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As large-scale data processing tasks continue to grow in volume and complexity, improving the efficiency 

of computational resource utilization and task execution performance has emerged as a central challenge 

in cloud computing environments. In response, this study proposes an adaptive parallel processing 

algorithm that incorporates a dynamic scheduling strategy, designed to optimize task allocation and 

execution workflows within distributed systems. To assess the algorithm's performance, experiments were 

conducted across three platforms—Amazon Web Services (AWS), Google Cloud, and a local computing 

cluster—using three representative large-scale public datasets. These tasks included a structured 

classification task using the Kaggle Titanic dataset, an image processing task using the Google Open 

Images dataset (which contains over 90 million images), and a text processing task based on the Common 

Crawl dataset, which comprises content from billions of web pages. On the Google Cloud platform, the 

integration of dynamic scheduling reduced execution time to 13.5 hours. It also demonstrated strong 

adaptability and overall system stability, especially when managing complex task distributions and large-

scale data. When paired with the adaptive parallel processing algorithm, the dynamic scheduling strategy 

achieved a 5.2× speedup compared to serial execution. This reduced the total processing time from 12 

hours to 2.3 hours, while maintaining high resource utilization and stable task scheduling. These findings 

underscore the algorithm's substantial potential in enhancing the performance of large-scale data 

processing and offer practical implications for algorithmic optimization and resource management in 

cloud-based environments. 

Povzetek:  Predstavljen je adaptivni paralelni obdelovalni algoritem z dinamičnim razporejanjem za 

obdelavo velikih podatkov v oblaku. Novost je integracija dinamičnega razporejanja, SJF in učenja z 

okrepitvijo, ki izboljša hitrost, izkoriščenost virov in stabilnost obdelave. 

 

1 Introduction 

Cloud computing has become a cornerstone of large-

scale data processing due to its robust computational 

capabilities, high scalability, and distributed storage 

architecture [1]. It is widely adopted by enterprises and 

research institutions for managing massive volumes of 

data—supporting storage, analysis, and computation to 

enhance operational efficiency and inform data-driven 

decision-making [2, 3]. Despite its advantages, cloud 

computing frameworks continue to encounter substantial 

challenges when handling complex data processing tasks, 

particularly in areas such as task scheduling, resource 

management, and computational efficiency [4]. 

Contemporary large-scale data processing 

frameworks—including Hadoop, Spark, and Flink—have 

achieved significant advances in parallel computing and 

distributed data storage. However, these systems still 

struggle with suboptimal utilization of computing 

resources, limited task scheduling strategies, and  

 

insufficient optimization of data locality [5, 6]. In addition 

to these intrinsic limitations, the interaction between data 

storage and computational processes represents another 

major bottleneck in cloud-based data processing 

performance. The physical or network distance between 

data storage locations and computing nodes plays a critical 

role in determining system throughput and overall 

computational efficiency [7]. Current data placement and 

scheduling strategies often lack effective coordination 

between data locality and computation, leading to 

increased data transfer overhead, reduced system 

throughput, and impaired processing efficiency [8]. 

Therefore, optimizing data locality—ensuring that 

computational tasks are executed as close to the relevant 

data as possible—is essential for improving performance 

in large-scale cloud computing environments. 

Furthermore, load balancing is a key consideration in 

optimizing parallel processing algorithms within cloud 

systems [9]. Given the heterogeneous nature of tasks—

which may vary widely in both computational complexity 
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and data volume—imbalances in workload distribution 

across computing nodes are common. This often results in 

some nodes being overloaded while others remain 

underutilized, leading to inefficient resource allocation 

[10, 11]. Such disparities in workload distribution 

diminish overall computational efficiency and can 

negatively impact the scalability of cloud-based systems 

[12]. Accordingly, the development of effective task 

scheduling and load balancing strategies is critical for 

maximizing resource utilization and enhancing the 

performance of large-scale data processing frameworks. 

To address the challenges outlined above, this study 

seeks to enhance the efficiency of large-scale data 

processing in cloud computing environments by 

introducing an adaptive parallel processing algorithm 

integrated with a dynamic scheduling strategy. The 

algorithm continuously monitors task characteristics and 

platform resource states in real time, allowing it to 

dynamically adjust task allocation and execution order. 

This adaptive mechanism is designed to optimize 

processing performance across diverse computing 

architectures, including local clusters, Amazon Web 

Services (AWS), and Google Cloud. The investigation 

centers on four key performance indicators: task execution 

time, data throughput, resource utilization, and parallel 

speedup. To assess the algorithm’s effectiveness, a series 

of experiments Are conducted using multiple real-world 

datasets. These experiments compare the proposed 

method against several scheduling strategies. In addition 

to the dynamic scheduling approach, the study evaluates 

alternatives such as Shortest Job First (SJF) and 

reinforcement learning-based methods, aiming to identify 

their respective strengths and limitations across varying 

data scales and task complexities. 

The study is guided by the following core questions: 

Can the proposed dynamic scheduling strategy 

significantly improve parallel processing efficiency across 

different task loads and computing environments? To 

what extent can the adaptive mechanism regulate 

scheduling behavior to optimize both processing speed 

and resource utilization? Does the algorithm demonstrate 

generalizability and transferability when applied to 

various data types, such as images and text? Based on 

these questions, the study proposes the following study 

hypotheses: H1: The adaptive parallel processing 

algorithm demonstrates enhanced robustness and 

scheduling efficiency in environments with dynamically 

changing resources. H2: The dynamic scheduling 

mechanism substantially reduces processing latency and 

improves resource utilization, outperforming static 

strategies such as SJF. H3: The elasticity of cloud platform 

resources plays a critical role in shaping scheduling 

strategy performance and serves as a key factor in 

determining algorithmic outcomes. This study is 

conducted under the following design assumptions: The 

tasks involved exhibit a structure that permits parallel 

decomposition. The computing platforms used support 

programmable interfaces for task scheduling and resource 

monitoring. The proposed algorithm is capable of task-

awareness and feedback control, enabling real-time 

adjustments to execution strategies. Through 

comprehensive experimental comparisons and 

performance evaluations, this study demonstrates the 

effectiveness and adaptability of the proposed algorithm 

within cloud-based environments. The findings provide 

both theoretical grounding and practical insights for 

advancing resource scheduling methodologies in future 

large-scale data processing systems. 

2 Literature review 
The rapid evolution of cloud computing has 

significantly advanced large-scale data processing 

technologies, prompting numerous research efforts to 

develop optimized frameworks and algorithms. Natesan et 

al. [13] introduced a parallel computing model based on 

MapReduce, which decomposed tasks into distinct map 

and reduced phases to enable efficient distributed 

processing. Despite its simplicity and scalability, the 

framework’s reliance on disk-based I/O introduced 

considerable latency in task scheduling and data transfer, 

limiting its performance in high-demand environments. 

To address these limitations, Ali El-Sayed Ali et al. [14] 

proposed the Spark framework, which introduced the 

concept of Resilient Distributed Datasets (RDDs) to 

enable in-memory computation. This innovation 

significantly reduced I/O overhead and enhanced 

computational throughput. Nevertheless, Spark’s 

scheduling mechanism continued to suffer from load 

imbalance—particularly when handling large-scale 

streaming data—leading to inefficient utilization of 

computational resources. 

Building upon these developments, Wang et al. [15] 

proposed the Flink framework, which adopted a data 

stream processing paradigm. Flink supports event-driven 

real-time computation and enhances system stability 

through its incremental checkpointing mechanism. While 

Flink demonstrated clear advantages over Spark in stream 

processing performance, its batch task resource allocation 

strategies remained suboptimal and in need of further 

refinement. In an effort to improve task scheduling 

efficiency in cloud computing environments, Sandhu et al. 

[16] proposed a hybrid optimization approach that 

integrated Tabu Search, Bayesian classification, and 

Whale Optimization algorithms. This method aimed to 

maximize resource utilization and enhance overall cloud 

service performance. However, under large-scale parallel 

processing conditions, the issue of data skew remained 

unresolved, continuing to impact load balancing and 

system efficiency. 

In the context of task scheduling, Hosseini Shirvani 

[17] examined several conventional strategies, such as SJF 

and Round-Robin (RR) scheduling. While these methods 

are easy to implement and entail minimal computational 

overhead, they are ill-suited for heterogeneous 

environments. Specifically, they often result in 

imbalanced workloads, where certain computing nodes 

become overloaded while others remain underutilized. To 

overcome these limitations, Mangalampalli et al. [18] 

introduced reinforcement learning–based scheduling 

techniques, employing algorithms like Deep Q-Networks 

(DQN) and policy gradient methods. These approaches 
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enable dynamic adaptation to diverse task requirements, 

thereby enhancing system throughput. However, they also 

introduce high computational complexity and exhibit slow 

convergence, particularly when applied to extremely large 

datasets. 

Further developments include a game-theoretic load 

balancing strategy proposed by Yang et al. [19], which 

improves computational efficiency by facilitating 

dynamic task adjustments through collaborative decision-

making among nodes. Building on this, Wang et al. [20] 

proposed a deep reinforcement learning–driven 

scheduling algorithm capable of real-time task allocation 

adjustments based on system load, leading to better 

resource utilization. Nonetheless, these advanced methods 

still face persistent challenges in large-scale parallel 

processing, including imprecise task granularity, data 

skew, and high scheduling overhead [21, 22]. To facilitate 

clearer comparative analysis, Table 1 summarizes the 

proposed method alongside leading parallel processing 

techniques, highlighting their architectural designs, 

strengths, weaknesses, and the datasets utilized. 

 

Table 1: Comparative overview of mainstream parallel processing methods 

Method Architecture Advantages Disadvantages Dataset(s) Used 

Natesan et al. 

[13] 

MapReduce Simple and stable; 

well-suited for large-

scale batch 

processing 

Heavily reliant on disk I/O; 

significant delays in scheduling 

and data transfer 

Custom big data 

simulation 

datasets 

Ali El-Sayed et 

al. [14] 

Spark (In-

Memory 

Computing) 

Supports in-memory 

computing with low 

I/O overhead 

Imbalanced task scheduling; 

weak performance in stream 

processing 

Standard Spark 

test datasets 

Wang et al. 

[15] 

Flink (Unified 

Batch and 

Stream 

Processing) 

Enables real-time 

stream processing 

and incremental 

checkpoints; high 

stability 

Suboptimal resource allocation 

for batch processing; requires 

further optimization 

Twitter 

streaming data 

Sandhu et al. 

[16] 

Hybrid 

scheduling with 

Tabu Search, 

Bayesian 

Classification, 

and Whale 

Optimization 

Algorithm 

Improves resource 

utilization and 

enhances cloud 

service performance 

High algorithmic complexity and 

computational overhead 

Cloud 

computing 

simulation 

environment 

Hosseini 

Shirvani [17] 

Static Scheduling 

(SJF, RR) 

Simple to implement 

with low overhead 

Poor adaptability to 

heterogeneous tasks; low 

resource utilization 

HPC benchmark 

datasets 

Mangalampalli 

et al. [18] 

Reinforcement 

Learning-based 

Scheduling (e.g., 

DQN) 

Dynamically adapts 

to task variations; 

improves scheduling 

flexibility 

High algorithmic complexity; 

slow convergence; expensive 

training process 

Cloud-based 

video streams 

and task 

simulation data 

Yang et al. [19] Game-Theoretic 

Scheduling 

Enables dynamic 

cooperation among 

nodes; enhances 

fairness in task 

allocation 

High communication and 

scheduling overhead; difficult to 

control task granularity 

Simulated server 

task data 

Wang et al. 

[20] 

Deep 

Reinforcement 

Learning-based 

Scheduling 

Adjusts task 

allocation in real 

time; improves 

throughput 

Faces issues with data skew and 

scheduling bottlenecks 

Large-scale web 

logs and crawler 

datasets 

As summarized in Table 1, although mainstream 

parallel processing technologies have achieved notable 

success within their respective domains, they continue to 

face considerable limitations when applied to large-scale, 

heterogeneous data processing environments. Traditional 

MapReduce frameworks, for example, rely heavily on 

disk-based I/O, leading to high data transmission latency 

and inefficient task scheduling—factors that make them 

unsuitable for high-performance computing applications. 

Spark addresses I/O bottlenecks through in-memory 

computing, substantially reducing overhead. However, its 

task scheduling mechanism often suffers from load 

imbalance and limited resource utilization, particularly in 

large-scale streaming contexts. Flink, which integrates 

both batch and stream processing, shows advantages in 

real-time stream handling and system stability, but still 

lacks effective mechanisms for dynamic resource 

allocation in batch workloads, thereby limiting its overall 
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efficiency. Graph processing methods improve data 

locality and reduce transmission costs, yet persistent 

challenges such as data skew and load imbalance restrict 

their scalability and effectiveness in complex task 

scenarios. 

From a scheduling strategy perspective, static 

approaches like SJF and Round Robin (RR) are relatively 

simple and computationally inexpensive. Nonetheless, 

they perform poorly in dynamic, heterogeneous 

environments characterized by variable workloads and 

task diversity, resulting in suboptimal resource use and 

unbalanced computational loads across nodes. More 

recent approaches based on reinforcement learning and 

game theory have introduced intelligent, adaptive 

scheduling mechanisms that enhance system 

responsiveness to workload heterogeneity and improve 

throughput and resource efficiency. Despite these benefits, 

such methods often entail high algorithmic complexity, 

slow convergence, and costly training. In real-world large-

scale processing, they still struggle with unresolved issues 

such as data skew, scheduling overhead, and challenges in 

managing fine-grained task control. 

Moreover, current methodologies generally lack 

targeted optimization for multimodal, large-scale 

datasets—such as those involving both image and text 

data—further diminishing scheduling efficiency and 

resource utilization. Existing research has yet to offer a 

unified framework capable of addressing the dual 

challenges of heterogeneous data processing and dynamic, 

adaptive scheduling. In response, this study proposes an 

adaptive parallel processing algorithm specifically 

designed for cloud computing environments. By 

integrating a dynamic scheduling strategy with cross-

platform resource optimization, the proposed method 

significantly enhances task execution efficiency and 

resource utilization, while markedly reducing processing 

time. This approach addresses critical bottlenecks in 

current systems and contributes both theoretically and 

practically to the advancement of large-scale data 

processing technologies. 

3 Research methodology 

3.1 Framework for large-scale data 

processing in cloud computing environment 

Efficient large-scale data processing in cloud 

computing environments requires the seamless integration 

of distributed storage, parallel computing, task scheduling, 

and load balancing mechanisms to ensure optimal use of 

computational resources. To address these demands, this 

study proposes an enhanced computing framework, as 

depicted in Figure 1. The framework comprises four core 

components: a distributed storage system, a network of 

computing nodes, a dynamic task scheduling module, and 

an intelligent load balancing mechanism. Together, these 

components are designed to support scalable, high-

performance parallel processing across diverse and 

complex workloads. 

User task request

Task scheduling module Load balancing module

Task Splitting Task Migration

Computing Resource 

Allocation
Resource Optimization

Compute Execution Layer

Compute Node 1: (Parallel Computing&Data Processing)

Compute Node 2: (Parallel Computing&Data Processing)

   

Compute Node N: (Parallel Computing&Data Processing)

Data storage layer

Distributed storage systems (HDFS, NoSQL)

Cache layer

Result storage

Store the calculation results in HDFS/database
 

Figure 1: Large-scale data processing framework in 

cloud computing environment 

 

As illustrated in Figure 1, the large-scale data 

processing framework proposed in this study is tailored 

for deployment within cloud computing environments. It 

integrates hierarchical distributed storage with parallel 

computing to achieve efficient coordination between data 

management and computation. The framework employs a 

multi-tiered storage architecture that distributes data 

across high-speed caches (e.g., Redis), local disks, and 

remote distributed systems such as Hadoop Distributed 

File System (HDFS) and NoSQL databases. The caching 

layer stores frequently accessed (hot) data to reduce 

latency; the local disk layer enables rapid random access 

by compute nodes; and the remote distributed storage 

layer ensures persistent storage and supports high-

throughput access to massive datasets. To accommodate 

diverse computational workloads, the system strategically 

selects storage solutions based on task-specific 

requirements—leveraging HDFS for efficient sequential 

I/O operations and NoSQL for flexible querying. 

To further improve computational efficiency, the 

framework prioritizes data locality. Enhanced hashing and 

range-partitioning algorithms are employed to ensure 

balanced data distribution and local clustering of related 

records, while replica placement is dynamically optimized 

to maximize local data access rates [23]. During 

preprocessing, techniques such as data presorting, local 

aggregation, and compression encoding are implemented 

to alleviate I/O bottlenecks during runtime. The task 

scheduling module accounts for both resource utilization 

and data distribution across compute nodes, dynamically 

adapting task assignments and data migration strategies to 
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reduce cross-node traffic and enhance throughput. 

At the execution layer, the framework adopts an in-

memory resilient distributed computing model that is 

logically decoupled from the storage system, thereby 

mitigating disk I/O limitations and accelerating 

computation. The scheduling mechanism considers data 

locality, node resource availability, and task priority, 

enabling preferential assignment of tasks to nodes that 

contain or are in close proximity to the required data. A 

real-time load balancing mechanism continuously adjusts 

task distribution, ensuring equitable and efficient use of 

computational resources. Moreover, improved data 

partitioning strategies reduce inter-node dependencies and 

balance task granularity, further enhancing parallel 

processing performance. Final computation results are 

stored in a centralized results database to support 

subsequent analysis and querying. In conclusion, the 

proposed framework enhances large-scale data processing 

by combining multi-tiered storage optimization with 

intelligent dynamic scheduling. It significantly improves 

resource utilization, processing efficiency, and system 

scalability, thereby addressing the performance demands 

of complex tasks in cloud-based environments. 

3.2 Parallel processing algorithm design 

The efficient processing of large-scale datasets in 

cloud computing environments hinges on the effective 

execution of task decomposition, data partitioning, 

resource scheduling, and load balancing. To address these 

challenges, this study introduces an adaptive parallel 

processing algorithm that integrates strategic task 

decomposition, optimized resource allocation, and 

Dynamic Load Balancing (DLB). This approach is 

designed to enhance data processing efficiency while 

maintaining system stability under varying workload 

conditions. The overall workflow of the proposed 

algorithm is illustrated in Figure 2. 

Data Input

Data partitioning

Hash based data partitioning

Range based data partitioning

Load balancing and resource allocation

Task scheduling optimization

Task Execution

Task 

decomposition

Result Output

Figure: 2 Parallel processing algorithm flow 

 

As shown in Figure 2, task decomposition serves as 

the foundation of parallel computing, directly influencing 

computational efficiency and the complexity of task 

scheduling. In this study, a data block–based 

decomposition strategy is employed, whereby the original 

dataset D is partitioned into multiple independent data 

blocks 𝑑𝑖 , with corresponding subtasks 𝑇𝑖   generated for 

parallel execution. 

𝐷 = ∑  𝑛
𝑖=1 𝑑𝑖                          (1) 

The size of the data blocks is constrained by the 

available storage and computing resources. In this study, 

an adaptive data block sizing strategy was developed 

based on the specific characteristics of the datasets. For 

image datasets such as Google Open Images, where the 

number and size of images within each block are relatively 

uniform, a fixed block size of 128 MB was adopted. In 

contrast, for text datasets like Common Crawl, the block 

size was dynamically adjusted according to text length and 

semantic units, ranging from 64 MB to 256 MB. This 

approach balances task granularity with computational 

load distribution. The strategy ensures that task 

decomposition leverages the local storage advantages of 

computing nodes while minimizing inter-node data 

transfer, thereby improving data access efficiency. The 

optimal block size depends on factors such as the total data 

volume, memory capacity of compute nodes, and network 

bandwidth. Larger blocks reduce scheduling overhead but 

may cause load imbalance, whereas smaller blocks 

facilitate fine-grained scheduling at the cost of increased 

communication overhead. These trade-offs were 

experimentally tuned to suit different application 

scenarios. Simultaneously, minimizing data dependencies 

between tasks is crucial to achieve effective load 

balancing across computing nodes, which requires 

meeting the following conditions: 

∀𝑖, 𝑗, |𝑇𝑖 − 𝑇𝑗| ≈ 0                         (2) 

The tolerance for load imbalance is defined as 

allowing a load deviation within ±5%, a threshold 

determined through comprehensive consideration of 

performance fluctuations among compute nodes and 

system resource constraints observed during 

experimentation. This threshold balances flexibility and 

efficiency in system scheduling. To further optimize data 

access efficiency, this study employs two data partitioning 

strategies: hash-based partitioning and range-based 

partitioning. When data keys are uniformly distributed and 

the key space is large, hash-based partitioning is preferred 

to achieve load balancing. Conversely, when data exhibits 

clear ordering or range query requirements, range-based 

partitioning is employed to enhance query efficiency. A 

cost model based on statistical data characteristics is 

introduced to evaluate the communication overhead and 

computational load of both strategies, thereby 

automatically selecting the optimal partitioning scheme. 

To address the load imbalance caused by “hot keys” in 

datasets with large key values, the hash partitioning 

method incorporates virtual nodes. This technique 

replicates and disperses hot keys across multiple nodes, 

effectively mitigating single-point bottlenecks and 

improving overall load balancing. The hash-based method 

is particularly suitable for key-value data, such as that 

found in NoSQL databases. During computation, data 

allocation to different nodes is determined according to 

hash values, with the specific formula given as follows: 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝐼𝐷 = 𝐻𝑎𝑠ℎ(𝐾𝑒𝑦)mod𝑛                       (3) 

Range-based data partitioning is particularly 

effective for numerical or time-series data, as it enables 

even distribution of data across computing nodes based on 

specified value intervals. Following task partitioning, it 
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becomes critical to optimize computational resource 

utilization and maintain load balance to prevent 

bottlenecks caused by the overloading of individual nodes. 

To achieve this, the present study implements a DLB 

algorithm, which continuously monitors system 

performance and dynamically reallocates tasks based on 

real-time load conditions. The DLB module tracks key 

performance indicators, including CPU utilization, 

memory consumption, and network I/O, and synthesizes 

these metrics into a unified load score. This composite 

score serves as the primary criterion for scheduling and 

resource management decisions. The system samples load 

metrics from each node every five seconds and computes 

load scores using a weighted function. These scores guide 

the dynamic adjustment of task assignments and initiate 

task migration when necessary to maintain a balanced 

workload across the computing cluster. To minimize 

communication overhead, the task migration process 

prioritizes data locality, thereby reducing the frequency 

and cost of inter-node data transfers. The load of each 

computing node is calculated using the following formula: 

𝐿𝑜𝑎𝑑𝑖 =
𝑇𝑖

𝐶𝑖
                            (4) 

𝐿𝑜𝑎𝑑𝑖 represents the load of the i-th computing node. 

𝑇𝑖  denotes the current workload of the node. 𝐶𝑖 refers to 

the computing capacity of the node, such as CPU and 

memory. When the load of a node exceeds the threshold θ, 

task migration is triggered. Some computing tasks 𝑇𝑘 are 

transferred to a lower-load node j, as shown in Equation 

(5) and (6): 

𝑇𝑗 = 𝑇𝑗 + 𝛼𝑇𝑘                           (5) 

𝑇𝑖 = 𝑇𝑖 − 𝛼𝑇𝑘                           (6) 

The parameter α denotes the adjustment ratio, which 

plays a critical role in preventing secondary load 

imbalances during task migration. Its value was 

empirically optimized through iterative experimentation 

to achieve an effective trade-off between the 

responsiveness of migration decisions and the overall 

stability of resource allocation. The efficiency of task 

scheduling is pivotal, as it directly influences system 

throughput and computational performance. To further 

improve scheduling efficacy, this study introduces an 

intelligent task scheduling optimization approach based 

on deep reinforcement learning. Specifically, a DQN is 

utilized to facilitate adaptive, data-driven task allocation. 

The scheduling process is formulated within a 

reinforcement learning framework, where the state space 

SSS captures system-level metrics—including CPU 

utilization, memory consumption, and the current task 

queue length for each computing node—while the action 

space A comprises decisions related to task assignment 

and migration. Through iterative interaction with the 

computing environment, the reinforcement learning agent 

refines its policy to maximize cumulative rewards, 

effectively learning to allocate tasks in a manner that 

enhances performance and resource efficiency. The DQN 

architecture is composed of a three-layer fully connected 

neural network, featuring an input layer, two hidden layers 

with 64 neurons each, and an output layer. The hidden 

layers employ ReLU (Rectified Linear Unit) activation 

functions to introduce non-linearity and improve the 

network's representational capacity. 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) −
𝑄(𝑠, 𝑎)]                    (7) 

where (𝑠, 𝑎)  represents the Q-value of the task 

scheduling policy. α is the learning rate. r denotes the 

computing reward, such as reduced processing time. γ is 

the discount factor, representing long-term rewards. In the 

reinforcement learning framework, s represents the 

current system state, a denotes the action taken, y is the 

predicted value of the subsequent state, and Q is the 

action-value function used to evaluate the quality of an 

action given the current state. This formulation facilitates 

optimal task allocation by guiding decision-making 

towards actions that maximize expected long-term 

rewards. By integrating these strategies—including task 

decomposition, data partitioning, DLB, and reinforcement 

learning–based scheduling optimization—the proposed 

adaptive parallel processing algorithm achieves efficient 

data processing and effective management of computing 

resources within cloud computing environments. 

To comprehensively evaluate the performance of the 

proposed algorithm, both time complexity and space 

complexity were analyzed. The time complexity primarily 

depends on the task scheduling and parallel execution 

processes. Assuming a total of n tasks and m resource 

nodes, the scheduling strategy dynamically allocates tasks 

during each scheduling cycle, resulting in an approximate 

time complexity of O(n⋅m). In practice, the dynamic 

scheduling approach utilizes priority adjustments and 

resource utilization optimization to effectively reduce task 

waiting times and enhance overall processing efficiency. 

Regarding space complexity, the algorithm maintains 

task queues, resource state information, and auxiliary data 

structures required by the scheduling strategy, leading to a 

space complexity of O(n+m). Given the well-designed 

data structures, the memory overhead remains manageable, 

making the algorithm suitable for large-scale distributed 

cloud computing environments. This complexity analysis 

demonstrates that the proposed method achieves flexible 

scheduling and dynamic resource allocation while 

maintaining low computational and memory overheads, 

thus supporting efficient parallel processing of large-scale 

heterogeneous tasks in cloud settings. 

3.3 Algorithm optimization strategy 

In large-scale data processing within cloud 

computing environments, foundational parallel processing 

frameworks and scheduling strategies are indispensable. 

However, further enhancements aimed at improving task 

execution efficiency, minimizing resource wastage, and 

boosting overall system performance are equally critical. 

To address these challenges, this study proposes a suite of 

algorithmic optimization strategies encompassing data 

locality enhancement, task scheduling refinement, and 

intelligent task allocation through deep learning 

techniques. The integration of these strategies 

significantly improves computational efficiency and task 

handling capabilities, thereby ensuring the effective 

utilization of computing resources when processing large-

scale datasets. A detailed overview of these approaches is 
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presented in Figure 3. 

Data locality 

optimization

Task Scheduling Optimization

Reinforcement

 Learning Scheduling

Intelligent Task Allocation

Deep Learning

 Prediction

Overall Collaborative 

Optimization

Efficient Task 

Execution and 

Resource Utilization

 
Figure 3: Flow chart of algorithm optimization strategy 

for large-scale data processing in cloud computing 

environment 

 

First, data locality optimization forms the foundation 

of the proposed optimization strategies. Data locality 

refers to the relationship between the physical or logical 

arrangement of data and the patterns in which it is 

accessed. Conventional distributed data processing 

architectures frequently encounter bandwidth bottlenecks 

and elevated latency due to data transfers across 

computing nodes. To mitigate these challenges, this study 

employs a data affinity scheduling strategy that optimizes 

task allocation by considering both data block access 

patterns and the computing capacity of nodes. This 

approach places related data on the same or adjacent 

computing nodes, thereby minimizing cross-node data 

transfers, significantly improving cache hit rates, and 

enhancing overall data access efficiency. Specifically, a 

distance-based scheduling strategy is applied during data 

partitioning. This strategy analyzes the physical locations 

of computational tasks relative to their corresponding data 

blocks and preferentially schedules tasks on the nodes 

storing the relevant data, reducing the cost of remote data 

transfers and improving execution efficiency. The affinity 

scoring model is constructed based on a data access 

frequency matrix and a node-to-data mapping table, while 

a weighted graph search algorithm calculates the “affinity” 

between each task and computing node. Here, “distance” 

is primarily defined by the hop count within the network 

topology and the average communication latency between 

nodes. This metric is dynamically updated via a topology-

aware module in local clusters, and assessed using 

bandwidth measurements and latency statistics in 

heterogeneous cloud platforms. 

This method differs from conventional affinity 

scheduling algorithms in several key aspects: (1) it 

introduces a dynamic affinity scoring mechanism rather 

than relying on static rules, thereby enhancing scheduling 

responsiveness and adaptability; (2) it integrates a 

reinforcement learning module during scheduling 

optimization to continuously refine affinity model weights 

based on historical scheduling feedback; and (3) it 

incorporates task priority and resource status to balance 

affinity with overall system load, preventing node 

congestion that may arise from purely affinity-driven 

scheduling. 

Second, task scheduling optimization is critical for 

enhancing the efficiency of parallel processing. 

Traditional scheduling approaches often rely on static 

methods or simple RR algorithms, which are insufficient 

for addressing dynamic workloads and real-time task 

demands. To overcome these limitations, this study 

proposes an optimized scheduling strategy based on the 

SJF policy. By prioritizing smaller tasks, this approach 

reduces resource idle time and task waiting time, thereby 

improving system responsiveness and throughput. The 

SJF strategy is particularly effective in handling a large 

volume of small-scale tasks, making it well-suited to the 

shard-based parallel processing architecture proposed in 

this study. However, the efficacy of SJF depends on 

accurate predictions of task execution times, and its 

performance may degrade when task size distributions are 

highly uneven or estimation errors are significant. 

Therefore, given the dynamic and variable nature of cloud 

computing environments, a dynamic adaptive scheduling 

algorithm is introduced. This algorithm intelligently 

adjusts scheduling strategies based on real-time load 

conditions, task priorities, and resource availability. By 

doing so, it effectively minimizes task conflicts and 

prevents resource bottlenecks, resulting in improved 

computational efficiency and enhanced resource 

utilization. Furthermore, the system design maintains 

modularity and extensibility of the scheduling component, 

allowing for seamless switching to alternative policies—

such as priority-based RR or weighted fair scheduling—to 

accommodate varying workload scenarios. 

Task scheduling is further optimized through the 

integration of reinforcement learning algorithms, which 

facilitate adaptive and intelligent optimization by 

continuously interacting with the system environment. 

The primary aim of employing reinforcement learning in 

this context is to maximize the system’s long-term 

operational efficiency. The algorithm learns dynamically 

from task execution patterns and real-time system load 

metrics, enabling it to adjust task allocation and refine 

scheduling policies accordingly. Critical factors—

including task priority, node workload, task type, and 

network latency between nodes—are collectively 

evaluated to guide optimal scheduling decisions. This 

intelligent approach allows the cloud computing system to 

autonomously adapt to fluctuating load conditions, 

thereby ensuring efficient resource utilization and 

effective task execution. The scheduling optimizer is 

implemented using a DQN architecture. This network 

consists of an input layer that encodes the state vector, 

capturing task requirements and the resource status of 

computing nodes. It includes two hidden layers with 64 

and 32 neurons, respectively, both employing the ReLU 

activation function. The output layer represents the set of 

possible scheduling actions. Key training parameters 

include a learning rate of 0.001, a discount factor (γ) of 

0.9, an experience replay batch size of 64, and a replay 

buffer capacity of 10,000. The policy selection employs an 

ε-greedy strategy. This architecture effectively balances 

convergence speed with the capacity to manage high-

dimensional state spaces, thereby enhancing the 

generalizability and performance of the scheduling policy. 

Building upon traditional scheduling and data 

optimization techniques, deep learning technology further 
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advances intelligent task allocation. Deep learning models 

leverage historical scheduling data to predict future load 

conditions and task execution durations, enabling more 

precise and informed task allocation decisions. 

Specifically, deep neural networks analyze and forecast 

critical parameters during task execution, allowing 

scheduling decisions to be made in real time based on 

these predictions. This intelligent scheduling approach not 

only minimizes the need for manual intervention but also 

significantly enhances the execution efficiency of large-

scale data processing tasks. 

Finally, this study proposes an integrated synergy 

among the optimization strategies. Data locality 

optimization, task scheduling optimization, and intelligent 

task allocation operate in concert rather than isolation to 

achieve optimal performance. Throughout the 

optimization process, data locality considerations are 

tightly coupled with task scheduling decisions. The 

reinforcement learning model continuously learns from 

system feedback and dynamically adjusts task allocation 

policies. This integrated approach ensures that task 

assignments to computing nodes simultaneously optimize 

data access efficiency and resource utilization. 

Consequently, the system attains high parallelism with 

low latency, rational resource distribution, and maximized 

overall resource efficiency. 

3.4 Experimental environment and dataset 

The experiments were conducted across multiple 

cloud computing platforms, including AWS and Google 

Cloud, chosen for their flexible resource scheduling 

capabilities and high computational efficiency. These 

platforms provide ample computing resources suitable for 

large-scale data processing tasks. In addition, experiments 

were performed on a locally constructed high-

performance computing cluster to evaluate the algorithm’s 

performance under constrained resource conditions. 

Across these environments, a variety of virtual machine 

instances and computing nodes with diverse processing 

powers and memory configurations were utilized. To 

ensure the reproducibility of the experiments and the 

robustness of the findings, each experiment was repeated 

multiple times, with comprehensive performance metrics 

systematically recorded throughout the testing process. 

In the experiments, distributed storage systems were 

configured in accordance with the specific characteristics 

of each platform. On cloud platforms such as AWS and 

Google Cloud, native distributed storage services—

namely AWS S3 and Google Cloud Storage (GCS)—were 

employed alongside local caching mechanisms and high-

performance disk storage to implement hierarchical data 

storage and facilitate rapid data access. In contrast, the 

local cluster environment utilized open-source distributed 

file systems, such as the HDFS, to ensure reliable data 

storage and efficient retrieval. Computing nodes across all 

platforms were uniformly managed and scheduled through 

a centralized cluster management system. The task 

scheduling module, powered by a deep reinforcement 

learning algorithm, dynamically assessed resource 

utilization, task attributes, and data locality among nodes 

to intelligently allocate computing tasks. This approach 

maximized data locality and optimized the utilization of 

computational resources. Concurrently, a load balancing 

mechanism monitored node workloads in real time, 

orchestrating task migration and resource allocation to 

maintain system stability and maximize operational 

efficiency. High-speed network connections enabled 

seamless coordination among system components, 

establishing an effective and intelligent cloud-based 

framework for large-scale data processing. 

To evaluate the performance of the proposed parallel 

processing algorithm, three publicly available large-scale 

datasets were selected: Kaggle Titanic Dataset: This 

structured dataset contains passenger information and 

survival outcomes, serving as a classic benchmark for 

classification tasks. It includes features such as age, 

gender, and ticket fare. Due to its relatively small size and 

well-defined structure, this dataset was primarily 

employed to validate the load balancing effectiveness and 

baseline adaptability of the task decomposition and 

parallel computing framework in small-scale, structured 

data scenarios. Google Open Images Dataset: Comprising 

approximately nine million images, this dataset supports a 

range of computer vision tasks, including image 

classification and object detection. Its large scale and rich 

metadata provide a moderate workload environment 

suitable for task partitioning and resource scheduling 

experiments. Image classification tasks were treated as 

scheduling units to assess the efficiency of the 

reinforcement learning-based scheduling strategy in 

heterogeneous node environments with diverse task 

profiles, thereby highlighting the algorithm’s capacity to 

optimize data locality under high I/O demands. Common 

Crawl Dataset: This expansive dataset includes billions of 

web pages and is primarily used for natural language 

processing tasks such as text classification and sentiment 

analysis. Its vast size and irregular data distribution pose 

challenges for dynamic scheduling of large-scale, 

unstructured tasks. This dataset was utilized to rigorously 

test the practical performance of the data block 

partitioning-based scheduling strategy in terms of DLB 

and data locality optimization. 

The experiments incorporated a variety of computing 

resources and task scheduling strategies tailored to each 

dataset. Key experimental parameters are summarized in 

Table 2. 

Table 2: Experimental parameters 

Experimental 

parameters 

Configuration 

Computing 

platform 

AWS EC2, Google Cloud, HPC 

cluster 

Computing 

resource 

CPU instances: 2 to 16 vCPU; GPU 

examples: NVIDIA Tesla V100, 

P100 

Dataset  Titanic Dataset, Google Open 

Images, Common Crawl Dataset 

Task 

scheduling 

strategy 

Shortest task priority, dynamic 

adaptive scheduling and 

reinforcement learning scheduling 

Data 1MB to 100GB 
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processing 

batch size 

Network 

bandwidth 

1Gbps to 10Gbps 

Network delay 5ms to 100ms 

Parallelism 

setting 

The maximum amount of data and 

the maximum number of tasks that 

each computing node can handle 

 

The experiments on AWS EC2 utilized the 

m5.4xlarge instance, which features 16 virtual CPUs, 64 

GiB of memory, and EBS optimization, powered by the 

Intel Xeon Platinum 8175 processor. On the Google Cloud 

Platform (GCP), the n2-standard-16 instance was 

employed, also equipped with 16 virtual CPUs and 64 GiB 

of memory, based on the Intel Cascade Lake architecture. 

All virtual machines on both platforms were connected 

through their respective default Virtual Private Clouds 

(VPCs). Network latency and bandwidth between 

instances were rigorously tested and demonstrated 

consistent performance, thereby establishing a 

homogeneous network environment for the experiments. 

The local high-performance computing cluster 

comprised 16 nodes, each outfitted with dual Intel Xeon 

Gold 6230 processors (20 cores and 40 threads per node) 

and 256 GB of DDR4 memory. Nodes were 

interconnected via an Infiniband HDR network offering 

100 Gbps bandwidth, with inter-node communication 

latency measured at approximately 1.2 microseconds, 

supporting highly scalable parallel computation. To 

maintain consistency across comparative experiments, 

datasets deployed on the cloud platforms and the local 

cluster were preloaded onto each platform’s unified 

distributed file system. AWS utilized S3 combined with 

EBS, GCP employed GCS with Persistent Disks (PD), and 

the local cluster used the Lustre file system. This strategy 

effectively minimized the impact of data location 

heterogeneity on the experimental outcomes. 

For data processing, batch sizes were set at 64 MB 

for typical test tasks such as log analysis and image 

preprocessing. Batch sizes were dynamically adjusted in 

accordance with each platform’s bandwidth capabilities to 

optimize transfer efficiency, balancing I/O throughput, 

computational overhead, and memory utilization. 

The reinforcement learning scheduler employed in 

the experiments was based on the Q-learning algorithm. 

The task queue state—comprising task data size, 

estimated computational complexity, and current node 

load—served as the state space, while node selection 

constituted the action space. The Q-table was dynamically 

updated to estimate the expected reward associated with 

each scheduling action. Through continuous interaction 

with the environment, the scheduler learned from real 

execution feedback across varying platform 

configurations, including processing latency and resource 

utilization metrics, ultimately converging on an optimal 

task dispatch policy during training. The learning rate (α) 

was set to 0.1 to balance stability and adaptability in 

updating Q-values.  

 

The discount factor (γ) was 0.9, emphasizing long-

term rewards to better capture the temporal dynamics of 

task execution. An exploration rate (ε) initialized at 0.3 

gradually decayed to 0.05, implementing an “explore-first, 

exploit-later” strategy. Training was performed over 500 

episodes. 

Parallelism levels were initially configured based on 

node hardware resources, primarily CPU core count and 

memory capacity. For example, nodes on Google Cloud 

with 16 virtual CPUs and 64 GB of memory were assigned 

a maximum concurrency of 12 parallel tasks, whereas 

AWS nodes with 8 virtual CPUs were limited to 6 

concurrent tasks. This configuration aimed to maximize 

throughput while mitigating significant resource 

contention. Moreover, the reinforcement learning state 

space incorporated node load information, including the 

current number of active tasks, such that the parallelism 

limit defined the boundaries of policy exploration. 

Consequently, this parameter influenced both the learning 

efficiency and the ultimate performance of the scheduling 

algorithm. Variations in parallelism settings were found to 

affect convergence and overall processing efficiency. 

Specifically, experiments involving the Common Crawl 

dataset demonstrated that overly conservative parallelism 

limits led to underutilized resources, prolonged scheduling 

cycles, and decreased system throughput. In contrast, 

excessively high parallelism induced node overloads, 

resulting in elevated task failure rates and increased 

overhead due to task migrations. 

To comprehensively evaluate the performance of the 

parallel processing algorithm, this study employs several 

key metrics. Processing time serves as a primary indicator, 

measuring the duration required to complete the entire 

data processing task under various resource configurations. 

Comparing processing times across different cloud 

platforms and scheduling strategies provides a clear 

assessment of the algorithm’s efficiency. Throughput, 

defined as the amount of data processed per second, is 

another fundamental metric that reflects the algorithm’s 

capability to leverage parallelism and utilize cloud 

computing resources effectively for large-scale data 

processing. 

Resource utilization is also critical, representing the 

extent to which computing resources are employed during 

task execution. An optimal algorithm maximizes resource 

utilization while minimizing wastage. The task 

completion rate indicates the proportion of successfully 

executed tasks; particularly under high-load conditions, a 

higher completion rate demonstrates the algorithm’s 

robustness in parallel task scheduling and load balancing. 

Finally, speedup, defined as the ratio of execution time in 

a parallel computing environment to that of serial 

processing on a single machine, further quantifies the 

algorithm’s ability to accelerate data processing through 

parallelization. 
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4 Result and discussion 

4.1 Comparison of processing time 

To comprehensively evaluate processing time 

performance, this study examines multiple dimensions of 

experimental outcomes. As shown in Figure 4, processing 

times on cloud platforms (AWS and Google Cloud) are 

consistently lower than those observed on the local cluster, 

highlighting the performance advantages of cloud 

environments for large-scale data processing tasks. The 

relative difference metric quantifies the deviation in 

processing time between the baseline configuration (AWS 

with SJF) and other platform-scheduler combinations, 

thereby illustrating the impact of alternative scheduling 

strategies. On the AWS platform, dynamic scheduling 

results in a processing time of 15 hours—25% longer than 

the 12 hours required under SJF—suggesting that dynamic 

scheduling may introduce additional overhead. This 

increase is likely due to the complexity associated with 

runtime task partitioning and resource reallocation. In 

contrast, SJF prioritizes smaller tasks, thereby improving 

overall resource utilization and reducing processing 

delays. A similar trend is observed on Google Cloud, 

where dynamic scheduling (13.5 hours) is 35.71% slower 

than SJF (10 hours), further confirming the relative 

efficiency of the SJF strategy across different cloud 

environments. These findings suggest that, under current 

experimental conditions, SJF consistently outperforms 

dynamic scheduling in minimizing total processing time. 
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Figure 4: Comparison of processing time of different 

strategies 

4.2 Throughput and cost-efficiency analysis 

To thoroughly evaluate the performance and cost-

efficiency of each platform in large-scale data processing 

tasks, this section focuses on two key metrics: throughput 

and cost per gigabyte of data processed (CNY/GB).  

 

 

 

 

 

 

 

Figure 5 displays the throughput performance across 

different platforms for three representative datasets, while 

Figure 6 depicts the corresponding cost-efficiency, 

reflecting the monetary cost required to process each 

gigabyte of data. 
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Figure 5: Throughput comparison of different cloud 

platforms 

 

As illustrated in Figure 5, throughput on the AWS 

platform remains relatively stable under the dynamic 

scheduling strategy. In contrast, Google Cloud 

demonstrates superior performance with the SJF 

scheduling strategy, particularly when processing the 

image dataset (Google Open Images), where throughput 

peaks at 3.5 GB/s, significantly surpassing that of other 

platforms. The local high-performance cluster 

consistently exhibits lower throughput, most notably with 

the large-scale text dataset (Common Crawl), where 

throughput falls to 2.1 GB/s. This reduced performance is 

primarily attributed to limitations in memory bandwidth 

and the scalability of the cluster’s hardware resources. It 

is important to recognize that throughput is influenced not 

only by the dataset’s type and scale but also by a range of 

system-level factors, including data partitioning 

granularity, latency of the underlying storage system, 

compute node specifications (CPU and memory), and the 

scheduling algorithm’s ability to optimize data locality. 

For instance, when datasets display significant key-value 

skew, range-based partitioning tends to yield higher 

throughput. Conversely, for workloads involving 

frequently accessed small data blocks, hash-based 

partitioning is more effective in achieving balanced load 

distribution. 

To further assess the cost-efficiency of each platform, 

the unit throughput cost was estimated, defined as the 

resource expenditure required to process 1 GB of data, 

normalized by execution time. Using AWS’s c5. large and 

Google Cloud’s n1-standard-2 instances as representative 

configurations, throughput values were combined with 

instance pricing to derive the per-GB processing costs, as 

shown in Figure 6. 
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Figure 6: Estimated cost per unit of throughput 

 

Figure 6 illustrates significant variations in cost-

efficiency across platforms when processing different 

types of datasets. For lightweight structured data such as 

the Kaggle Titanic dataset, computational demands are 

relatively low, resulting in comparable unit throughput 

costs for Google Cloud (0.133 CNY/GB) and AWS (0.141 

CNY/GB). This similarity suggests that both platforms 

offer efficient resource scheduling for small-scale 

processing tasks. In contrast, for large-scale image 

datasets like Google Open Images, Google Cloud exhibits 

a distinct advantage, achieving a unit throughput cost of 

0.059 CNY/GB, slightly outperforming AWS at 0.061 

CNY/GB. While the base compute costs of both platforms 

are comparable, Google Cloud's higher throughput—

particularly under the SJF scheduling strategy—more 

effectively distributes the cost across larger data volumes. 

This reflects enhanced resource utilization, especially for 

workloads with high I/O concurrency. 

For unstructured, large-scale text data such as 

Common Crawl, the cost-efficiency gap remains evident. 

Google Cloud attains a lower unit throughput cost of 0.069 

CNY/GB, compared to 0.078 CNY/GB on AWS. These 

workloads impose greater demands on memory and cache 

management. Google Cloud’s higher memory bandwidth 

and more efficient inter-node communication improve 

overall processing throughput and reduce cost per 

gigabyte. Overall, unit throughput cost is shaped not only 

by dataset characteristics but also by the platform’s 

effectiveness in resource allocation and its compatibility 

with scheduling strategies. Google Cloud consistently 

delivers superior cost-efficiency under high-load 

scenarios, making it especially suitable for cloud-based 

applications involving large-scale image or text 

processing. This metric serves as a practical benchmark 

for assessing scheduling optimization and selecting cost-

effective cloud resources in real-world deployments. 

4.3 Resource utilization ratio comparison 

Figure 7 compares resource utilization across various 

cloud platforms and scheduling strategies. The results 

show that both CPU and GPU utilization on the AWS 

platform remain relatively low, particularly under the 

static scheduling strategy, where overall utilization 

reaches only 66.4%. In contrast, Google Cloud 

demonstrates significantly higher resource efficiency 

when employing the reinforcement learning-based 

scheduling strategy, achieving CPU and GPU utilization 

rates of 86.3%. These findings indicate that dynamic 

scheduling approaches, such as reinforcement learning, 

can more effectively allocate computational resources, 

minimize idle capacity, and reduce overall resource waste. 
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Figure 7: Comparison of resource utilization rate of 

different cloud platforms 

4.4 Acceleration ratio comparison 

The speedup ratio is a key metric for evaluating the 

performance gains achieved through parallel computing. 

As shown in Figure 8, all experimental results demonstrate 

that parallel processing significantly outperforms 

traditional serial execution. Notably, under the dynamic 

adaptive scheduling strategy, the GCP achieves the highest 

speedup ratio, reaching 5.2, with processing time reduced 

from 12 hours (serial execution) to just 2.3 hours. In 

contrast, the local high-performance computing cluster 

shows a lower speedup ratio of 3.5, suggesting that cloud 

platforms offer greater scalability and acceleration 

potential for large-scale data processing tasks. 
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Figure 8: Comparison of acceleration ratio of different 

cloud platforms 
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To further quantify the stability and reliability of the 

results, each experimental configuration was repeated five 

times, and the standard deviation and 95% confidence 

intervals of the speedup ratios were calculated. The results 

are summarized in Table 3. 

 

Table 3: Standard deviation and 95% confidence interval 

of speedup ratios across different platforms and 

scheduling strategies 

Platform and 

Scheduling 

Strategy 

Mean 

Speedup 

Standard 

Deviation 

±σ 

95% 

Confidence 

Interval 

(α=0.05) 

AWS + 

Dynamic 

Scheduling 

2.18 ±0.13 [2.00, 2.36] 

Google Cloud 

+ Dynamic 

Scheduling 

3.33 ±0.17 [3.08, 3.58] 

Google Cloud 

+ 

Reinforcement 

Learning 

Scheduling 

5.20 ±0.21 [4.88, 5.52] 

Local Cluster 3.43 ±0.09 [3.30, 3.56] 

 

As presented in Table 3, the GCP employing the 

reinforcement learning scheduling strategy achieved the 

highest mean speedup ratio. This configuration, however, 

also showed a slightly increased standard deviation of 

±0.21, indicative of variability stemming from the model’s 

dynamic decision-making process. Nevertheless, the 95% 

confidence interval of [4.88, 5.52] confirms that its 

acceleration performance remains significantly superior to 

other tested configurations. In contrast, the AWS platform 

and the local cluster exhibited lower standard deviations 

of ±0.13 and ±0.09, respectively, suggesting greater 

consistency in speedup across repeated trials, though with 

comparatively reduced overall acceleration. These results 

illustrate that, while reinforcement learning–based 

scheduling can deliver optimal acceleration on cloud 

platforms, its stability is contingent upon the specific 

workload characteristics. Conversely, traditional dynamic 

scheduling achieves a more balanced compromise 

between acceleration efficacy and operational stability. 

Incorporating standard deviation and confidence intervals 

facilitates a more nuanced and comprehensive evaluation 

of the algorithm’s applicability and robustness. 

4.5 Analysis of algorithm component 

effectiveness 

To rigorously assess the individual contributions of 

key components in the proposed adaptive parallel 

processing algorithm, targeted comparative experiments 

were conducted. The focus was on two modules: task 

decomposition optimization and the DLB mechanism. 

These experiments took place on the GCP. Three distinct 

algorithm configurations were evaluated: Configuration A 

(Baseline): Neither task decomposition nor DLB enabled; 

employs default static data partitioning and static task 

allocation. Configuration B (Task Decomposition 

Optimization): Implements task decomposition based on 

data block weighting (as defined by Equations (1) and (2)), 

without activating DLB. Configuration C (Task 

Decomposition + DLB): Integrates both task 

decomposition and DLB; the scheduler dynamically 

adjusts task assignments in real time by monitoring node 

load conditions. To ensure experimental fairness, all 

configurations were executed using the same dataset and 

an identical number of compute nodes. Each configuration 

was tested in three repeated runs, with average results 

reported. The experimental outcomes are summarized in 

Table 4. 

 

Table 4: Performance comparison of different algorithm 

configurations on the common crawl dataset (GCP) 

Algorithm 

Configuration 

Average 

Processing 

Time (hours) 

Average 

Speedup 

Ratio 

Resource 

Utilization 

(%) 

Configuration 

A 

12.0 1.00 54.7 

Configuration 

B 

7.4 1.62 68.9 

Configuration 

C 

2.3 5.20 91.4 

 

As shown in Table 4, the introduction of task 

decomposition optimization alone (Configuration B) 

reduced the average processing time from 12 hours to 7.4 

hours, corresponding to a 62% increase in speedup ratio. 

This demonstrates that an effective data block partitioning 

strategy can significantly alleviate load imbalance and 

minimize idle wait times. Building upon task 

decomposition, the incorporation of DLB in Configuration 

C further decreased processing time to 2.3 hours and 

elevated resource utilization to 91.4%, markedly 

exceeding the 54.7% observed in Configuration A. These 

findings underscore the substantial benefits of dynamic 

scheduling in resource integration and real-time adaptive 

workload distribution. The two mechanisms operate 

synergistically: task decomposition improves the initial 

task allocation quality, while DLB provides adaptive 

corrections throughout execution. Relative to the baseline, 

the combined approach yields more than a fivefold 

improvement in speedup ratio. Overall, these results 

confirm both the necessity and effectiveness of the 

algorithm’s core components in performance 

enhancement, highlighting their complementary roles and 

synergistic impact. 

4.6 Discussion 

The experimental results presented above 

demonstrate that the proposed dynamic adaptive 

scheduling algorithm offers significant advantages in both 

resource utilization and speedup ratio, notably achieving a 

5.2-fold acceleration on the GCP with a substantial 

reduction in processing time. This outcome aligns well 

with recent advances in large-scale data processing within 

cloud computing environments. The key factors driving 

these performance differences are resource elasticity and 
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the scale of compute nodes. Unlike local clusters with 

fixed resource configurations that cannot adaptively scale 

to task demands, cloud platforms provide enhanced 

concurrency and I/O efficiency, enabling greater speedup 

and throughput under dynamic scheduling strategies. 

For example, Ma [24] introduced a reinforcement 

learning-based dynamic resource scheduling method that 

improved system throughput and resource utilization for 

heterogeneous tasks. However, its computational 

overhead constrained scheduling responsiveness in 

complex scenarios. In contrast, the dynamic adaptive 

scheduling strategy developed in this study balances 

computational complexity and real-time responsiveness 

by optimizing task decomposition and load distribution 

mechanisms, effectively reducing scheduling latency and 

achieving more stable performance gains. 

Furthermore, Ma et al. [25] investigated elastic 

scheduling strategies based on cloud-native architectures, 

highlighting the influence of dynamic management of 

heterogeneous cloud resources on task performance. The 

findings similarly validate the superiority of dynamic 

scheduling in heterogeneous resource environments, with 

resource utilization increasing to 86.3%, significantly 

exceeding levels achieved by traditional static scheduling. 

This demonstrates that dynamic scheduling can flexibly 

adapt to workload fluctuations and enhance computational 

resource efficiency. Regarding data transfer overhead, 

Walia et al. [26] proposed a distributed data scheduling 

optimization integrated with edge computing, which 

substantially reduced network load by minimizing data 

movement and employing intelligent scheduling. The 

scheduling framework exhibits comparable strengths in 

preserving data locality and minimizing transmission 

latency, particularly when handling large-scale image and 

text datasets, thereby achieving higher throughput and 

lower processing delays. 

It is important to note that although dynamic 

scheduling on AWS and GCP results in slightly longer 

processing times compared to the SJF strategy—primarily 

due to the additional computational overhead—dynamic 

scheduling achieves superior resource utilization and 

enhanced overall system stability. This advantage is 

particularly critical in the complex and heterogeneous 

cloud computing environment. Recent research, including 

Ji et al. [27], highlights that no single scheduling strategy 

can optimally satisfy all performance criteria; dynamic 

adaptive scheduling, through real-time task allocation 

adjustments, offers a more effective balance between 

efficiency and stability. In summary, the proposed 

dynamic adaptive scheduling algorithm successfully 

overcomes key limitations of conventional methods, such 

as low resource utilization, inflexible scheduling, and 

excessive data transmission overhead. It demonstrates 

notable improvements in acceleration and stability across 

diverse cloud platforms, thereby validating its practical 

applicability and advancement in large-scale data 

processing. Future research will aim to further reduce 

scheduling computational complexity and explore the 

integration of edge computing with cloud-native 

technologies to broaden the algorithm’s applicability to 

larger-scale, heterogeneous environments. 

5 Conclusion 
This study investigates parallel processing 

algorithms for large-scale datasets within cloud 

computing environments. By systematically comparing 

various cloud platforms and scheduling strategies, an 

optimized computing framework is proposed and 

rigorously evaluated through comprehensive experiments 

conducted in real-world settings. The results demonstrate 

that Google Cloud outperforms both AWS and local 

clusters in terms of processing time and throughput, 

particularly when employing the SJF scheduling strategy, 

which significantly enhances processing efficiency. 

Moreover, the SJF strategy exhibits superior performance 

compared to dynamic scheduling, owing to its more 

effective resource allocation and task execution 

capabilities. In contrast to traditional local clusters, cloud 

computing platforms provide greater scalability and 

improved resource utilization, making them better suited 

for parallel computing tasks involving large-scale datasets. 

By optimizing task decomposition, data partitioning, and 

scheduling mechanisms, the parallel processing algorithm 

proposed herein effectively enhances computing resource 

utilization and task execution efficiency, thereby offering 

substantial benefits for efficient data processing in cloud 

environments. Future research may focus on the 

development of deep learning-based intelligent task 

scheduling optimization algorithms to further improve the 

processing efficiency of complex workloads. 
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