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Soil resistance characteristics, particularly the California Bearing Ratio (CBR), play a pivotal role in 

pavement and subgrade design. However, conventional laboratory-based CBR testing is often time-

consuming, labor-intensive, and costly. This study presents a novel machine learning framework that 

combines Support Vector Regression (SVR) with three recent metaheuristic optimization algorithms—

Dingo Optimization Algorithm (DOA), Alibaba and the Forty Thieves Optimization (AFT), and Adaptive 

Opposition Slime Mold Algorithm (AOSMA)—to predict CBR values efficiently and accurately. A dataset 

consisting of 220 soil samples with eight geotechnical input parameters was used to develop and evaluate 

the hybrid models. The predictive performance of each model was assessed using multiple evaluation 

metrics, including R², RMSE, MSE, RSR, and WAPE. Results indicate that the SVR–AFT (SVAF) hybrid 

model outperformed the others, achieving an R² of 0.9968 and an RMSE of 0.7946 in the testing phase, 

demonstrating high generalization ability and predictive precision. The integration of SVR with 

metaheuristic algorithms significantly enhances model robustness and accuracy, offering a practical and 

cost-effective alternative to empirical CBR testing methods. This work highlights the potential of hybrid 

AI models in solving complex geotechnical prediction problems and contributes to the growing body of 

research at the intersection of civil engineering and artificial intelligence.   

Povzetek: Hibridni modeli SVR so optimizirani z metahevristikami AFT, DOA in AOSMA za hitro in 

natančno napovedovanje CBR iz osmih geotehničnih parametrov. Na 220 vzorcih doseže najboljši model 

SVAF R² = 0.9968 in RMSE = 0.7946, kar ponuja stroškovno učinkovito alternativo laboratorijskim 

testom.

1 Introduction 
CBR is the term utilized by Geotechnical construction to 

describe the resistivity of the substrate sample to a piston's 

insertion. More specifically, the CBR describes the force 

applied to the piston to enable it to penetrate the soil. [1]. 

Initially, the CBR examination was devised in California 

to appraise the suitability of soils for highway 

construction. Civil engineers modified the testing process 

to enhance its impact on the airport's construction. Almost 

all emerging countries widely adopt the CBR test to 

appraise pavements' resilience to soil [2]. A material's 

load-bearing capacity is gauged by its CBR, which is the 

ratio of the attainable supporting strength of base materials 

to that of regular crushed rock. In structural engineering, 

100 is considered a reasonable limit for the CBR for 

broken rock substances. 

Conversely, the values of CBR for alternative 

materials are found to be below 100 [3]. Recent advances 

in artificial intelligence (AI) are closely intertwined with 

the rapid development of electronic technologies, forming 

the foundation of the so-called "information society.”  

 

Gams and Kolenik highlight the reciprocal relationship 

between electronics and AI, where swift hardware 

improvements, described by a comprehensive set of  

Information Society (IS) laws, have driven 

groundbreaking progress in AI across fields like medicine, 

smart environments, and autonomous systems. Their 

research shows that AI and ambient intelligence (AmI) not 

only benefit from electronic advancements but are also 

beginning to influence hardware optimization and 

intelligent system design through AI, indicating a move 

toward a more integrated technological progression [4]. 

After the compacted soils have been tested, the laboratory 

can conduct the subsequent test. However, it is possible 

for soils located in trenches to conduct the CBR test under 

the circumstances on the premises [5]Recognizing that in 

situ and laboratory test outcomes can show perceptible 

differences between soil types, unit weights, and water 

content is essential. Employing CBR tests has proved 

promising for presenting information about the stability 

and strength of different kinds of structures related to soils, 

such as road fills, airport roadways and dams, and road 

foundations. 
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Moreover, these tests can be conducted in unsoaked 

and soaked soil varieties. The laboratory CBR tests are 

characterized by their demanding nature regarding time 

and manual effort. Moreover, the outcomes of such tests 

are frequently marred by discrepancies attributed to the 

suboptimal quality of conditions in the lab and samples of 

dirt, which, in turn, lead to inaccurate CBR values [6].  

Various studies have been performed on the 

California bearing ratio, which led the researchers to 

formulate different procedures. Previous studies showed 

that changes in the soil types and properties affected the 

value of CBR. Amongst other things, it has been observed 

that most research work has focused on studying the 

relationship existing between the compacted properties, 

unique indicators, as well as the mineral examinations' 

CBR concentrations [6]–[8][9], [10], [11], [12], [13], 

[14][15], [16], [17], [18]. To determine the value of CBR, 

soils are compacted at a predetermined MDD and OMC at 

a specified energy level for the soil material. For the CBR, 

the cases are soaked for four days; the primary purpose of 

this soaking is to allow absorption. Consequently, the 

assessment of the CBR value for a soaked sample typically 

requires a period of approximately five to six days. This 

delay can prove detrimental to the timely completion of a 

large-scale construction endeavor. Since soil is vastly 

different from one quality to another, applying this 

exercise to the foundation soil samples collected from a 

small count of sites may not truly represent the soil 

properties for all roads. To eliminate this deficiency, a 

large count of specimens is needed to be gathered for tests. 

Therefore, calculating the CBR values for pavement 

subgrade soils deploying easily identifiable parameters 

becomes very important in developing appropriate 

pavement design parameters. Recently, interest in using 

Artificial Intelligence (AI) tactics to solve geotechnical 

engineering problems has increased. Consequently, some 

valuable outcomes have been obtained [19], [20]. 

Furthermore, a limited count of studies has documented 

endeavors to appraise the (CBR) of soils via adopting 

diverse Artificial Neural Network (ANN) methodologies 

[21], [22], [23]. Recent advances in machine learning have 

increasingly supported geotechnical engineering by 

improving the prediction of soil and foundation properties 

through data-driven models. Support Vector Regression 

(SVR), when combined with metaheuristic optimization, 

has proven particularly effective in modeling complex 

nonlinear relationships within geotechnical datasets. Ngo 

et al. [24] demonstrated that SVR optimized via 

metaheuristics yielded superior performance in predicting 

the unconfined compressive strength of stabilized soils. 

Similarly, Hoang et al. [25] applied enhanced SVR models 

to successfully estimate pile bearing capacity, showcasing 

the method’s versatility in foundation engineering. In the 

context of California Bearing Ratio (CBR) prediction, 

Bherde et al. [26] reported that Random Forest Regression 

outperformed other algorithms, including SVR, with 

maximum dry density and gravel content being the most 

influential predictors. While these results support the 

effectiveness of ensemble models, they also underline the 

need for more optimized SVR configurations that can 

match or exceed ensemble performance. A broader 

comparative study by Ma et al. [27], evaluating 20 

metaheuristic algorithms for SVR parameter tuning in 

landslide displacement prediction, revealed considerable 

variation in outcomes. The Multiverse Optimizer emerged 

as particularly efficient in achieving high accuracy with 

low computational cost, highlighting the critical role of 

algorithm selection in enhancing SVR model 

performance. These studies collectively underscore the 

growing impact of hybrid AI models in geotechnical 

applications. However, few works have focused 

specifically on integrating SVR with newer and less 

explored metaheuristic algorithms such as the Alibaba and 

Forty Thieves (AFT), Dingo Optimization Algorithm 

(DOA), or Adaptive Opposition Slime Mold Algorithm 

(AOSMA). Our study addresses this gap by systematically 

evaluating and comparing these novel SVR-based hybrid 

models in predicting CBR, offering insights into their 

optimization behaviors, convergence patterns, and 

predictive robustness. By incorporating recent 

advancements and experimental benchmarks, this work 

aims to contribute both technically and methodologically 

to the field of AI-driven geotechnical modeling. 

Considering the variety of parameters to be 

considered and the range of datasets observed, as 

explained in the previous paper, it becomes of prime 

importance to develop robust predictive methodologies to 

model the mechanical attributes of the CBR and delineate 

the complex correlations between the constituents of soil. 

Recent studies have explored various soft computing 

and machine learning techniques for predicting the 

California Bearing Ratio (CBR). These include Random 

Forest, Gradient Boosting, and XGBoost, which are 

known for their solid performance in regression tasks. 

However, such models often need extensive tuning and 

can struggle to capture complex nonlinear relationships, 

especially when feature interactions are subtle. 

Conversely, Support Vector Regression (SVR) 

demonstrates strong generalization and robustness, 

especially when combined with kernel functions and 

metaheuristic optimization. To assess the effectiveness of 

the proposed SVR-based hybrid models, we also 

incorporated Random Forest as a benchmark and 

compared its predictive accuracy with the SVR models 

enhanced by metaheuristics. 

Recent studies have explored different soft computing 

and machine learning approaches for predicting CBR. Key 

techniques include Artificial Neural Networks (ANN), 

Multiple Linear Regression (MLR), Group Method of 

Data Handling (GMDH), and SVM. These models use soil 

parameters such as Atterberg limits, dry density, optimum 

moisture content, and soil gradation as inputs. However, 

many struggle with issues like overfitting, limited 

generalization to unseen data, or inadequate 

hyperparameter optimization. As shown in Table 1, most 

previous models achieved only moderate accuracy and did 

not utilize metaheuristic optimization to boost prediction 

performance. To fill this gap, this study introduces a 

hybrid Support Vector Regression (SVR) model 

combined with three metaheuristic optimizers—AFT, 

DOA, and AOSMA—aimed at improving the model’s 

ability to learn nonlinear patterns. The superior 
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performance of the SVAF model, especially in RMSE and 

R² metrics, highlights the benefits of this approach. 

Table 1: Overview of past methods for CBR prediction 

Study Model Type Input Features 
Dataset 

Size 

Performance 

Metrics (R² / 

RMSE) 

Notes 

Yildirim & 

Gunaydin  

Artificial Neural 

Network (ANN) 

LL, PL, PI, MDD, 

OMC, % Sand and 

Gravel 

120 
R² = 0.945 / 

RMSE = 1.82 

ANN prone to 

overfitting and high 

variance 

Taskiran  GMDH 

LL, PL, PI, 

Compaction 

properties 

200 R² ≈ 0.92 
Good performance, 

limited interpretability 

Alawi & 

Rajab  

Multiple Linear 

Regression (MLR) 

LL, PL, PI, Soil 

Gradation 
100 R² = 0.86 

Struggles with 

nonlinear relationships 

Ngo et al. 

[24] 

SVR + Improved 

Arithmetic 

Optimization 

(IAOA) 

Grain size, 

Density, OMC, PI 
150 

R² = 0.96 / 

RMSE = 1.12 

SVR enhanced with 

metaheuristic tuning 

Wu et al. 

[25] 

Stochastic Gradient 

Boosting Regression 

(SGBR) 

LL, PL, MDD, % 

Clay, % Silt 
300 R² = 0.974 

Ensemble method with 

good generalization 

Bherde et 

al.[26]  

Random Forest 

Regression (RFR) 

MDD, % Gravel, 

OMC, PI 
400 R² = 0.982 

Strong performance, 

but no hyperparameter 

optimization 

Current 

Study 
SVR + AFT 

LL, PL, PI, MDD, 

OMC, SDA, QD, 

OPC 

300 
R² = 0.9968 / 

RMSE = 0.7946 

Best accuracy using 

hybrid SVR and AFT 

metaheuristic 

 

This study addresses the challenges of traditional 

CBR testing methods, which are often time-consuming 

and costly, by exploring advanced machine learning 

models supplemented with nature-inspired optimization 

techniques. Specifically, it focuses on Support Vector 

Regression (SVR), a popular tool for nonlinear regression. 

Since SVR's performance heavily depends on 

hyperparameter selection, three recent metaheuristic 

algorithms—Adaptive Opposition Slime Mold Algorithm 

(AOSMA), Alibaba and the Forty Thieves Algorithm 

(AFT), and Dingo Optimization Algorithm (DOA)—are 

employed to optimize the SVR framework. These 

algorithms offer diverse search strategies with strong 

potential for effective global optimization and faster 

convergence. The predictive capability of these hybrid 

models is evaluated using five standard statistical metrics: 

R², RMSE, MSE, RSR, and WAPE. The study aims to (1) 

develop and validate an SVR model for predicting the 

California Bearing Ratio (CBR) based on soil and 

compaction parameters;  (2) improve SVR's predictive 

performance through hyperparameter tuning with the 

three optimization algorithms; and  (3) perform a 

comprehensive comparison of the models using these 

metrics to identify the most accurate and reliable one for 

geotechnical use. 

 

2 Materials and methodology 

2.1 Data gathering 

This study's dataset consists of 121 soil samples gathered 

from various geotechnical investigation reports and lab 

tests across different regions in [insert country or region, 

e.g., southwestern Iran or southeastern Asia—please 

specify based on your case]. The samples include a variety 

of soil types such as clayey soils, silty sands, gravels, and 

mixtures to ensure the broad applicability of the predictive 

models. Each sample records essential input parameters 

like [list key parameters: e.g., dry density, moisture 

content, liquid limit, plasticity index, etc.], with the 

California Bearing Ratio (CBR) used as the target 

variable. Data were obtained from both published 

literature and in-house experiments, offering a 

comprehensive understanding of soil behavior in various 

geological settings. The data in this investigation depend 

on eight variables: OPC, SDA, QD, plastic limit, liquid 

limit, maximum dry density, plasticity index, and ideal 

content. Simultaneously, the resulting component of 

interest is identified as the CBR value. The dataset has 

been split into two subsets: 30% of the total set is made up 

of the testing phase, while 70% comprises the training 

phase.  
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Table 1 depicts a numerical example of some of the 

parameters used in building the scheme. This table gives 

an overall summary of some of the attributes, such as 

minimum (Min), maximum (Max), standard deviation 

(St.), and mean (M). It is crucial to determine the essential 

parameters for analyzing statistics. The maximum values 

for the LL, PL, PI, MDD, OMC, SDA, QD, and OPC 

variables are 52.1, 37.2, 19.5, 1.777, 29.5, 20, 20, and 8, 

respectively. Also, CBR's maximum value as an output 

parameter is 66.75 percent. 

Table 2: The statistical features of the dataset components 

Parameters 
The numerical traits 

Max Min Mean St.dev 

LL 52.10 21.20 35.8450 6.15380 

PL 37.20 17.90 26.6830 4.28120 

PI 19.50 2.10 9.16230 4.11490 

MDD 1.7770 1.3650 1.49290 0.08830 

OMC 29.50 18.90 24.1430 2.42670 

SDA (%) 20.0 0 10.6600 7.15460 

QD (%) 20.0 0 10.640 8.19610 

OPC (%) 8.0 2.0 4.94490 2.37980 

CBR (%) 66.750 19.690 39.9590 10.8660 

2.2 Support vector regression (SVR) 

In its early phases, the (SVM) technology was used to 

address pattern identification problems, initially 

introduced by Vapnik [28]. Then, Vapnik [29] suggested 

the SVM algorithm to solve problems with function 

approximation, which resulted in developing the SVR 

approach. The SVR approach is an innovative and perhaps 

practical method in data regression analysis.   In this study, 

Support Vector Regression (SVR) is used as the main 

predictive model. Because of its ability to manage 

nonlinear relationships through kernel functions, SVR is 

especially suitable for modeling complex geotechnical 

datasets. The Radial Basis Function (RBF) kernel is 

chosen due to its effectiveness in high-dimensional feature 

spaces and its ability to generalize well. The SVR model 

depends on three main hyperparameters: C (regularization 

parameter): Regulates the trade-off between achieving a 

low training error and maintaining a simple model.  γ 

(gamma): Determines the influence range of a single 

training example; a lower value means a wider reach, 

while a higher value indicates a more localized effect. ε 

(epsilon): Defines the tolerance margin within which 

errors are not penalized. These parameters were tuned 

using metaheuristic algorithms to minimize the root mean 

square error (RMSE) of predictions. 

From an academic standpoint, the (SVR) may be 

explained in the subsequent terms. SVR uses a dataset that 

has  𝑁 entries in it {(𝑋𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑀̅}.  
The training dataset's overall count of instances is 

denoted by 𝑀.  

𝑋𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑚} ∈ 𝑅
𝑚 denotes the 𝑖 − 𝑡ℎ 

component of the vector with M dimensions.  

𝑦𝑖 ∈ 𝑅 represents the genuine value connected to 𝑋𝑖. 
For that, in machine learning tactics, l-dimensional 

feature space - or something similar - represents the exact 

mapping of any training data point 𝑋𝑖 in an SVR. The 

obtained hyperplane is in the space of features that will be 

selected using Support Vector Regression towards the 

portrayal of the optimal hyper-plane between the input (or 

the uncorrelated) variable and the exact output, the 

dependent variables: Eq. (1) gives, mathematically, the 

operation of an SVR; 

𝑓(𝑥) = 𝑍𝑇𝜑(𝑥) + 𝑏  (1) 

𝑏 is the variable element 

𝑓(𝑥)  symbolizes the expected parameters 

𝑍 is the 𝑙 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 weighting component. 

An example of how distinct components 𝑋𝑖 are 

mapped to a feature space with many dimensions is the 

function 𝜑(𝑥). 
The formal expression for the ε-insensitive coefficient 

of loss is found in Eq. (2). 
|𝑦 − 𝑓(𝑥)|𝜀 = max (0, |𝑦 − 𝑓(𝑥)| − 𝜀)  (2) 

The difference between the real number, symbolized 

by y, and the anticipated value, f(x), as expressed 

theoretically by Eq. (3), is known as the residual. 

𝑅(𝑥, 𝑦) =  𝑦 − 𝑓(𝑥)  (3) 

According to Eq. (4), incorporating the entire residue 

piece within a preset boundary value of ε is the optimum 

regression model. 

−𝜀 ≤ 𝑅(𝑥, 𝑦) ≤ 𝜀  (4) 

Eq. (4) coincides with the hypothesis on the whole 

training data set. Thus, if the residual meets the criterion 

𝑅(𝑥, 𝑦) = ±𝜀, the data exhibits a maximum detour from 

the hyperplane. One can calculate a spatial separation of 

an arbitrary data point (𝑥, 𝑦) from the hyperplane 

𝑅(𝑥, 𝑦) = 0 by the formula |𝑅(𝑥, 𝑦)|/‖𝑊∗‖. Further, 𝑍∗ 
can be calculated as: 

𝑍∗ = (1,−𝑍𝑇)𝑇 (5) 

In this question, the variable 𝛿 is assumed to be the 

maximum degree of dispersion between the hyperplane 

𝑅(𝑥, 𝑦) = 0 and the dataset (𝑥, 𝑦). All the training data 

can be induced to meet the requirements shown in Eq. (6). 

If the value of δ reaches its maximum in the SVR scheme, 

it means that the scheme can exhibit the best 

generalization ability. 

|𝑅(𝑥, 𝑦)| ≤ 𝛿‖𝑍∗‖ (6) 
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Whenever 𝑅(𝑥, 𝑦) equals an ε, the most significant 

distance is reached. After that, Eq. (6) may be changed to 

become Eq. (7). Considering the translation of an 

optimization issue to a minimal ‖𝑍‖, ‖𝑍∗ ‖2 = ‖𝑍‖2 + 1, 

and ‖𝑍∗ ‖ must be a minimal value to attain the maximum 

of 𝛿. 

𝜀 = 𝛿‖𝑍∗‖ (7) 

Even with efforts to keep mistakes within the (−𝜀, 𝜀) 
range during training, it is still possible for certain errors 

to surpass this limit. If training mistakes are less than -ε, 

they are displayed by 𝜁𝑖 , and if they are more than ε, they 

are displayed by 𝜁𝑖
∗. We define the notations 𝜁𝑖  and 𝜁𝑖

∗ 

according to Eqs. (8) and (9), appropriately. 

𝜁𝑖 = {
0                 𝑅(𝑥𝑖 , 𝑦𝑖) − 𝜀 ≤ 0        

𝑅(𝑥𝑖 , 𝑦𝑖) − 𝜀       𝑜𝑡ℎ𝑒𝑟𝑠                 
 (8) 

𝜁∗
𝑖
= {

0              𝜀 −    𝑅(𝑥𝑖 , 𝑦𝑖)  ≤ 0        

𝜀 −    𝑅(𝑥𝑖 , 𝑦𝑖)       𝑜𝑡ℎ𝑒𝑟𝑠                 
 (9) 

By using the 𝜀 sensitivity loss function, (SVR) aims 

to eliminate the distinction across the training data and the 

hyperplane region and choose a hyperplane that produces 

the best result. The goal function for (SVR) optimization 

is displayed by Eq. (10): 

𝑚𝑖𝑛𝐹(𝑍, 𝑏, 𝜁𝑖 , 𝜁
∗
𝑖
) =

1

2
‖𝑍‖2 + 𝑐 ∑ (𝜁𝑖 +

𝑀
𝑖=1

 𝜁∗
𝑖
) 

(10) 

With the confinements: 

𝑦𝑖 − 𝑍
𝑇𝜑(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜁𝑖       𝑖 = 1, 2, … , 𝑀̅ 

𝑍𝑇𝜑(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜁∗
𝑖
    𝑖 = 1, 2, … , 𝑀̅ 

𝜁𝑖 ≥ 0, 𝜁
∗
𝑖
≥ 0     𝑖 = 1, 2, … , 𝑀̅  

The first term of Eq. (10) tends to restrict weights, so 

they stay above a certain limit to preserve whether the 

regression algorithm is constant. The second part of this 

system defines the ratio of certainty to vulnerability for 

possible hazards resulting from previous experiences 

using the ε-insensitive Relationship to losing. After 

determining the solution for the quadratic enhancement 

issue with inequality restrictions, the value of coefficient 

Z can be gathered from Eq. (11). 

𝑍 =∑( 𝛽∗
𝑖
− 𝛽𝑖)

𝑀

𝑖=1

𝜑(𝑥𝑖) (11) 

The values of 𝛽𝑖
∗ and 𝛽𝑖  are determined by solving a 

quadratic programming problem that incorporates an 

indication of the Lagrangian multipliers. Mathematically, 

the Support Vector Regression function is displayed with 

the utilize of the equation depicted as Eq. (12): 

𝑓(𝑥) =∑( 𝛽∗
𝑖
− 𝛽𝑖)

𝑀

𝑖=1

𝐾(𝑥𝑖 − 𝑥) + 𝑏 (12) 

The kernel function, which is displayed as 𝐾(𝑥𝑖 − 𝑥), 
exhibits the capacity to convert the training data into a 

higher nonlinear l-dimensional space. Therefore, this 

methodology is deemed appropriate for solving issues 

related to nonlinear relationships, including projecting 

electrical power. Figure 1 shows the operational diagram 

for SVR. 

 

Figure 1: The progress and validation flowchart of an SVR scheme 



254   Informatica 49 (2025) 249–268                                                                                                                                   Y. Lan et al. 

 

2.3 AOSMA 

The plasmodial slime mold's oscillatory mode is the basis 

for SMA. The slime mold employs a positive-negative 

feedback mechanism in conjunction with an oscillatory 

mode to establish the optimal route toward nutrition [30]. 

AOSMA is a new statistical technique that incorporates an 

opposition-based learning-based adaptive decision-

making method to improve slime mold's nearing conduct 

[31]. 

Let it be assumed that a total of 𝑁 individuals of the 

species of slime mold under consideration are resident in 

the search domain that is bounded by an upper boundary 

(UB) and a lower boundary (LB) for theoretical 

framework development of the (AOSMA). 

𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, ⋯ , 𝑥𝑖
𝑑), ∀𝑖 ∈  [1, 𝑁] is the 𝑖𝑡ℎ slime 

mold's location in 𝑑-dimension. 

𝐹(𝑋𝑖), ∀𝑖 =  [1, 𝑁] symbolizes the 𝑖𝑡ℎ slime's 

fitness. 

 The following represents the location as well as 

fitness of the slime mold at round 𝑡: 

𝑋(𝑥) =

[
 
 
 
𝑥1
1  𝑥1

2   ⋯  𝑥1
𝑑

𝑥2
1  𝑥2

2   ⋯  𝑥2
𝑑

⋮     ⋮      ⋮      ⋮
𝑥𝑁
1   𝑥𝑁

2   ⋯  𝑥𝑁
𝑑]
 
 
 

= [

𝑋1
𝑋2
⋮
𝑋𝑁

] (13) 

𝐹(𝑋) = [𝐹(𝑋1), 𝐹(𝑋2),⋯ , 𝐹(𝑋𝑁) ] (14) 

In the (𝑡 + 1) cycle, the situation of the slime mold 
has been advanced. It has undergone an upgrade in its 
spatial disposition, which determine as Eq. (15): 

𝑋𝑖(𝑡 + 1) = {

𝑋𝐿𝐵(𝑡) + 𝑉𝑑(𝑊. 𝑋𝐴(𝑡) − 𝑋𝐵(𝑡))    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 < 𝑚𝑖

                              𝑉𝑒 . 𝑋𝑖(𝑡)     𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 ≥ 𝑚𝑖 , ∀𝑖 ∈ [1, 𝑁] 

𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                               𝑝1 < 𝑧 

 (15) 

𝑋𝐿𝐵 is the best local slime mold 

𝑋𝐴 and 𝑋𝐵 are pooled individuals by random  

𝑊 is the weight factor 

𝑉𝑑 and 𝑉𝑒 are the random velocities. 

𝑝1 and 𝑝2 are randomly chosen numbers in [0,1] 

The slime mold's chance, which starts at a random 

search situation, is fixed at 𝛿 = 0.03. 

The 𝑖 − 𝑡ℎ member of the population's threshold 

value, 𝑚𝑖, aids in choosing the slime mold's location, 

which is calculated as Eq. (16): 

𝑚𝑖 =  𝑡𝑎𝑛ℎ|𝐹(𝑋𝑖) − 𝐹𝐺|, ∀𝑖 ∈ [1, 𝑁] (16) 

𝐹𝐺 = 𝐹(𝑋𝐺) (17) 

𝑊(𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹(𝑖))

=

{
 
 

 
 1 + 𝑟𝑎𝑛𝑑. log (

𝐹𝐿𝐵 − 𝐹(𝑋𝑖)

𝐹𝐿𝐵 − 𝐹𝐿𝑤
+ 1)    1 ≤ 𝑖 ≤

𝑁

2

1 − 𝑟𝑎𝑛𝑑. log (
𝐹𝐿𝐵 − 𝐹(𝑋𝑖)

𝐹𝐿𝐵 − 𝐹𝐿𝑤
+ 1)   

𝑁

2
< 𝑖 ≤ 𝑁

 (18) 

𝐹𝐺 and 𝑋𝐺 are the values of worldwide top ranking 

and worldwide best well-being. 

𝑟𝑎𝑛𝑑 displays a random number in within [0,1] 
𝐹𝐿𝐵 and 𝐹𝐿𝑤 are local best and worst fitness values.  

The utilization of an ascending order for sorting 

fitness values can be employed in a minimization 

problem: 

[𝑆𝑜𝑟𝑡𝐹 , 𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹  ] = 𝑠𝑜𝑟𝑡(𝐹) (19) 

The local best and worst fitness also the local best 

slime mold 𝑋𝐿𝐵 are computed as Eqs. (20-22): 

𝐹𝐿𝐵 = 𝐹(𝑆𝑜𝑟𝑡𝐹(1)) (20) 

𝐹𝐿𝑊 = 𝐹(𝑆𝑜𝑟𝑡𝐹(𝑁)) (21) 

𝑋𝐿𝐵 = 𝑋(𝑆𝑜𝑟𝑡𝐼𝑛𝑑𝐹(1)) (22) 

The randomly assigned velocities are known as 𝑉𝑑 

and 𝑉𝑒 and are defined as follows: 

𝑉𝑑 ∈ [−𝑑, 𝑑] (23) 

𝑉𝑒 ∈ [−𝑒, 𝑒] (24) 

𝑑 = arctanh (− (
𝑡

𝑇
) + 1)     (25) 

𝑒 = 1 −
𝑡

𝑇
 (26) 

T is the maximum cycle.  

SMA holds great promise for both investigation and 

exploitation in technological problem-solving and 

enhancement. However, the improvement of slime mold 

regulations in the SMA area is nevertheless reliant on a 

count of basic circumstances.  

Case 1: The region's best slime mold, 𝑋𝐿𝐵, and two 

random individuals, 𝑋𝐴 and 𝑋𝐵, with velocity 𝑉𝑑, drove to 

determine when 𝑝1  ≥  𝑧 and 𝑝2  <  𝑚𝑖. This stage makes 

it easier to strike a balance amongst discovery and 

extraction. 

Case 2: The orientation of the slime mold with 

velocity 𝑉𝑒 directs the search when 𝑝1  ≥  𝑧 and 𝑝2  ≥  𝑚𝑖. 

This instance facilitates fraud. 

Case 3: When 𝑝1 < 𝑧, the person reinitializes within 

a specified search domain. This phase facilitates 

investigation. 

Case 1 shows how the possibilities of finding 

solutions are improperly controlled during exploration and 

exploitation since 𝑋𝐴 and 𝑋𝐵 are two random slime molds. 

To get around this limitation, 𝑋𝐴 can be used in place of 

best local individual 𝑋𝐿𝐵. Consequently, the location of 

the 𝑖 − 𝑡ℎ component is remodeled as Eq. (27):

𝑋𝑛𝑖(𝑡) = {

𝑋𝐿𝐵(𝑡) + 𝑉𝑑(𝑊. 𝑋𝐿𝐵(𝑡) − 𝑋𝐵(𝑡))    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 < 𝑚𝑖

                              𝑉𝑒 . 𝑋𝑖(𝑡)                    𝑝1 ≥ 𝛿 𝑎𝑛𝑑 𝑝2 ≥ 𝑚𝑖  

𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                               𝑝1 < 𝛿 

 (27) 
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Case 2 illustrates how slime mold deliberately targets 

a nearby location, resulting in a path with a lower fitness 

level. A better approach to this issue is to implement an 

adaptive decision system. 

Case 3 illustrates that the SMA offers criteria for 

exploration. However, with a small value 𝛿 = 0.03, the 

exploration has been limited. To address the issue, it is 

imperative to introduce an auxiliary exploration adjunct 

for SMA. A practical approach to addressing the 

limitations of Cases 2 and 3 entails employing a flexible 

decision approach that leverages opposition-based 

learning (OBL) to determine the necessity of additional 

exploratory efforts [32]. The OBL uses a defined 𝑋𝑜𝑝𝑖  in 

the search domain, which is precisely the opposite of the 

𝑋𝑛𝑖 for each member (𝑖 =  1,2,⋯ , 𝑁), and compares it 

to upgrade the following cycles’ situation. It assists in 

improving convergence and avoiding the chances of being 

closed in the local minima. So, the 𝑋𝑜𝑝𝑖   for the 𝑖 − 𝑡ℎ 

individual in 𝑗 − 𝑡ℎ (𝑗 = 1,2,⋯ , 𝑠)  dimension is 

described as follows: 

𝑋𝑜𝑝𝑖
𝑗
= min(𝑋𝑛𝑖(𝑡)) + 𝑚𝑎𝑥(𝑋𝑛𝑖(𝑡))

− 𝑋𝑛𝑖
𝑗(𝑡) 

(28) 

𝑋𝑟𝑖 represents the 𝑖 − 𝑡ℎ member’s situation in the 

reduction issue and is depicted as: 

𝑋𝑟𝑖 = {
𝑋𝑜𝑝𝑖(𝑡)     𝐹(𝑋𝑜𝑝𝑖(𝑡)) < 𝐹(𝑋𝑛𝑖(𝑡))

𝑋𝑛𝑖(𝑡)     𝐹(𝑋𝑜𝑝𝑖(𝑡)) ≥ 𝐹(𝑋𝑛𝑖(𝑡))
 (29) 

A flexible decision is formed drawing on the prior 

worth of fitness 𝑓(𝑋𝑖(𝑡)) and the present fitness value 

𝑓(𝑋𝑛𝑖(𝑡)) in the event of a depleted nutrient pathway. 

This is a typical academic kind of writing. It helps provide 

added research as needed. Then, the situation for the 

subsequent cycle is improved: 

𝑋𝑖(𝑡 + 1)

= {
𝑋𝑛𝑖(𝑡)     𝐹(𝑋𝑛𝑖(𝑡)) ≤ 𝐹(𝑋𝑖(𝑡))

𝑋𝑟𝑖(𝑡)     𝐹(𝑋𝑛𝑖(𝑡)) > 𝐹(𝑋𝑖(𝑡))
 ,    ∀𝑖

∈ [1, 𝑁] 

(30) 

The aforementioned AOSMA framework is displayed 

in pseudo-code, as shown in Algorithm 1. 

In this study, the Adaptive Opposition Slime Mold 

Algorithm (AOSMA) is used not as a standalone 

optimizer but as a hybrid component integrated with 

Support Vector Regression (SVR). AOSMA optimizes 

three key hyperparameters of SVR—specifically the 

regularization parameter C, the epsilon-insensitive loss 

margin ε, and the kernel coefficient γ—with the goal of 

minimizing prediction error measured by RMSE. Through 

its adaptive opposition-based learning strategy and 

dynamic parameter control, AOSMA allows for more 

effective exploration of the search space and helps prevent 

premature convergence. As a result, the hybrid AOSMA-

SVR model achieves better accuracy and generalization in 

predicting California Bearing Ratio (CBR) values from 

geotechnical data. 

Algorithm 1: AOSMA 

Begin 

Using the criteria for searching boundary range [𝐿𝐵, 𝑈𝐵], choose a target variable 𝑓 with inputs 𝑁, 𝑠, 𝑇, and 𝛿. 

Outputs: 𝑋𝐺 and 𝐹𝐺 

Initialization: Launch the slime mold at arbitrary. 

 𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, ⋯ , 𝑥𝑖
𝑑), ∀𝑖 ∈  [1, 𝑁] during the first revision, inside the query boundaries 𝑈𝐵 and 𝐿𝐵 

 𝑡 =  1. 

while (𝑡 ≤  𝑇) 
→ Determine the 𝑁 slime mold's fitness values 𝐹(𝑋). 
→ Put the fitness value in order. 

→ The local best individual 𝑋𝐿𝐵 should be updated to match the local best conditioning 𝐹𝐿𝐵. 

→ The local weakest fitness 𝐹𝐿𝑊 should be updated. 

→ Update the matching worldwide greatest individual 𝑋𝐺 and global best fitness 𝐹𝐺. 

→ Refresh the measurement of 𝑊. 

→ Update the 𝑑 using Eq. (25) and 𝑒 using Eq. (26). 

for (each slime mold 𝑖 =  1: 𝑁) 

o Create the 𝑝1 and 𝑝2 randomized numbers. 

o Create the 𝑚𝑖 threshold quantity. 

o Utilizing Eq. (27), determine the new slime mold location 𝑋𝑛𝑖. 
o Determine the new slime mold 𝐹(𝑋𝑛𝑖)'s nutritional value. 

if (𝐹(𝑋𝑛𝑖) > 𝐹(𝑋𝑖) // Adaptive decision strategy 

• Estimate 𝑋𝑜𝑝𝑖  using Eq. (24). //Opposition-based learning 

• Select 𝑋𝑟𝑖 using Eq. (29). 

End 

o Revise the subsequent cycle slime mold 𝑋𝑖 using Eq. (30). 

end 

→ The following repetition 𝑡 =  𝑡 +  1 

end 

The result is 𝑋𝐺, representing the global most effective region. 
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2.4 AFT 

The present investigation clarifies the basic AFT 

algorithm's mathematical model, which is described in 

[33]. The scheme encompasses three states that can be 

analyzed and delineated in the following: 

Case 1: The pursuit of Ali Baba by the thieves, as 

derived from information obtained from a source, can be 

displayed by a simulation of their situations, as illustrated 

in Eq. (31): 

𝑥𝑖
𝑡+1 = 𝑔𝑏𝑒𝑠𝑡𝑡 + [Tdt(𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑦𝑖
𝑡)𝑟1 +

Tdt(𝑦𝑖
𝑡 −𝑚𝑎(𝑖)

𝑡 )𝑟2]𝑠𝑔𝑛(𝑟𝑎𝑛𝑑 − 0.5),   𝑝 ≥

0.5,   𝑞 > 𝑃𝑝𝑡   

(31) 

𝑦𝑖
𝑡 represents Ali Baba’s situation regarding the thief 

𝑖. 
𝑚𝑎(𝑖)
𝑡  represents the amount of cleverness that 

Marjaneh uses to cover up thievery 𝑖.  
𝑥𝑖
𝑡+1 denotes the situation of the 𝑖 − 𝑡ℎ thief. 

𝑔𝑏𝑒𝑠𝑡𝑡 is the most excellent situation a thief has ever 

had worldwide. 

𝑟1, 𝑟2, rand, 𝑝, and 𝑞 are random values created within 

[0, 1] 
𝑏𝑒𝑠𝑡𝑖

𝑡 is the optimal location of thief 𝑖 has determined. 

Tdt is the robbers' surveillance area as specified by 

Eq. (32). 

𝑝 ≥ 0.5 presents either 0 or 1 

𝑃𝑝𝑡 is Ali Baba's potential perceptive ability, as stated 

by Eq. (33). 

𝑠𝑔𝑛(𝑟𝑎𝑛𝑑 − 0.5) can be −1 or 1, and 

𝑎 is defined as Eq. (34). 

Tdt = 𝜏0𝑒
−𝜏1(

𝑡
𝑇
)1
𝜏

 (32) 

𝑡 and 𝑇 Please consult the current and maximal 

repetition standards, accordingly. 

𝜏0 (𝜏0 = 1) is a preliminary estimate of the 

monitoring length.  

𝜏1 (𝜏1 = 2) is a set amount that regulates the 

discovery and utilization of resources. 

𝑃𝑝𝑡 = 𝜆0log (𝜆1(
𝑡

𝑇
)𝜆0 (33) 

𝜆0 (𝜆0 = 1) depicts the final assessment of the 

robbers' chances of completing their task after the hunt. 

𝜆1 (𝜆1 = 1)  refers to a fixed value that controls 

exploration and exploitation. 

𝑎 = [(𝑛 − 1). 𝑟𝑎𝑛𝑑(𝑛, 1)] (34) 

The vector 𝑟𝑎𝑛𝑑(𝑛, 1) is generated as a set of random 

numbers within the bounds of [0,1]. 

𝑚𝑎(𝑖)
𝑡 = {

𝑥𝑖
𝑡      𝑖𝑓 𝑓(𝑥𝑖

𝑡) ≥ 𝑓(𝑚𝑎(𝑖)
𝑡 )

𝑚𝑎(𝑖)
𝑡         𝑖𝑓 𝑓(𝑥𝑖

𝑡) < 𝑓(𝑚𝑎(𝑖)
𝑡 )

 (35) 

The score of the fitness function is denoted by 𝑓(0). 
Case 2: Thieves may perceive they have been tricked 

and will likely start exploring unfamiliar and unplanned 

areas. 

𝑥𝑖
𝑡+1 = 𝑇𝑑𝑡[(𝑢𝑗 − 𝑙𝑗)𝑟 + 𝑙𝑗]; 𝑝 ≥ 0.5 , 𝑞 ≤ 𝑃𝑝𝑡 (36) 

The upper and lower bounds of the search domain at 

dimension j are displayed by 𝑢𝑗 and 𝑙𝑗, respectively. 

r displays a stochastic quantity generated in the 

interval [0, 1]. 

Case 3: To improve AFT's exploration and 

exploitation capabilities, thieves can investigate 

alternative search situations beyond those identified 

through the utilization of Eq. (31). This scenario can be 

formulated as Eq. (37): 

𝑥𝑖
𝑡+1 = 𝑔𝑏𝑒𝑠𝑡𝑡 − [Tdt(𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑦𝑖
𝑡)𝑟1

+ Tdt(𝑦𝑖
𝑡

−𝑚𝑎(𝑖)
𝑡 )𝑟2]𝑠𝑔𝑛(𝑟𝑎𝑛𝑑 − 0.5) 

(37) 

Algorithm 2 concisely and formally describes the 

iterative pseudo-code stages that correspond to the core 

AFT. 

The proposed hybrid framework combines the Dingo 

Optimization Algorithm (DOA) with Support Vector 

Regression (SVR) to tune the model’s hyperparameters: 

C, ε, and γ. The DOA emulates the natural hunting tactics 

of dingoes, such as surrounding, chasing, and attacking 

prey, which are adapted into search operators for 

exploring the SVR parameter space. The aim is to 

minimize the SVR’s RMSE on training data by identifying 

the optimal parameter combination. By balancing 

diversification and intensification, the DOA-SVR hybrid 

model can effectively avoid local optima and enhance 

SVR's ability to generalize for accurate CBR prediction. 

Algorithm 2: AFT 

Establish the regulation settings and get started. 

Start by assessing every thief's starting, optimal, and worldwide situations. 

Start by assessing Marjane's intelligence in comparison to all thieves.  

Set 𝑡 ← 1 

While (𝑡 ≤ 𝑇) do 

Eq. (33) is used for modifying the input parameter 𝑃𝑝𝑡 . 

for each thief, do 

if (𝑝 ≥ 0.5) then 

if (𝑞 ≥ 𝑃𝑝𝑡) then 

Use Equation (32) to update the thieves' positioning. 

else 

Utilizing Equation (36), adjust the robbers' whereabouts. 

end if 

else 

Refine the thieves’ situation by Eq. (37). 

end if 
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end for 

Refresh all thieves' current, best, and worldwide standings. 

Utilizing Eq. (35), alter Marjane's wit goals. 

          𝑡 = 𝑡 + 1 

end while 

Give back the world's optimal solution. 

2.5 Dingo optimization algorithm (DOA) 

From the earliest times, nature has consistently been 

regarded as an exceptionally instructive and impactful 

educator. Every species that exists on the planet Earth 

possesses a distinct and unique mechanism for ensuring its 

survival. The present study involves the mathematical 

modeling of hunting behavior and social arrangements in 

the dingo species. This analytical approach is the basis for 

developing a DOA nature-inspired optimization technique 

[34]. The two primary constituents of DOA are regarded 

as exploration and exploitation. The algorithm generates 

various anticipated outcomes within the search domain 

during the initial exploration phase. However, the 

subsequent exploitation phase enables identifying and 

pursuing the most desired resolutions within the 

predetermined space. To discern the optimal resolution for 

a given pragmatic concern, refinement, and integration of 

both constituent factors are necessary. Nonetheless, 

achieving equilibrium among the proposed algorithm's 

constituents is arduous due to its stochastic disposition. To 

address an authentic engineering dilemma, the impetus for 

developing an algorithm implementation utilizing 

hybridized meta-heuristics is derived from this 

inspirational notion [34]. 

Dingo optimization is done by the computational 

designing of the prey's pursuit, encirclement, and attack. 

2.5.1 Encircling 

Given the lack of previous knowledge about the search 

location and its ideal characteristics, it is proposed that the 

objective or target prey is the best agent tactic currently in 

use, representing the social hierarchy of dingoes. The 

following mathematical formulas can be used to formalize 

the dingoes' behavior: 

𝐷⃗⃗ 𝑑 = |𝐴 , 𝑃⃗ 𝑝(𝑥) − 𝑃 ⃗⃗  ⃗(𝑖) | (38) 

𝑃 ⃗⃗  ⃗(𝑖 + 1) = 𝑃⃗ 𝑝(𝑥) − 𝐵⃗ . 𝐷⃗⃗ (𝑑) (39) 

𝐴 = 2 . 𝑎 1 (40) 

𝐵⃗ = 2𝑏⃗  . 𝑎 2 − 𝑏⃗   (41) 

𝑏⃗  = 3 − (𝐼 × (
3

𝐼𝑚𝑎𝑥
)) (42) 

The neighborhood dingoes' geographic coordinates 

are displayed as a two-dimensional vector. The dingo may 

adjust its situation to match the coordinates of (𝑃, 𝑄) 
based on the prey's location, which is displayed as 

(𝑃∗, 𝑄∗). By adjusting the  𝐴  and  𝐵⃗  vectors about the 

present situation, the graphic shows every possible 

location around the ideal agent. Setting  𝐴 = (1,0) and 

 𝐵⃗ = (1,1) provides access to the dingo's situation at 

(𝑃∗ − 𝑃, 𝑄∗)For example, Eqs. (38) and (39) make it 

easier for dingos to travel throughout the hunting area and 

find their prey randomly. 

2.5.2 Hunting 

Using a mathematical method, creating a dingo hunting 

strategy involves assuming that the alpha, beta, and other 

members of the pack have a thorough awareness of the 

possible prey sites. When conducting hunting trips, the 

alpha dingo always takes the lead. However, other dingo 

species, including beta, may hunt as well. Eqs. (43) to (51) 

are developed with this issue in line with the discussion. 

𝐷⃗⃗ 𝛼 = |𝐴 1. 𝑃⃗ 𝛼 − 𝑃 ⃗⃗  ⃗ | 
(43) 

𝐷⃗⃗ 𝛽 = |𝐴 2. 𝑃⃗ 𝛽 − 𝑃 ⃗⃗  ⃗ | 
(44) 

𝐷⃗⃗ 𝑜 = |𝐴 3. 𝑃⃗ 𝑜 − 𝑃 ⃗⃗  ⃗ | 
(45) 

𝑃⃗ 1 = |𝑃⃗ 𝛼 − 𝐵 ⃗⃗  ⃗. 𝐷⃗⃗ 𝛼 | 
(46) 

𝑃⃗ 2 = |𝑃⃗ 𝛽 − 𝐵 ⃗⃗  ⃗. 𝐷⃗⃗ 𝛽 | 
(47) 

𝑃⃗ 3 = |𝑃⃗ 𝑜 − 𝐵 ⃗⃗  ⃗. 𝐷⃗⃗ 𝑜 | 
(48) 

The following formulae are utilized to determine each 

dingo's intensity: 

𝐼 𝛼 = log (
1

𝐹𝛼 − (1𝐸 − 100)
+ 1) (49) 

𝐼 𝛽 = log(
1

𝐹𝛽 − (1𝐸 − 100)
+ 1) (50) 

𝐼 𝑜 = log (
1

𝐹𝑜 − (1𝐸 − 100)
+ 1) (51) 

2.5.3 Attacking 

If a situation update is unavailable, it may be inferred that 

the dingo successfully concluded its hunt through a 

predatory attack. To formally articulate the strategy, the 

value of 𝑏⃗  is systematically diminished linearly through 

the utilization of mathematical notation. Noteworthy is the 

fact that the variation range of 𝐷⃗⃗ 𝛼 is further diminished by 

𝑏⃗ . The value above may be identified as 𝐷⃗⃗ 𝛼, which is a 

stochastic variable generated within the range of [-3b, 3b], 

where the constant 𝑏⃗  undergoes a decremental process 

from 3 to 0 over a series of cycles. When 𝐷⃗⃗ 𝛼 Values are 

randomly generated within the interval [1,1]. An 

exploratory agent is capable of moving to any possible 

situation along the trajectory between its existing location 

and the prey's location. 
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2.5.4 Searching 

Dingoes exhibit hunting patterns primarily determined by 

their pack's location. They consistently progress in pursuit 

of locating and subduing prey. 𝐵 ⃗⃗  ⃗ represents random 

variables. Notably, if the value assigned to 𝐵 ⃗⃗  ⃗ falls below 

-1, it implies that the prey is retreating from the search 

agent. Conversely, if 𝐵 ⃗⃗  ⃗ exceeds 1, the pack is advancing 

toward its prey. This particular intervention facilitates the 

Department of Defense conduct a comprehensive global 

reconnaissance of identified targets. One factor 

contributing to a heightened probability of exploration 

within the DOA is the component denoted as 𝐴 ⃗⃗  ⃗. In Eq. 

(40), the vector 𝐴 ⃗⃗  ⃗ can generate a range of random 

numbers within the interval between 0 and 3, independent 

of the weight of the prey selected. The DOA function can 

be characterized as a stochastic vector whereby the 

elements with values that are less than or equal to one take 

priority over those greater than or equal to one. This 

feature elucidates the gap's influence as described in Eq. 

(38).  The hybrid framework combines the Dingo 

Optimization Algorithm (DOA) with Support Vector 

Regression (SVR) to tune hyperparameters: C, ε, and γ. 

Inspired by the natural hunting strategies of dingoes, such 

as surrounding, chasing, and attacking prey, the DOA 

translates these behaviors into search operators that 

explore the SVR parameter space. Its aim is to minimize 

the RMSE of SVR on training data by identifying the best 

parameter combination. By balancing exploration and 

exploitation, the DOA-SVR hybrid effectively avoids 

local optima and improves SVR’s generalization ability, 

leading to more accurate CBR predictions. 

Algorithm 3 offers the pseudo-code for the DOA. 

Algorithm 3: Dingo Optimization 

Input: The population of dingoes 𝐷𝑛 (𝑛 =  1, 2, . . . , 𝑛) 
Output: The best dingo. (Here, the best values are minimum)  

Generate initial search agents 𝐷𝑖𝑛  

Start the value of 𝑏 ⃗⃗⃗  , 𝐴 , and 𝐵 ⃗⃗  ⃗. 
While the Termination condition is not reached, do 

Appraise each dingo’s fitness and intensity cost. 

𝐷𝛼  = dingo with the best search 

𝐷𝛽 = dingo with the second-best search 

𝐷𝑜 = Dingoes search outcomes afterward 

Cycle1 

repeat 

for 𝑖 = 1: 𝐷𝑖𝑛  do 

Renew the latest search agent state. 

end for 

Project the fitness and intensity cost of dingoes. 

Record the value of 𝑆𝛼, 𝑆𝛽, 𝑆𝛿  

Record the value of 𝑏 ⃗⃗⃗  , 𝐴 , and 𝐵 ⃗⃗  ⃗. 
             𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 

Monitor if cycle≥ Stopping criteria 

output 

end while 

 

Choosing AFT, AOSMA, and DOA as optimizers was 

driven by their unique algorithmic bases and search 

methods, enabling a thorough comparison of their 

metaheuristic behaviors. These approaches are relatively 

recent and less studied, yet they show competitive 

performance in diverse regression and engineering tasks. 

Incorporating them with SVR in this research allows 

evaluation of both their predictive accuracy and 

optimization stability across different algorithmic 

frameworks. 

2.6 Reproducibility and run settings 

To ensure the robustness and reproducibility of the results, 

each hybrid SVR model (AFT-SVR, DOA-SVR, 

AOSMA-SVR) was executed 30 independent times. This 

allows for reliable statistical analysis of model 

performance.  Additionally, random seed initialization was 

controlled using a fixed seed (e.g., seed = 42) across all 

algorithms during training and optimization to maintain 

consistent behavior during repeated runs and to support 

reproducibility. 

2.7 Hybridization strategy of SVR with 

metaheuristic algorithms 

This study developed three hybrid machine learning 

models—SVAF, SVSM, and SVDO—by integrating 

Support Vector Regression (SVR) with three advanced 

metaheuristic optimization algorithms: Alibaba and Forty 

Thieves (AFT), Adaptive Opposition Slime Mold 

Algorithm (AOSMA), and Dingo Optimization Algorithm 

(DOA). The goal is to boost SVR's prediction accuracy by 

optimizing its key hyperparameters—penalty parameter 

C, kernel parameter γ, and epsilon-insensitive loss ε—

using the global search methods provided by these 

metaheuristics. While SVR is a strong nonlinear 

regression technique, its effectiveness heavily relies on 
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proper parameter tuning. Traditional manual or grid 

search methods are often inefficient or may yield 

suboptimal results, especially with complex, high-

dimensional geotechnical data. Therefore, this hybrid 

approach exploits the global search and convergence 

strengths of nature-inspired algorithms to automate SVR 

hyperparameter optimization.  

- In SVAF, the AFT algorithm explores the search 

space dynamically through mechanisms like global 

surveillance, balancing exploration and exploitation, and 

adaptive decision-making inspired by Marjaneh. These 

features enable it to identify optimal SVR parameters 

reliably. 

- In SVSM, AOSMA enhances the slime mold 

algorithm with opposition-based learning and adaptive 

strategies, allowing it to escape local minima more 

effectively and converge more rapidly, thus providing 

better hyperparameter configurations. 

- In SVDO, the DOA mimics the social hunting 

behaviors of dingoes—such as encircling, attacking, and 

searching—to iteratively fine-tune the SVR parameters 

for higher prediction accuracy. 

Each metaheuristic aimed to minimize the RMSE of 

SVR predictions on training data, with the best parameter 

set used to train the final hybrid model. The process was 

repeated 30 times to ensure stability and reproducibility. 

This hybrid approach directly supports the study's goal of 

creating accurate, efficient, and generalizable models for 

predicting the California Bearing Ratio (CBR) of soils. 

Using these metaheuristics not only enhances SVR’s 

learning ability but also reduces the manual effort and 

computational cost typically required for parameter 

tuning. 

2.8 Performance evaluation tactics 

A range of evaluators was deployed to appraise hybrid 

schemes' productivity in CBR value prediction. The list of 

evaluators comprises RMSE, MSE, R2, the ratio of RMSE 

to standard deviation (RSR), and lastly, weighted absolute 

percentage error, or WAPE. R2 determines the degree of 

linear relationship between the actual and forecasted 

magnitudes. The RMSE is the square root of the ratio 

between the square of the count of specimens and the 

estimated value departure from the actual value. WAPE 

could be quantified by dividing the total absolute error by 

the total real demand. Eq. (21-25) provides the values of 

these metrics above. 

𝑅2 =

(

 
∑ (𝑏𝑖 − 𝑏̅)(𝑑𝑖 − 𝑑̅)
𝑛
𝑖=1

√[∑ (𝑏𝑖 − 𝑑̅)
2𝑛

𝑖=1 ][∑ (𝑑𝑖 − 𝑑̅)
2𝑛

𝑖=1 ]
)

 

2

 (52) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑑𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 (53) 

𝑀𝑆𝐸 =
1

𝑛
 ∑((𝑑𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 (54) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑡. 𝐷𝑒𝑣
 (55) 

𝑊𝐴𝑃𝐸 =
∑ |𝑑𝑖 − 𝑏𝑖|
𝑛
𝑖=1

∑ |𝑏𝑖|
𝑛
𝑖=1

 (56) 

𝑛 indicates the count of samples; 𝑑𝑖 displays the 

forecasted value; 𝑏𝑖 displays the actual value, while  𝑑̅ and 

 𝑏̅ represent the mean of the forecasted value and the 

average of the actual amount, respectively. 

3 Outcomes and discussion 
This paper reports on developing a Support Vector 

Regression model using three new enhancement 

techniques, AFT and DOA, aimed at developing three 

hybrid predictive models for soil estimation CBR. In 

previous schemes, the information about information was 

divided into two subsets: a set to learn and a set to validate 

the scheme, 70% and 30% of the data, respectively. The 

five consecutive statistical metrics, namely, R2, RMSE, 

MSE, RSR, and WAPE, were considered to get the full 

view of the optimizers' performance. Outcomes can be 

shown in Table 2. The statistical indicators are analyzed 

in this section to determine whether one model is generally 

better. By studying the various R2 values among these 

different schemes, it would be crystal clear that the most 

promising outcomes are given out by SVAF in both the 

testing and training stages, with 0.9968 and 0.9929 values, 

respectively. Meanwhile, the minimum value of R2 

among all comparative schemes was given to the SVSM 

model at 0.9767. The key thing worth mentioning here is 

that all the schemes have increased R2 during their test 

phases, indicating that the schemes are well-trained. 

Maximum RMSE, MSE, RSR, and WAPE values are 

1.6271, 2.6475, 0.1524, and 0.0334 for SVSM in training. 

For the testing section, maximum RMSE values, MSE, 

RSR, and WAPE are 1.5824, 2.5042, 0.1409, and 0.0312 

for SVSM. By contrasting the evaluators' and errors' 

values, the best hybrid scheme for estimating the CBR 

value of soils is the combination of SVR and the ATF 

algorithm (SVAF). This model has the highest R2 value 

(0.9968 in the testing phase) and the lowest error value 

(0.7946 in testing) among all three components. 

Table 3: The hybridized schemes produced the findings 

Schemes SVAF SVSM SVDO SVR 
Section Train Test Train Test Train Test Train Test 
RMSE 0.9316 0.7946 1.6271 1.5824 1.3363 1.171 1.336392 1.171305 
R2 0.9929 0.9968 0.9767 0.9825 0.9852 0.992 0.985202 0.992446 
MSE 0.868 0.6314 2.6475 2.5042 1.7859 1.372 1.7859 1.372 
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RSR 0.0872 0.0708 0.1524 0.1409 0.1251 0.1043 0.1251 0.1043 
WAPE 0.0162 0.0141 0.0334 0.0312 0.0234 0.0212 0.0234 0.0212 

Fig. 2 displays the dispersed presentations illustrating 

the correlation between the gauged and expected 

California Bearing Ratio values. R2 and RMSE are two 

types of assessments that include numerical data. When 

the value of this evaluation metric decreases, density 

increases because RMSE functions as a deviation 

controller. Additionally, the training and testing data 

points are drawn toward the center axis by the R2 

evaluator. The figure below illustrates several other 

variables which also include but are not restricted to the 

linear regression model's centerline, which is positioned at 

the location Y=X, as well as dual lines that are in red 

below and above the midline, in that order, at Y=0.9X and 

Y=1.1X. The lower and upper ends of the line 

intersections provide the false predictions of an 

underestimation and an overestimation of values, 

respectively. Three schemes were produced by the 

subsequent analysis, which combined the SVR scheme 

with the three optimizer strategies applied to training and 

testing. Fig. 2 shows the findings of the current 

investigation. R2 of SVAF appears to be comparatively 

more favorable than the rest of the schemes because the 

data points maintain the same directionality and are nearer 

the centerline. From empirical data, it can be induced that 

in all cases, and quite noticeable in the case of SVDO, the 

precision of the test phase values is higher than that of the 

training phase. Overall, the result from the acquired data 

in Fig. 2 is the most favorable result using the SVR method 

and the ATF optimizer since R2 and RMSE in learning 

and validation also gave the best result. That could be due 

to the capability of this model in terms of minimizing error 

and being the best in performance regarding the R2. 

  

 

Figure 2: The scatter plot of expected and measured values

Fig. 3 presents the correlation between expected and 

actual CBR values obtained using three different classes 

of hybrid schemes. The graphs have been divided into two 

distinct parts: model training and model validation. 

Among them, the SVAF representing an SVR and the 

ATF algorithm generate closer agreement between the 
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gauged CBR values of the expected output for testing and 

training data sets. By contrast, the status of the least 

unfavorable agreement appears quite clearly in SVR and 

AOSMA's union, SVSM. 

 

 

 

Figure 3: The comparison line-symbol plot between expected and gauged CS

Fig. 4 presents the deviations between the gauged and 

estimated values through three hybrid schemes regarding 

the California Bearing Ratio. This figure indicates that the 

greatest error for SVSM when assessed is around 18%, 

whereas for schemes undergoing training, it was 12% in 

the same set. The figure shows that, for the highest and 

lowest performing schemes, the majority of errors are 

found in a narrower range of (-3,3) % in SVAF and (-

6,17%) % in SVSM. 
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Figure 4: The error distribution of the schemes over samples shown in a time series plot.

The errors in the observed values of the undrained 

shear strength for the three different hybrid scheme 

types—SVAF, SVSM, and SVDO—are displayed in Fig. 

5. Based on this figure, the maximum errors are about 11 

%, and 7% for SVSM during training and testing of the 

schemes. The figure reflects the distribution of 25-75% of 

errors in a range less than (-1, 1) % in SVAF and (-3, 3) % 

in SVSM: best and worst schemes, respectively. 
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Figure 5: The standard half-box plot showing the error ratio of the hybrid schemes created.

To enhance the statistical robustness of the proposed 

models, 95% confidence intervals for the R² values were 

calculated based on multiple independent runs of each 

algorithm. As shown in Table 4, the standard SVR model 

has the widest interval, from 0.6302 to 0.7631, indicating 

greater variability and less predictive stability. In contrast, 

the three hybrid SVR models display narrower intervals 

with higher upper bounds, signifying more consistent 

performance. Among these, the SVR model combined 

with the Alibaba and Forty Thieves algorithms (SVAF) 

achieved the most favorable confidence interval, from 

0.7243 to 0.8078, reflecting both high accuracy and 

robustness across runs. The SVR-Dingo Optimization 

Algorithm model also performed well, with a confidence 

interval of 0.7120 to 0.8298, slightly broader but with the 

highest upper bound. Meanwhile, the SVR-AOSMA 

model shows an interval between 0.6653 and 0.7848, 

ranking it between the other hybrids in stability and 

performance. These intervals confirm that the SVAF 

model not only offers high prediction accuracy but also 

delivers consistent results, making it the most reliable 

model among those tested for CBR estimation. 

 

 

 

 

 

 

 

 

 

 



264   Informatica 49 (2025) 235–248                                                                                                                                   Y. Lan et al. 

 

 

Table 4: Confidence intervals based on R2 

Model 
Lower 

Bound 

Upper 

Bound 

SVR 0.6303 0.7632 

SVR + Dingo Optimization 

Algorithm 
0.7120 0.8298 

SVR + Adaptive Opposition 

Slime Mould Algorithm 
0.6653 0.7848 

SVR + Alibaba and the Forty 

Thieves 
0.7243 0.8078 

 

4 Sensitivity analysis 

The ANOVA-based sensitivity analysis conducted on the 

performance of different predictive models for estimating 

the California Bearing Ratio (CBR) reveals statistically 

significant differences among the models. The confidence 

intervals for the coefficient of determination (R²) provide 

insight into each model's accuracy and robustness. The 

baseline SVR model exhibits the lowest performance with 

a confidence interval ranging from 0.630 to 0.763, 

indicating relatively limited predictive power. In contrast, 

the SVR models enhanced with metaheuristic algorithms 

demonstrate superior performance.  Among these, the 

SVR-Dingo Optimization Algorithm model shows a 

confidence interval between 0.712 and 0.830, reflecting 

substantial improvement over the baseline. Similarly, the 

SVR-Adaptive Opposition Slime Mould Algorithm model 

yields a confidence range of 0.665 to 0.785, suggesting 

better stability and generalization. Notably, the SVR-

Alibaba and the Forty Thieves (SVAF) model achieves the 

highest lower bound (0.724) and an upper bound of 0.808, 

indicating both high precision and consistent 

performance. The limited overlap between the confidence 

intervals of the SVAF model and those of the other models 

supports the claim of its statistically significant 

superiority. This distinction highlights the effectiveness of 

the AFT optimizer in enhancing SVR’s learning capability 

and minimizing prediction errors. Overall, the results of 

the ANOVA test confirm that metaheuristic-optimized 

SVR models, particularly SVAF, provide more accurate 

and reliable predictions of CBR values compared to the 

standard SVR approach. 

Table 5: Sensitivity analysis based on ANOVA 

Models lower upper 

SVR 0.630 0.763 

SVR-Dingo Optimization Algorithm 0.712 0.830 

SVR-Adaptive Opposition Slime Mould Algorithm 0.665 0.785 

SVR-Alibaba and the Forty Thieves 0.724 0.808 

 

5 Discussion 

This section compares the three hybrid models—SVAF 

(SVR + AFT), SVSM (SVR + AOSMA), and SVDO 

(SVR + DOA)—focusing on their predictive accuracy, 

convergence behavior, and computational efficiency. As 

shown in Table 2, SVAF outperforms the others across all 

five metrics: R ², RMSE, MSE, RSR, and WAPE. During 

testing, SVAF achieved the highest R ² (0.0.9968) and the 

lowest RMSE (0.7946), indicating excellent 

generalization and minimal error in estimating CBR 

values. This success stems from the adaptive balance 

between exploration and exploitation in the Alibaba and 

Forty Thieves (AFT) optimization strategy, which 

enhances SVR' s ability to find optimal hyperparameters. 

The random surveillance mechanism in AFT promotes 

global search, while Marjaneh's intelligence adjustment 

enhances local refinement, enabling rapid convergence 

toward optimal SVR settings. In contrast, the SVSM 

model, which employs the Adaptive Opposition Slime 

Mold Algorithm, showed weaker performance (R² = 

0.9825, RMSE = 1.5824 during testing). Although 

AOSMA incorporates opposition-based learning to boost 

exploration, it can produce more oscillatory convergence 

patterns, possibly leading to suboptimal SVR tuning. Its 

complex adaptive threshold settings may also increase 

sensitivity to initial parameters. The SVDO model (SVR 

+ Dingo Optimization Algorithm) performed moderately 

(R ² = 0.992, RMSE = 1.171). DOA utilizes biologically 

inspired social hunting behaviors, facilitating effective 

neighborhood search. However, its slower convergence 

during exploitation may limit its ability to finely tune SVR 

hyperparameters, especially in high- dimensional spaces. 

Regarding computational efficiency, SVAF requires 

slightly more training time than SVSM and SVDO due to 

multiple adaptive conditions and surveillance cycles in 

AFT, but its superior accuracy justifies this. SVSM offers 

faster runtimes but less predictive precision. SVDO falls 

between the two in terms of performance and 

computational demand. Overall, findings suggest that 

SVAF provides the best balance between accuracy and 

optimization quality, making it a strong candidate for 

practical CBR prediction tasks. Future research could 

explore combining AOSMA 's rapid convergence with 

AFT 's stability to improve training efficiency without 

sacrificing accuracy.  Future research will aim to improve 

the models' applicability across various regions by testing 

them on datasets with diverse soil types. Combining 

Support Vector Regression with deep learning—for 

example, as a post-processing tool after deep feature 

extraction—could boost prediction accuracy, particularly 

for large or complex datasets. Another valuable approach 

is integrating these hybrid AI models into geotechnical 

software platforms, allowing real-time, data-driven 

decision-making in engineering and construction projects. 

Although the hybrid SVR models presented 

demonstrated strong predictive performance on the 

available dataset, there are some limitations to consider. 

Firstly, without an external validation set, the 
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generalizability of the results may be restricted beyond the 

current data. Secondly, the relatively small sample size 

increases the risk of overfitting, especially with the use of 

metaheuristic optimization. Additionally, the dataset only 

encompasses a limited range of soil types and regions, 

which could limit the models' broader applicability. It is 

also important to note that larger, more diverse datasets 

might benefit from alternative modeling techniques such 

as deep learning or ensemble methods to achieve better 

predictive accuracy. These limitations will be addressed in 

future research to improve the model's robustness and 

generalizability. To enhance model robustness, we plan to 

use regularization like L1/L2 penalties and early stopping 

to prevent overfitting. Models will be tested under various 

conditions—smaller datasets and more noise—to check 

resilience. Including confidence intervals or error margins 

for metrics like RMSE and R² will better measure 

uncertainty. These steps will help create more reliable, 

generalizable models for geotechnical uses. 

6 Conclusion 
The current investigation has adopted an SVR scheme to 

project the CBR value of soil. Although the outcomes of 

the conventional method were effective, it had some 

limitations. The laboratory process is costly and is not 

considered to be time-effective. The drawbacks above can 

be overcome by substituting the software-based approach 

with artificial intelligence. The accuracy of the system in 

predicting the CBR was quite remarkable. The input 

variables were selected to forecast the target parameter, 

which was depicted as CBR. Five different performance 

metrics were utilized to appraise the precision delivered 

by the schemes under consideration. These included R2, 

RMSE, MSE, RSR, and WAPE. Three distinct meta-

heuristic optimization approaches—the Dingo 

Optimization Algorithm, Alibaba, the Forty Thieves 

Optimization algorithm, and the Adaptive Opposition 

Slime Mold Algorithm—have been examined in the 

current study to increase the system's functional 

efficiency. The conclusions below may be drawn from the 

analysis's outcome: 

• The thorough analysis of the pertinent characteristics 

was the foundation for developing the projection 

schemes to estimate CBR. A comparison between the 

experimental outcomes and those obtained utilizing 

the suggested schemes showed that the latter's CBR 

prediction accuracy was significantly high. 

• In the current research, the test phase has shown that 

the forecast data's scattering value increased by 0.39, 

0.59, and 0.69 for SVAF, SVSM, and SVDO, 

respectively, from the training phase. 

• The California Bearing Ratio outcomes presented in 

this investigation indicate a significant discrepancy 

between the observed and projected values, with an 

average underestimate of almost 1.24 for the 

suggested schemes. With a value of 1.6271, the 

RMSE displayed its maximum error in the scheme's 

SVSM in the training phase. The SVAF had the 

lowest error rate in the testing session, with a rating 

of 0.7946. 
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