through

a centralized cluster management system. The task

scheduling module, powered by a deep reinforcement

learning algorithm, dynamically assessed resource

utilization, task attributes, and data locality among nodes

to intelligently allocate computing tasks. This approach

maximized data locality and optimized the utilization of

computational resources. Concurrently, a load balancing

mechanism monitored node workloads in real time,

orchestrating task migration and resource allocation to

maintain system stability and maximize operational

efficiency. High-speed network connections enabled

seamless coordination among system components,

establishing an effective and intelligent cloud-based

framework for large-scale data processing.

To evaluate the performance of the proposed parallel

processing algorithm, three publicly available large-scale

datasets were selected: Kaggle Titanic Dataset: This

structured dataset contains passenger information and

survival outcomes, serving as a classic benchmark for

classification tasks. It includes features such as age,

gender, and ticket fare. Due to its relatively small size and

well-defined structure, this dataset was primarily

employed to validate the load balancing effectiveness and

baseline adaptability of the task decomposition and

parallel computing framework in small-scale, structured

data scenarios. Google Open Images Dataset: Comprising

approximately nine million images, this dataset supports a

range of computer vision tasks, including image

classification and object detection. Its large scale and rich

metadata provide a moderate workload environment

suitable for task partitioning and resource scheduling

experiments. Image classification tasks were treated as

scheduling units to assess the efficiency of the

reinforcement learning-based scheduling strategy in

heterogeneous node environments with diverse task

profiles, thereby highlighting the algorithm’s capacity to

optimize data locality under high I/O demands. Common

Crawl Dataset: This expansive dataset includes billions of

web pages and is primarily used for natural language

processing tasks such as text classification and sentiment

analysis. Its vast size and irregular data distribution pose

challenges for dynamic scheduling of large-scale,

unstructured tasks. This dataset was utilized to rigorously

test the practical performance of the data block

partitioning-based scheduling strategy in terms of DLB

and data locality optimization.

The experiments incorporated a variety of computing

resources and task scheduling strategies tailored to each

dataset. Key experimental parameters are summarized in

Table 2.

Table 2: Experimental parameters

Experimental

parameters

Configuration

Computing

platform

AWS EC2, Google Cloud, HPC

cluster

Computing

resource

CPU instances: 2 to 16 vCPU; GPU

examples: NVIDIA Tesla V100,

P100

Dataset Titanic Dataset, Google Open

Images, Common Crawl Dataset

Task

scheduling

strategy

Shortest task priority, dynamic

adaptive scheduling and

reinforcement learning scheduling

Data 1MB to 100GB

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 127

processing

batch size

Network

bandwidth

1Gbps to 10Gbps

Network delay 5ms to 100ms

Parallelism

setting

The maximum amount of data and

the maximum number of tasks that

each computing node can handle

The experiments on AWS EC2 utilized the

m5.4xlarge instance, which features 16 virtual CPUs, 64

GiB of memory, and EBS optimization, powered by the

Intel Xeon Platinum 8175 processor. On the Google Cloud

Platform (GCP), the n2-standard-16 instance was

employed, also equipped with 16 virtual CPUs and 64 GiB

of memory, based on the Intel Cascade Lake architecture.

All virtual machines on both platforms were connected

through their respective default Virtual Private Clouds

(VPCs). Network latency and bandwidth between

instances were rigorously tested and demonstrated

consistent performance, thereby establishing a

homogeneous network environment for the experiments.

The local high-performance computing cluster

comprised 16 nodes, each outfitted with dual Intel Xeon

Gold 6230 processors (20 cores and 40 threads per node)

and 256 GB of DDR4 memory. Nodes were

interconnected via an Infiniband HDR network offering

100 Gbps bandwidth, with inter-node communication

latency measured at approximately 1.2 microseconds,

supporting highly scalable parallel computation. To

maintain consistency across comparative experiments,

datasets deployed on the cloud platforms and the local

cluster were preloaded onto each platform’s unified

distributed file system. AWS utilized S3 combined with

EBS, GCP employed GCS with Persistent Disks (PD), and

the local cluster used the Lustre file system. This strategy

effectively minimized the impact of data location

heterogeneity on the experimental outcomes.

For data processing, batch sizes were set at 64 MB

for typical test tasks such as log analysis and image

preprocessing. Batch sizes were dynamically adjusted in

accordance with each platform’s bandwidth capabilities to

optimize transfer efficiency, balancing I/O throughput,

computational overhead, and memory utilization.

The reinforcement learning scheduler employed in

the experiments was based on the Q-learning algorithm.

The task queue state—comprising task data size,

estimated computational complexity, and current node

load—served as the state space, while node selection

constituted the action space. The Q-table was dynamically

updated to estimate the expected reward associated with

each scheduling action. Through continuous interaction

with the environment, the scheduler learned from real

execution feedback across varying platform

configurations, including processing latency and resource

utilization metrics, ultimately converging on an optimal

task dispatch policy during training. The learning rate (α)

was set to 0.1 to balance stability and adaptability in

updating Q-values.

The discount factor (γ) was 0.9, emphasizing long-

term rewards to better capture the temporal dynamics of

task execution. An exploration rate (ε) initialized at 0.3

gradually decayed to 0.05, implementing an “explore-first,

exploit-later” strategy. Training was performed over 500

episodes.

Parallelism levels were initially configured based on

node hardware resources, primarily CPU core count and

memory capacity. For example, nodes on Google Cloud

with 16 virtual CPUs and 64 GB of memory were assigned

a maximum concurrency of 12 parallel tasks, whereas

AWS nodes with 8 virtual CPUs were limited to 6

concurrent tasks. This configuration aimed to maximize

throughput while mitigating significant resource

contention. Moreover, the reinforcement learning state

space incorporated node load information, including the

current number of active tasks, such that the parallelism

limit defined the boundaries of policy exploration.

Consequently, this parameter influenced both the learning

efficiency and the ultimate performance of the scheduling

algorithm. Variations in parallelism settings were found to

affect convergence and overall processing efficiency.

Specifically, experiments involving the Common Crawl

dataset demonstrated that overly conservative parallelism

limits led to underutilized resources, prolonged scheduling

cycles, and decreased system throughput. In contrast,

excessively high parallelism induced node overloads,

resulting in elevated task failure rates and increased

overhead due to task migrations.

To comprehensively evaluate the performance of the

parallel processing algorithm, this study employs several

key metrics. Processing time serves as a primary indicator,

measuring the duration required to complete the entire

data processing task under various resource configurations.

Comparing processing times across different cloud

platforms and scheduling strategies provides a clear

assessment of the algorithm’s efficiency. Throughput,

defined as the amount of data processed per second, is

another fundamental metric that reflects the algorithm’s

capability to leverage parallelism and utilize cloud

computing resources effectively for large-scale data

processing.

Resource utilization is also critical, representing the

extent to which computing resources are employed during

task execution. An optimal algorithm maximizes resource

utilization while minimizing wastage. The task

completion rate indicates the proportion of successfully

executed tasks; particularly under high-load conditions, a

higher completion rate demonstrates the algorithm’s

robustness in parallel task scheduling and load balancing.

Finally, speedup, defined as the ratio of execution time in

a parallel computing environment to that of serial

processing on a single machine, further quantifies the

algorithm’s ability to accelerate data processing through

parallelization.

128 Informatica 49 (2025) 119–132 Y. Zhang et al.

4 Result and discussion

4.1 Comparison of processing time

To comprehensively evaluate processing time

performance, this study examines multiple dimensions of

experimental outcomes. As shown in Figure 4, processing

times on cloud platforms (AWS and Google Cloud) are

consistently lower than those observed on the local cluster,

highlighting the performance advantages of cloud

environments for large-scale data processing tasks. The

relative difference metric quantifies the deviation in

processing time between the baseline configuration (AWS

with SJF) and other platform-scheduler combinations,

thereby illustrating the impact of alternative scheduling

strategies. On the AWS platform, dynamic scheduling

results in a processing time of 15 hours—25% longer than

the 12 hours required under SJF—suggesting that dynamic

scheduling may introduce additional overhead. This

increase is likely due to the complexity associated with

runtime task partitioning and resource reallocation. In

contrast, SJF prioritizes smaller tasks, thereby improving

overall resource utilization and reducing processing

delays. A similar trend is observed on Google Cloud,

where dynamic scheduling (13.5 hours) is 35.71% slower

than SJF (10 hours), further confirming the relative

efficiency of the SJF strategy across different cloud

environments. These findings suggest that, under current

experimental conditions, SJF consistently outperforms

dynamic scheduling in minimizing total processing time.

12
10

15
13.5

18

30

25

40

35

50

AWS + SJF Google

Cloud + SJF

AWS +

dynamic

scheduling

Google

Cloud +

dynamic

scheduling

Local

cluster

0

5

10

15

20

25

30

35

40

45

50

55

In
d

ic
at

o
r

v
al

u
e

Platform/Scheduling Strategy

 Total processing time (h)

 Single task processing time (min)

Figure 4: Comparison of processing time of different

strategies

4.2 Throughput and cost-efficiency analysis

To thoroughly evaluate the performance and cost-

efficiency of each platform in large-scale data processing

tasks, this section focuses on two key metrics: throughput

and cost per gigabyte of data processed (CNY/GB).

Figure 5 displays the throughput performance across

different platforms for three representative datasets, while

Figure 6 depicts the corresponding cost-efficiency,

reflecting the monetary cost required to process each

gigabyte of data.

1.2

2.8

2.2

1.5

3.5

2.8

Kaggle Titanic Google Open Images Common Crawl
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Data set

 AWS

 Google Cloud

Figure 5: Throughput comparison of different cloud

platforms

As illustrated in Figure 5, throughput on the AWS

platform remains relatively stable under the dynamic

scheduling strategy. In contrast, Google Cloud

demonstrates superior performance with the SJF

scheduling strategy, particularly when processing the

image dataset (Google Open Images), where throughput

peaks at 3.5 GB/s, significantly surpassing that of other

platforms. The local high-performance cluster

consistently exhibits lower throughput, most notably with

the large-scale text dataset (Common Crawl), where

throughput falls to 2.1 GB/s. This reduced performance is

primarily attributed to limitations in memory bandwidth

and the scalability of the cluster’s hardware resources. It

is important to recognize that throughput is influenced not

only by the dataset’s type and scale but also by a range of

system-level factors, including data partitioning

granularity, latency of the underlying storage system,

compute node specifications (CPU and memory), and the

scheduling algorithm’s ability to optimize data locality.

For instance, when datasets display significant key-value

skew, range-based partitioning tends to yield higher

throughput. Conversely, for workloads involving

frequently accessed small data blocks, hash-based

partitioning is more effective in achieving balanced load

distribution.

To further assess the cost-efficiency of each platform,

the unit throughput cost was estimated, defined as the

resource expenditure required to process 1 GB of data,

normalized by execution time. Using AWS’s c5. large and

Google Cloud’s n1-standard-2 instances as representative

configurations, throughput values were combined with

instance pricing to derive the per-GB processing costs, as

shown in Figure 6.

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 129

0.141

0.061

0.078

0.133

0.059
0.069

Kaggle Titanic Google Open Images Common Crawl
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

U
n

it
 t

h
ro

u
g

h
p

u
t

co
st

 (
y
u
an

/G
B

)

Data set

 AWS

 Google Cloud

Figure 6: Estimated cost per unit of throughput

Figure 6 illustrates significant variations in cost-

efficiency across platforms when processing different

types of datasets. For lightweight structured data such as

the Kaggle Titanic dataset, computational demands are

relatively low, resulting in comparable unit throughput

costs for Google Cloud (0.133 CNY/GB) and AWS (0.141

CNY/GB). This similarity suggests that both platforms

offer efficient resource scheduling for small-scale

processing tasks. In contrast, for large-scale image

datasets like Google Open Images, Google Cloud exhibits

a distinct advantage, achieving a unit throughput cost of

0.059 CNY/GB, slightly outperforming AWS at 0.061

CNY/GB. While the base compute costs of both platforms

are comparable, Google Cloud's higher throughput—

particularly under the SJF scheduling strategy—more

effectively distributes the cost across larger data volumes.

This reflects enhanced resource utilization, especially for

workloads with high I/O concurrency.

For unstructured, large-scale text data such as

Common Crawl, the cost-efficiency gap remains evident.

Google Cloud attains a lower unit throughput cost of 0.069

CNY/GB, compared to 0.078 CNY/GB on AWS. These

workloads impose greater demands on memory and cache

management. Google Cloud’s higher memory bandwidth

and more efficient inter-node communication improve

overall processing throughput and reduce cost per

gigabyte. Overall, unit throughput cost is shaped not only

by dataset characteristics but also by the platform’s

effectiveness in resource allocation and its compatibility

with scheduling strategies. Google Cloud consistently

delivers superior cost-efficiency under high-load

scenarios, making it especially suitable for cloud-based

applications involving large-scale image or text

processing. This metric serves as a practical benchmark

for assessing scheduling optimization and selecting cost-

effective cloud resources in real-world deployments.

4.3 Resource utilization ratio comparison

Figure 7 compares resource utilization across various

cloud platforms and scheduling strategies. The results

show that both CPU and GPU utilization on the AWS

platform remain relatively low, particularly under the

static scheduling strategy, where overall utilization

reaches only 66.4%. In contrast, Google Cloud

demonstrates significantly higher resource efficiency

when employing the reinforcement learning-based

scheduling strategy, achieving CPU and GPU utilization

rates of 86.3%. These findings indicate that dynamic

scheduling approaches, such as reinforcement learning,

can more effectively allocate computational resources,

minimize idle capacity, and reduce overall resource waste.

AWS+Static

Scheduling

Google

Cloud+Reinforcement

Learning

Scheduling

AWS+Dynamic

Scheduling

Google

Cloud+Dynamic

Scheduling

55

60

65

70

75

80

85

90

95

66.4

86.3

75.5

81.2

57.6

90.2

73.2

85.5

76.5

80.6
81.9

86.2

In
d

ic
at

o
r

v
al

u
e

Platform/Scheduling Strategy

 Platform/Scheduling Strategy(%)

 CPU utilization rate (%)

 GPU utilization rate (%)

Figure 7: Comparison of resource utilization rate of

different cloud platforms

4.4 Acceleration ratio comparison

The speedup ratio is a key metric for evaluating the

performance gains achieved through parallel computing.

As shown in Figure 8, all experimental results demonstrate

that parallel processing significantly outperforms

traditional serial execution. Notably, under the dynamic

adaptive scheduling strategy, the GCP achieves the highest

speedup ratio, reaching 5.2, with processing time reduced

from 12 hours (serial execution) to just 2.3 hours. In

contrast, the local high-performance computing cluster

shows a lower speedup ratio of 3.5, suggesting that cloud

platforms offer greater scalability and acceleration

potential for large-scale data processing tasks.

AWS+Dynamic

Scheduling

Google

Cloud+Dynamic

Scheduling

Google

Cloud+Reinforcement

Learning

Scheduling

Local cluster

2

4

6

8

10

12
12 12 12 12

5.5

3.6

2.3

3.5

2.18 3.33

5.2

3.43

In
d

ic
at

o
r

v
al

u
e

Platform/Scheduling Strategy

 Serial processing time (h)

 Parallel processing time (h)

 Speed up

Figure 8: Comparison of acceleration ratio of different

cloud platforms

130 Informatica 49 (2025) 119–132 Y. Zhang et al.

To further quantify the stability and reliability of the

results, each experimental configuration was repeated five

times, and the standard deviation and 95% confidence

intervals of the speedup ratios were calculated. The results

are summarized in Table 3.

Table 3: Standard deviation and 95% confidence interval

of speedup ratios across different platforms and

scheduling strategies

Platform and

Scheduling

Strategy

Mean

Speedup

Standard

Deviation

±σ

95%

Confidence

Interval

(α=0.05)

AWS +

Dynamic

Scheduling

2.18 ±0.13 [2.00, 2.36]

Google Cloud

+ Dynamic

Scheduling

3.33 ±0.17 [3.08, 3.58]

Google Cloud

+

Reinforcement

Learning

Scheduling

5.20 ±0.21 [4.88, 5.52]

Local Cluster 3.43 ±0.09 [3.30, 3.56]

As presented in Table 3, the GCP employing the

reinforcement learning scheduling strategy achieved the

highest mean speedup ratio. This configuration, however,

also showed a slightly increased standard deviation of

±0.21, indicative of variability stemming from the model’s

dynamic decision-making process. Nevertheless, the 95%

confidence interval of [4.88, 5.52] confirms that its

acceleration performance remains significantly superior to

other tested configurations. In contrast, the AWS platform

and the local cluster exhibited lower standard deviations

of ±0.13 and ±0.09, respectively, suggesting greater

consistency in speedup across repeated trials, though with

comparatively reduced overall acceleration. These results

illustrate that, while reinforcement learning–based

scheduling can deliver optimal acceleration on cloud

platforms, its stability is contingent upon the specific

workload characteristics. Conversely, traditional dynamic

scheduling achieves a more balanced compromise

between acceleration efficacy and operational stability.

Incorporating standard deviation and confidence intervals

facilitates a more nuanced and comprehensive evaluation

of the algorithm’s applicability and robustness.

4.5 Analysis of algorithm component

effectiveness

To rigorously assess the individual contributions of

key components in the proposed adaptive parallel

processing algorithm, targeted comparative experiments

were conducted. The focus was on two modules: task

decomposition optimization and the DLB mechanism.

These experiments took place on the GCP. Three distinct

algorithm configurations were evaluated: Configuration A

(Baseline): Neither task decomposition nor DLB enabled;

employs default static data partitioning and static task

allocation. Configuration B (Task Decomposition

Optimization): Implements task decomposition based on

data block weighting (as defined by Equations (1) and (2)),

without activating DLB. Configuration C (Task

Decomposition + DLB): Integrates both task

decomposition and DLB; the scheduler dynamically

adjusts task assignments in real time by monitoring node

load conditions. To ensure experimental fairness, all

configurations were executed using the same dataset and

an identical number of compute nodes. Each configuration

was tested in three repeated runs, with average results

reported. The experimental outcomes are summarized in

Table 4.

Table 4: Performance comparison of different algorithm

configurations on the common crawl dataset (GCP)

Algorithm

Configuration

Average

Processing

Time (hours)

Average

Speedup

Ratio

Resource

Utilization

(%)

Configuration

A

12.0 1.00 54.7

Configuration

B

7.4 1.62 68.9

Configuration

C

2.3 5.20 91.4

As shown in Table 4, the introduction of task

decomposition optimization alone (Configuration B)

reduced the average processing time from 12 hours to 7.4

hours, corresponding to a 62% increase in speedup ratio.

This demonstrates that an effective data block partitioning

strategy can significantly alleviate load imbalance and

minimize idle wait times. Building upon task

decomposition, the incorporation of DLB in Configuration

C further decreased processing time to 2.3 hours and

elevated resource utilization to 91.4%, markedly

exceeding the 54.7% observed in Configuration A. These

findings underscore the substantial benefits of dynamic

scheduling in resource integration and real-time adaptive

workload distribution. The two mechanisms operate

synergistically: task decomposition improves the initial

task allocation quality, while DLB provides adaptive

corrections throughout execution. Relative to the baseline,

the combined approach yields more than a fivefold

improvement in speedup ratio. Overall, these results

confirm both the necessity and effectiveness of the

algorithm’s core components in performance

enhancement, highlighting their complementary roles and

synergistic impact.

4.6 Discussion

The experimental results presented above

demonstrate that the proposed dynamic adaptive

scheduling algorithm offers significant advantages in both

resource utilization and speedup ratio, notably achieving a

5.2-fold acceleration on the GCP with a substantial

reduction in processing time. This outcome aligns well

with recent advances in large-scale data processing within

cloud computing environments. The key factors driving

these performance differences are resource elasticity and

Adaptive Parallel Processing Algorithm with Dynamic Scheduling… Informatica 49 (2025) 119–132 131

the scale of compute nodes. Unlike local clusters with

fixed resource configurations that cannot adaptively scale

to task demands, cloud platforms provide enhanced

concurrency and I/O efficiency, enabling greater speedup

and throughput under dynamic scheduling strategies.

For example, Ma [24] introduced a reinforcement

learning-based dynamic resource scheduling method that

improved system throughput and resource utilization for

heterogeneous tasks. However, its computational

overhead constrained scheduling responsiveness in

complex scenarios. In contrast, the dynamic adaptive

scheduling strategy developed in this study balances

computational complexity and real-time responsiveness

by optimizing task decomposition and load distribution

mechanisms, effectively reducing scheduling latency and

achieving more stable performance gains.

Furthermore, Ma et al. [25] investigated elastic

scheduling strategies based on cloud-native architectures,

highlighting the influence of dynamic management of

heterogeneous cloud resources on task performance. The

findings similarly validate the superiority of dynamic

scheduling in heterogeneous resource environments, with

resource utilization increasing to 86.3%, significantly

exceeding levels achieved by traditional static scheduling.

This demonstrates that dynamic scheduling can flexibly

adapt to workload fluctuations and enhance computational

resource efficiency. Regarding data transfer overhead,

Walia et al. [26] proposed a distributed data scheduling

optimization integrated with edge computing, which

substantially reduced network load by minimizing data

movement and employing intelligent scheduling. The

scheduling framework exhibits comparable strengths in

preserving data locality and minimizing transmission

latency, particularly when handling large-scale image and

text datasets, thereby achieving higher throughput and

lower processing delays.

It is important to note that although dynamic

scheduling on AWS and GCP results in slightly longer

processing times compared to the SJF strategy—primarily

due to the additional computational overhead—dynamic

scheduling achieves superior resource utilization and

enhanced overall system stability. This advantage is

particularly critical in the complex and heterogeneous

cloud computing environment. Recent research, including

Ji et al. [27], highlights that no single scheduling strategy

can optimally satisfy all performance criteria; dynamic

adaptive scheduling, through real-time task allocation

adjustments, offers a more effective balance between

efficiency and stability. In summary, the proposed

dynamic adaptive scheduling algorithm successfully

overcomes key limitations of conventional methods, such

as low resource utilization, inflexible scheduling, and

excessive data transmission overhead. It demonstrates

notable improvements in acceleration and stability across

diverse cloud platforms, thereby validating its practical

applicability and advancement in large-scale data

processing. Future research will aim to further reduce

scheduling computational complexity and explore the

integration of edge computing with cloud-native

technologies to broaden the algorithm’s applicability to

larger-scale, heterogeneous environments.

5 Conclusion
This study investigates parallel processing

algorithms for large-scale datasets within cloud

computing environments. By systematically comparing

various cloud platforms and scheduling strategies, an

optimized computing framework is proposed and

rigorously evaluated through comprehensive experiments

conducted in real-world settings. The results demonstrate

that Google Cloud outperforms both AWS and local

clusters in terms of processing time and throughput,

particularly when employing the SJF scheduling strategy,

which significantly enhances processing efficiency.

Moreover, the SJF strategy exhibits superior performance

compared to dynamic scheduling, owing to its more

effective resource allocation and task execution

capabilities. In contrast to traditional local clusters, cloud

computing platforms provide greater scalability and

improved resource utilization, making them better suited

for parallel computing tasks involving large-scale datasets.

By optimizing task decomposition, data partitioning, and

scheduling mechanisms, the parallel processing algorithm

proposed herein effectively enhances computing resource

utilization and task execution efficiency, thereby offering

substantial benefits for efficient data processing in cloud

environments. Future research may focus on the

development of deep learning-based intelligent task

scheduling optimization algorithms to further improve the

processing efficiency of complex workloads.

References
[1] Sandhu R, Faiz M, Kaur H, et al. Enhancement in

performance of cloud computing task scheduling

using optimization strategies[J]. Cluster Computing,

2024, 27(5): 6265-6288.

https://doi.org/10.1007/s10586-023-04254-w

[2] Prity F S, Gazi M H, Uddin K M A. A review of task

scheduling in cloud computing based on nature-

inspired optimization algorithm[J]. Cluster

computing, 2023, 26(5): 3037-3067.

https://doi.org/10.1007/s10586-023-04090-y

[3] Saravanan G, Neelakandan S, Ezhumalai P, et al.

Improved wild horse optimization with levy flight

algorithm for effective task scheduling in cloud

computing[J]. Journal of Cloud Computing, 2023,

12(1): 24. https://doi.org/10.1186/s13677-023-

00401-1

[4] Prity F S, Uddin K M A, Nath N. Exploring swarm

intelligence optimization techniques for task

scheduling in cloud computing: algorithms,

performance analysis, and future prospects[J]. Iran

Journal of Computer Science, 2024, 7(2): 337-358.

https://doi.org/10.1007/s42044-023-00163-8

[5] Wang Y, Bao Q, Wang J, et al. Cloud computing for

large-scale resource computation and storage in

machine learning[J]. Journal of Theory and Practice

of Engineering Science, 2024, 4(03): 163-171.

https://doi.org/10.53469/jtpes.2024.04(03).14

[6] Zhu J, Li Q, Ying S, et al. Research on Parallel Task

Scheduling Algorithm of SaaS Platform Based on

132 Informatica 49 (2025) 119–132 Y. Zhang et al.

Dynamic Adaptive Particle Swarm Optimization in

Cloud Service Environment[J]. International Journal

of Computational Intelligence Systems, 2024, 17(1):

260. https://doi.org/10.1007/s44196-024-00666-7

[7] Khan Z A, Aziz I A, Osman N A B, et al. Parallel

Enhanced Whale Optimization Algorithm for

Independent Tasks Scheduling on Cloud

Computing[J]. IEEE Access, 2024, 12: 23529-23548.

https://doi.org/10.1109/ACCESS.2024.3364700

[8] Zheng H, Xu K, Zhang M, et al. Efficient resource

allocation in cloud computing environments using

AI-driven predictive analytics[J]. Applied and

Computational Engineering, 2024, 82: 17-23.

https://doi.org/10.54254/27552721/82/2024GLG00

55

[9] Al Reshan M S, Syed D, Islam N, et al. A fast

converging and globally optimized approach for load

balancing in cloud computing[J]. IEEE Access, 2023,

11: 11390-11404.

[10] Zhou J, Lilhore U K, Hai T, et al. Comparative

analysis of metaheuristic load balancing algorithms

for efficient load balancing in cloud computing[J].

Journal of cloud computing, 2023, 12(1): 85.

https://doi.org/10.1007/978-981-99-1312-1_15

[11] Chiang M L, Hsieh H C, Cheng Y H, et al.

Improvement of tasks scheduling algorithm based on

load balancing candidate method under cloud

computing environment[J]. Expert Systems with

Applications, 2023, 212: 118714.
https://doi.org/10.1016/j.eswa.2022.118714

[12] Khan A R. Dynamic load balancing in cloud

computing: optimized RL-based clustering with

multi-objective optimized task scheduling[J].

Processes, 2024, 12(3): 519.

https://doi.org/10.3390/pr12030519

[13] Natesan P, Sathishkumar V E, Mathivanan S K, et al.

A distributed framework for predictive analytics

using Big Data and MapReduce parallel

programming[J]. Mathematical Problems in

Engineering, 2023, 2023(1): 6048891.

https://doi.org/10.1155/2023/6048891

[14] Ali El-Sayed Ali H, Alham M H, Ibrahim D K. Big

data resolving using Apache Spark for load

forecasting and demand response in smart grid: a

case study of Low Carbon London Project[J].

Journal of Big Data, 2024, 11(1): 59.

https://doi.org/10.1186/s40537‑024‑00909‑6

[15] Wang Z, Liang H, Yang H, et al. Integration of Multi-

Source Landslide Disaster Data Based on Flink

Framework and APSO Load Balancing Task

Scheduling[J]. ISPRS International Journal of Geo-

Information, 2024, 14(1): 12.

https://doi.org/10.1109/IGARSS46834.2022.988327

9

[16] Sandhu R, Faiz M, Kaur H, et al. Enhancement in

performance of cloud computing task scheduling

using optimization strategies[J]. Cluster Computing,

2024, 27(5): 6265-6288.

https://doi.org/10.1007/s10586-023-04254-w

[17] Hosseini Shirvani M. A survey study on task

scheduling schemes for workflow executions in

cloud computing environment: classification and

challenges[J]. The Journal of Supercomputing, 2024,

80(7): 9384-9437. https://doi.org/10.1007/s11227-

023-05806-y

[18] Mangalampalli S, Karri G R, Kumar M, et al.

DRLBTSA: Deep reinforcement learning based task-

scheduling algorithm in cloud computing[J].

Multimedia tools and applications, 2024, 83(3):

8359-8387. https://doi.org/10.1007/s11042-023-

16008-2

[19] Yang J, Jiang B, Lv Z, et al. A task scheduling

algorithm considering game theory designed for

energy management in cloud computing[J]. Future

Generation computer systems, 2020, 105: 985-992.

https://doi.org/10.1016/j.future.2017.03.024

[20] Wang J, Qiao L, Lv H, et al. Deep transfer learning-

based multi-modal digital twins for enhancement and

diagnostic analysis of brain mri image[J].

IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 2022, 20(4): 2407-2419.

https://doi.org/10.1109/TCBB.2022.3168189

[21] Kang K X, Ding D, Xie H M, et al. Imitation learning

enabled fast and adaptive task scheduling in cloud[J].

Future Generation Computer Systems, 2024, 154:

160-172.

https://doi.org/10.1016/j.future.2024.01.002

[22] Zhou G, Tian W, Buyya R, et al. Deep reinforcement

learning-based methods for resource scheduling in

cloud computing: A review and future directions[J].

Artificial Intelligence Review, 2024, 57(5): 124.

https://doi.org/10.1007/s10462-024-10756-9

[23] Ponnusamy S, Gupta P. Scalable data partitioning

techniques for distributed data processing in Cloud

Environments: A Review[J]. IEEE Access, 2024, 12:

26735-26746.

https://doi.org/10.1109/ACCESS.2024.3365810

[24] Ma J. A High-Performance Computing Web Search

Engine Based on Big Data and Parallel Distributed

Models[J]. Informatica, 2024, 48(20): 27-38.

https://doi.org/10.31449/inf.v48i20.6776

[25] Ma J, Zhu C, Fu Y, et al. Reliable Task Scheduling in

Cloud Computing Using Optimization Techniques

for Fault Tolerance[J]. Informatica, 2024, 48(23):

159-170. https://doi.org/10.31449/inf.v48i23.6901

[26] Walia N K, Kaur N, Alowaidi M, et al. An energy-

efficient hybrid scheduling algorithm for task

scheduling in the cloud computing environments[J].

IEEE Access, 2021, 9: 117325-117337.

https://doi.org/10.1109/ACCESS.2021.3105727

[27] Ji C, Zhou J, Kong F. K-means Clustering with AES

in Hadoop MapReduce[J]. Informatica, 2024, 48(20):

81-92. https://doi.org/10.31449/inf.v48i20.6054

