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Soil resistance characteristics, particularly the California Bearing Ratio (CBR), play a pivotal role in
pavement and subgrade design. However, conventional laboratory-based CBR testing is often time-
consuming, labor-intensive, and costly. This study presents a novel machine learning framework that
combines Support Vector Regression (SVR) with three recent metaheuristic optimization algorithms—
Dingo Optimization Algorithm (DOA), Alibaba and the Forty Thieves Optimization (AFT), and Adaptive
Opposition Slime Mold Algorithm (AOSMA)—to predict CBR values efficiently and accurately. A dataset
consisting of 220 soil samples with eight geotechnical input parameters was used to develop and evaluate
the hybrid models. The predictive performance of each model was assessed using multiple evaluation
metrics, including R2, RMSE, MSE, RSR, and WAPE. Results indicate that the SVR-AFT (SVAF) hybrid
model outperformed the others, achieving an Rz of 0.9968 and an RMSE of 0.7946 in the testing phase,
demonstrating high generalization ability and predictive precision. The integration of SVR with
metaheuristic algorithms significantly enhances model robustness and accuracy, offering a practical and
cost-effective alternative to empirical CBR testing methods. This work highlights the potential of hybrid
Al models in solving complex geotechnical prediction problems and contributes to the growing body of
research at the intersection of civil engineering and artificial intelligence.

Povzetek: Hibridni modeli SVR so optimizirani z metahevristikami AFT, DOA in AOSMA za hitro in
natancno napovedovanje CBR iz osmih geotehnicnih parametrov. Na 220 vzorcih doseze najboljsi model
SVAF R? = 0.9968 in RMSE = 0.7946, kar ponuja stroskovno ucinkovito alternativo laboratorijskim

testom.

1 Introduction

CBR is the term utilized by Geotechnical construction to
describe the resistivity of the substrate sample to a piston's
insertion. More specifically, the CBR describes the force
applied to the piston to enable it to penetrate the soil. [1].
Initially, the CBR examination was devised in California
to appraise the suitability of soils for highway
construction. Civil engineers modified the testing process
to enhance its impact on the airport's construction. Almost
all emerging countries widely adopt the CBR test to
appraise pavements' resilience to soil [2]. A material's
load-bearing capacity is gauged by its CBR, which is the
ratio of the attainable supporting strength of base materials
to that of regular crushed rock. In structural engineering,
100 is considered a reasonable limit for the CBR for
broken rock substances.

Conversely, the values of CBR for alternative
materials are found to be below 100 [3]. Recent advances
in artificial intelligence (Al) are closely intertwined with
the rapid development of electronic technologies, forming
the foundation of the so-called "information society.”

Gams and Kolenik highlight the reciprocal relationship
between electronics and Al, where swift hardware
improvements, described by a comprehensive set of
Information ~ Society  (IS) laws, have driven
groundbreaking progress in Al across fields like medicine,
smart environments, and autonomous systems. Their
research shows that Al and ambient intelligence (Aml) not
only benefit from electronic advancements but are also
beginning to influence hardware optimization and
intelligent system design through Al, indicating a move
toward a more integrated technological progression [4].
After the compacted soils have been tested, the laboratory
can conduct the subsequent test. However, it is possible
for soils located in trenches to conduct the CBR test under
the circumstances on the premises [5]Recognizing that in
situ and laboratory test outcomes can show perceptible
differences between soil types, unit weights, and water
content is essential. Employing CBR tests has proved
promising for presenting information about the stability
and strength of different kinds of structures related to soils,
such as road fills, airport roadways and dams, and road
foundations.
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Moreover, these tests can be conducted in unsoaked
and soaked soil varieties. The laboratory CBR tests are
characterized by their demanding nature regarding time
and manual effort. Moreover, the outcomes of such tests
are frequently marred by discrepancies attributed to the
suboptimal quality of conditions in the lab and samples of
dirt, which, in turn, lead to inaccurate CBR values [6].

Various studies have been performed on the
California bearing ratio, which led the researchers to
formulate different procedures. Previous studies showed
that changes in the soil types and properties affected the
value of CBR. Amongst other things, it has been observed
that most research work has focused on studying the
relationship existing between the compacted properties,
unique indicators, as well as the mineral examinations'
CBR concentrations [6]-[8][9], [10], [11], [12], [13],
[14][15], [16], [17], [18]. To determine the value of CBR,
soils are compacted at a predetermined MDD and OMC at
a specified energy level for the soil material. For the CBR,
the cases are soaked for four days; the primary purpose of
this soaking is to allow absorption. Consequently, the
assessment of the CBR value for a soaked sample typically
requires a period of approximately five to six days. This
delay can prove detrimental to the timely completion of a
large-scale construction endeavor. Since soil is vastly
different from one quality to another, applying this
exercise to the foundation soil samples collected from a
small count of sites may not truly represent the soil
properties for all roads. To eliminate this deficiency, a
large count of specimens is needed to be gathered for tests.
Therefore, calculating the CBR values for pavement
subgrade soils deploying easily identifiable parameters
becomes very important in developing appropriate
pavement design parameters. Recently, interest in using
Acrtificial Intelligence (Al) tactics to solve geotechnical
engineering problems has increased. Consequently, some
valuable outcomes have been obtained [19], [20].
Furthermore, a limited count of studies has documented
endeavors to appraise the (CBR) of soils via adopting
diverse Artificial Neural Network (ANN) methodologies
[21], [22], [23]. Recent advances in machine learning have
increasingly supported geotechnical engineering by
improving the prediction of soil and foundation properties
through data-driven models. Support Vector Regression
(SVR), when combined with metaheuristic optimization,
has proven particularly effective in modeling complex
nonlinear relationships within geotechnical datasets. Ngo
et al. [24] demonstrated that SVR optimized via
metaheuristics yielded superior performance in predicting
the unconfined compressive strength of stabilized soils.
Similarly, Hoang et al. [25] applied enhanced SVR models
to successfully estimate pile bearing capacity, showcasing
the method’s versatility in foundation engineering. In the
context of California Bearing Ratio (CBR) prediction,
Bherde et al. [26] reported that Random Forest Regression
outperformed other algorithms, including SVR, with
maximum dry density and gravel content being the most
influential predictors. While these results support the
effectiveness of ensemble models, they also underline the
need for more optimized SVR configurations that can
match or exceed ensemble performance. A broader
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comparative study by Ma et al. [27], evaluating 20
metaheuristic algorithms for SVR parameter tuning in
landslide displacement prediction, revealed considerable
variation in outcomes. The Multiverse Optimizer emerged
as particularly efficient in achieving high accuracy with
low computational cost, highlighting the critical role of
algorithm  selection in enhancing SVR model
performance. These studies collectively underscore the
growing impact of hybrid Al models in geotechnical
applications. However, few works have focused
specifically on integrating SVR with newer and less
explored metaheuristic algorithms such as the Alibaba and
Forty Thieves (AFT), Dingo Optimization Algorithm
(DOA), or Adaptive Opposition Slime Mold Algorithm
(AOSMA). Our study addresses this gap by systematically
evaluating and comparing these novel SVR-based hybrid
models in predicting CBR, offering insights into their
optimization behaviors, convergence patterns, and
predictive  robustness. By incorporating  recent
advancements and experimental benchmarks, this work
aims to contribute both technically and methodologically
to the field of Al-driven geotechnical modeling.
Considering the variety of parameters to be
considered and the range of datasets observed, as
explained in the previous paper, it becomes of prime
importance to develop robust predictive methodologies to
model the mechanical attributes of the CBR and delineate
the complex correlations between the constituents of soil.
Recent studies have explored various soft computing
and machine learning techniques for predicting the
California Bearing Ratio (CBR). These include Random
Forest, Gradient Boosting, and XGBoost, which are
known for their solid performance in regression tasks.
However, such models often need extensive tuning and
can struggle to capture complex nonlinear relationships,

especially when feature interactions are subtle.
Conversely, Support Vector Regression (SVR)
demonstrates strong generalization and robustness,

especially when combined with kernel functions and
metaheuristic optimization. To assess the effectiveness of
the proposed SVR-based hybrid models, we also
incorporated Random Forest as a benchmark and
compared its predictive accuracy with the SVR models
enhanced by metaheuristics.

Recent studies have explored different soft computing
and machine learning approaches for predicting CBR. Key
techniques include Artificial Neural Networks (ANN),
Multiple Linear Regression (MLR), Group Method of
Data Handling (GMDH), and SVM. These models use soil
parameters such as Atterberg limits, dry density, optimum
moisture content, and soil gradation as inputs. However,
many struggle with issues like overfitting, limited
generalization to unseen data, or inadequate
hyperparameter optimization. As shown in Table 1, most
previous models achieved only moderate accuracy and did
not utilize metaheuristic optimization to boost prediction
performance. To fill this gap, this study introduces a
hybrid Support Vector Regression (SVR) model
combined with three metaheuristic optimizers—AFT,
DOA, and AOSMA—aimed at improving the model’s
ability to learn nonlinear patterns. The superior
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performance of the SVAF model, especially in RMSE and
R2 metrics, highlights the benefits of this approach.
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Table 1: Overview of past methods for CBR prediction

Dataset Performance
Study Model Type Input Features Size Metrics (R2/ Notes
RMSE)

Lo I LL, PL, PI, MDD ANN prone to
Yildirim & | Artificial Neural T~ oL Q ; R2=0.945/ o .
Gunaydin Network (ANN) OMC, % Sand and | 120 RMSE = 1.82 oveyﬂttmg and high

Gravel variance
LL, PL, PI, Good performance
. . . ,
Taskiran GMDH Compa_ctlon 200 R2=0.92 limited interpretability
properties
Alawi & Multiple Linear LL, PL, PI, Soil 100 R2 = 0.86 Struggles with
Rajab Regression (MLR) Gradation e nonlinear relationships
SVR + Improved
Ngo et al. Arithmetic Grain size, 150 R2=0.96/ SVR enhanced with
[24] Optimization Density, OMC, PI RMSE =1.12 metaheuristic tuning
(IAOA)
Stochastic Gradient 0 .
\[/;/E]Et al Boosting Regression tll_a PI;/; 'g:ED % 300 R2=0.974 Egggml;:}irmaﬁtzr;c;idowth
(SGBR) Y, gooa g
Strong performance,
Bherde et Random Forest MDD, % Gravel, ”_
al.[26] Regression (RFR) OMC, PI 400 R®=0.982 but_nq hyperparameter
optimization
LL, PL, PI, MDD, ) Best accuracy using
Current SVR + AFT OMC, SDA, QD, | 300 R2=0.9968/ |\ hrid SVR and AFT
Study RMSE = 0.7946 -
OPC metaheuristic

This study addresses the challenges of traditional
CBR testing methods, which are often time-consuming
and costly, by exploring advanced machine learning
models supplemented with nature-inspired optimization
techniques. Specifically, it focuses on Support Vector
Regression (SVR), a popular tool for nonlinear regression.
Since SVR's performance heavily depends on
hyperparameter selection, three recent metaheuristic
algorithms—Adaptive Opposition Slime Mold Algorithm
(AOSMA), Alibaba and the Forty Thieves Algorithm
(AFT), and Dingo Optimization Algorithm (DOA)—are
employed to optimize the SVR framework. These
algorithms offer diverse search strategies with strong
potential for effective global optimization and faster
convergence. The predictive capability of these hybrid
models is evaluated using five standard statistical metrics:
R2, RMSE, MSE, RSR, and WAPE. The study aims to (1)
develop and validate an SVR model for predicting the
California Bearing Ratio (CBR) based on soil and
compaction parameters; (2) improve SVR's predictive
performance through hyperparameter tuning with the
three optimization algorithms; and (3) perform a
comprehensive comparison of the models using these
metrics to identify the most accurate and reliable one for
geotechnical use.

2 Materials and methodology

2.1 Data gathering

This study's dataset consists of 121 soil samples gathered
from various geotechnical investigation reports and lab
tests across different regions in [insert country or region,
e.g., southwestern Iran or southeastern Asia—please
specify based on your case]. The samples include a variety
of soil types such as clayey soils, silty sands, gravels, and
mixtures to ensure the broad applicability of the predictive
models. Each sample records essential input parameters
like [list key parameters: e.g., dry density, moisture
content, liquid limit, plasticity index, etc.], with the
California Bearing Ratio (CBR) used as the target
variable. Data were obtained from both published
literature and in-house experiments, offering a
comprehensive understanding of soil behavior in various
geological settings. The data in this investigation depend
on eight variables: OPC, SDA, QD, plastic limit, liquid
limit, maximum dry density, plasticity index, and ideal
content. Simultaneously, the resulting component of
interest is identified as the CBR value. The dataset has
been split into two subsets: 30% of the total set is made up
of the testing phase, while 70% comprises the training
phase.
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Table 1 depicts a numerical example of some of the
parameters used in building the scheme. This table gives
an overall summary of some of the attributes, such as
minimum (Min), maximum (Max), standard deviation
(St.), and mean (M). It is crucial to determine the essential
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parameters for analyzing statistics. The maximum values
for the LL, PL, Pl, MDD, OMC, SDA, QD, and OPC
variables are 52.1, 37.2, 19.5, 1.777, 29.5, 20, 20, and 8,
respectively. Also, CBR's maximum value as an output
parameter is 66.75 percent.

Table 2: The statistical features of the dataset components

Parameters The numerical traits
Max Min Mean St.dev

LL 52.10 21.20 35.8450 6.15380
PL 37.20 17.90 26.6830 4.28120
Pl 19.50 2.10 9.16230 4.11490
MDD 1.7770 1.3650 1.49290 0.08830
oMC 29.50 18.90 24.1430 2.42670
SDA (%) 20.0 0 10.6600 7.15460
QD (%) 20.0 0 10.640 8.19610
OPC (%) 8.0 2.0 4.,94490 2.37980
CBR (%) 66.750 19.690 39.9590 10.8660

2.2 Support vector regression (SVR)

In its early phases, the (SVM) technology was used to
address  pattern identification problems, initially
introduced by Vapnik [28]. Then, Vapnik [29] suggested
the SVM algorithm to solve problems with function
approximation, which resulted in developing the SVR
approach. The SVR approach is an innovative and perhaps
practical method in data regression analysis. In this study,
Support Vector Regression (SVR) is used as the main
predictive model. Because of its ability to manage
nonlinear relationships through kernel functions, SVR is
especially suitable for modeling complex geotechnical
datasets. The Radial Basis Function (RBF) kernel is
chosen due to its effectiveness in high-dimensional feature
spaces and its ability to generalize well. The SVR model
depends on three main hyperparameters: C (regularization
parameter): Regulates the trade-off between achieving a
low training error and maintaining a simple model. y
(gamma): Determines the influence range of a single
training example; a lower value means a wider reach,
while a higher value indicates a more localized effect. €
(epsilon): Defines the tolerance margin within which
errors are not penalized. These parameters were tuned
using metaheuristic algorithms to minimize the root mean
square error (RMSE) of predictions.

From an academic standpoint, the (SVR) may be
explained in the subsequent terms. SVR uses a dataset that
has N entries in it {(X;,y,),i = 1,2,..., M}.

The training dataset's overall count of instances is
denoted by M.

X; ={x1,%x3, ..., X} €ER™ denotes
component of the vector with M dimensions.

¥; € R represents the genuine value connected to X;.

For that, in machine learning tactics, I-dimensional
feature space - or something similar - represents the exact
mapping of any training data point X; in an SVR. The
obtained hyperplane is in the space of features that will be
selected using Support Vector Regression towards the
portrayal of the optimal hyper-plane between the input (or
the uncorrelated) variable and the exact output, the

the i—th

dependent variables: Eq. (1) gives,
operation of an SVR;

f)=ZTp(x) +b
b is the variable element
f(x) symbolizes the expected parameters
Z is the [ — dimensional weighting component.
An example of how distinct components X; are
mapped to a feature space with many dimensions is the
function ¢(x).
The formal expression for the g-insensitive coefficient
of loss is found in Eq. (2).
ly = f()le = max (0, |y — f(x)| — &) )
The difference between the real number, symbolized
by y, and the anticipated value, f(x), as expressed
theoretically by Eq. (3), is known as the residual.
R(x,y) =y~ f(x) A3)
According to Eq. (4), incorporating the entire residue
piece within a preset boundary value of ¢ is the optimum
regression model.
—e<R(x,y)<e¢ (4)
Eqg. (4) coincides with the hypothesis on the whole
training data set. Thus, if the residual meets the criterion
R(x,y) = te&, the data exhibits a maximum detour from
the hyperplane. One can calculate a spatial separation of
an arbitrary data point (x,y) from the hyperplane
R(x,y) = 0 by the formula |R(x, y)|/||[W*||. Further, Z*
can be calculated as:
z=@a,-zn" ©)
In this question, the variable & is assumed to be the
maximum degree of dispersion between the hyperplane
R(x,y) = 0 and the dataset (x,y). All the training data
can be induced to meet the requirements shown in Eq. (6).
If the value of & reaches its maximum in the SVR scheme,
it means that the scheme can exhibit the best
generalization ability.

[RCx, )| < 8I1Z7]|

mathematically, the

M

(6)



Metaheuristic-Enhanced SVR Models for California Bearing Ratio...

Whenever R(x,y) equals an ¢, the most significant
distance is reached. After that, Eq. (6) may be changed to
become Eg. (7). Considering the translation of an
optimization issue to a minimal || Z||, |Z* ||? = ||1Z]|? + 1,
and ||Z* || must be a minimal value to attain the maximum
of 6.

e=6|Zl ()

Even with efforts to keep mistakes within the (—¢, €)
range during training, it is still possible for certain errors
to surpass this limit. If training mistakes are less than -g,
they are displayed by ¢;, and if they are more than ¢, they
are displayed by ¢;. We define the notations ¢; and {;
according to Egs. (8) and (9), appropriately.
R(x;,y;))—€ <0

0
6= {R(xi,yi) —¢&  others ®)
. (0 e— R(x,y) <0
<= {e — R(x;y) others ©)

By using the & sensitivity loss function, (SVR) aims
to eliminate the distinction across the training data and the
hyperplane region and choose a hyperplane that produces
the best result. The goal function for (SVR) optimization
is displayed by Eqg. (10):

minF (Z,b, §;, ¢ ) = S I1ZI7 + ¢ X1 (G +
)

With the confinements:
yi—ZTp(x)—b<e+{ i=12..,
ZTp(x)+b—y; <e+ (", i=12,..,

(10)

|

<
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(=00,20 i=12,..,M

The first term of Eq. (10) tends to restrict weights, so
they stay above a certain limit to preserve whether the
regression algorithm is constant. The second part of this
system defines the ratio of certainty to vulnerability for
possible hazards resulting from previous experiences
using the e-insensitive Relationship to losing. After
determining the solution for the quadratic enhancement
issue with inequality restrictions, the value of coefficient
Z can be gathered from Eq. (11).

M

2=(8" = B) o)

The values of 8/ and B; are determined by solving a
quadratic programming problem that incorporates an
indication of the Lagrangian multipliers. Mathematically,
the Support Vector Regression function is displayed with
the utilize of the equation depicted as Eq. (12):

(11)

M
F&) =) (B = B)KGi=x)+b (12)
i=1
The kernel function, which is displayed as K (x; — x),
exhibits the capacity to convert the training data into a
higher nonlinear I-dimensional space. Therefore, this
methodology is deemed appropriate for solving issues
related to nonlinear relationships, including projecting
electrical power. Figure 1 shows the operational diagram
for SVR.
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Figure 1: The progress and validation flowchart of an SVR scheme
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2.3 AOSMA

The plasmodial slime mold's oscillatory mode is the basis
for SMA. The slime mold employs a positive-negative
feedback mechanism in conjunction with an oscillatory
mode to establish the optimal route toward nutrition [30].
AOSMA is a new statistical technique that incorporates an
opposition-based learning-based adaptive decision-
making method to improve slime mold's nearing conduct
[31].

Let it be assumed that a total of N individuals of the
species of slime mold under consideration are resident in
the search domain that is bounded by an upper boundary
(UB) and a lower boundary (LB) for theoretical
framework development of the (AOSMA).

Y. Lan et al.

X; = (x},x%, - ,xM),vi € [1,N] is the ith slime
mold's location in d-dimension.

F(X;),Vi = [1,N] symbolizes the
fitness.

The following represents the location as well as
fitness of the slime mold at round t:

ith slime's

A A
1 2 d

X =|% % x| | % (13)
x11V xﬁ cee x;& XN

In the (t + 1) cycle, the situation of the slime mold
has been advanced. It has undergone an upgrade in its
spatial disposition, which determine as Eq. (15):

X5(®) +Va(W. X, (t) — X5(t)) pr=8andp, <my

rand.(UB — LB) + LB

X, g is the best local slime mold

X, and X are pooled individuals by random

W is the weight factor

V,; and V, are the random velocities.

p, and p, are randomly chosen numbers in [0,1]

The slime mold's chance, which starts at a random
search situation, is fixed at § = 0.03.

The i —th member of the population's threshold
value, m;, aids in choosing the slime mold's location,
which is calculated as Eq. (16):

m; = tanh|F(X;) — F;|, Vi € [1,N] (16)
Fg = F(X¢) (17)
W(Sortlnd,.—(i))
Fig — F(X; N
1+rand.log(LB—(l) 1) 1<i<—
- FLB - FLW 2 (18)
1—rand log(w 1) E<L’<N
' Fip = Fry 2 B

F; and X, are the values of worldwide top ranking
and worldwide best well-being.

rand displays a random number in within [0,1]

F, g and F;,, are local best and worst fitness values.

The utilization of an ascending order for sorting
fitness values can be employed in a minimization
problem:

[Sortg, Sortindg | = sort(F) (19)

The local best and worst fitness also the local best
slime mold X, z are computed as Egs. (20-22):

Fp = F(Sortp(1)) (20)
Fuy = F(Sortp(N)) (21)
X5 = X(Sortind;(1)) (22)

,.X;(t) p,=6andp, =m;,Vi€E][lN]

(15)
P1<z

The randomly assigned velocities are known as 1,
and V, and are defined as follows:

V, € [—d,d] (23)
V, € [—e, €] (24)
d = arctanh (— (%) + 1) (25)
e=1-— ; (26)

T is the maximum cycle.

SMA holds great promise for both investigation and
exploitation in technological problem-solving and
enhancement. However, the improvement of slime mold
regulations in the SMA area is nevertheless reliant on a
count of basic circumstances.

Case 1: The region's best slime mold, X, 5, and two
random individuals, X, and X5, with velocity V,, drove to
determine when p; = zand p, < m,. This stage makes
it easier to strike a balance amongst discovery and
extraction.

Case 2: The orientation of the slime mold with
velocity V, directs the searchwhenp, > zandp, = m;.
This instance facilitates fraud.

Case 3: When p; < z, the person reinitializes within
a specified search domain. This phase facilitates
investigation.

Case 1 shows how the possibilities of finding
solutions are improperly controlled during exploration and
exploitation since X, and Xy are two random slime molds.
To get around this limitation, X, can be used in place of
best local individual X;5. Consequently, the location of
the i — th component is remodeled as Eq. (27):

XLB(t) +Vd(WXLB(t)_XB(t)) pl 2 6and pz <mi

Xni(t) = V.. X; ()

rand.(UB — LB) + LB

p1 =6and p, = m;
p1 <6

(27)
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Case 2 illustrates how slime mold deliberately targets
a nearby location, resulting in a path with a lower fitness
level. A better approach to this issue is to implement an
adaptive decision system.

Case 3 illustrates that the SMA offers criteria for
exploration. However, with a small value § = 0.03, the
exploration has been limited. To address the issue, it is
imperative to introduce an auxiliary exploration adjunct
for SMA. A practical approach to addressing the
limitations of Cases 2 and 3 entails employing a flexible
decision approach that leverages opposition-based
learning (OBL) to determine the necessity of additional
exploratory efforts [32]. The OBL uses a defined Xop; in
the search domain, which is precisely the opposite of the
Xni for each member (i = 1,2,---,N), and compares it
to upgrade the following cycles’ situation. It assists in
improving convergence and avoiding the chances of being
closed in the local minima. So, the Xop; for the i —th

individual in j—th (j =1,2,---,s) dimension is
described as follows:
Xop] = min(Xn;(t)) + max(Xn;(t)) 28)

— Xni(t)

Xr; represents the i — th member’s situation in the
reduction issue and is depicted as:

{XOpi(t) F(Xop;(0)) < F(Xn; (1))
Xn;(t) F(Xop;(t)) = F(Xn,(t))

Xr, (29)
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A flexible decision is formed drawing on the prior
worth of fitness f(Xi(t)) and the present fitness value
f(Xni(t)) in the event of a depleted nutrient pathway.
This is a typical academic kind of writing. It helps provide
added research as needed. Then, the situation for the
subsequent cycle is improved:

X t+1)

{an-(t) F(Xn;(t)) < F(X;(t))
Xn(®) Fn(0) >F(X;@)’
€ [1,N]

The aforementioned AOSMA framework is displayed
in pseudo-code, as shown in Algorithm 1.

In this study, the Adaptive Opposition Slime Mold
Algorithm (AOSMA) is used not as a standalone
optimizer but as a hybrid component integrated with
Support Vector Regression (SVR). AOSMA optimizes
three key hyperparameters of SVR—specifically the
regularization parameter C, the epsilon-insensitive loss
margin g, and the kernel coefficient y—with the goal of
minimizing prediction error measured by RMSE. Through
its adaptive opposition-based learning strategy and
dynamic parameter control, AOSMA allows for more
effective exploration of the search space and helps prevent
premature convergence. As a result, the hybrid AOSMA-
SVR model achieves better accuracy and generalization in
predicting California Bearing Ratio (CBR) values from
geotechnical data.

Vi

(30)

Algorithm 1: AOSMA

Begin

Using the criteria for searching boundary range [LB, UB], choose a target variable f with inputs N, s, T, and §.

Outputs: X;; and Fg
Initialization: Launch the slime mold at arbitrary.

X; = (x},x2,+ ,x%), Vi € [1,N] during the first revision, inside the query boundaries UB and LB

t = 1.
while (t < T)
— Determine the N slime mold's fitness values F (X).
— Put the fitness value in order.
— The local best individual X, 5z should be updated to match the local best conditioning F, .
— The local weakest fitness F,, should be updated.
— Update the matching worldwide greatest individual X and global best fitness F.
— Refresh the measurement of W.
— Update the d using Eq. (25) and e using Eqg. (26).

for (each slime mold i = 1: N)

o Create the p; and p, randomized numbers.

o Create the m; threshold quantity.

o Utilizing Eq. (27), determine the new slime mold location Xn;.
o Determine the new slime mold F(Xn;)'s nutritional value.

if (F(Xn;) > F(X;) // Adaptive decision strategy
]

Select Xr; using Eq. (29).

Estimate Xop; using Eq. (24). //Opposition-based learning

End

o Revise the subsequent cycle slime mold X; using Eqg. (30).
end

— The following repetitiont = t + 1

end

The result is X,;, representing the global most effective region.
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2.4 AFT

The present investigation clarifies the basic AFT
algorithm's mathematical model, which is described in
[33]. The scheme encompasses three states that can be
analyzed and delineated in the following:

Case 1: The pursuit of Ali Baba by the thieves, as
derived from information obtained from a source, can be
displayed by a simulation of their situations, as illustrated
in Eq. (31):

xf*t = gbest® + [Td*(best! — y ), +
Td'(yf — m&y)rz]sgn(rand — 0.5), p =
0.5, q> Py

y! represents Ali Baba’s situation regarding the thief

(31)

mi; represents the amount of cleverness that
Marjaneh uses to cover up thievery i.

xf** denotes the situation of the i — th thief.

gbestt is the most excellent situation a thief has ever
had worldwide.

11, 12, rand, p, and q are random values created within
[0,1]

best! is the optimal location of thief i has determined.

Td® is the robbers' surveillance area as specified by
Eqg. (32).

p = 0.5 presents either 0 or 1

P, is Ali Baba's potential perceptive ability, as stated
by Eqg. (33).

sgn(rand — 0.5) can be —1 or 1, and

a is defined as Eq. (34).

Tdt = Toe—n(%ﬁ (32)

t and T Please consult the current and maximal
repetition standards, accordingly.

7o (1o =1) is a preliminary estimate of the
monitoring length.

7, (ty =2) is a set amount that regulates the

discovery and utilization of resources.
t
Pyt = Aolog (A1 ()™ (33)

Ao (Ao = 1) depicts the final assessment of the
robbers' chances of completing their task after the hunt.
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A1 (A4, =1) refers to a fixed value that controls
exploration and exploitation.
a=[(n—-1).rand(n,1)] (34)
The vector rand (n, 1) is generated as a set of random
numbers within the bounds of [0,1].

¢ xfif f(x) = f(mgg)
Maiy = ; ¢ t
if f(x)) < f(mgy)
The score of the fitness function is denoted by £ (0).
Case 2: Thieves may perceive they have been tricked

and will likely start exploring unfamiliar and unplanned
areas.
P =Td [(w - )r+1];p 205, <P, (36)

The upper and lower bounds of the search domain at
dimension j are displayed by w; and [;, respectively.

r displays a stochastic quantity generated in the
interval [0, 1].

Case 3: To improve AFT's exploration and
exploitation  capabilities, thieves can investigate
alternative search situations beyond those identified
through the utilization of Eq. (31). This scenario can be
formulated as Eq. (37):

xf*t = gbestt — [Td*(best! — yi)r,
+ Td'(yf
—mgp)re]sgn(rand — 0.5)

¢ (35)
Ma()

@37)

Algorithm 2 concisely and formally describes the
iterative pseudo-code stages that correspond to the core
AFT.

The proposed hybrid framework combines the Dingo
Optimization Algorithm (DOA) with Support Vector
Regression (SVR) to tune the model’s hyperparameters:
C, g, and y. The DOA emulates the natural hunting tactics
of dingoes, such as surrounding, chasing, and attacking
prey, which are adapted into search operators for
exploring the SVR parameter space. The aim is to
minimize the SVR’s RMSE on training data by identifying
the optimal parameter combination. By balancing
diversification and intensification, the DOA-SVR hybrid
model can effectively avoid local optima and enhance
SVR's ability to generalize for accurate CBR prediction.

Algorithm 2: AFT

Establish the regulation settings and get started.

Start by assessing every thief's starting, optimal, and worldwide situations.
Start by assessing Marjane's intelligence in comparison to all thieves.

Sett <1

While (t < T) do

Eqg. (33) is used for modifying the input parameter P,c.
for each thief, do

if (p = 0.5) then

if (g = P,t) then

Use Equation (32) to update the thieves' positioning.
else

Utilizing Equation (36), adjust the robbers' whereabouts.
end if

else

Refine the thieves’ situation by Eq. (37).

end if
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end for
Refresh all thieves' current, best, and worldwide standings.
Utilizing Eq. (35), alter Marjane's wit goals.
t=t+1
end while
Give back the world's optimal solution.

2.5 Dingo optimization algorithm (DOA)

From the earliest times, nature has consistently been
regarded as an exceptionally instructive and impactful
educator. Every species that exists on the planet Earth
possesses a distinct and unique mechanism for ensuring its
survival. The present study involves the mathematical
modeling of hunting behavior and social arrangements in
the dingo species. This analytical approach is the basis for
developing a DOA nature-inspired optimization technique
[34]. The two primary constituents of DOA are regarded
as exploration and exploitation. The algorithm generates
various anticipated outcomes within the search domain
during the initial exploration phase. However, the
subsequent exploitation phase enables identifying and
pursuing the most desired resolutions within the
predetermined space. To discern the optimal resolution for
a given pragmatic concern, refinement, and integration of
both constituent factors are necessary. Nonetheless,
achieving equilibrium among the proposed algorithm's
constituents is arduous due to its stochastic disposition. To
address an authentic engineering dilemma, the impetus for
developing an algorithm implementation utilizing
hybridized meta-heuristics is derived from this
inspirational notion [34].

Dingo optimization is done by the computational
designing of the prey's pursuit, encirclement, and attack.

2.5.1 Encircling

Given the lack of previous knowledge about the search
location and its ideal characteristics, it is proposed that the
objective or target prey is the best agent tactic currently in
use, representing the social hierarchy of dingoes. The
following mathematical formulas can be used to formalize
the dingoes' behavior:

Dy=|ABx) P ] (38)
P'(i+1) = P,(x) — B.D(d) (39)
A=2.4 (40)
B=2b.d,—b (41)
. 3

b =3—(1x(1 )) 42)

The neighborhood dingoes' geographic coordinates
are displayed as a two-dimensional vector. The dingo may
adjust its situation to match the coordinates of (P, Q)
based on the prey's location, which is displayed as
(P*,Q%). By adjusting the 4 and B vectors about the
present situation, the graphic shows every possible
location around the ideal agent. Setting A= (1,0) and

B = (1,1) provides access to the dingo's situation at
(P* — P,Q")For example, Egs. (38) and (39) make it
easier for dingos to travel throughout the hunting area and
find their prey randomly.

2.5.2 Hunting

Using a mathematical method, creating a dingo hunting
strategy involves assuming that the alpha, beta, and other
members of the pack have a thorough awareness of the
possible prey sites. When conducting hunting trips, the
alpha dingo always takes the lead. However, other dingo
species, including beta, may hunt as well. Egs. (43) to (51)
are developed with this issue in line with the discussion.

Dy =|4,.B,—P| (43)
Dy = |dp. By — P | (44)
D, = |As.P,— P | (45)
B, = |P,~B.D,| (46)
B, =|P; - B.Dy | S

(48)

The following formulae are utilized to determine each
dingo's intensity:

. 1

lo = log (Fa —AE—100) 1) (49)
N 1

IB_10g<—FB—(1E—1OO)+1> (50)
N 1

lo =log (FO —(E —100) 1) (51)

2.5.3 Attacking

If a situation update is unavailable, it may be inferred that
the dingo successfully concluded its hunt through a
predatory attack. To formally articulate the strategy, the
value of b is systematically diminished linearly through
the utilization of mathematical notation. Noteworthy is the
fact that the variation range of 5a is further diminished by
b. The value above may be identified as 5a, which is a
stochastic variable generated within the range of [-3b, 3b],
where the constant b undergoes a decremental process
from 3 to 0 over a series of cycles. When D, Values are
randomly generated within the interval [1,1]. An
exploratory agent is capable of moving to any possible
situation along the trajectory between its existing location
and the prey's location.
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2.5.4 Searching

Dingoes exhibit hunting patterns primarily determined by
their pack's location. They consistently progress in pursuit

of locating and subduing prey. B represents random

variables. Notably, if the value assigned to B’ falls below
-1, it implies that the prey is retreating from the search

agent. Conversely, if B exceeds 1, the pack is advancing
toward its prey. This particular intervention facilitates the
Department of Defense conduct a comprehensive global
reconnaissance of identified targets. One factor
contributing to a heightened probability of exploration
within the DOA is the component denoted as A.In Eq.

(40), the vector A can generate a range of random
numbers within the interval between 0 and 3, independent
of the weight of the prey selected. The DOA function can
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be characterized as a stochastic vector whereby the
elements with values that are less than or equal to one take
priority over those greater than or equal to one. This
feature elucidates the gap's influence as described in Eq.
(38). The hybrid framework combines the Dingo
Optimization Algorithm (DOA) with Support Vector
Regression (SVR) to tune hyperparameters: C, €, and v.
Inspired by the natural hunting strategies of dingoes, such
as surrounding, chasing, and attacking prey, the DOA
translates these behaviors into search operators that
explore the SVR parameter space. Its aim is to minimize
the RMSE of SVR on training data by identifying the best
parameter combination. By balancing exploration and
exploitation, the DOA-SVR hybrid effectively avoids
local optima and improves SVR’s generalization ability,
leading to more accurate CBR predictions.
Algorithm 3 offers the pseudo-code for the DOA.

Algorithm 3: Dingo Optimization

Input: The population of dingoes D, (n = 1,2,...,n)

Output: The best dingo. (Here, the best values are minimum)

Generate initial search agents D;,,

Start the value of b, 4, and B .
While the Termination condition is not reached, do
Appraise each dingo’s fitness and intensity cost.
D, = dingo with the best search
Dg = dingo with the second-best search
D, = Dingoes search outcomes afterward
Cyclel
repeat
fori =1:D;, do
Renew the latest search agent state.
end for
Project the fitness and intensity cost of dingoes.
Record the value of S, Sg, Ss

Record the value of b, 4, and B'.
Iteration = Iteration + 1
Monitor if cycle> Stopping criteria
output
end while

Choosing AFT, AOSMA, and DOA as optimizers was
driven by their unique algorithmic bases and search
methods, enabling a thorough comparison of their
metaheuristic behaviors. These approaches are relatively
recent and less studied, yet they show competitive
performance in diverse regression and engineering tasks.
Incorporating them with SVR in this research allows
evaluation of both their predictive accuracy and
optimization stability across different algorithmic
frameworks.

2.6 Reproducibility and run settings

To ensure the robustness and reproducibility of the results,
each hybrid SVR model (AFT-SVR, DOA-SVR,
AOSMA-SVR) was executed 30 independent times. This
allows for reliable statistical analysis of model
performance. Additionally, random seed initialization was
controlled using a fixed seed (e.g., seed = 42) across all

algorithms during training and optimization to maintain
consistent behavior during repeated runs and to support
reproducibility.

2.7 Hybridization strategy of SVR with
metaheuristic algorithms

This study developed three hybrid machine learning
models—SVAF, SVSM, and SVDO-—by integrating
Support Vector Regression (SVR) with three advanced
metaheuristic optimization algorithms: Alibaba and Forty
Thieves (AFT), Adaptive Opposition Slime Mold
Algorithm (AOSMA), and Dingo Optimization Algorithm
(DOA). The goal is to boost SVR's prediction accuracy by
optimizing its key hyperparameters—penalty parameter
C, kernel parameter y, and epsilon-insensitive loss e—
using the global search methods provided by these
metaheuristics. While SVR is a strong nonlinear
regression technique, its effectiveness heavily relies on
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proper parameter tuning. Traditional manual or grid
search methods are often inefficient or may vyield
suboptimal results, especially with complex, high-
dimensional geotechnical data. Therefore, this hybrid
approach exploits the global search and convergence
strengths of nature-inspired algorithms to automate SVR
hyperparameter optimization.

- In SVAF, the AFT algorithm explores the search
space dynamically through mechanisms like global
surveillance, balancing exploration and exploitation, and
adaptive decision-making inspired by Marjaneh. These
features enable it to identify optimal SVR parameters
reliably.

- In SVSM, AOSMA enhances the slime mold
algorithm with opposition-based learning and adaptive
strategies, allowing it to escape local minima more
effectively and converge more rapidly, thus providing
better hyperparameter configurations.

- In SVDO, the DOA mimics the social hunting
behaviors of dingoes—such as encircling, attacking, and
searching—to iteratively fine-tune the SVR parameters
for higher prediction accuracy.

Each metaheuristic aimed to minimize the RMSE of
SVR predictions on training data, with the best parameter
set used to train the final hybrid model. The process was
repeated 30 times to ensure stability and reproducibility.
This hybrid approach directly supports the study's goal of
creating accurate, efficient, and generalizable models for
predicting the California Bearing Ratio (CBR) of soils.
Using these metaheuristics not only enhances SVR’s
learning ability but also reduces the manual effort and
computational cost typically required for parameter
tuning.

2.8 Performance evaluation tactics

A range of evaluators was deployed to appraise hybrid
schemes' productivity in CBR value prediction. The list of
evaluators comprises RMSE, MSE, R?, the ratio of RMSE
to standard deviation (RSR), and lastly, weighted absolute
percentage error, or WAPE. R2 determines the degree of
linear relationship between the actual and forecasted
magnitudes. The RMSE is the square root of the ratio
between the square of the count of specimens and the
estimated value departure from the actual value. WAPE
could be quantified by dividing the total absolute error by
the total real demand. Eq. (21-25) provides the values of

these metrics above.
2

Xisi (b — b)(di — d)
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(53)
(54)
(55)
no1d. — b
WAPE = Lizildi = bil (56)
i1 bl

n indicates the count of samples; d; displays the
forecasted value; b; displays the actual value, while d and
b represent the mean of the forecasted value and the
average of the actual amount, respectively.

3 Outcomes and discussion

This paper reports on developing a Support Vector
Regression model using three new enhancement
techniques, AFT and DOA, aimed at developing three
hybrid predictive models for soil estimation CBR. In
previous schemes, the information about information was
divided into two subsets: a set to learn and a set to validate
the scheme, 70% and 30% of the data, respectively. The
five consecutive statistical metrics, namely, R2, RMSE,
MSE, RSR, and WAPE, were considered to get the full
view of the optimizers' performance. Outcomes can be
shown in Table 2. The statistical indicators are analyzed
in this section to determine whether one model is generally
better. By studying the various R2 values among these
different schemes, it would be crystal clear that the most
promising outcomes are given out by SVAF in both the
testing and training stages, with 0.9968 and 0.9929 values,
respectively. Meanwhile, the minimum value of R2
among all comparative schemes was given to the SVSM
model at 0.9767. The key thing worth mentioning here is
that all the schemes have increased R2 during their test
phases, indicating that the schemes are well-trained.
Maximum RMSE, MSE, RSR, and WAPE values are
1.6271, 2.6475, 0.1524, and 0.0334 for SVSM in training.
For the testing section, maximum RMSE values, MSE,
RSR, and WAPE are 1.5824, 2.5042, 0.1409, and 0.0312
for SVSM. By contrasting the evaluators' and errors'
values, the best hybrid scheme for estimating the CBR
value of soils is the combination of SVR and the ATF
algorithm (SVAF). This model has the highest R2 value
(0.9968 in the testing phase) and the lowest error value

R? = (52) (0.7946 in testing) among all three components.

JIEia - P[5 (e - 7]

Table 3: The hybridized schemes produced the findings

Schemes SVAF SVSM SvDO SVR
Section Train | Test Train Test Train | Test Train Test
RMSE 0.9316 | 0.7946 | 1.6271 | 1.5824 | 1.3363 | 1.171 1.336392 1.171305
R2 0.9929 | 0.9968 | 0.9767 | 0.9825 | 0.9852 | 0.992 0.985202 0.992446
MSE 0.868 | 0.6314 | 2.6475 | 2.5042 | 1.7859 | 1.372 1.7859 1.372
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RSR 0.0872 | 0.0708 | 0.1524 | 0.1409 | 0.1251 | 0.1043 | 0.1251 0.1043
WAPE 0.0162 | 0.0141 | 0.0334 | 0.0312 | 0.0234 | 0.0212 | 0.0234 0.0212

Fig. 2 displays the dispersed presentations illustrating
the correlation between the gauged and expected
California Bearing Ratio values. R2 and RMSE are two
types of assessments that include numerical data. When
the value of this evaluation metric decreases, density
increases because RMSE functions as a deviation
controller. Additionally, the training and testing data
points are drawn toward the center axis by the R2
evaluator. The figure below illustrates several other
variables which also include but are not restricted to the
linear regression model's centerline, which is positioned at
the location Y=X, as well as dual lines that are in red
below and above the midline, in that order, at Y=0.9X and
Y=1.1X. The lower and upper ends of the line
intersections provide the false predictions of an
underestimation and an overestimation of values,

70

respectively. Three schemes were produced by the
subsequent analysis, which combined the SVR scheme
with the three optimizer strategies applied to training and
testing. Fig. 2 shows the findings of the current
investigation. R2 of SVAF appears to be comparatively
more favorable than the rest of the schemes because the
data points maintain the same directionality and are nearer
the centerline. From empirical data, it can be induced that
in all cases, and quite noticeable in the case of SVDO, the
precision of the test phase values is higher than that of the
training phase. Overall, the result from the acquired data
in Fig. 2 is the most favorable result using the SVR method
and the ATF optimizer since R2 and RMSE in learning
and validation also gave the best result. That could be due
to the capability of this model in terms of minimizing error
and being the best in performance regarding the R2.
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Figure 2: The scatter plot of expected and measured values

Fig. 3 presents the correlation between expected and
actual CBR values obtained using three different classes
of hybrid schemes. The graphs have been divided into two

distinct parts: model training and model validation.
Among them, the SVAF representing an SVR and the
ATF algorithm generate closer agreement between the



Metaheuristic-Enhanced SVR Models for California Bearing Ratio...

gauged CBR values of the expected output for testing and
training data sets. By contrast, the status of the least
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unfavorable agreement appears quite clearly in SVR and
AOSMA's union, SVSM.
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Figure 3: The comparison line-symbol plot between expected and gauged CS

Fig. 4 presents the deviations between the gauged and
estimated values through three hybrid schemes regarding
the California Bearing Ratio. This figure indicates that the
greatest error for SVSM when assessed is around 18%,
whereas for schemes undergoing training, it was 12% in

the same set. The figure shows that, for the highest and
lowest performing schemes, the majority of errors are
found in a narrower range of (-3,3) % in SVAF and (-
6,17%) % in SVSM.
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Figure 4: The error distribution of the schemes over samples shown in a time series plot.

0 0

The errors in the observed values of the undrained %, and 7% for SVSM during training and testing of the
shear strength for the three different hybrid scheme  schemes. The figure reflects the distribution of 25-75% of
types—SVAF, SVSM, and SVDO—are displayed in Fig.  errors in arange less than (-1, 1) % in SVAF and (-3, 3) %
5. Based on this figure, the maximum errors are about 11 in SVSM: best and worst schemes, respectively.
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Figure 5: The standard half-box plot showing the error ratio of the hybrid schemes created.

To enhance the statistical robustness of the proposed
models, 95% confidence intervals for the R? values were
calculated based on multiple independent runs of each
algorithm. As shown in Table 4, the standard SVR model
has the widest interval, from 0.6302 to 0.7631, indicating
greater variability and less predictive stability. In contrast,
the three hybrid SVR models display narrower intervals
with higher upper bounds, signifying more consistent
performance. Among these, the SVR model combined
with the Alibaba and Forty Thieves algorithms (SVAF)
achieved the most favorable confidence interval, from
0.7243 to 0.8078, reflecting both high accuracy and

robustness across runs. The SVR-Dingo Optimization
Algorithm model also performed well, with a confidence
interval of 0.7120 to 0.8298, slightly broader but with the
highest upper bound. Meanwhile, the SVR-AOSMA
model shows an interval between 0.6653 and 0.7848,
ranking it between the other hybrids in stability and
performance. These intervals confirm that the SVAF
model not only offers high prediction accuracy but also
delivers consistent results, making it the most reliable
model among those tested for CBR estimation.
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Table 4: Confidence intervals based on R2

Lower Upper
Model Bound Bound
SVR 0.6303 0.7632
SVR + Dingo Optimization 0.7120 0.8298
Algorithm
SVR + Adaptive Opposition
Slime Mould Algorithm 0.6653 0.7848
S\/_R + Alibaba and the Forty 0.7243 0.8078
Thieves

4 Sensitivity analysis

The ANOVA-based sensitivity analysis conducted on the
performance of different predictive models for estimating
the California Bearing Ratio (CBR) reveals statistically
significant differences among the models. The confidence
intervals for the coefficient of determination (R?) provide
insight into each model's accuracy and robustness. The
baseline SVR model exhibits the lowest performance with
a confidence interval ranging from 0.630 to 0.763,
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indicating relatively limited predictive power. In contrast,
the SVR models enhanced with metaheuristic algorithms
demonstrate superior performance. Among these, the
SVR-Dingo Optimization Algorithm model shows a
confidence interval between 0.712 and 0.830, reflecting
substantial improvement over the baseline. Similarly, the
SVR-Adaptive Opposition Slime Mould Algorithm model
yields a confidence range of 0.665 to 0.785, suggesting
better stability and generalization. Notably, the SVR-
Alibaba and the Forty Thieves (SVAF) model achieves the
highest lower bound (0.724) and an upper bound of 0.808,
indicating both high precision and consistent
performance. The limited overlap between the confidence
intervals of the SVAF model and those of the other models
supports the claim of its statistically significant
superiority. This distinction highlights the effectiveness of
the AFT optimizer in enhancing SVR’s learning capability
and minimizing prediction errors. Overall, the results of
the ANOVA test confirm that metaheuristic-optimized
SVR models, particularly SVAF, provide more accurate
and reliable predictions of CBR values compared to the
standard SVR approach.

Table 5: Sensitivity analysis based on ANOVA

Models lower upper
SVR 0.630 0.763
SVR-Dingo Optimization Algorithm 0.712 0.830
SVR-Adaptive Opposition Slime Mould Algorithm 0.665 0.785
SVR-Alibaba and the Forty Thieves 0.724 0.808

5 Discussion

This section compares the three hybrid models—SVAF
(SVR + AFT), SVSM (SVR + AOSMA), and SVDO
(SVR + DOA)—focusing on their predictive accuracy,
convergence behavior, and computational efficiency. As
shown in Table 2, SVAF outperforms the others across all
five metrics: R 2, RMSE, MSE, RSR, and WAPE. During
testing, SVAF achieved the highest R 2 (0.0.9968) and the
lowest RMSE  (0.7946), indicating excellent
generalization and minimal error in estimating CBR
values. This success stems from the adaptive balance
between exploration and exploitation in the Alibaba and
Forty Thieves (AFT) optimization strategy, which
enhances SVR' s ability to find optimal hyperparameters.
The random surveillance mechanism in AFT promotes
global search, while Marjaneh's intelligence adjustment
enhances local refinement, enabling rapid convergence
toward optimal SVR settings. In contrast, the SVSM
model, which employs the Adaptive Opposition Slime
Mold Algorithm, showed weaker performance (R? =
0.9825, RMSE = 1.5824 during testing). Although
AOSMA incorporates opposition-based learning to boost
exploration, it can produce more oscillatory convergence
patterns, possibly leading to suboptimal SVR tuning. Its
complex adaptive threshold settings may also increase
sensitivity to initial parameters. The SVDO model (SVR
+ Dingo Optimization Algorithm) performed moderately
(R2=0.992, RMSE = 1.171). DOA utilizes biologically

inspired social hunting behaviors, facilitating effective
neighborhood search. However, its slower convergence
during exploitation may limit its ability to finely tune SVR
hyperparameters, especially in high- dimensional spaces.
Regarding computational efficiency, SVAF requires
slightly more training time than SVSM and SVDO due to
multiple adaptive conditions and surveillance cycles in
AFT, but its superior accuracy justifies this. SVSM offers
faster runtimes but less predictive precision. SVDO falls
between the two in terms of performance and
computational demand. Overall, findings suggest that
SVAF provides the best balance between accuracy and
optimization quality, making it a strong candidate for
practical CBR prediction tasks. Future research could
explore combining AOSMA 's rapid convergence with
AFT 's stability to improve training efficiency without
sacrificing accuracy. Future research will aim to improve
the models' applicability across various regions by testing
them on datasets with diverse soil types. Combining
Support Vector Regression with deep learning—for
example, as a post-processing tool after deep feature
extraction—could boost prediction accuracy, particularly
for large or complex datasets. Another valuable approach
is integrating these hybrid Al models into geotechnical
software platforms, allowing real-time, data-driven
decision-making in engineering and construction projects.

Although the hybrid SVR models presented
demonstrated strong predictive performance on the
available dataset, there are some limitations to consider.
Firstly, without an external validation set, the
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generalizability of the results may be restricted beyond the
current data. Secondly, the relatively small sample size
increases the risk of overfitting, especially with the use of
metaheuristic optimization. Additionally, the dataset only
encompasses a limited range of soil types and regions,
which could limit the models' broader applicability. It is
also important to note that larger, more diverse datasets
might benefit from alternative modeling techniques such
as deep learning or ensemble methods to achieve better
predictive accuracy. These limitations will be addressed in
future research to improve the model's robustness and
generalizability. To enhance model robustness, we plan to
use regularization like L1/L2 penalties and early stopping
to prevent overfitting. Models will be tested under various
conditions—smaller datasets and more noise—to check
resilience. Including confidence intervals or error margins
for metrics like RMSE and R2? will better measure
uncertainty. These steps will help create more reliable,
generalizable models for geotechnical uses.

6 Conclusion

The current investigation has adopted an SVR scheme to
project the CBR value of soil. Although the outcomes of
the conventional method were effective, it had some
limitations. The laboratory process is costly and is not
considered to be time-effective. The drawbacks above can
be overcome by substituting the software-based approach
with artificial intelligence. The accuracy of the system in
predicting the CBR was quite remarkable. The input
variables were selected to forecast the target parameter,
which was depicted as CBR. Five different performance
metrics were utilized to appraise the precision delivered
by the schemes under consideration. These included R2,

RMSE, MSE, RSR, and WAPE. Three distinct meta-

heuristic ~ optimization  approaches—the  Dingo

Optimization Algorithm, Alibaba, the Forty Thieves

Optimization algorithm, and the Adaptive Opposition

Slime Mold Algorithm—have been examined in the

current study to increase the system's functional

efficiency. The conclusions below may be drawn from the
analysis's outcome:

e The thorough analysis of the pertinent characteristics
was the foundation for developing the projection
schemes to estimate CBR. A comparison between the
experimental outcomes and those obtained utilizing
the suggested schemes showed that the latter's CBR
prediction accuracy was significantly high.

e In the current research, the test phase has shown that
the forecast data's scattering value increased by 0.39,
0.59, and 0.69 for SVAF, SVSM, and SVDO,
respectively, from the training phase.

e The California Bearing Ratio outcomes presented in
this investigation indicate a significant discrepancy
between the observed and projected values, with an
average underestimate of almost 1.24 for the
suggested schemes. With a value of 1.6271, the
RMSE displayed its maximum error in the scheme's
SVSM in the training phase. The SVAF had the
lowest error rate in the testing session, with a rating
of 0.7946.
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