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Detecting AI-generated classical music is a growing challenge as artificial intelligence continues to 

improve its ability to compose pieces that closely resemble human compositions. This study explores the 

use of deep learning methods like LSTM and CNN to classify whether a set of classical music is generated 

by AI or humans. The classification is based on sequential features extracted from MIDI files using beat-

based segmentation, capturing statistical data of pitch, velocity, and duration over segments. The model 

was trained on a dataset comprising both AI-generated and human compositions, incorporating fine-

tuning for optimal performance. Experimental results demonstrate that the proposed  LSTM-based model 

achieves 99.00% accuracy on the primary test set, with an additional evaluation on an auxiliary dataset 

yielding 98.70% accuracy, confirming its reliability and strong generalization ability. Meanwhile, the 

CNN-based model attains accuracy scores of 97.00% and 97.10% on the primary and auxiliary datasets, 

respectively. Evaluation using confusion matrices and classification reports further validate both models' 

effectiveness, showing minimal misclassification rates. These findings suggest that while both LSTM and 

CNN achieve high classification performance in detecting AI-generated classical music, LSTM 

outperforms CNN in classification accuracy. Future research could explore integrating additional 

musical features or testing the model by expanding the dataset to cover a broader range of compositions, 

further improving model robustness and applicability. 

Povzetek: Raziskava predstavi modela LSTM in CNN za zaznavanje AI-generirane klasične glasbe iz 

značilk MIDI. LSTM zajema zaporedne vzorce višine, hitrosti in trajanja tonov ter izkazuje odlično 

splošno zanesljivost. 

 

1 Introduction 
In recent decades, as artificial intelligence (AI) has been 

one of the most significant innovations in the music 

industry, the growing interest from musicians and 

computer scientists in AI-based automatic music 

generation has led to rapid advancements in the field, with 

major companies actively contributing to its development 

[1]. This progress has enabled AI to generate musical 

compositions that mimic the styles of renowned 

composers while also producing original pieces, as 

demonstrated in studies related to the Flow Machines 

project [2]. While this innovation might have brought 

positive impacts [3], it has also raised concerns among 

composers and musicians regarding the originality and 

copyright of musical works, as the existing laws lack 

clarity on the boundaries of musical originality [4]. These 

concerns also include potential copyright infringement, its 

impact on royalties, and the ethical use of AI in music [3], 

similar to the problems surrounding AI applications in 

other fields [5], [6]. 

In addition to the previously mentioned concerns, 

another challenge is the increasing difficulty of 

distinguishing between content created by AI and by  

 

humans. While this study focuses on music, similar 

limitations in human judgment have been observed in  

other creative domains. For example, research on visual 

artwork found that people tend to evaluate art more 

positively when they believe it was created by a human, 

even though all the artworks were generated by AI [7]. 

This indicates not only that AI-generated content can be 

indistinguishable from human-made work, but also that 

perceptions of quality are often shaped by who is believed 

to be the creator. Similar limitations have been found in 

other fields, such as text analysis, AI tools like ChatGPT, 

Gemini, and Llama are becoming increasingly advanced 

at generating texts, making it more sophisticated to 

distinguish from human-written content [8]. While 

numerous studies explore AI-generated content detection 

in fields such as text analysis and image processing [9], 

[10], [11], research on detecting AI-generated music 

remains inadequate. 

Since resources and prior research related to AI-

generated music detection are still lacking, narrowing the 

detection scope to a specific genre is a practical starting 

point, as each genre has its own style. In this study, 

classical music was chosen as the primary subject as it is 

one of the fundamental genres, and the fact that most 
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previous studies on AI-generated music have focused on 

this genre [12], [13]. As a result, more resources and 

references are available to support the better identification 

of AI-generated classical music in this study. 

Additionally, building on previous findings that humans 

increasingly struggle to distinguish AI-generated content 

from human-made works [7], this study proposes an AI 

based detection approach to improve identification 

accuracy. Another research has also demonstrated the 

potential of using deep learning on symbolic music data 

for generative tasks. For example, a study explored chord 

progression generation using feature-based neural 

networks trained on this type of data, reinforcing the 

relevance of feature extraction and modeling in symbolic 

music tasks [14]. 

LSTM (Long Short-Term Memory) is one of the 

widely used architectures in AI music generation tools due 

to its ability to process sequential data. LSTM networks 

are a type of recurrent neural network (RNN) capable of 

learning and remembering over long sequences, making 

them particularly effective for tasks involving sequential 

data, such as rhythm learning and music composition [15]. 

Fudholi et al., in their research on enhancing classical 

music composition using LSTM algorithms, demonstrated 

the model’s capability to learn complex musical 

structures, achieving an accuracy of 91.42% [16]. 

Although LSTM has primarily been used for music 

generation, its ability to capture long-term dependencies 

and recognize sequential patterns makes it a viable 

architecture for detecting AI-generated music.  

CNN (Convolutional Neural Network) has also been 

studied in music classification tasks due to its ability to 

extract meaningful patterns from structured data. Unlike 

LSTM, which excels in modeling temporal relationships, 

CNN uses spatial hierarchies to identify distinguishing 

features across different segments of input data [17]. 

While CNN is often used in audio-based music 

classification, studies have demonstrated that it is also 

effective in symbolic music analysis [18], [19]. Given its 

ability to recognize structural patterns, this study also 

evaluates a CNN-based approach as an alternative to 

LSTM for AI-generated classical music detection. Both 

LSTM and CNN architectures have demonstrated strong 

performance in domains involving structured and 

sequential data, such as mental health prediction [20] and 

symbolic music classification [21] reinforcing their 

suitability for this detection task.  Considering these 

findings, this study contributes an LSTM-based and CNN-

based approaches in detecting AI-generated classical 

music. 

The rest of this paper is structured as follows: Chapter 

2 reviews related works; Chapter 3 and 4 introduce the 

theoretical background of the LSTM and CNN 

architecture used in this study; Chapter 5 details the 

proposed methodology; Chapter 6 presents and analyzes 

the results in the context of this study; Chapter 7 discusses 

the study results compared to previous related studies; 

Chapter 8 summarizes the paper with suggestions for 

future research. 

2 Related works 
Afchar et al. [22] introduced the first general-purpose AI-

generated music detector using audio data, demonstrating 

its potential with an average detection accuracy of 97.4%. 

The result was achieved using a basic convolutional 

model, with the highest accuracy obtained when 

examining audio represented by amplitude-related 

features compared to other tested feature types. The study 

utilized a dataset containing around 25,000 music tracks 

across 16 genres. 

Li et al. [23] compared the stacked LSTM and Bi-

LSTM to distinguish AI-generated melodies from human-

composed ones by analyzing the MIDI features. While 

pitch, position, duration, and velocity were initially 

considered the most critical features of notes, they 

eventually focused on the first three, as the dataset's 

velocity values were unfortunately unusable for effective 

analysis. They trained their models using a dataset sourced 

from Reddit and evaluated them using data provided by 

the competition committee. Both of their proposed 

algorithms secured the top two positions in the 

competition, with the LSTM model achieving a higher 

AUC (Area Under the Curve) score of 0.8812. 

Deepak et al. [24] proposed an LSTM-based deep 

learning model to create a system for classifying different 

genres of music. To train and assess the model, the study 

used the GTZAN dataset, which comprises 1,000 audio 

tracks from ten distinct music genres. To efficiently 

handle the sequential nature of music data, the suggested 

model was composed of fully connected dense layers after 

recurrent LSTM layers. After 25 epochs of training, the 

system achieved an average accuracy of 96.17%. 

Kong et al. [25] developed a large-scale MIDI-based 

composer classification system using Convolutional 

Recurrent Neural Networks (CRNN). They employed 

piano, onset, and velocity rolls as input representations to 

capture various musical features from the MIDI. Utilizing 

the GiantMIDI-Piano dataset, they evaluated the system's 

performance on both 10-composer and 100-composer 

classification tasks using a variety of input feature 

combinations. The system demonstrated higher accuracy 

in the 10-composer classification, achieving an average 

accuracy of 62.02% when evaluated on 30-second clips 

and an improved accuracy of 69.64% when assessed on 

entire music pieces. 
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Table 1: A summary of related works. 

Literature Year Research 

Focus 

Model Dataset Limitation Average Result 

Afchar et 

al. [22] 

2025 AI-generated 

music detection 

using audio data 

CNN 25,000 

audio 

tracks 

Limited 

interpretability due 

to lack of explicit 

musical features 

using audio 

Accuracy AUC 

97.4% - 

Li et al. 

[23] 

2020 Distinguishing 

AI-generated 

melodies from 

human-

composed ones 

LSTM & 

BiLSTM 

10,000 

MIDI 

files 

Excluded velocity 

from final features 

due to dataset 

issues 

Accuracy AUC 

- 

88.12% 

(LSTM) 

80.32% 

(BiLSTM) 

Deepak et 

al. [24] 

2020 Music genre 

classification 

using audio data 

LSTM 1,000 

audio 

tracks 

Used simple note-

level inputs 

without modeling 

expressive or 

structural features 

Accuracy AUC 

96.17% - 

Kong et al. 

[25] 

2020  MIDI-based 

music composer 

classification 

CRNN 10,854 

MIDI 

files 

Relied on fixed-

grid input 

representation, 

which may 

misalign with 

expressive timing 

Accuracy AUC 

62.02% (30s) 

69.64% (full) 
- 

Compared to these studies, our work differs from 

previous research by highlighting several notable gaps. 

Afchar et al. [22] explicitly limited their focus to audio 

data, leaving symbolic or MIDI-based representations for 

future exploration. This presents a clear research 

opportunity in the symbolic domain, where event-level 

features such as pitch, duration, and velocity can be 

accessed directly, without being affected by performance 

or recording conditions. In contrast to Li et al. [23], who 

excluded velocity due to data limitations, our study retains 

velocity as a core expressive feature. We omit position, as 

our beat-based segmentation encodes rhythmic structure 

more effectively. Unlike Kong et al.’s study [25] which 

used fixed-grid representation that may misalign with 

expressive timing, our study adopts a beat-based 

segmentation approach, which allows features to align 

more naturally with musical timing and phrasing. 

3 LSTM architecture 
LSTM (Long Short-Term Memory) used in this study is a 

popular deep learning algorithm and a variant of Recurrent 

Neural Networks (RNNs). Unlike traditional regression 

methods, LSTM was designed to retain information over 

a lengthy period while discarding irrelevant data [26]. This 

algorithm is capable of handling sequential or time-related 

data by capturing both short-term and long-term 

dependency and modeling the complex, nonlinear 

relationship between variables. LSTM has also shown 

high effectiveness in various classification tasks involving 

time series data, further supporting its applicability in this 

context [27].Therefore, LSTM is well-suited for this study 

to learn musical patterns. As previously stated, musical 

features such as pitch, velocity, and duration can be 

extracted from MIDI files. By processing these features 

sequentially, LSTM can learn to identify underlying 

musical patterns, enabling it to differentiate between AI-

generated and human-composed music. Moreover, LSTM 

is more resilient to missing data, noise, and irregularities 

without requiring assumption validation or initial 

hypothesis formulation like statistical methods [28]. 

Architecturally, LSTM comprises memory cells or 

cell states that store information over extended periods. 

Three different gates manage these memory cells, 

controlling the flow of information within the network, as 

outlined below [29]. 

 

• Forget Gate (𝑓𝑡) controls part of the cell state 

ought to be forgotten. 

• Input Gate (𝑖𝑡) determines the new information 

to be kept later on. 

• Output Gate (𝑜𝑡) decides the output information 

produced by the cell state by combining the 

previous knowledge with the filtered new one. 

Since cell states in LSTM function as the core 

component that allows information to flow unchanged, 

each cell state follows the steps illustrated in Figure 1. 
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Figure 1: LSTM architecture. Source: [29], [30] 

In the LSTM architecture, calculations occur within 

each gate, where the carried information consists of the 

previous hidden state (ℎ𝑡−1) and the current input (𝑥𝑡). 
First, part of the cell state (𝐶𝑡−1) will go through the forget 

gate, where a sigmoid function will generate a value 

between 0 and 1. A value closer to 1 increases the 

likelihood of retaining the information, while a value 

closer to 0 increases the likelihood of discarding it. Next, 

the sigmoid layer of the input gate determines which 

information to update, followed by a tangent hyperbolic 

(𝑡𝑎𝑛ℎ) layer that outputs a candidate vector for the cell 

state. Cell state (𝐶𝑡) will then be updated by combining 

existing knowledge retained by the forget gate and new 

information selected by the input gate. Finally, the 

sigmoid layer of the output gate will decide which part of 

the cell state will be passed as the new hidden state (ℎ𝑡) 
for the next step in the network. 

4 CNN architecture 
CNN (Convolutional Neural Networks) offers an 

alternative approach to sequence modeling compared to 

LSTM. While LSTM excels at capturing long-term 

dependencies in sequential data, CNN focuses on learning 

local patterns through hierarchical feature extraction [31]. 

In music analysis, CNN can effectively identify structural 

patterns in symbolic music. By applying convolutional 

filters to MIDI features, CNN might be able to extract 

meaningful representations without relying on recurrent 

connections. 

Basic CNN model structure consists of a convolution 

layer, activation layer, pooling layer, and fully connected 

layer as shown in Figure 2. 

 

Figure 2: CNN architecture. Source: [32]. 

To extract feature maps, the first layer, known as the 

convolution layer, convolves the input pictures. There are 

some types of convolutional layers that are used 

commonly as listed below [33]. 

• Conv 1D is suitable for one-dimensional 

sequential data such as text and time-series data. 

• Conv 2D can be used to process audio and image 

applications. 

• Conv 3D is generally used for video and 

volumetric data. 

After the convolution operation extracts spatial 

patterns, the activation layer then adds non-linearity to 

these feature maps, allowing the network to learn 

complex, non-linear classifiers for the input data. Some of 

the commonly used activation functions are ReLU 

(Rectified Linear Unit), sigmoid, and tanh. The feature 

maps are then abstracted by the pooling layer, which also 

modifies their dimensions as needed. Lastly, the fully 

connected layer performs classification using data 

gathered from the pooling and convolution layers. 

5 Methodology 

5.1 Data collection 

The data collection involved gathering musical pieces 

from Hugging Face [34], JS Fake Chorales [35], and the 

Bach Doodle dataset from Magenta [36]. Only 

compositions by J.S. Bach were selected, as most publicly 

available AI-generated classical music datasets are based 

on his style. This ensures stylistic consistency, allowing 

the model to learn to detect music in the same style. The 

first two datasets were provided in MIDI format, while the 

Bach Doodle dataset is divided into 192 shards (000-191), 

each representing a separate shard of the overall dataset 

and can be downloaded via links. These shards enable 

researchers to download specific portions rather than the 

entire collection, improving data management efficiency. 

The Bach Doodle dataset was available in JSONL format, 

storing MIDI information as its values.  

In total, 5,000 samples were collected, maintaining a 

balanced 50:50 ratio between AI-generated and human-

composed pieces Specifically, two shards (e.g., 003 and 

075) from the Bach Doodle dataset were randomly 

selected, and 2,000 samples were extracted from each 

shard. To complete the dataset, another 500 samples were 

collected from the Hugging Face MIDI dataset and 500 

from the JS Fake dataset, resulting in a diverse and 

balanced collection. 

Additionally, an auxiliary dataset was collected from 

two randomly selected shards of the Bach Doodle dataset 

that were not used in the primary dataset. This ensured that 

there was no overlap between the primary and auxiliary 

sets. Then, 500 samples were selected from each shard. In 

total, the auxiliary dataset consisted of 1,000 samples, 

with an equal proportion of AI-generated and human-

composed music to maintain a balanced distribution. 

5.2 MIDI feature extraction 

Extracting the features of all the data required different 

approaches, as there are two types of file formats. 
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Although some data was not in MIDI format, its values 

contained MIDI-related information, allowing for a 

similar and more efficient feature extraction process. To 

ensure that the music features could serve as meaningful 

input for the model, the data was divided into multiple 

segments based on beats. The feature extraction process 

involved the following steps. 

• Beat extraction 

o For MIDI files, beats were extracted using a 

predefined library function. 

o For JSONL files, beats were computed 

based on each note’s start and end. 

o The beat list was sorted and deduplicated to 

maintain temporal order. 

• Beat based segmentation 

o The number of segments were determined 

by dividing the total beat count by a 

predefined 4 beats per segment, that aligns 

with the common practice in western music 

[37]. 

o For example, a piece with 40 beats would be 

divided into 10 segments. 

• Feature extraction 

o Three main features were extracted: pitch, 

velocity, and duration. 

o For MIDI files, these features were extracted 

using pretty_midi. 

o For JSONL files, these features were either 

directly provided as values or calculated 

when necessary (e.g., duration calculation 

by subtracting a note’s start time from its end 

time). 

As we use pitch, velocity, and duration in this study, 

so to understand the nature of the dataset, here are the 

analytics of the global statistics from all data for each 

feature. 

• Pitch ranged from 36 to 93, with the mean of 

65.77 and standard deviation of 8.39. 

• Velocity ranged from 24 to 127 with the mean of 

95.79 and standard deviation of 10.74. 

• Duration ranged from 0.0018s to 36.5s with the 

mean of 0.62s and standard deviation of 0.46s. 

These statistical data confirm that all three features 

carry meaningful variance and are suitable for 

downstream learning tasks. 

 

Figure 3: From top to bottom – Pitch, velocity, and 

duration trends in the first 5 seconds of a MIDI file. 

Figure 3 visualizes the features’ distribution example 

of one of the MIDI files over time in the first five seconds. 

Since these were sequential features, each was further 

processed to compute its mean, median, and standard 

deviation, resulting in a total of 9 features per segment. 

This statistical representation helps capture both the 

central tendencies and variations in musical patterns. Such 

statistical summarization methods have been shown to 

effectively represent musical data in symbolic music 

analysis tasks [38]. Mean values provide an overall 

summary of the feature distribution, the median helps 

mitigate the influence of extreme values, and the standard 

deviation quantifies the degree of variation within a 

segment. 

5.3 Data pre-processing 

The preprocessing process in this study was relatively 

brief. First, the extracted feature data was split into three 

sets with a 70:20:10 ratio for the training, validation, and 

test sets. This proportion was chosen to ensure the model 

had sufficient data to learn meaningful patterns (3,500 

samples) while also allocating enough for validation 

(1,000 samples) to fine-tune hyperparameters and for 

testing (500 samples) to evaluate performance. Given the 

dataset size of 5,000 samples, this split was considered a 

practical balance between model training and reliable 

evaluation. After separating the dataset, normalization 

was applied to standardize the extracted features (pitch, 

velocity, and duration), as they had different value ranges. 

While note velocity can often be imbalanced or noisy, this 

study did not apply explicit outlier removal. Instead, 

standardization was considered sufficient to reduce the 

influence of extreme values while preserving expressive 

dynamics, as the earlier analysis showed a reasonable 

velocity distribution. Features with zero variance were 

identified within the training set and ignored from further 

processing since their values remained constant and did 

not require normalization. Using a standard scaler, each 

feature was normalized to have a mean value of 0 and a 

standard deviation of 1. Finally, the data was reshaped into 

a 3D format to match the input requirements of the LSTM 

and CNN architecture, which consists of these data: 

• Samples – The number of samples. 

• Time steps – The number of segments in the 

piece.  

• Features – The number of features in each time 

step. 

5.4 Model implementation 

This study utilized two different models, one based on 

LSTM and the other on CNN. 

5.4.1 LSTM base model 

The LSTM-based model consists of four different layers, 

including the input, LSTM, dropout, and dense layers. 

Then to lessen overfitting, L2 regularization, often 

referred to as the Ridge penalty, was also applied to the 

LSTM and dense layers. L2 regularization encourages the 

model to control extreme weight values by penalizing the 
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loss function when the weights get too large. By 

maintaining smaller and well-balanced weights, the model 

reduces dependence on specific features, enhancing its 

generalization ability and reducing overfitting. 

The number of hidden units in the LSTM layer, 

dropout rate, and other architectural parameters were 

optimized through hyperparameter tuning. The search 

ranges and selected values are detailed in the 

hyperparameter tuning section. 

5.4.2 CNN base model 

While a basic CNN model typically consists of four main 

layers, the CNN-based model used in this study extends  

this structure to include six layers to improve performance 

and generalization. These six layers are input, Conv1D, 

MaxPooling1D, flatten, dropout, and dense. 

The input layer serves as the entry point for the 

segmented sequential data. Then, by employing ReLU 

activation to extract local patterns, the Conv1D layer helps 

the model learn complicated features effectively while 

avoiding the vanishing gradient issue. MaxPooling1D 

then downsamples the feature maps, reducing 

computational complexity and preserving essential 

information. The Flatten layer then converts the pooled 

feature maps into a one-dimensional vector, preparing the 

data for the fully connected layers. L2 regularization is 

then applied in the convolutional and dense layers to 

prevent overfitting. The dropout layer improves 

generalization by randomly deactivating neurons. Lastly, 

the dense layer with sigmoid activation classifies classical 

music as AI-generated or human-generated. 

The specific architectural parameters such as the 

number of filters, kernel size, dropout rate, and L2 

regularization strength were not fixed but optimized using 

a hyperparameter tuning process. The selected values and 

their respective search ranges are detailed in the 

hyperparameter tuning section. 

5.5 Hyperparameter tuning 

The training phase involved fine-tuning by utilizing 

different hyperparameter combinations. But first, to find 

the ideal hyperparameter configuration for the model, 

hyperparameter tuning was done using the training set. 

Hyperparameter tweaking by hand is a laborious, costly, 

and time-consuming process. Thus, this study used an 

automated approach offered by Keras Tuner, which is 

Bayesian Optimization. This hyperparameter tuning 

algorithm utilizes a probabilistic function to learn from 

past outcomes, allowing it to forecast and determine the 

next hyperparameter combination that is most likely to 

achieve optimal performance. 

Here, a multi-objective hyperparameter tuning 

approach was employed to optimize two key metrics: 

minimizing validation loss to reduce overfitting and 

maximizing validation accuracy to enhance model 

accuracy. Although these goals can sometimes conflict, 

with improvements in one not always leading to 

improvements in the other, the tuning process aimed to 

find a balanced trade-off. Each trial was evaluated based 

on a combined consideration of both metrics, rather than 

optimizing one in isolation. The model that achieved the 

most favorable balance between validation loss and 

accuracy was selected as the optimal configuration for 

further training. Before the tuning process began, 25 initial 

trials were conducted randomly to establish a baseline for 

Bayesian Optimization. These initial trials provided the 

algorithm with preliminary insights, enabling it to make 

more informed predictions in subsequent iterations. The 

hyperparameter tuning process itself was limited to 25 

trials, as Bayesian Optimization efficiently learns from 

past results, reducing the need for extensive 

experimentation and conserving computational resources. 

During hyperparameter tuning, each trial was set to 

run for up to 80 epochs. To prevent unnecessary 

computations and overfitting, early stopping was 

implemented, allowing training to halt at the optimal 

epoch. This early stopping strategy is based on validation 

loss, which serves as the main indicator for deciding when 

to end training. Although both validation loss and 

validation accuracy are monitored throughout the process, 

only the validation loss is used to trigger early stopping. 

This ensures that the model continues to improve in 

generalization and avoids overfitting. The method follows 

these steps.  

1. Monitoring 

Validation loss were tracked starting from at least 

three epochs. 

2. Best checkpoint 

• Once the epoch with the lowest validation 

loss is identified, training continues for three 

additional epochs. 

• If no improvement occurs, the model reverts 

to the best checkpoint and stops. 

• If a better epoch is found, the process resets, 

extending evaluation by another three 

epochs. 

3. Repetition 

The cycle repeats until no further improvements 

are observed, ensuring optimal performance. 

The best-performing model and its corresponding 

hyperparameter configuration are stored. Tables 2 and 3 

present the hyperparameter attributes, ranges, and optimal 

values identified through the tuning process for each 

model. The selected hyperparameter ranges, such as the 

number of units, dropout rates, and kernel sizes, were 

based on common practices reported in some prior studies 

across similar domains, ensuring a balanced search space 

without overly complicating the tuning process. 

Table 2: LSTM hyperparameter tuning results. 

Hyperparameter Range Best value 

lstm_units [16, 32, 64] 64 

lstm_regularizer 0.005 - 0.05 0.015 

dropout_rate 0.1 – 0.5 0.4 

dense_regularizer 0.005 - 0.05 0.01 

optimizer [adam, rmsprop] rmsprop 

batch_size [32, 64] 32 
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Table 3: CNN hyperparameter tuning results. 

Hyperparameter Range Best value 

filters [16, 32, 64] 64 

kernel_size [3, 5] 3 

cnn_regularizer 0.005 - 0.05 0.005 

dropout_rate 0.1 – 0.5 0.2 

dense_regularizer 0.005 - 0.05 0.005 

optimizer [adam, rmsprop] adam 

batch_size [32, 64] 32 

5.6 Fine-Tuning 

Following the hyperparameter tuning process, the best-

performing model from the optimal trial has been selected 

as the base model. Fine-tuning was then performed to 

further enhance the model’s generalization performance 

on unseen data using the prepared validation set for 

monitoring. Unlike hyperparameter tuning, which 

explores multiple configurations, fine-tuning focuses on 

refining the training of the selected model while 

preserving its architecture. The number of epochs was 

reduced to 30 based on insights from the tuning stage, 

where top-performing models consistently achieved their 

best results by around the 30th epoch. This reduction helps 

prevent overfitting and streamlines training without 

compromising performance. The batch size used matched 

the optimal value identified during tuning. Early stopping 

was also applied to monitor validation loss and halt 

training when no further improvement was observed. 

These focused adjustments allowed the model to converge 

more effectively using the best available settings, 

enhancing performance while minimizing overfitting risk. 

5.7 Implementation and replication details 

To support reproducibility and ensure that the experiments 

can be replicated by other researchers, this section outlines 

the software environment, core libraries, dataset sources, 

and code availability. All experiments were conducted on 

Google Colab’s cloud computing platform, which 

provided a 2-core Intel(R) Xeon(R) CPU @ 2.20GHz and 

13.61 GB of RAM. This configuration was sufficient for 

training and evaluating the deep learning models used in 

this study. 

The models were implemented using the following 

Python libraries and tools. 

• NumPy v2.0.2   

• Pandas v2.2.2   

• Matplotlib v3.10.0 

• TensorFlow v2.18.0 

• Keras v3.8.0 

• Keras Tuner v1.4.7 

• Scikit-learn v1.6.1 

• pretty_midi v0.2.10 

The dataset used in this study was compiled from the 

following publicly available sources. 

• Hugging Face dataset [34]: 

https://huggingface.co/datasets/drengskapur/mid

i-classical-music  

• JS Fake Chorales dataset [35]: 

https://github.com/omarperacha/js-fakes 

• Bach Doodle dataset by Magenta [36]: 

https://magenta.tensorflow.org/datasets/bach-

doodle 

All preprocessing scripts, model training pipelines, 

and hyperparameter tuning configurations are available in 

the accompanying code repository 

https://github.com/maecyntha/ai-classical-music-

detector. 

5.8 Evaluation 

In this study, the model was evaluated by using it to make 

predictions on the test set that was previously split during 

data preparation. A confusion matrix was then used to 

further analyze its performance. To validate the model 

reliability, it was also further tested on an auxiliary test set 

consisting of 1,000 samples from a different dataset. The 

confusion matrix for this auxiliary test set was also 

examined to assess the model’s generalization ability. 

6 Results and analysis 
After undergoing multiple stages of processing, the 

following section presents a detailed analysis of the 

results—beginning with hyperparameter tuning, followed 

by fine-tuning, and concluding with the final evaluation. 

The performance results are organized into two 

subsections, each focusing separately on the LSTM and 

CNN models, followed by a final subsection that 

compares the performance of both models. 

6.1 LSTM model performance 

This subsection presents the performance analysis of the 

LSTM model, covering hyperparameter tuning, fine-

tuning, and final evaluation.

https://github.com/maecyntha/ai-classical-music-detector
https://github.com/maecyntha/ai-classical-music-detector


298 Informatica 49 (2025) 291–304 M.I. Tantra et al. 

 

Figure 4: LSTM-based training & validation loss (left) and accuracy (right) over epochs.

Figure 4 illustrates the patterns in training and 

validation accuracy and loss throughout 31 epochs using 

LSTM-based model. As can be seen in the left plot, both 

curves exhibit a downward trend, indicating that the model 

progressively improves its predictions as training 

progresses, resulting in a lower loss. Despite minor 

fluctuations in validation loss, its close alignment with 

training loss suggests minimal overfitting. On the other 

hand, the right plot, representing the accuracy trends, 

demonstrates a consistent increase in accuracy, with a 

sharp rise between epochs 5 and 10 before stabilizing 

around 97%–98%. This indicates that the model learns 

effectively in the early stages and refines its predictions as 

training progresses. The overall results confirm that the 

chosen hyperparameters facilitate efficient learning, as 

reflected in the significant early improvements, stable 

high accuracy, and consistent reduction in loss. The lack 

of a widening gap between training and validation metrics 

suggests the model generalizes well, maintaining robust 

performance on unseen validation data. 

 

Figure 5: Fine-tuned LSTM-based training & validation loss (left) and accuracy (right) over epochs.

Figure 5 presents the performance of the fine-tuned 

model. In the left plot, which depicts training and 

validation loss, both losses continue to decrease steadily 

over 30 epochs. However, unlike the previous training 

phase during hyperparameter tuning, the two curves are 

not always closely aligned, suggesting slight discrepancies 

between the model’s performance on training and 

validation data. Despite this, the overall downward trend 

indicates effective fine-tuning without severe overfitting. 

Meanwhile, the right plot, showing training and validation 

accuracy, exhibits noticeable fluctuations, particularly in 

validation accuracy, which sometimes spikes or drops 

significantly. This variability suggests sensitivity to 

different validation batches. However, the general trend 

remains consistent with the training accuracy, maintaining 

a high range between 99.1% and 99.6%. These results 
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indicate that while fine-tuning enhances model 

performance, it introduces slight instability in validation 

accuracy. Nonetheless, the model maintains strong 

generalization, as reflected in the stable accuracy levels 

and continuous reduction in loss. 

 

Figure 6: Confusion matrix of the LSTM-based model's 

predictions on the test set. 

The model was then subsequently assessed using a 

specific test set prepared beforehand. The confusion 

matrix in Figure 6 illustrates that the model has a 

minimum number of false positives and false negatives, 

indicating strong predictive accuracy. This is further 

supported by the classification report, where the precision 

of 99.22% reflects the model's ability to make highly 

accurate predictions for both categories. A recall score of 

99.01% confirms its effectiveness in minimizing false 

negatives. Furthermore, the F1 score and overall accuracy 

of 99.00% demonstrate a well-balanced performance 

between precision and recall, ensuring reliable 

classification of both human and AI-generated 

compositions. 

To statistically validate this performance, a one-sided 

proportion z-test was conducted to evaluate whether the 

model's accuracy of 99.00% was significantly better than 

random guessing (50%). The resulting z-score was 

approximately 69.296, with a p-value of less than 0.00001. 

Since the p-value is far below the commonly accepted 

significance level of 0.05, we can confidently reject the 

null hypothesis and conclude that the model’s accuracy is 

statistically and significantly better than random 

classification. The entire training and validation process 

took approximately 21 minutes to complete. 

 

Figure 7: Confusion matrix of the LSTM-based model's 

predictions on the auxiliary test set. 

The model was further validated using an auxiliary 

test set of 1,000 samples from a different dataset to assess 

its reliability. As shown in Figure 7, the confusion matrix 

reveals misclassification rates of 1.8% for human 

compositions and 0.8% for AI-generated compositions. 

With an overall accuracy of 98.70%, the model also 

achieves 98.70% in precision, recall, and F1 score, 

indicating a well-balanced performance. These results 

confirm that the model generalizes effectively to unseen 

data, maintaining high accuracy while minimizing errors, 

further reinforcing its reliability in distinguishing between 

human and AI-generated classical music. 

6.2 CNN model performance 

This subsection provides the performance analysis of the 

CNN model, following the same evaluation stages as the 

LSTM model, from hyperparameter tuning to final 

evaluation.
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Figure 8: CNN-based training & validation loss (left) and accuracy (right) over epochs.

Figure 8 shows the CNN-based model's training and 

validation results across 31 epochs. The left plot shows a 

steady decline in training and validation loss, dropping 

from approximately 0.45 to below 0.20, indicating 

effective learning. Despite minor fluctuations, the 

validation loss remains closely aligned with the training 

loss, suggesting minimal overfitting. The plot on the right 

shows a steady rise in accuracy, improving quickly in the 

early epochs before leveling off at about 96% in the later 

phases. The consistent gap between training and 

validation accuracy further supports the model's strong 

generalization. These outcomes demonstrate how well the 

selected hyperparameters optimize the CNN model's 

learning process.

 

 

Figure 9: Fine-tuned CNN-based training & validation loss (left) and accuracy (right) over epochs.

Figure 9 illustrates the CNN model's performance 

during fine-tuning over five epochs. While validation loss 

stays comparatively constant at 0.1645, suggesting little 

improvement, training loss varies but tends to decline, as 

seen in the left plot.  

 

 

 

 

 

On the other hand, the right plot reveals significant 

accuracy variations, especially in validation accuracy, 

which momentarily declines at epoch 2 before leveling off 

at about 96.7%. These fluctuations imply that the model is 

sensitive to minor tweaks during fine-tuning. 
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Figure 10: Confusion matrix of the CNN-based model's 

predictions on the test set. 

Figure 10 displays the confusion matrix of the CNN 

model on the primary test set. With a high prediction 

accuracy, the model correctly identifies most examples; 

however, it misidentifies 14 human compositions as AI-

generated and one AI-generated composition as human. 

With a precision of 97.04% and a recall of 97.09%, the 

model demonstrates a balanced ability to differentiate the 

two groups. The model's durability in maintaining good 

classification performance is demonstrated by its 97.00% 

overall accuracy and F1 score.  

To confirm that the CNN model's 97.00% accuracy 

wasn’t due to random chance, we performed a one-sided 

proportion z-test against a 50% baseline representing 

random guessing. The test returned a z-score of 

approximately 66.468 and a p-value far below 0.00001. 

Since this p-value is well below the standard threshold of 

0.05, we rejected the null hypothesis, showing that the 

CNN model’s performance is statistically significant. The 

complete model training and validation ran for 

approximately six minutes. 

The confusion matrix for the CNN model that was 

evaluated using the extra dataset is shown in Figure 11. 

Despite misclassifying some pieces, the model continues 

to exhibit good classification performance. The model 

achieves an overall accuracy of 97.10%, with a precision 

of 97.18%, a recall score of 97.10%, and an F1 score of 

97.10%. These findings support the model's high 

reliability in distinguishing compositions created by 

humans and AI, as well as its capacity to generalize fresh 

data. 

6.3 Comparative analysis 

To provide a clearer comparison, Table 4 presents the 

classification performance of the LSTM and CNN models 

on the primary dataset. The LSTM model outperforms 

CNN in every metrics, with an accuracy of 99.00% as 

opposed to 97.00% for CNN. Additionally, LSTM retains 

a higher F1 score due to its superior precision and recall 

compared to CNN's. 

 

Figure 11: Confusion matrix of the CNN-based model's 

predictions on the auxiliary test set. 

These results indicate that while both models perform 

well, the LSTM model demonstrates superior 

classification capability, likely due to its ability to capture 

long-term dependencies in sequential data, which is 

crucial for distinguishing between AI-generated and 

human-generated classical music. 

Table 4: Comparison of classification performance 

metrics between LSTM and CNN. 

Model Accuracy Precision Recall 
F1 

Score 

LSTM 99.00% 99.22% 99.01% 99.00% 

CNN 97.00% 97.04% 97.09% 97.00% 

7 Discussion 
In this study, we achieve higher classification accuracy 

compared to previous works. Our first finding reinforces 

the effectiveness of LSTM-based models in capturing 

sequential dependencies in musical compositions. LSTM-

based models are particularly well-suited for symbolic 

music analysis because they are designed to model 

temporal dependencies over long sequences. This aligns 

with the nature of symbolic music, where patterns unfold 

over time and require memory of prior context. In contrast, 

CNN primarily focuses on capturing local patterns 

through convolutional filters and may struggle to retain 

the broader sequential context necessary for interpreting 

compositional flow, especially in music where long-range 

structure and phrasing are key to stylistic identity.  

Previously, Li et al. [23] have also proved that LSTMs 

effectively distinguish AI-generated melodies from 

human compositions, achieving high classification 

performance despite ignoring velocity due to dataset 

limitation. On the other hand, our approach includes 

velocity alongside pitch and duration, resulting in a more 

comprehensive representation of musical expression. This 

richer feature set appears to improve the model's ability to 
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distinguish AI-generated classical music from that 

composed by humans. 

Other than feature selection, our approach also differs 

in the representation of musical structures. Kong et al. [25] 

used piano rolls which rely on fixed time grids that divide 

time into uniform intervals regardless of the underlying 

musical context. This can lead to a misalignment between 

the grid and expressive timing in performances, especially 

when dealing with tempo changes, or uneven note 

spacing. On the other hand, our study uses beat-based 

segmentation which groups events based on musical beats 

rather than uniform time slices. This approach aligns more 

naturally with the timing and phrasing of music, allowing 

for a more accurate capture of rhythmic and expressive 

characteristics. As a result, it better preserves sequential 

dependencies that are important for classification, which 

may be blurred in fixed-grid representations. 

Furthermore, while studies such as Deepak et al. [24] 

have explored deep learning models for symbolic music 

classification, our results indicate that temporal modeling 

remains crucial when the goal is to detect AI-generated 

classical music. The strong performance of our model 

emphasizes the significance of capturing long-term 

dependencies in musical sequences. 

The CNN-based model utilized in this study aligns 

with the work of Afchar et al. [22], who used 

convolutional networks for AI-generated music 

recognition. However, whereas their study focused on 

amplitude-related audio features, our study, which focuses 

on symbolic music analysis using MIDI data, achieves 

higher accuracy. This distinction illustrates an intriguing 

difference between the two approaches: audio-based 

methods capture performance characteristics and timbral 

properties, whereas symbolic music analysis separates 

compositional structures, eliminating variations caused by 

recording conditions. Despite these differences, our CNN 

model produces competitive results, indicating that 

convolutional networks can effectively learn 

differentiating patterns from structured symbolic 

representations. 

These findings from both LSTM and CNN models 

suggest that other than the choice of model architecture, 

the way musical data is structured and represented 

significantly impacts the effectiveness of AI-generated 

classical music detection. 

8 Conclusion 
In this study, a detection system made to distinguish AI-

generated and human-generated classical music was 

successfully approached using LSTM and CNN 

algorithms. Through the experimental analysis, it was 

observed that both models demonstrated strong 

classification performance by achieving high accuracy, 

precision, recall, and F1 scores across multiple test sets. 

However, the results shows that LSTM performs better 

than CNN with minimal misclassification rates, indicating 

that the model is capable of effectively differentiating 

between the two composition types. This shows LSTM’s 

superior ability to capture sequential dependencies, which 

is crucial in this detection task. Further validation on an 

auxiliary test set, which maintained a high level of 

accuracy, confirmed its robustness, suggesting strong 

generalization to unseen data. 

Despite these promising results, some limitations 

remain. We acknowledge that training the model on a 

dataset representing only a single compositional style, 

specifically the works of J.S. Bach, may introduce 

potential bias and limit the model’s generalizability to 

broader musical genres. Additionally, the dataset used in 

this study may not fully capture the diversity of musical 

styles and compositions, potentially limiting 

generalizability to more complex or unconventional 

pieces. To address these limitations, future research could 

expand the dataset to include compositions from a wider 

range of composers or styles. For improved robustness, 

incorporating AI-generated music that emulates 

contemporary, jazz, or pop artists may help capture cross-

genre characteristics. Furthermore, integrating more 

advanced musical attributes, including harmonic, timbral, 

and structural features, may also refine classification 

performance further. Eventually, these improvements 

would enhance the model’s versatility and reliability, 

paving the way for more comprehensive AI-driven music 

classification. Finally, while ROC curves and AUC scores 

were not included in this study due to the absence of 

probability outputs, future models with probabilistic 

predictions could leverage these tools for more nuanced 

performance evaluation. 
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