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This study addresses the high-precision positioning requirements of the BeiDou Navigation System (BDS) 

by focusing on the commonly adopted BDS/Inertial Navigation System integrated navigation mode. A 

novel Spherical Simplex Unscented Kalman Filter (SSUKF) algorithm is proposed, featuring an improved 

sigma-point sampling strategy that enhances filtering accuracy while reducing computational overhead. 

In parallel, the Time Difference of Arrival (TDOA) method is combined with the Firefly Algorithm (FA) 

to optimize a Radial Basis Function (RBF) neural network, further enhancing positioning precision. 

Evaluation is conducted using an Ultra-Wideband TDOA dataset. Results show that the SSUKF algorithm 

significantly reduces positioning error. Specifically, the root means square error (RMSE) achieved by 

SSUKF is 0.1614 m-a reduction of 62.2% compared to the Extended Kalman Filter and 52.1% compared 

to the Unscented Kalman Filter. When integrated with the FA-optimized RBF neural network, the hybrid 

SSUKF-FA-RBF model achieves an RMSE of 0.127 m under high-noise conditions, demonstrating strong 

robustness and accuracy. In addition to its accuracy, the SSUKF algorithm offers improved computational 

efficiency, making it suitable for real-time, high-precision applications. Error analysis confirms the 

robustness and stability of the SSUKF-FA-RBF model across various environments. Under zero standard 

deviation noise, the model achieves 96.4% accuracy, 95.6% precision, and a 96.1% recall rate-

substantially outperforming comparative models. This study contributes an enhanced Kalman filtering 

method and an optimized positioning framework, advancing both accuracy and computational efficiency 

for the BDS. The proposed approach offers effective technical support for a wide range of high-precision 

positioning applications. 

Povzetek: Članek predstavi SSUKF-FA-RBF okvir, ki združuje izboljšani Kalmanov filter in 

ognjenooptimizirano RBF-nevronsko mrežo. Dosežek omogoča robustno in učinkovito pozicioniranje v 

sistemu BeiDou ter realnočasovne navigacijske aplikacije. 

 

1 Introduction 
With the rapid development of Global Navigation 

Satellite Systems (GNSS), the BeiDou Navigation 

System (BDS)-a satellite navigation system 

independently developed by China-plays a vital role in 

delivering high-precision positioning, timing, and 

navigation services [1]. However, limitations such as 

signal obstruction, error accumulation, and 

environmental interference restrict the standalone 

performance of BDS in terms of positioning accuracy [2]. 

To address this, integration with the Inertial Navigation 

System (INS) enables the complementary strengths of 

both systems, thereby improving overall accuracy and 

stability [3]. Nevertheless, traditional integrated 

navigation filters such as the Extended Kalman Filter 

(EKF) and Unscented Kalman Filter (UKF) often 

encounter limitations in nonlinear systems, including 

reduced accuracy and increased computational 

complexity. These challenges call for improved filtering 

algorithms [4, 5]. Concurrently, the Time Difference of 

Arrival (TDOA) method has emerged as a key approach 

for enhancing navigation accuracy, particularly due to its 

independence from additional synchronization signals 

and its suitability for complex environments [6]. 

However, TDOA performance is frequently degraded by 

noise, Non-Line-Of-Sight (NLOS) transmission, and 

convergence issues in traditional optimization techniques 

[7]. 

To overcome these limitations, this study proposes a 

Spherical Simplex Unscented Kalman Filter (SSUKF) 

algorithm that improves sigma-point sampling to enhance 

filtering accuracy and computational efficiency within 

the BDS/INS integration framework. Moreover, the study 

introduces a hybrid approach by combining TDOA with 

a Radial Basis Function (RBF) neural network optimized 
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using the Firefly Algorithm (FA). This design addresses 

the local optimum challenges associated with traditional 

gradient-based training and significantly improves 

TDOA positioning accuracy, especially under NLOS 

conditions. By integrating optimized TDOA technology 

with BDS/INS navigation, the proposed method 

enhances the reliability and precision of BDS in diverse 

application scenarios. It offers practical value in areas 

such as intelligent transportation, precision agriculture, 

and unmanned aerial vehicle navigation. The goal is to 

reduce the root mean square error (RMSE) of Ultra-

Wideband (UWB)-based TDOA positioning to below 

0.17 m under increased measurement noise, 

demonstrating a clear advantage over conventional 

methods through the proposed SSUKF-FA-RBF 

framework. 

2 Related work 
With the widespread application of GNSSs, particularly 

the growing significance of China’s BDSs in precise 

positioning, achieving high accuracy in complex 

environments has become a key research challenge. The 

Kalman Filter (KF), as a widely used data fusion 

technique, plays a crucial role in enhancing positioning 

accuracy and system robustness in multi-sensor 

navigation systems [8]. For example, Chen et al. 

proposed a collaborative navigation framework based on 

a distributed adaptive EKF and model predictive control. 

Their approach significantly improved positioning 

accuracy, trajectory tracking, and error correction in the 

presence of multi-source noise and nonlinear dynamics, 

especially in dynamic and complex navigation scenarios 

[9]. Park demonstrated that the Adaptive Unscented 

Kalman Filter (AUKF) maintained robust performance 

during Global Positioning System (GPS) signal 

degradation or loss, yielding more accurate signal 

position estimates than conventional EKF and UKF 

methods [10]. Yin et al. developed an Error-State Kalman 

Filter (ESKF) combined with the Rauch-Tung-Striebel 

(RTS) smoothing algorithm, using data from inertial 

measurement units (IMU) and GNSS sensors. Their 

method improved positioning accuracy by approximately 

3% in both linear and turning segments, compared to the 

EKF, demonstrating enhanced robustness and precision 

[11]. Similarly, Wu et al. introduced an adaptive iterative 

EKF integrating GNSS, INS, and UWB data, which 

produced stable and accurate estimates in complex 

coastal environments [12]. Yuan et al. proposed a robust 

KF algorithm based on singular value decomposition 

(SVD), achieving a 45.77% reduction in maximum error 

and a 4.7% decrease in RMSE compared to traditional 

KF-based information filtering approaches, thus 

improving overall positioning performance [13]. 

Neusypin et al. presented an INS/GPS correction method 

utilizing an improved adaptive nonlinear KF and a pre-

flight error modeling strategy. By replacing conventional 

prior models with population data-driven error models, 

they addressed the limitations of traditional INS error 

handling. Flight tests confirmed the method's 

effectiveness in enhancing positioning accuracy [14]. 

While previous studies have achieved considerable 

advancements in integrating KF algorithms with BDSs, 

limitations remain. Traditional KF methods often 

underperform in complex environments-particularly in 

the presence of signal interruptions or severe multipath 

effects. Moreover, most existing approaches focus on 

fusing single-sensor data and lack comprehensive multi-

source integration, which can limit system adaptability 

and robustness. To address these issues, the present study 

proposes an enhanced SSUKF algorithm that integrates 

the BDS and INS with a TDOA-based positioning 

strategy. Additionally, a RBF neural network optimized 

via the FA is introduced to improve convergence and 

accuracy. This combined framework aims to overcome 

the limitations of traditional KF methods, offering 

improved robustness and precision in dynamic and 

challenging environments. 

The comparative results of mainstream filtering 

methods are summarized in Table 1. 

 

Table 1: Comparative results of mainstream filtering methods

Author 

(Year) 
Filter Type 

Data 

Source 

Best 

RMSE 

(m) 

Compu

tational 

Compl

exity 

Key Innovation Highlights 

Chen 

et al. 

(2025) 

[9] 

DAEKF (Dual Adaptive 

Extended Kalman Filter) 

+DMPC (Distributed 

Model Predictive Control) 

Cooperat

ive 

Navigati

on/Robo

ts  

Lateral 

error: min 

0.05 

(straight 

path) 

High 

Adaptive noise covariance+ Model 

predictive control; multi-robot 

coordination 

Yuan 

et al. 

(2024) 

[13] 

SVD-KF (Kalman Filter)/ 

IF (Information Filter) 

GNSS/I

NS/ 

Simulate

d 

Max error 

reduced 

by 

45.77% 

Relativ

ely 

High 

Introduced SVD to dynamically 

adjust noise covariance 

Park 

(2024) 

[10] 

AUKF 

GPS+ 

IMU/Ve

hicle 

Not 

specified 

Mediu

m 

Adaptive covariance handling under 

GPS outages; improved robustness 
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Neusyp

in et al. 

(2023) 

[14] 

Adaptive NKF (Nonlinear 

Kalman Filtering) 

INS/GP

S/ Flight 

experim

ents 

Not 

specified 

Relativ

ely 

High 

Real INS error modeling pre-flight + 

GMDH (Group Method of Data 

Handling) group modeling 

Wu et 

al. 

(2023) 

[12] 

Adaptive Iterative 

Extended Kalman Filter 

(AIEKF) 

GNSS+I

NS+UW

B/ 

Outdoor 

Not 

specified 

Mediu

m 
Adaptive multi-sensor fusion 

Yin et 

al. 

(2023) 

[11] 

ESKF, ESKF-RTS 

GNSS+I

MU/ 

Tunnel 

tests 

Lateral 

RMSE: 

min 0.206 

High 

Error-state modeling + RTS 

smoothing; 55.6%-70.8% RMSE 

improvement 

The 

propos

ed 

model  

SSUKF-FA-RBF 

UWB 

TDOA/ 

Indoor 

Best 

RMSE: 

0.127 

Modera

te 

Spherical Simplex Unscented 

Transformation (SSUT)-based sigma 

sampling + Firefly-optimized RBF; 

robust and precise under noise 

As shown in Table 1, existing filtering algorithms 

exhibit distinct advantages in terms of accuracy or 

robustness. However, many depend on high 

computational resources or are designed for specific 

application scenarios, lacking a unified optimization 

framework suitable for nonlinear systems operating 

under high-noise conditions. In contrast, the proposed 

SSUKF-FA-RBF model combines an improved sigma-

point sampling strategy with a neural network-based 

optimization approach. This hybrid framework delivers 

higher positioning accuracy than conventional filters 

while also achieving superior computational efficiency 

and generalization capability. These attributes make it 

especially well-suited for high-precision indoor 

positioning applications. 

3 Research methodology 

3.1 BDS 

The BDS is a GNSS independently developed by China. 

Alongside the United States’ GPS, Russia’s GLONASS, 

and Europe’s Galileo, BDS forms one of the four major 

global navigation systems. Its structural architecture is 

illustrated in Figure 1 [15]. 
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Figure 1: Hierarchical architecture and core components of the BDS 

 

Figure 1 depicts the three-tiered architecture of BDS, 

comprising the space segment, ground segment, and user 

segment. The space segment includes satellites deployed 

in various orbital configurations that transmit multi-

frequency signals to provide global coverage and high-

precision positioning. The ground segment is responsible 

for satellite monitoring, data processing, and the 

dissemination of navigation data, ensuring the system’s 

stability and reliability. The user segment encompasses a 

wide range of terminal devices that receive and process 

satellite signals to compute positioning information. This 

study leverages the BDS architecture by utilizing the 

multi-frequency signal transmission and extensive 

coverage of the space segment to enhance the nonlinear 

state estimation capabilities of the proposed SSUKF 

algorithm. Calibration data from the ground segment are 

employed to improve the reliability of observational 

inputs, contributing to greater filtering stability. At the 

user level, the integration of multi-source sensor data 

enables real-time data fusion within the SSUKF-FA-RBF 
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framework. Notably, the incorporation of TDOA-based 

auxiliary positioning in complex environments helps 

mitigate signal degradation, resulting in improved 

robustness and accuracy in positioning performance. 

BDS provides dual- and multi-frequency signals, 

which enhance anti-interference performance and 

improve positioning accuracy. By incorporating high-

precision positioning techniques such as Precise Point 

Positioning (PPP) and Real-Time Kinematic carrier 

phase positioning, BDS can achieve centimeter- to 

millimeter-level accuracy. 

The integration of BDS with INS results in a multi-

source navigation framework that combines the strengths 

of satellite and inertial navigation. INS estimates position 

using gyroscopes and accelerom, maintaining 

independence from external environmental influences 

but suffering from cumulative error over time. In contrast, 

the BDS offers globally precise positioning but is 

susceptible to signal degradation in obstructed 

environments, such as urban canyons and tunnels. 

Therefore, the BDS/INS integration leverages the 

complementary advantages of both systems, improving 

overall navigation robustness and accuracy [16]. 

BDS/INS integration commonly employs the KF for 

data fusion. The fundamental state and observation 

equations of the KF are as follows [17-20]: 

𝑋̇ = 𝐹𝑋 + 𝐺𝑊             (1) 

𝑍 = 𝐻𝑋 + 𝑉              (2) 

Here, 𝑋  refers to the system state variable; 𝐹  is 

the state transition matrix; 𝐺 is the process noise matrix; 

𝑊  represents the process noise; 𝑍  stands for the 

observation quantity; 𝐻  is the observation matrix; 𝑉 

denotes the observation noise. 

The state prediction steps of KF are shown in 

Equations (2) and (3): 

𝑋̂𝑘|𝑘−1 = 𝐹𝑋̂𝑘−1|𝑘−1 + 𝐺𝑊        (3) 

𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹
𝑇 + 𝑄        (4) 

The state update steps are given by follows: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅)−1    (5) 

𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝐻𝑋̂𝑘|𝑘−1)    (6) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1         (7) 

In these expressions, 𝑃  represents the state 

covariance matrix; 𝐾 denotes the Kalman gain; 𝑄 and 

𝑅  are the covariance matrices of the process and 

observation noise, respectively. 

3.2 The improved SSUKF algorithm 

Accurate positioning remains a fundamental challenge in 

mobile robotics, autonomous unmanned systems, and 

target tracking in complex and dynamic environments. 

The traditional EKF requires first-order Taylor expansion 

to nonlinear systems, which often introduces significant 

linearization errors and limits its effectiveness in 

handling highly nonlinear state estimation problems. In 

contrast, UKF employs unscented transformation to 

approximate the posterior distribution by propagating a 

set of carefully selected Sigma points through the 

nonlinear system dynamics. This method generally yields 

higher estimation accuracy than EKF, particularly in 

scenarios involving strong nonlinear and non-Gaussian 

noise. However, the symmetric sampling strategy of 

standard UKF may result in overly dispersed Sigma point 

distributions in high-dimensional state spaces. This 

dispersion increases the risk of cumulative filtering errors 

and degrades positioning accuracy over time [21, 22]. To 

address these limitations, this study adopts the SSUKF 

algorithm, which improves filtering performance by 

optimizing the distribution of Sigma points.  

At the core of SSUKF is the SSUT, which replaces 

the symmetric sampling method of the conventional UKF 

with a spherical simplex sampling approach. This 

substitution effectively reduces the spread radius of 

Sigma points in high-dimensional spaces, mitigating 

error accumulation and enhancing numerical stability. 

Building on SSUT, SSUKF introduces several key 

improvements. First, it incorporates and systematically 

tunes the scaling factor 𝛼, the covariance weight 

adjustment parameter 𝛽, and the spread factor 𝜅. These 

adjustments allow the Sigma-point distribution to more 

accurately reflect the system’s nonlinear behavior, 

thereby improving both robustness and estimation 

precision. Second, SSUKF refines the calculation of 

mean and covariance weights by employing a corrected 

weighting formula. This correction results in a more 

balanced weight distribution and minimizes the bias 

errors commonly observed in standard UKF due to 

uneven weighting. Finally, the algorithm simplifies 

Sigma-point generation by replacing the computationally 

intensive Cholesky decomposition with SVD, thereby 

reducing computational redundancy. This structural 

optimization enhances processing efficiency without 

compromising estimation accuracy, making SSUKF 

particularly suitable for real-time, high-precision 

positioning applications. 

If the mean of the system state variables is 𝑥̅, then 

the selection of Sigma points for the improved SSUT 

strategy reads [23-27]: 

𝜒𝑢
′ = {

𝑥̅, 𝑖 = 0

𝑥̅ + 𝛼√𝑛 + 𝜅𝑆𝑖 , 𝑖 = 1, … , 𝑛

𝑥̅ − 𝛼√𝑛 + 𝜅𝑆𝑖−𝑛 , 𝑖 = 𝑛 + 1,… ,2𝑛

(8) 

In Equation (8), 𝑆𝑖 represents the 𝑖-th column of the 

covariance matrix 𝑆 ; 𝛼  refers to the proportionality 

factor; 𝜅  is a hyperparameter; 𝜒𝑢
′   denotes the 𝑖-th 

Sigma point; 𝑛  refers to the dimension of the system 

state. 

The weight assigned to each Sigma point consists of 

the mean weight 𝑊𝑖
𝑚  and the covariance weight 𝑊𝑖

𝑐 , 

computed as follows: 

𝑊𝑖
𝑚 = {

𝑊0−1

𝛼2
+ 1, 𝑖 = 0

𝑊𝑖

𝛼2
, 𝑖 ≠ 0

       (9) 

𝑊𝑖
𝑐 = {

𝑊0 + 1 − 𝛼2 + 𝛽, 𝑖 = 0
𝑊𝑖

𝛼2
, 𝑖 ≠ 0

  (10) 

Here, 𝛽  a hyperparameter used to reduce 

approximation errors; 𝑊𝑖 represents the initial weight of 

the 𝑖 -th Sigma point; 𝑊0  stands for the initial weight 

value. 
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The param 𝛼, 𝛽, and 𝜅 significantly influence the 

Sigma-point distribution and overall filtering accuracy 

within the SSUKF framework. The parameter 𝛼 typically 

takes a small positive value (e.g., between 10−3 and 10−1) 

to control the spread of the Sigma points. The parameter 

𝛽 adjusts the covariance weight's central tendency and is 

commonly set to 2 when the state distribution is Gaussian. 

The parameter 𝜅 acts as a secondary scaling factor 

stabilizing the term 𝑛+𝜅, where 𝑛 is the state vector 

dimension; it is often set to 0 or 3−𝑛. 

In this study, experimental tuning determined 

𝛼=0.05, 𝛽=2, and 𝜅=0 as optimal values, achieving a 

balance between estimation accuracy and numerical 

stability in high-precision positioning scenarios. 

According to the selected Sigma points, the state 

variables undergo nonlinear transformation to calculate 

the predicted state mean and covariance. The expressions 

are as follows: 

𝑥̂𝑘+1 = ∑  2𝑛
𝑖=0 𝑊𝑖

𝑚𝑓(𝜒𝑢,𝑖
′ )      (11) 

𝑃𝑘+1 = ∑  2𝑛
𝑖=0 𝑊𝑖

𝑐[𝑓(𝜒𝑢,𝑖
′ ) − 𝑥̂𝑘+1][𝑓(𝜒𝑢,𝑖

′ ) −

𝑥̂𝑘+1]
𝑇 + 𝑄          (12) 

Here, 𝑥̂𝑘+1  denotes the predicted mean state; 

𝑓(𝜒𝑢,𝑖
′ ) is the nonlinear state transition function applied 

to the 𝑖-th Sigma point; 𝑃𝑘+1  represents the predicted 

covariance matrix; 𝑄 refers to the covariance matrix of 

process noise. 

Using the predicted Sigma points, the observation 

mean and covariance are computed as: 

𝑧̂𝑘+1 = ∑  2𝑛
𝑖=0 𝑊𝑖

𝑚ℎ(𝜒𝑢,𝑖
′ )       (13) 

𝑃𝑧𝑧 = ∑  2𝑛
𝑖=0 𝑊𝑖

𝑐[ℎ(𝜒𝑢,𝑖
′ ) − 𝑧̂𝑘+1][ℎ(𝜒𝑢,𝑖

′ ) −

𝑧̂𝑘+1]
𝑇 + 𝑅           (14) 

𝑃𝑧𝑧  represents the observed covariance matrix; 

ℎ(𝜒𝑢,𝑖
′ )  denotes the nonlinear observation function 

applied to the 𝑖-th Sigma point; 𝑅 is the measurement 

noise covariance matrix; 𝑧̂𝑘+1  refers to the predicted 

observation mean. The cross-covariance matrix 𝑃𝑥𝑧 

between the states and observations is calculated by 

Equation (15): 

𝑃𝑥𝑧 = ∑  2𝑛
𝑖=0 𝑊𝑖

𝑐[𝜒𝑢,𝑖
′ − 𝑥̂𝑘+1][ℎ(𝜒𝑢,𝑖

′ ) − 𝑧̂𝑘+1]
𝑇   

(15) 

The Kalman gain is computed as Equation (16): 

𝐾 = 𝑃𝑥𝑧𝑃𝑧𝑧
−1             (16) 

The updated state vector and covariance matrix are 

then given by follows: 

𝑥𝑘+1 = 𝑥̂𝑘+1 + 𝐾(𝑧𝑘+1 − 𝑧̂𝑘+1)     (17) 

𝑃𝑘+1 = 𝑃𝑘+1 − 𝐾𝑃𝑧𝑧𝐾
𝑇        (18) 

In this context, 𝐾 denotes the Kalman gain matrix; 

𝑥𝑘+1  refers to the updated state estimate; 𝑧𝑘+1  is the 

actual observation; 𝑃𝑘+1  represents the updated 

covariance matrix of the state.  

Figure 2 presents the complete process of the 

proposed integrated navigation algorithm based on the 

improved SSUKF. 

 

Initial state 

estimation

Obtain sigma points

Start

Generate sigma 

points

Obtain point set and 

weights
State prediction

Calculate state-

predicted transfer 

values

Measurement 

prediction

System state update

Calculate the filter 

gain

End

Determine if the 

iteration is complete

No

Yes

1:  Initialize dimensions:

        n = dimension of state vector x

        lambda = alpha^2 * (n + kappa) - n

2:  Compute sigma point weights:

        Wm[0] = lambda / (n + lambda)

        Wc[0] = Wm[0] + (1 - alpha^2 + beta)

        for i = 1 to 2n:

            Wm[i] = 1 / [2 * (n + lambda)]

            Wc[i] = Wm[i]

3:  Generate sigma points:

        S = Cholesky decomposition of (n + lambda) * P

        sigma_points[0] = x

        for i = 1 to n:

            sigma_points[i]     = x + column_i(S)

            sigma_points[i + n] = x - column_i(S)

4:  Predict sigma points through transition function:

        for i = 0 to 2n:

            sigma_points_pred[i] = f(sigma_points[i])

5:  Compute predicted state mean:

        x_pred = sum over i: Wm[i] * sigma_points_pred[i]

6:  Compute predicted covariance:

        P_pred = sum over i: Wc[i] * (sigma_points_pred[i] - 

x_pred)^2 + Q

7:  Predict sigma points through observation function:

        for i = 0 to 2n:

            z_sigma[i] = h(sigma_points_pred[i])

8:  Compute predicted observation mean:

        z_pred = sum over i: Wm[i] * z_sigma[i]

9:  Compute innovation covariance:

        P_zz = sum over i: Wc[i] * (z_sigma[i] - z_pred)^2 + R

10: Compute cross covariance:

        P_xz = sum over i: Wc[i] * (sigma_points_pred[i] - 

x_pred) * (z_sigma[i] - z_pred)^T

11: Compute Kalman gain:

        K = P_xz * inverse(P_zz)

12: Update state estimate:

        x = x_pred + K * (z_actual - z_pred)

13: Update covariance:

        P = P_pred - K * P_zz * K^T

1 2

(a) The combined navigation process under the improved algorithm (b) SSUKF-based state estimation code  
Figure 2: Combined navigation flow with improved algorithm and SSUKF-based state estimation code 

 
The process begins with an initial state estimation 

and dynamically selects either the state update path or the 

Sigma-point generation path according to a set of 

adaptive iteration termination criteria. The spherical 

simplex sampling strategy optimizes the Sigma-point 

distribution, effectively reduces redundant sampling, and 

improves computational efficiency. Concurrently, the 

refined weighting mechanism enhances the stability and 

accuracy of nonlinear state estimation. 

The contributions of this study are reflected in three 

key aspects. First, the flowchart explicitly illustrates the 

closed-loop feedback structure and core computational 

steps of SSUKF, thereby clarifying how the algorithm 

mitigates linearization errors in high-dimensional spaces. 

Second, the introduction of a dynamic iteration 

termination mechanism reduces unnecessary 

computations and significantly accelerates algorithm 

execution, demonstrating the effectiveness of the 

performance optimization. Third, the annotated 

mathematical formulations within the process provide a 

clear and reproducible framework that supports future 

algorithmic enhancements and comparative research. 

In each filtering cycle, the standard UKF generates 

2𝑛+1 symmetric Sigma points, with the main 

computational burden arising from the Cholesky 

decomposition of the covariance matrix and two rounds 
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of nonlinear transformation. The corresponding time 

complexity typically ranges from 𝑂(𝑛2) to 𝑂(𝑛3). In 

contrast, SSUKF also utilizes 2𝑛+1 Sigma points but 

constructs them using spherical simplex sampling based 

on SVD or a simplified orthogonal vector computation 

method. This approach eliminates redundant symmetric 

configurations, yielding a more compact Sigma-point 

distribution and contributing to enhanced numerical 

stability. Additionally, the inclusion of tunable param 𝛼, 

𝛽, and 𝜅 in the weight and covariance computation further 

improves estimation precision. This adjustment enables 

SSUKF to maintain a comparable computational 

complexity to the standard UKF while achieving superior 

performance, particularly in high-dimensional nonlinear 

systems. When the system dimension 𝑛 is relatively small, 

SSUKF maintains time complexity similar to UKF but 

significantly outperforms it in terms of filtering accuracy 

and numerical robustness. 

In summary, the improved SSUKF algorithm 

surpasses the standard UKF in structural design, Sigma-

point selection strategy, and overall numerical stability. It 

retains the computational efficiency of the original 

framework while delivering enhanced estimation 

accuracy and resilience to noise, making it particularly 

well-suited for high-dynamic and high-dimensional 

integrated navigation scenarios. 

3.3 Optimization of the TDOA method 

TDOA is a widely adopted localization technique that 

estimates the position of a signal source by analyzing the 

time differences of signal arrivals at multiple spatially 

distributed receivers. While effective in theory, the 

practical accuracy of TDOA is often compromised by 

signal propagation conditions, receiver geometry, and 

measurement noise. In particular, NLOS environments 

introduce substantial errors in TDOA measurements, 

significantly degrading localization performance [28]. 

To address these challenges and enhance positioning 

accuracy, this study introduces a RBF neural network to 

optimize the extraction and utilization of time difference 

features. The RBF neural network's structure under 

TDOA is displayed in Figure 3 [29]. 

 

Input layer：TDOA

Hide layer

Output layer

 
Figure 3: Architecture of the radial basis function neural network for TDOA-based localization 

 

As illustrated in Figure 3, the proposed model adopts 

a standard three-layer RBF neural network structure, 

comprising an input layer, a hidden layer with radial basis 

neurons, and an output layer. This architecture is 

characterized by strong nonlinear mapping capabilities 

and robust generalization, making it particularly suitable 

for positioning tasks. The input layer accepts feature 

vectors derived from TDOA measurements. The hidden 

layer applies a nonlinear transformation using Gaussian 

kernel functions, effectively capturing the spatial 

distribution characteristics of the input data. The output 

layer is responsible for regressing the final position 

coordinates (𝑥,𝑦,𝑧). The three-layer RBF network is 

theoretically capable of approximating any continuous 

function, offering both simplicity in design and high 

training efficiency. These properties make it especially 

suitable for TDOA scenarios, where the input 

dimensionality is relatively low and the relationship 

between input features and output coordinates exhibits 

significant nonlinearity. Compared to deeper multi-layer 

networks, the RBF neural network achieves a favorable 

trade-off between modeling capacity and computational 

cost, rendering it ideal for small-scale, high-precision 

positioning applications. 

The hierarchical structure of the proposed TDOA-

RBF model clearly visualizes the process by which time 

difference features are transformed into spatial 

coordinates through nonlinear mapping. This foundation 

enables the application of the FA to optimize the RBF 

network param, including the centers and widths of the 

Gaussian kernel functions. The use of adjustable-width 

kernels enhances the model's resilience to noise, a crucial 

advantage in high-interference environments. 

Experimental results demonstrate that the integration of 

the FA with RBF training significantly improves 

localization performance. In particular, the SSUKF-FA-

RBF model achieves a RMSE as low as 0.127 m under 

high-noise conditions. This hybrid approach also 

mitigates the limitations of conventional Gradient 

Descent (GD) methods, which are often prone to local 

optima, by leveraging the global search capabilities of the 

FA. As such, the proposed method offers a novel and 

efficient solution to the TDOA localization problem, 

delivering both high accuracy and low computational 

complexity. 

The input feature vector in the TDOA method 
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consists of time difference measurements between a 

signal source and multiple receivers. In practical data 

acquisition, this vector is affected by several noise 

sources, including Gaussian measurement errors, 

receiver clock biases, and NLOS multipath interference. 

To improve data quality and meet neural network training 

requirements, this study applies a series of preprocessing 

steps to the TDOA feature vectors before network input. 

First, mean normalization eliminates dimensional 

discrepancies among different features. Second, outlier 

filtering uses the z-score method to remove data points 

deviating by more than three standard deviations from the 

mean. Third, Gaussian white noise modeling assumes 

TDOA errors follow a zero-mean Gaussian distribution 

with adjustable variance to simulate realistic ranging 

errors and enhance model robustness to environmental 

disturbances. These preprocessing steps improve 

numerical stability and better reflect the perturbation 

characteristics of complex signal propagation 

environments, contributing to more reliable learning 

performance within the RBF neural network framework. 

The output of the RBF neural network is formally 

described by Equations (19) and (20) [30, 31]: 

𝑦 = ∑  𝑁
𝑖=1 𝑤𝑖 ⋅ 𝜙(∥ 𝑥 − 𝑐𝑖 ∥)     (19) 

𝜙(∥ 𝑥 − 𝑐𝑖 ∥) = 𝑒
−
(𝑥−𝑐𝑖)

2

2𝜎2        (20) 

In these equations, 𝑦  the network output vector 

corresponding to the estimated position; 𝑁 denotes the 

number of hidden layer neurons; 𝜙(∥ 𝑥 − 𝑐𝑖 ∥) ,  𝑤𝑖  , 

and 𝑐𝑖  represent the activation function, weight, and 

center of the 𝑖 -th node; 𝑥  means the input vector; 𝜎 

stands for the width parameter. 

Following the initial RBF-based position estimation, 

a post-processing refinement step is applied to further 

enhance localization accuracy. A commonly used method 

in this context is the least squares optimization, which 

minimizes the total squared error between the estimated 

and actual measurements. The optimization objective is 

formulated as Equation (21): 

𝑚𝑖𝑛
𝑥

 ∑  𝑀
𝑖=1 ∥ 𝑓(𝑥) − 𝑦𝑖 ∥

2
        (21) 

In Equation (21), 𝑥  denotes the position of the 

signal source to be optimized; 𝑓(𝑥)  stands for the 

predicted position derived from the TDOA model; 𝑦𝑖  
represents the actual measured position; 𝑀 refers to the 

number of measurement samples. 

The RBF neural network achieves precise 

positioning prediction by learning the relationship 

between input features and actual locations. The 

network's optimization involves adjusting weights and 

bias param using the FA to avoid local optima and 

accelerate the convergence process. The specific steps are 

as follows. First, a population of “firefly” individuals is 

initialized, with each individual representing a potential 

solution, i.e., a combination of RBF network param, 

including centers, widths, and output weights. Next, the 

performance of each firefly is evaluated by calculating its 

fitness value, usually determined by the prediction error 

of the RBF network. A smaller error corresponds to a 

higher fitness value, indicating better performance. Then, 

based on fitness, FA updates the positions of individuals 

by simulating the light attraction behavior of fireflies in 

nature. Fireflies are attracted to others based on 

brightness, enabling local search within the solution 

space, where brightness is proportional to solution quality. 

Through iterative updates, the firefly population 

gradually converges toward the optimal solution. During 

each iteration, firefly movement considers brightness 

differences and introduces random perturbation to avoid 

getting trapped in local optima. Lastly, after multiple 

iterations, FA identifies the optimal RBF network param 

that minimize the network's error, thus enhancing its 

performance in data prediction and classification tasks. 

The workflow of the FA-RBF model is illustrated in 

Figure 4. 
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Figure 4: The process of the FA-RBF model 

 

To further enhance the system’s nonlinear modeling capability, an RBF neural network module is introduced 
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based on the Kalman filter output. Specifically, the 

current state estimates from the filter (such as position x̂ 

and velocity v̂) are combined with the original TDOA 

observation residuals-the differences between measured 

values and filter predictions-to form the input vector for 

the RBF network. The RBF network learns the nonlinear 

mapping of these errors and models the prediction 

residuals through radial basis kernel functions to perform 

compensation. During training, the network param are 

optimized via backpropagation or the FA to minimize 

prediction errors. In the inference phase, the RBF 

network can correct nonlinear errors in the Kalman 

filter’s predictions in real time, thereby improving the 

accuracy and robustness of the final positioning output. 

The RBF output serves as a reference for the next filtering 

cycle’s prediction, creating a semi-closed loop iterative 

optimization structure that strengthens the system’s 

dynamic adjustment capability. This design demonstrates 

effective error control and convergence performance in 

experimental evaluations. 

In complex dynamic environments, such as urban 

canyons, under elevated bridges, with building 

obstructions, or during high-speed motion, the 

measurement noise encountered by navigation receivers 

often exhibits instability, sudden bursts, and nonlinear 

variations. To address these challenges, the proposed 

SSUKF-FA-RBF hybrid framework possesses strong 

dynamic noise adaptation features in its structural design. 

First, during the Kalman filtering stage, both the process 

noise covariance matrix and the observation noise 

covariance matrix are dynamically updated based on the 

sensor’s current environmental conditions, allowing 

flexible response to varying noise levels. Second, the 

RBF neural network uses the TDOA measurement 

residuals as core inputs to learn the nonlinear relationship 

between residuals and true errors, enabling real-time 

modeling and correction of non-stationary noise 

characteristics during operation. Additionally, the FA 

adaptively optimizes the RBF network’s centers, widths, 

and weights, ensuring strong convergence and 

generalization performance even under diverse noise 

disturbances. 

4 Experimental design and 

performance evaluation 

4.1 Dataset collection and experimental 

setting 

The data utilized in this study are derived from the Smart 

Positioning and Navigation Technology-Position 

Orientation System (SmartPNT-POS) dataset and the 

UWB TDOA dataset. The SmartPNT-POS dataset 

comprises extensive observations from vehicle-mounted, 

airborne, and shipborne platforms, totaling 30 sets of data. 

It includes GNSS reference values, rover observations, 

precise products for PPP computation, IMU data, and 

reference solutions obtained through post-processing 

using Inertial Explorer. The IMU data are stored in .imr 

format and extracted using the provided “ReadIMR.cpp” 

program, adopting the right-front-up coordinate system 

consistent with the IMU orientation. The reference 

attitude solutions from IE are also based on the right-

front-up coordinate system relative to the carrier frame. 

Vehicle-mounted data lack lever-arm information from 

the IMU to the rear axle; however, the baseline lengths 

labeled “X-LL,” “Y-LL,” and “Z-LL” in the reference 

solutions correspond to the East-North-Up coordinate 

system with the reference station as the origin. This 

dataset offers high-quality, diverse real-world 

measurements, making it well suited for research and 

development in GNSS/INS integrated navigation 

algorithms. The UWB TDOA dataset provides UWB 

time-difference-of-arrival measurements obtained from 

the Bitcraze Loco positioning system. It contains 

collected TDOA measurements synchronized with 

ground-truth data from the Vicon motion capture system. 

The training data involve seven distinct UWB anchor 

constellations, which are used to correct TDOA 

measurement biases and improve state estimation 

accuracy. The dataset is processed using Python tools and 

includes spatial coordinates (x, y, z), UWB TDOA 

measurements, timestamps, and other relevant 

information, making it suitable for high-precision indoor 

positioning, robotic navigation, and logistics tracking 

research. The experiments in this study are divided into 

two parts: (1) performance validation of BDS/INS 

integrated navigation using the publicly available 

SmartPNT-POS dataset, which encompasses BDS 

observations and INS data across multiple scenarios; (2) 

optimization experiments of the TDOA method based on 

the UWB TDOA dataset. These two datasets are 

independently collected and distinctly purposed, ensuring 

targeted and reliable algorithm evaluation. 

The UWB TDOA dataset is collected using the 

Bitcraze Loco positioning system, while the ground truth 

reference values are provided by the high-precision Vicon 

motion capture system. Both systems are precisely 

synchronized using absolute timestamps measured in 

milliseconds. Due to the different sampling rates of the 

two systems-100 Hz for the Vicon system and 80 Hz for 

the UWB system-the TDOA data are linearly interpolated 

to 100 Hz. This ensures full temporal alignment with the 

Vicon data, allowing each TDOA record to be matched 

with an accurate real-world position label. To improve 

data quality and enhance the effectiveness of model 

training, several preprocessing procedures are applied. 

First, abnormal jump values and duplicate timestamp 

entries are removed to eliminate inconsistencies. Second, 

linear interpolation is used to fill in occasional missing 

observations, preserving the continuity of the time series. 

Third, all input features, including TDOA residuals and 

time variables, are normalized to have zero mean. This 

step eliminates scale differences and promotes faster 

convergence during network training. Finally, the dataset 

is divided into training, validation, and test sets in fixed 

proportions. To ensure independent evaluation and robust 

generalization, care is taken to exclude any overlapping 

trajectories between the training and test sets. These 

preprocessing steps significantly improve the accuracy 

and consistency of the dataset, thereby establishing a 
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reliable foundation for validating the performance of the 

proposed algorithm. 

This study conducts experiments in a Windows 10 

operating system environment using Matrix Laboratory 

Release (R) 2021b. A UWB channel model is established 

under NLOS conditions. The neural network adopts a 

three-layer architecture comprising seven input nodes, 

ten hidden layer neurons, and two output nodes. The 

number of neurons in the hidden layer is fixed at 10. 

During training, the batch size is initially set to 8, and 

additional experiments are conducted using batch sizes of 

4, 8, 16, and 32 to evaluate the impact of batch size on 

training performance. The FA is employed to optimize the 

neural network param. The algorithm configuration 

includes a light intensity attenuation rate of 1, a 

population size of 30, a decay factor of 0.1, a minimum 

attractiveness coefficient of 0.2, and a maximum 

attractiveness coefficient of 2. The maximum number of 

iterations for all models is set to 100. 

Although this study uses the UWB TDOA dataset 

for modeling and validation-providing robust 

experimental support for typical high-precision indoor 

positioning scenarios-it further examines the 

generalizability of the proposed method to explore its 

broader applicability. From a feature structure 

perspective, the SSUKF-FA-RBF model takes time-

difference feature vectors as input, indicating a degree of 

independence from specific signal types. This design 

suggests that the model has the potential to be transferred 

to other ranging modalities. Although different sensors 

may exhibit variations in error characteristics, sampling 

frequencies, and propagation models, the proposed 

method can be extended to non-UWB sensor systems or 

outdoor environments through appropriate input 

normalization and noise model adaptation. Additionally, 

the robust design of the filtering component enhances the 

model’s capacity to cope with environmental complexity, 

supporting its scalability. 

To ensure objectivity and generalizability in 

performance evaluation, this study adopts a standardized 

dataset partitioning approach. The original data are 

segmented sequentially by timestamp into 70% for 

training, 15% for validation, and 15% for testing. The 

training set is used to learn the param of the RBF neural 

network, the validation set is employed for tuning 

hyperparam and preventing overfitting, and the test set is 

reserved for final performance evaluation and 

generalization verification. All data splits maintain 

consistent spatial distributions within each subset, 

preserving representative anchor point configurations 

and signal characteristics, thereby enhancing the 

reproducibility and realism of the experimental results. 

To establish a unified framework suitable for high-

precision indoor positioning, this study proposes the 

SSUKF-FA-RBF model, which integrates two core 

technical components across distinct stages. The first 

component is a SSUKF based on a BDS/INS fusion 

architecture. The second component is a machine 

learning optimization approach (FA-RBF) that combines 

TDOA measurement features with a Radial Basis 

Function neural network. The SSUKF module enhances 

the prediction accuracy of the BDS/INS system under 

nonlinear and high-noise conditions by incorporating a 

hyperspherical simplex sampling mechanism (Figure 5). 

The SSUKF-FA-RBF module extends this approach to 

TDOA-based positioning by employing SSUKF for 

dynamic state prediction and using the RBF network to 

perform nonlinear compensation for TDOA errors, 

thereby improving the final position estimation (Figure 6). 

Although Figures 5 and 6 present two distinct sets of 

experimental results, they correspond to different 

processing stages within the same system framework. 

Figure 5 evaluates the estimation accuracy of the 

standalone SSUKF within a conventional BDS/INS 

integrated navigation system, highlighting the 

performance improvements resulting from the enhanced 

filter structure. In contrast, Figure 6 assesses the 

integrated SSUKF and FA-RBF scheme under TDOA 

constraints, demonstrating its generalization capability in 

practical communication-based ranging systems. In this 

context, the SSUKF functions both as the core filtering 

mechanism in the BDS/INS system and as the dynamic 

state predictor in the TDOA-RBF module. These two 

components-state estimation and error compensation-

operate sequentially and synergistically, forming a 

unified high-precision positioning architecture capable of 

fusing multi-source navigation data. This structural 

design enables coherent and functionally consistent 

integration of the SSUKF and TDOA-RBF systems, 

ensuring logical alignment across system modeling, 

filtering architecture, and error correction strategies. 

4.2 Performance evaluation 

This study compares the positioning error of the proposed 

algorithm in integrated navigation against the 

Incremental Extended Kalman Filter (IEKF), Covariance 

Kalman Filter (CKF), Extended Kalman Filter (EKF), 

UKF, and the SSUT algorithms. The selected Kalman 

filter variant and the RBF neural network operate not 

independently but as a cascaded hybrid positioning 

system. In this structure, the Kalman filter predicts and 

updates the target state variables, such as position and 

velocity. Its outputs serve both as intermediate navigation 

estimates and as inputs to the subsequent neural network 

module. This design fully leverages the Kalman filter’s 

strengths in temporal modeling and dynamic system 

prediction while utilizing the neural network to address 

nonlinear errors and complex TDOA measurement 

residuals, thereby improving overall positioning accuracy 

in complex environments. The specific results are 

depicted in Figure 5. 
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Figure 5: Comparison results of positioning errors in integrated navigation under different algorithms 

 

Analysis of Figure 5a indicates that the SSUKF 

algorithm demonstrates a significant advantage in 

reducing positioning error. Specifically, the mean 

position error of SSUKF is 0.3172 m (m), substantially 

lower than IEKF (0.6426 m), CKF (0.7916 m), and EKF 

(0.8163 m). This highlights the effectiveness of SSUKF 

in improving positioning accuracy. Regarding RMSE in 

position estimation, SSUKF achieves 0.1614 m, 

markedly lower than IEKF (0.3518 m), CKF (0.4015 m), 

EKF (0.4271 m), and UKF (0.3371 m). These results 

demonstrate that SSUKF effectively reduces error 

fluctuations and enhances overall positioning accuracy. 

Collectively, they confirm the superiority of SSUKF in 

improving precision, reducing computational burden, and 

enhancing system stability. 

Figure 5b further shows that SSUKF outperforms 

traditional algorithms in velocity positioning accuracy. 

The mean velocity error of SSUKF is 0.0103 m per 

second (m/s), significantly lower than IEKF (0.0215 m/s), 

CKF (0.0296 m/s), EKF (0.0312 m/s), and UKF (0.0178 

m/s). This improvement is attributed to the optimized 

Sigma point sampling strategy, which effectively reduces 

velocity positioning errors. In terms of velocity RMSE, 

SSUKF achieves 0.0501 m/s, outperforming IEKF 

(0.0594 m/s), CKF (0.0601 m/s), EKF (0.0626 m/s), and 

UKF (0.0579 m/s). Compared to these methods, SSUKF 

exhibits lower error fluctuation, thereby enhancing 

velocity positioning stability and reliability. These results 

collectively demonstrate that SSUKF delivers superior 

performance in real-world applications, especially in 

high-precision positioning scenarios where it clearly 

surpasses traditional methods. 

The computation time results of various algorithms 

in integrated navigation are presented in Table 2. 

 

Table 2: Calculational time of various algorithms in integrated navigation 

Algorithm Computation Time(Mean±Standard Deviation) 95% Confidence Interval 

IEKF 13.50±0.27 [13.32,13.68] 

CKF 14.10±0.32 [13.88,14.32] 

EKF 15.20±0.25 [15.03,15.37] 

UKF 12.80±0.30 [12.59,13.01] 

SSUT 7.73±0.12 [7.65,7.81] 

SSUKF 7.69±0.10 [7.61,7.77] 

 

Analysis of Table 2 reveals significant differences in 

computational efficiency among the Kalman filter 

algorithms applied to integrated navigation tasks. 

Traditional algorithms such as the EKF (15.20 ± 0.25 

seconds) and CKF (14.10 ± 0.32 seconds) require 

relatively longer computation times, while the UKF 

(12.80 ± 0.30 seconds) performs better. In contrast, the 

SSUT (7.73 ± 0.12 seconds) and the SSUKF (7.69 ± 0.10 

seconds) achieve the shortest computation times and 

demonstrate smaller fluctuations and tighter confidence 

intervals, indicating superior stability across multiple 

runs. The SSUKF significantly reduces computational 

cost while maintaining high accuracy, making it 

particularly suitable for real-time demanding applications 

such as indoor navigation and robotic positioning. 

Experimental results confirm its dual advantages in both 

time efficiency and robustness. 

The comparison of positioning recognition 

performance of different models under the TDOA method 

is illustrated in Figure 6. 
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Figure 6: Comparison results of positioning recognition performance of various models under the TDOA method 

 

Analysis of Figures 6a and 6b reveals that the 

SSUKF-RBF model demonstrates excellent RMSE 

performance, with RMSE values increasing from 0.057 

m (standard deviation 0.1 m) to 0.17 m (standard 

deviation 0.5 m). This model achieves the highest 

accuracy under all tested conditions, indicating strong 

robustness and the ability to maintain low error levels 

across varying environments. The SSUKF-FA-RBF 

model achieves the lowest RMSE values across all noise 

levels, increasing from 0.036 m (standard deviation 0.1 

m) to 0.127 m (standard deviation 0.5 m). Its relatively 

slow error growth rate and sustained low RMSE under 

high noise demonstrate its advantages in positioning 

accuracy and robustness. Overall, the SSUKF-FA-RBF 

model attains the best positioning accuracy across all test 

conditions, particularly excelling at low measurement 

standard deviations, where its RMSE is significantly 

lower than that of competing algorithms. As 

measurement standard deviation increases, the mean 

absolute errors (MAE) of all models rise, reflecting 

greater positioning errors. Among these, IEKF-RBF, 

CKF-RBF, EKF-RBF, and UKF-RBF exhibit relatively 

higher MAE values. At a measurement standard deviation 

of 0.5, EKF-RBF’s MAE reaches 0.317 m, and UKF-

RBF’s is 0.234 m. In contrast, the improved SSUKF-RBF 

and SSUKF-FA-RBF models maintain substantially 

lower MAE values of 0.136 m and 0.102 m, respectively, 

demonstrating superior positioning accuracy and stronger 

resistance to noise. Notably, the SSUKF-FA-RBF model 

exhibits excellent robustness and stability across both 

low- and high-error conditions, underscoring its superior 

performance in TDOA-based positioning applications. 

To further assess the adaptability of each model 

under varying environmental conditions and identify 

potential failure scenarios, this study conducts an in-

depth analysis of error variation trends observed in the 

comparative experimental data. The SSUKF-FA-RBF 

model consistently maintains the lowest RMSE and MAE 

across all measurement noise levels, with standard 

deviations ranging from 0.1 m to 0.5 m, demonstrating 

strong noise resilience and stability. This model performs 

particularly well in NLOS simulated environments; as 

measurement noise increases, its error growth rate 

remains significantly lower than that of other models, 

indicating superior robustness amid multipath effects and 

signal occlusion. In contrast, traditional algorithms such 

as EKF-RBF, CKF-RBF, and IEKF-RBF experience 

considerable accuracy degradation under high-noise 

NLOS conditions or in complex urban areas. When the 

measurement standard deviation reaches 0.5 m, EKF-

RBF’s RMSE rises to 0.396 m and MAE to 0.317 m, with 

errors doubling and fluctuations intensifying. This 

reveals clear limitations in handling highly nonlinear or 

uncertain scenarios. UKF-RBF retains some accuracy 

advantages in urban or partially obstructed environments; 

however, as measurement noise increases beyond 0.3 m, 

its error escalates rapidly, suggesting that the Sigma point 

strategy may lack stability under high-dimensional 

disturbances. From a computational efficiency 

perspective, although the SSUKF-FA-RBF model 

achieves the highest accuracy, its network training and 

optimization require additional computational resources. 

Therefore, it is most suitable for applications prioritizing 

precision and high-value outcomes. Conversely, the 

SSUKF core offers a favorable balance between accuracy 

and computation time (7.69 ± 0.10 seconds), making it 

especially appropriate for deployment in resource-

constrained indoor robotic systems or edge computing 

devices, where real-time performance and deployment 

flexibility are critical. In summary, the SSUKF-FA-RBF 

model is well-suited for complex, dynamic, or 

interference-prone high-precision positioning tasks, 

whereas the SSUKF alone is preferable for indoor 

navigation applications with strict real-time requirements. 

Traditional filtering algorithms remain appropriate for 

environments characterized by low noise levels and 

stable sensor channels. The error analysis and 

adaptability comparison under varying noise conditions 

validate the proposed method’s advantages and 

robustness across diverse positioning scenarios. 

To enhance the statistical rigor of this study’s results, 

a repeated trial mechanism and statistical inference 

methods were incorporated based on the original 

experiments. Specifically, each filtering algorithm 

underwent ten independent repeated trials under identical 

test conditions. Position and velocity errors were reported 

as mean ± standard deviation to capture the variability 

and stability of model performance. Furthermore, to 
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account for potential randomness influencing differences 

in error outcomes across algorithms, paired sample t-tests 

were conducted to assess the statistical significance of 

differences in error metrics between the proposed SSUKF 

and other mainstream algorithms, including EKF, UKF, 

and SSUT. The detailed findings are summarized in 

Tables 3 and 4. 

 

Table 3: Comparison of positional positioning errors 

Indicator IEKF CKF EKF UKF SSUT SSUKF 

Mean error (m) 
0.6426±0.0

213 

0.7916±0.0

241 

0.8163±0.0

205 

0.5119±0.0

182 

0.4176±0.0

158 

0.3172±0.0

124 

RMSE (m) 
0.3518±0.0

115 

0.4015±0.0

126 

0.4271±0.0

133 

0.3371±0.0

109 

0.2754±0.0

091 

0.1614±0.0

083 

P-value 

(SSUKF) 
0.0003 0.0001 0 0.0012 0.0047 -- 

Significance Yes Yes Yes Yes Yes -- 

 

Table 4: Speed positioning error comparison 

Indicator IEKF CKF EKF UKF SSUT SSUKF 

Mean error 

(m/s) 

0.0215±0.0

021 

0.0296±0.0

017 

0.0312±0.0

018 

0.0178±0.0

013 

0.0172±0.0

010 

0.0103±0.0

008 

RMSE (m/s) 
0.0594±0.0

032 

0.0601±0.0

036 

0.0626±0.0

030 

0.0579±0.0

024 

0.0523±0.0

020 

0.0501±0.0

015 

P-value 

(SSUKF) 
0.0009 0.0005 0.0002 0.0151 0.0376 -- 

Significance Yes Yes Yes Yes Yes -- 

Tables 3 and 4 present the average errors and 

RMSEs for position and velocity estimation tasks, 

respectively. Table 3 shows that the SSUKF algorithm 

achieves the best position estimation performance, with 

an average error of 0.3172 ± 0.0124 m and an RMSE of 

0.1614 ± 0.0083 m. This performance significantly 

exceeds that of traditional EKF (RMSE of 0.4271 ± 

0.0133 m) and UKF (RMSE of 0.3371 ± 0.0109 m). 

Notably, SSUKF’s RMSE is approximately 24% lower 

than that of the second-best algorithm, SSUT, 

demonstrating that optimizing the sigma point 

distribution through spherical simplex transformation 

effectively enhances filter accuracy in highly nonlinear 

environments. Additionally, SSUKF exhibits smaller 

error standard deviations, indicating more stable and 

robust positioning. The paired t-test results confirm that 

differences in position error between SSUKF and all 

other algorithms are statistically significant (p < 0.01), 

reinforcing the scientific validity of the observed 

accuracy improvements. 

Table 4 illustrates that SSUKF also leads in velocity 

estimation accuracy, achieving an average error of 0.0103 

± 0.0008 m per second and an RMSE of 0.0501 ± 0.0015 

m per second. This significantly outperforms UKF 

(RMSE of 0.0579 ± 0.0024 m/s) and EKF (RMSE of 

0.0626 ± 0.0030 m/s). These results confirm that SSUKF 

not only improves position estimation but also delivers 

superior accuracy and stability in dynamic velocity 

estimation. Among the alternatives, IEKF performs 

slightly better in velocity error than CKF and EKF but 

remains inferior to SSUKF. Paired t-tests indicate that 

velocity error differences between SSUKF and other 

algorithms are statistically significant (p < 0.05), further 

substantiating the effectiveness of the proposed approach. 

In summary, the comparative analysis of position 

and velocity errors demonstrates that SSUKF, through its 

enhanced sigma point sampling and weighting design, 

significantly improves filter adaptability to nonlinear, 

high-noise systems, yielding dual enhancements in 

positioning accuracy and dynamic estimation. The 

reductions in mean error and standard deviation not only 

reflect improved measurement precision but also confirm 

the approach’s stability and reliability, fulfilling the 

stringent demands of real-time navigation systems. The 

validation of statistical significance provides strong 

evidence for the scientific soundness of the proposed 

method and robustly supports the study’s conclusions. 

During the neural network training process, batch 

size significantly influences the model’s learning 

efficiency and stability. Accordingly, this study 

conducted comparative experiments using four typical 

batch sizes: 4, 8, 16, and 32. Each batch size 

configuration was tested with 10 repeated experiments, 

and the results were reported as mean ± standard 

deviation to ensure robustness and statistical reliability. 

The detailed error performances are summarized in Table 

5. 
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Table 5: Comparison of localization error under different batch sizes 

Batch Size 
Positioning Error (Mean±Standard 

Deviation) 
Velocity Error (Mean±Standard Deviation) 

4 0.185±0.012m 0.053±0.004m/s 

8 0.161±0.008m 0.050±0.002m/s 

16 0.172±0.010m 0.052±0.003m/s 

32 0.180±0.013m 0.054±0.005m/s 

 

The results in Table 5 reveal that smaller batch sizes, 

such as 4, promote faster model convergence but cause 

greater error fluctuations. In contrast, larger batch sizes, 

such as 32, produce smoother training processes but 

substantially increase training time. When the batch size 

is set to 8, the model attains the best average performance 

in both position and velocity errors, accompanied by 

relatively low variance. This outcome demonstrates a 

well-balanced trade-off between training stability and 

generalization capability. Therefore, a batch size of 8 is 

selected as the primary experimental configuration, 

optimizing training stability, computational efficiency, 

and prediction accuracy. 

To validate the effectiveness of the proposed FA-

RBF optimization strategy, this study conducted 

comparative experiments with two widely used 

optimization methods: standard GD and Particle Swarm 

Optimization (PSO). The experimental results are 

presented in Figure 7. 
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Figure 7: Comparison of optimization errors in TDOA-RBF models 
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As illustrated in Figure 7, under identical initial 

conditions and iteration counts, the RBF network 

optimized by the FA achieves lower prediction errors and 

faster convergence in the TDOA positioning task. Unlike 

GD, the FA does not rely on gradient information, thereby 

avoiding the common issue of becoming trapped in local 

optima within non-convex loss landscapes. Compared to 

PSO, the FA employs a brightness-based attraction 

mechanism that enables more effective global 

exploration and stable convergence. Additionally, the 

stochastic perturbation mechanism incorporated into the 

FA enhances its ability to escape local extrema in 

complex search spaces. Overall, the evaluation results 

demonstrate that the FA-RBF optimization strategy 

provides a favorable balance between error minimization 

and convergence efficiency, making it particularly well-

suited for optimizing TDOA positioning models in 

complex and highly nonlinear scenarios. 

The performance advantages and applicable 

scenarios of the evaluated models across typical 

environments-including NLOS, urban, and indoor 

conditions-are summarized in Table 6. 

 

Table 6: Comparison of algorithm applicability in different positioning environments 

Algorithm 

Indoor (Line of 

Sight) 

Performance 

Urban 

Semi-

Obstructed 

NLOS / 

High-Noise 

Typical Failure 

Scenario 

Recommended Use 

Cases 

IEKF-

RBF 

Fair, unstable 

accuracy 

Poor, high 

error rise 

Poor, prone 

to 

divergence 

Multipath 

interference; strong 

nonlinearity 

Open environments 

with low noise 

CKF-RBF Moderate, stable 
Poor, slow 

convergence 

Weak, 

significant 

degradation 

High-dimensional 

noise; discontinuous 

observations 

Structured 

environments with 

high-precision sensors 

EKF-RBF 
Acceptable, 

average 

Weak, 

sensitive to 

obstruction 

Poor, 

accumulativ

e error 

Linearization bias; 

delayed or noisy 

measurements 

Best for mildly 

nonlinear systems 

UKF-RBF 
Good, fast 

convergence 

Moderate, 

controlled 

error 

Moderate, 

limited 

robustness 

Sigma point 

dispersion; unstable 

in high dimensions 

General-purpose mid-

noise environments 

SSUKF-

RBF 

Excellent, very 

low error 

Good, robust 

performance 

Good, slow 

error growth 

Extreme NLOS + 

high dynamic motion 

(slight increase) 

Real-time indoor 

localization; mobile 

robotics 

SSUKF-

FA-RBF 

Best, lowest 

error 

Best, highly 

robust 

Best, strong 

anti-noise 

ability 

Risk of overfitting if 

poorly tuned 

High-precision tasks; 

complex environment 

navigation 

 

As indicated in Table 6, traditional filtering models 

such as IEKF-RBF, CKF-RBF, and EKF-RBF tend to 

experience significant error amplification or even 

divergence in NLOS and complex urban environments. 

These models are therefore more appropriate for settings 

characterized by low noise levels and simple spatial 

structures. The UKF-RBF model, due to its improved 

handling of nonlinearities, demonstrates moderate 

robustness and is better suited for positioning tasks under 

intermediate noise conditions. In contrast, both SSUKF-

RBF and the proposed SSUKF-FA-RBF exhibit 

significantly enhanced robustness and stability in 

positioning accuracy across all tested environments. 

Notably, these models maintain low error margins even 

under adverse conditions, such as in NLOS scenarios and 

high-dynamic interference contexts. Among them, 

SSUKF-FA-RBF consistently delivers the highest 

accuracy and resilience, making it particularly well-

suited for deployment in complex indoor navigation 

systems, unmanned autonomous platforms, and other 

high-precision positioning applications. 

4.3 Discussion 

This study systematically compares the positioning 

performance of various Kalman filter algorithms in 

integrated navigation systems [32], and introduces an 

improved SSUKF, along with a hybrid positioning model 

that integrates SSUKF with a FA-RBF neural network. 

Simulation experiments demonstrate that the proposed 

method offers significant advantages in positioning 

accuracy, robustness, and computational efficiency. 

These advantages are particularly evident under high 

measurement noise conditions, where the method 

exhibits strong stability and resistance to interference. 

Traditional UKFs estimate nonlinear system states by 

sampling sigma points derived from the statistical 

distribution of state variables. However, in high-

dimensional nonlinear systems, the symmetric sampling 

strategy adopted by standard UKF often leads to sparsely 

distributed or divergent sigma points, which can result in 

filter divergence or the accumulation of estimation errors. 

To overcome this limitation, the SSUKF algorithm 

incorporates the SSUT, which enhances the distribution 

of sigma points by making them more representative and 

compact in high-dimensional spaces. The geometric 

structure of SSUT ensures that the sigma points better 

capture the underlying state distribution while 

maintaining computational tractability, thereby 

significantly reducing linearization errors. Experimental 

results confirm the effectiveness of the proposed 
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approach. The SSUKF achieves superior RMSE 

performance in position estimation, with a minimum 

RMSE of 0.1614 m-substantially lower than those of 

UKF (0.3371 m) and EKF (0.4271 m). In addition, 

SSUKF demonstrates high accuracy in velocity 

estimation, attaining a minimum RMSE of only 0.0501 m 

per second. These results validate the robustness and 

precision of SSUKF in handling high-noise and highly 

nonlinear navigation scenarios. 

To further enhance the accuracy and generalization 

capability of the TDOA positioning method, this study 

employs the FA to optimize the param of the RBF neural 

network. Compared with commonly used optimization 

techniques such as GAs and PSO, FA operates based on 

a brightness-attraction mechanism that enables dynamic 

balancing between global exploration and local 

exploitation. This results in more flexible search 

trajectories and improved convergence behavior. The 

iterative multi-agent updates guided by brightness 

differences also allow FA to escape local optima 

effectively in complex, non-convex loss landscapes, 

thereby mitigating the risk of premature convergence. In 

contrast to GA, which relies on crossover and mutation 

operations, FA requires fewer control param and exhibits 

faster convergence rates, making it well-suited for real-

time optimization tasks in dynamic environments. In 

high-dimensional continuous parameter spaces, FA 

demonstrates strong adaptability and precision, enabling 

effective tuning of key RBF network param, including the 

centers, weights, and widths. Experimental results 

confirm the effectiveness of this approach. The SSUKF-

FA-RBF model consistently achieves the lowest RMSE 

and MAE across all tested standard deviation conditions. 

Under high-noise conditions, with a measurement 

standard deviation of 0.5 m, the model achieves an RMSE 

of only 0.127 m-significantly outperforming unoptimized 

RBF-based models such as EKF-RBF, which records an 

RMSE of 0.317 m. Furthermore, the error growth curve 

of the SSUKF-FA-RBF model remains smooth and stable, 

reflecting its strong robustness and reliability in noisy 

environments. 

Despite the outstanding performance of the 

proposed SSUKF-FA-RBF model in simulation 

environments, several limitations remain with regard to 

real-world applications. In terms of data environments, 

the UWB TDOA dataset employed in this study reflects 

a typical indoor localization scenario characterized by 

relatively stable channel conditions. However, the 

model's adaptability to outdoor environments, 

particularly in cases involving frequent GNSS signal 

obstruction or dynamic signal switching, requires further 

empirical validation. Regarding scalability and 

computational cost, although the FA demonstrates faster 

convergence than traditional methods such as GAs and 

PSO, real-time iterative optimization in large-scale multi-

agent systems-such as vehicular networks or robotic 

swarms-may still impose considerable computational 

burdens. From the perspective of input adaptability, the 

current model is specifically designed for TDOA signal 

features. When extended to other signal modalities such 

as Wi-Fi, ultrasound, or vision-based systems, input 

features would require redefinition, and the neural 

network architecture might need structural adjustments to 

maintain performance. In terms of hardware deployment, 

the model is designed for execution on devices with 

moderate computational capabilities, such as edge 

computing nodes or embedded systems. For highly 

resource-constrained or low-power devices, model 

compression or lightweight adaptation strategies would 

be essential to enable efficient deployment. This study 

introduces the SSUKF filter by integrating the SSUT into 

the traditional UKF framework, thereby significantly 

improving filtering accuracy and stability under 

nonlinear and high-noise conditions. Furthermore, the 

incorporation of an FA-optimized RBF neural network 

enhances the overall performance of the TDOA 

localization system, enabling it to maintain low 

positioning errors even in complex and noisy 

environments. Compared with existing methods, the 

proposed approach not only delivers substantial 

improvements in accuracy and robustness but also offers 

favorable computational efficiency, underscoring its 

practical potential and engineering applicability in real-

time navigation and localization systems. 

5 Conclusion 
This study compares the positioning performance of 

various KF algorithms within an integrated navigation 

system. The results demonstrate that the proposed 

SSUKF algorithm achieves outstanding positioning 

accuracy. Specifically, the mean position error of SSUKF 

is 0.3172 m, which is significantly lower than those of 

other evaluated algorithms. Additionally, the RMSE of 

SSUKF reaches 0.1614 m, further confirming its superior 

precision. These results indicate that SSUKF effectively 

enhances positioning accuracy by reducing error 

fluctuations and improving overall estimation stability. In 

velocity estimation, SSUKF also outperforms 

comparison algorithms, with a mean velocity error of 

0.0103 m per second and a correspondingly lower RMSE, 

highlighting its advantage in high-precision dynamic 

state estimation. From a computational perspective, 

SSUKF achieves a processing time of 7.69 seconds, 

underscoring its efficiency in reducing computational 

load and supporting real-time applications. Following 

optimization of the TDOA method, the combined models 

SSUKF-RBF and SSUKF-FA-RBF exhibit excellent 

positioning accuracy and robustness under varying 

measurement noise levels. Particularly under high 

measurement standard deviations, SSUKF-FA-RBF 

outperforms other models, maintaining superior accuracy 

and exhibiting a slower error growth rate as noise 

increases. Across all test conditions, SSUKF-FA-RBF 

consistently achieves high accuracy, precision, and area 

under the curve metrics. Notably, it demonstrates 

exceptional robustness and stability in both low-error and 

high-error scenarios, validating its effectiveness for 

practical positioning tasks in complex and noisy 

environments. 

Although this study has demonstrated the high 

accuracy and robustness of the SSUKF-FA-RBF model 
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for indoor TDOA localization, several limitations remain. 

First, the current model does not incorporate multi-sensor 

fusion mechanisms. In practical applications such as 

GPS-denied environments (e.g., underground spaces, 

tunnels, or dense urban canyons) and scenarios involving 

rapid dynamic changes (e.g., complex urban traffic or 

moving obstacles), reliance on a single sensor modality 

may compromise system stability and accuracy. Second, 

the model has not yet been extended to integrate 

heterogeneous information sources such as visual sensors 

or LiDAR, nor has it been adapted for six-degree-of-

freedom (6-DoF) pose estimation or multi-agent 

cooperative localization. These limitations restrict its 

applicability in broader global navigation and large-scale 

mobile system contexts. Future research directions may 

include the development of multi-source fusion 

frameworks that combine GNSS, IMUs, UWB, and 

vision-based sensors to improve adaptability and 

resilience in complex environments. Moreover, 

implementing adaptive estimation techniques with 

dynamic weighting schemes could enhance system 

robustness against abrupt interferences or sensor failures. 

Extending the algorithm to support 6-DoF pose 

estimation, enabling simultaneous position and 

orientation determination, as well as investigating 

cooperative localization strategies for multi-agent 

systems, would significantly benefit applications such as 

swarm robotics and intelligent vehicle fleets. 
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