https://doi.org/10.31449/inf.v49i7.8781

Informatica 49 (2025) 291-304 291

LSTM and CNN-Based Detection of Al-Generated Classical Music

From MIDI Features

Maecyntha Irelynn Tantra, Arya Wicaksana®

Department of Informatics, Universitas Multimedia Nusantara, Tangerang 15810, Banten, Indonesia
E-mail: maecyntha.irelynn@student.umn.ac.id, arya.wicaksana@umn.ac.id

*Corresponding author

Keywords: Al-generated music, Bach, classic music, CNN, detection, LSTM, MIDI

Received: April 2, 2025

Detecting Al-generated classical music is a growing challenge as artificial intelligence continues to
improve its ability to compose pieces that closely resemble human compositions. This study explores the
use of deep learning methods like LSTM and CNN to classify whether a set of classical music is generated
by Al or humans. The classification is based on sequential features extracted from MIDI files using beat-
based segmentation, capturing statistical data of pitch, velocity, and duration over segments. The model
was trained on a dataset comprising both Al-generated and human compositions, incorporating fine-
tuning for optimal performance. Experimental results demonstrate that the proposed LSTM-based model
achieves 99.00% accuracy on the primary test set, with an additional evaluation on an auxiliary dataset
yielding 98.70% accuracy, confirming its reliability and strong generalization ability. Meanwhile, the
CNN-based model attains accuracy scores of 97.00% and 97.10% on the primary and auxiliary datasets,
respectively. Evaluation using confusion matrices and classification reports further validate both models'
effectiveness, showing minimal misclassification rates. These findings suggest that while both LSTM and
CNN achieve high classification performance in detecting Al-generated classical music, LSTM
outperforms CNN in classification accuracy. Future research could explore integrating additional
musical features or testing the model by expanding the dataset to cover a broader range of compositions,
further improving model robustness and applicability.

Povzetek: Raziskava predstavi modela LSTM in CNN za zaznavanje Al-generirane klasicne glasbe iz
znacilk MIDI. LSTM zajema zaporedne vzorce visine, hitrosti in trajanja tonov ter izkazuje odlicno

splosno zanesljivost.

1 Introduction

In recent decades, as artificial intelligence (Al) has been
one of the most significant innovations in the music
industry, the growing interest from musicians and
computer scientists in Al-based automatic music
generation has led to rapid advancements in the field, with
major companies actively contributing to its development
[1]. This progress has enabled Al to generate musical
compositions that mimic the styles of renowned
composers while also producing original pieces, as
demonstrated in studies related to the Flow Machines
project [2]. While this innovation might have brought
positive impacts [3], it has also raised concerns among
composers and musicians regarding the originality and
copyright of musical works, as the existing laws lack
clarity on the boundaries of musical originality [4]. These
concerns also include potential copyright infringement, its
impact on royalties, and the ethical use of Al in music [3],
similar to the problems surrounding Al applications in
other fields [5], [6].

In addition to the previously mentioned concerns,
another challenge is the increasing difficulty of
distinguishing between content created by Al and by

humans. While this study focuses on music, similar
limitations in human judgment have been observed in
other creative domains. For example, research on visual
artwork found that people tend to evaluate art more
positively when they believe it was created by a human,
even though all the artworks were generated by Al [7].
This indicates not only that Al-generated content can be
indistinguishable from human-made work, but also that
perceptions of quality are often shaped by who is believed
to be the creator. Similar limitations have been found in
other fields, such as text analysis, Al tools like ChatGPT,
Gemini, and Llama are becoming increasingly advanced
at generating texts, making it more sophisticated to
distinguish from human-written content [8]. While
numerous studies explore Al-generated content detection
in fields such as text analysis and image processing [9],
[10], [11], research on detecting Al-generated music
remains inadequate.

Since resources and prior research related to Al-
generated music detection are still lacking, narrowing the
detection scope to a specific genre is a practical starting
point, as each genre has its own style. In this study,
classical music was chosen as the primary subject as it is
one of the fundamental genres, and the fact that most

mailto:maecyntha.irelynn@student.umn.ac.id
mailto:arya.wicaksana@umn.ac.id

292 Informatica 49 (2025) 291-304

previous studies on Al-generated music have focused on
this genre [12], [13]. As a result, more resources and
references are available to support the better identification
of Al-generated classical music in this study.
Additionally, building on previous findings that humans
increasingly struggle to distinguish Al-generated content
from human-made works [7], this study proposes an Al
based detection approach to improve identification
accuracy. Another research has also demonstrated the
potential of using deep learning on symbolic music data
for generative tasks. For example, a study explored chord
progression generation using feature-based neural
networks trained on this type of data, reinforcing the
relevance of feature extraction and modeling in symbolic
music tasks [14].

LSTM (Long Short-Term Memory) is one of the
widely used architectures in Al music generation tools due
to its ability to process sequential data. LSTM networks
are a type of recurrent neural network (RNN) capable of
learning and remembering over long sequences, making
them particularly effective for tasks involving sequential
data, such as rhythm learning and music composition [15].
Fudholi et al., in their research on enhancing classical
music composition using LSTM algorithms, demonstrated
the model’s capability to learn complex musical
structures, achieving an accuracy of 91.42% [16].
Although LSTM has primarily been used for music
generation, its ability to capture long-term dependencies
and recognize sequential patterns makes it a viable
architecture for detecting Al-generated music.

CNN (Convolutional Neural Network) has also been
studied in music classification tasks due to its ability to
extract meaningful patterns from structured data. Unlike
LSTM, which excels in modeling temporal relationships,
CNN uses spatial hierarchies to identify distinguishing
features across different segments of input data [17].
While CNN is often used in audio-based music
classification, studies have demonstrated that it is also
effective in symbolic music analysis [18], [19]. Given its
ability to recognize structural patterns, this study also
evaluates a CNN-based approach as an alternative to
LSTM for Al-generated classical music detection. Both
LSTM and CNN architectures have demonstrated strong
performance in domains involving structured and
sequential data, such as mental health prediction [20] and
symbolic music classification [21] reinforcing their
suitability for this detection task. Considering these
findings, this study contributes an LSTM-based and CNN-
based approaches in detecting Al-generated classical
music.

The rest of this paper is structured as follows: Chapter
2 reviews related works; Chapter 3 and 4 introduce the

M.I. Tantra et al.

theoretical background of the LSTM and CNN
architecture used in this study; Chapter 5 details the
proposed methodology; Chapter 6 presents and analyzes
the results in the context of this study; Chapter 7 discusses
the study results compared to previous related studies;
Chapter 8 summarizes the paper with suggestions for
future research.

2 Related works

Afchar et al. [22] introduced the first general-purpose Al-
generated music detector using audio data, demonstrating
its potential with an average detection accuracy of 97.4%.
The result was achieved using a basic convolutional
model, with the highest accuracy obtained when
examining audio represented by amplitude-related
features compared to other tested feature types. The study
utilized a dataset containing around 25,000 music tracks
across 16 genres.

Li et al. [23] compared the stacked LSTM and Bi-
LSTM to distinguish Al-generated melodies from human-
composed ones by analyzing the MIDI features. While
pitch, position, duration, and velocity were initially
considered the most critical features of notes, they
eventually focused on the first three, as the dataset's
velocity values were unfortunately unusable for effective
analysis. They trained their models using a dataset sourced
from Reddit and evaluated them using data provided by
the competition committee. Both of their proposed
algorithms secured the top two positions in the
competition, with the LSTM model achieving a higher
AUC (Area Under the Curve) score of 0.8812.

Deepak et al. [24] proposed an LSTM-based deep
learning model to create a system for classifying different
genres of music. To train and assess the model, the study
used the GTZAN dataset, which comprises 1,000 audio
tracks from ten distinct music genres. To efficiently
handle the sequential nature of music data, the suggested
model was composed of fully connected dense layers after
recurrent LSTM layers. After 25 epochs of training, the
system achieved an average accuracy of 96.17%.

Kong et al. [25] developed a large-scale MIDI-based
composer classification system using Convolutional
Recurrent Neural Networks (CRNN). They employed
piano, onset, and velocity rolls as input representations to
capture various musical features from the MIDI. Utilizing
the GiantMIDI-Piano dataset, they evaluated the system's
performance on both 10-composer and 100-composer
classification tasks using a variety of input feature
combinations. The system demonstrated higher accuracy
in the 10-composer classification, achieving an average
accuracy of 62.02% when evaluated on 30-second clips
and an improved accuracy of 69.64% when assessed on
entire music pieces.

LSTM and CNN-Based Detection of Al-Generated Classical Music...

Informatica 49 (2025) 291-304 293

Table 1: A summary of related works.

Literature | Year Research Model | Dataset Limitation Average Result
Focus
Afcharet | 2025 | Al-generated CNN 25,000 Limited Accuracy AUC
al. [22] music detection audio interpretability due
using audio data tracks to lack of explicit
musical features 97.4% -
using audio
Lietal. 2020 | Distinguishing | LSTM & | 10,000 | Excluded velocity Accuracy AUC
[23] Al-generated BiLSTM MIDI from final features
melodies from files due to dataset 88.12%
human- issues (LSTM)
composed ones i 80.32%
(BILSTM)
Deepak et | 2020 | Music genre LSTM 1,000 Used simple note- Accuracy AUC
al. [24] classification audio level inputs
using audio data tracks without modeling
expressive or 96.17% -
structural features
Kong etal. | 2020 MIDI-based CRNN 10,854 Relied on fixed- Accuracy AUC
[25] music composer MIDI grid input
classification files representation,
misalign with 69.64% (full)

Compared to these studies, our work differs from
previous research by highlighting several notable gaps.
Afchar et al. [22] explicitly limited their focus to audio
data, leaving symbolic or MIDI-based representations for
future exploration. This presents a clear research
opportunity in the symbolic domain, where event-level
features such as pitch, duration, and velocity can be
accessed directly, without being affected by performance
or recording conditions. In contrast to Li et al. [23], who
excluded velocity due to data limitations, our study retains
velocity as a core expressive feature. We omit position, as
our beat-based segmentation encodes rhythmic structure
more effectively. Unlike Kong et al.’s study [25] which
used fixed-grid representation that may misalign with
expressive timing, our study adopts a beat-based
segmentation approach, which allows features to align
more naturally with musical timing and phrasing.

3 LSTM architecture

LSTM (Long Short-Term Memory) used in this study is a
popular deep learning algorithm and a variant of Recurrent
Neural Networks (RNNs). Unlike traditional regression
methods, LSTM was designed to retain information over
a lengthy period while discarding irrelevant data [26]. This
algorithm is capable of handling sequential or time-related
data by capturing both short-term and long-term
dependency and modeling the complex, nonlinear
relationship between variables. LSTM has also shown
high effectiveness in various classification tasks involving
time series data, further supporting its applicability in this
context [27].Therefore, LSTM is well-suited for this study

expressive timing

to learn musical patterns. As previously stated, musical
features such as pitch, velocity, and duration can be
extracted from MIDI files. By processing these features
sequentially, LSTM can learn to identify underlying
musical patterns, enabling it to differentiate between Al-
generated and human-composed music. Moreover, LSTM
is more resilient to missing data, noise, and irregularities
without requiring assumption validation or initial
hypothesis formulation like statistical methods [28].

Acrchitecturally, LSTM comprises memory cells or
cell states that store information over extended periods.
Three different gates manage these memory cells,
controlling the flow of information within the network, as
outlined below [29].

e Forget Gate (f;) controls part of the cell state
ought to be forgotten.

e Input Gate (i;) determines the new information
to be kept later on.

e Output Gate (o0,) decides the output information
produced by the cell state by combining the
previous knowledge with the filtered new one.

Since cell states in LSTM function as the core

component that allows information to flow unchanged,
each cell state follows the steps illustrated in Figure 1.

294 Informatica 49 (2025) 291-304

hf‘
F'y
," LSTM Memory Cell “y
1
C ! Forgef gate Input gate : Quiput gate 1 > C
SR e T 2 B i
: 1 tanh :
i I—» ? v
1
' I i
I o o tanh o !
H]]] ') L,
L
h[1 3 |- r hf
~
i o e o e -

Figure 1: LSTM architecture. Source: [29], [30]

In the LSTM architecture, calculations occur within
each gate, where the carried information consists of the
previous hidden state (h,_;) and the current input (x.).
First, part of the cell state (C,_,) will go through the forget
gate, where a sigmoid function will generate a value
between 0 and 1. A value closer to 1 increases the
likelihood of retaining the information, while a value
closer to 0 increases the likelihood of discarding it. Next,
the sigmoid layer of the input gate determines which
information to update, followed by a tangent hyperbolic
(tanh) layer that outputs a candidate vector for the cell
state. Cell state (C;) will then be updated by combining
existing knowledge retained by the forget gate and new
information selected by the input gate. Finally, the
sigmoid layer of the output gate will decide which part of
the cell state will be passed as the new hidden state (h;)
for the next step in the network.

4 CNN architecture

CNN (Convolutional Neural Networks) offers an
alternative approach to sequence modeling compared to
LSTM. While LSTM excels at capturing long-term
dependencies in sequential data, CNN focuses on learning
local patterns through hierarchical feature extraction [31].
In music analysis, CNN can effectively identify structural
patterns in symbolic music. By applying convolutional
filters to MIDI features, CNN might be able to extract
meaningful representations without relying on recurrent
connections.

Basic CNN model structure consists of a convolution
layer, activation layer, pooling layer, and fully connected

layer as shown in Figure 2.
Fully Connected

L%er
Convolution Activation Pooling

Input Layer Layer Layer Output

Backpropagation with Optimisation Algorithm

Figure 2: CNN architecture. Source: [32].

M.I. Tantra et al.

To extract feature maps, the first layer, known as the
convolution layer, convolves the input pictures. There are
some types of convolutional layers that are used
commonly as listed below [33].

e Conv 1D is suitable for one-dimensional

sequential data such as text and time-series data.

e Conv 2D can be used to process audio and image

applications.

e Conv 3D is generally used for video and

volumetric data.

After the convolution operation extracts spatial
patterns, the activation layer then adds non-linearity to
these feature maps, allowing the network to learn
complex, non-linear classifiers for the input data. Some of
the commonly used activation functions are RelLU
(Rectified Linear Unit), sigmoid, and tanh. The feature
maps are then abstracted by the pooling layer, which also
modifies their dimensions as needed. Lastly, the fully
connected layer performs classification using data
gathered from the pooling and convolution layers.

5 Methodology

5.1 Data collection

The data collection involved gathering musical pieces
from Hugging Face [34], JS Fake Chorales [35], and the
Bach Doodle dataset from Magenta [36]. Only
compositions by J.S. Bach were selected, as most publicly
available Al-generated classical music datasets are based
on his style. This ensures stylistic consistency, allowing
the model to learn to detect music in the same style. The
first two datasets were provided in MIDI format, while the
Bach Doodle dataset is divided into 192 shards (000-191),
each representing a separate shard of the overall dataset
and can be downloaded via links. These shards enable
researchers to download specific portions rather than the
entire collection, improving data management efficiency.
The Bach Doodle dataset was available in JSONL format,
storing MIDI information as its values.

In total, 5,000 samples were collected, maintaining a
balanced 50:50 ratio between Al-generated and human-
composed pieces Specifically, two shards (e.g., 003 and
075) from the Bach Doodle dataset were randomly
selected, and 2,000 samples were extracted from each
shard. To complete the dataset, another 500 samples were
collected from the Hugging Face MIDI dataset and 500
from the JS Fake dataset, resulting in a diverse and
balanced collection.

Additionally, an auxiliary dataset was collected from
two randomly selected shards of the Bach Doodle dataset
that were not used in the primary dataset. This ensured that
there was no overlap between the primary and auxiliary
sets. Then, 500 samples were selected from each shard. In
total, the auxiliary dataset consisted of 1,000 samples,
with an equal proportion of Al-generated and human-
composed music to maintain a balanced distribution.

5.2 MIDI feature extraction

Extracting the features of all the data required different
approaches, as there are two types of file formats.

LSTM and CNN-Based Detection of Al-Generated Classical Music...

Although some data was not in MIDI format, its values
contained MIDI-related information, allowing for a
similar and more efficient feature extraction process. To
ensure that the music features could serve as meaningful
input for the model, the data was divided into multiple
segments based on beats. The feature extraction process
involved the following steps.

e Beat extraction

o For MIDI files, beats were extracted using a
predefined library function.

o For JSONL files, beats were computed
based on each note’s start and end.

o The beat list was sorted and deduplicated to
maintain temporal order.

e Beat based segmentation

o The number of segments were determined
by dividing the total beat count by a
predefined 4 beats per segment, that aligns
with the common practice in western music
[37].

o Forexample, a piece with 40 beats would be
divided into 10 segments.

e Feature extraction

o Three main features were extracted: pitch,
velocity, and duration.

o For MIDI files, these features were extracted
using pretty_midi.

o For JSONL files, these features were either
directly provided as values or calculated
when necessary (e.g., duration calculation
by subtracting a note’s start time from its end
time).

As we use pitch, velocity, and duration in this study,
so to understand the nature of the dataset, here are the
analytics of the global statistics from all data for each
feature.

e Pitch ranged from 36 to 93, with the mean of

65.77 and standard deviation of 8.39.

e Velocity ranged from 24 to 127 with the mean of

95.79 and standard deviation of 10.74.

e Duration ranged from 0.0018s to 36.5s with the

mean of 0.62s and standard deviation of 0.46s.

These statistical data confirm that all three features
carry meaningful variance and are suitable for
downstream learning tasks.

Pitch over Time
80
s
—— Ritch

1 2 3 4 5
Time (s)

Pitch

Velocity over Time

85 1 —e— velocity
£e0
K
s

70

1 2 3 4 5

Time (s)

Duration over Time

0175 —e— Duration

£ 0us

0100

1 2 3 4 s
Time (s)

Figure 3: From top to bottom — Pitch, velocity, and
duration trends in the first 5 seconds of a MIDI file.

Informatica 49 (2025) 291-304 295

Figure 3 visualizes the features’ distribution example
of one of the MIDI files over time in the first five seconds.
Since these were sequential features, each was further
processed to compute its mean, median, and standard
deviation, resulting in a total of 9 features per segment.
This statistical representation helps capture both the
central tendencies and variations in musical patterns. Such
statistical summarization methods have been shown to
effectively represent musical data in symbolic music
analysis tasks [38]. Mean values provide an overall
summary of the feature distribution, the median helps
mitigate the influence of extreme values, and the standard
deviation quantifies the degree of variation within a
segment.

5.3 Data pre-processing

The preprocessing process in this study was relatively
brief. First, the extracted feature data was split into three
sets with a 70:20:10 ratio for the training, validation, and
test sets. This proportion was chosen to ensure the model
had sufficient data to learn meaningful patterns (3,500
samples) while also allocating enough for validation
(1,000 samples) to fine-tune hyperparameters and for
testing (500 samples) to evaluate performance. Given the
dataset size of 5,000 samples, this split was considered a
practical balance between model training and reliable
evaluation. After separating the dataset, normalization
was applied to standardize the extracted features (pitch,
velocity, and duration), as they had different value ranges.
While note velocity can often be imbalanced or noisy, this
study did not apply explicit outlier removal. Instead,
standardization was considered sufficient to reduce the
influence of extreme values while preserving expressive
dynamics, as the earlier analysis showed a reasonable
velocity distribution. Features with zero variance were
identified within the training set and ignored from further
processing since their values remained constant and did
not require normalization. Using a standard scaler, each
feature was normalized to have a mean value of 0 and a
standard deviation of 1. Finally, the data was reshaped into
a 3D format to match the input requirements of the LSTM
and CNN architecture, which consists of these data:

e Samples — The number of samples.

e Time steps — The number of segments in the

piece.
e Features — The number of features in each time
step.

5.4 Model implementation

This study utilized two different models, one based on
LSTM and the other on CNN.

5.4.1 LSTM base model

The LSTM-based model consists of four different layers,
including the input, LSTM, dropout, and dense layers.
Then to lessen overfitting, L2 regularization, often
referred to as the Ridge penalty, was also applied to the
LSTM and dense layers. L2 regularization encourages the
model to control extreme weight values by penalizing the

296 Informatica 49 (2025) 291-304

loss function when the weights get too large. By
maintaining smaller and well-balanced weights, the model
reduces dependence on specific features, enhancing its
generalization ability and reducing overfitting.

The number of hidden units in the LSTM layer,
dropout rate, and other architectural parameters were
optimized through hyperparameter tuning. The search
ranges and selected values are detailed in the
hyperparameter tuning section.

5.4.2 CNN base model

While a basic CNN model typically consists of four main
layers, the CNN-based model used in this study extends
this structure to include six layers to improve performance
and generalization. These six layers are input, ConviD,
MaxPooling1D, flatten, dropout, and dense.

The input layer serves as the entry point for the
segmented sequential data. Then, by employing ReLU
activation to extract local patterns, the Conv1D layer helps
the model learn complicated features effectively while
avoiding the vanishing gradient issue. MaxPooling1lD
then downsamples the feature maps, reducing
computational complexity and preserving essential
information. The Flatten layer then converts the pooled
feature maps into a one-dimensional vector, preparing the
data for the fully connected layers. L2 regularization is
then applied in the convolutional and dense layers to
prevent overfitting. The dropout layer improves
generalization by randomly deactivating neurons. Lastly,
the dense layer with sigmoid activation classifies classical
music as Al-generated or human-generated.

The specific architectural parameters such as the
number of filters, kernel size, dropout rate, and L2
regularization strength were not fixed but optimized using
a hyperparameter tuning process. The selected values and
their respective search ranges are detailed in the
hyperparameter tuning section.

5.5 Hyperparameter tuning

The training phase involved fine-tuning by utilizing
different hyperparameter combinations. But first, to find
the ideal hyperparameter configuration for the model,
hyperparameter tuning was done using the training set.
Hyperparameter tweaking by hand is a laborious, costly,
and time-consuming process. Thus, this study used an
automated approach offered by Keras Tuner, which is
Bayesian Optimization. This hyperparameter tuning
algorithm utilizes a probabilistic function to learn from
past outcomes, allowing it to forecast and determine the
next hyperparameter combination that is most likely to
achieve optimal performance.

Here, a multi-objective hyperparameter tuning
approach was employed to optimize two key metrics:
minimizing validation loss to reduce overfitting and
maximizing validation accuracy to enhance model
accuracy. Although these goals can sometimes conflict,
with improvements in one not always leading to
improvements in the other, the tuning process aimed to
find a balanced trade-off. Each trial was evaluated based
on a combined consideration of both metrics, rather than

M.I. Tantra et al.

optimizing one in isolation. The model that achieved the
most favorable balance between validation loss and
accuracy was selected as the optimal configuration for
further training. Before the tuning process began, 25 initial
trials were conducted randomly to establish a baseline for
Bayesian Optimization. These initial trials provided the
algorithm with preliminary insights, enabling it to make
more informed predictions in subsequent iterations. The
hyperparameter tuning process itself was limited to 25
trials, as Bayesian Optimization efficiently learns from
past results, reducing the need for extensive
experimentation and conserving computational resources.

During hyperparameter tuning, each trial was set to
run for up to 80 epochs. To prevent unnecessary
computations and overfitting, early stopping was
implemented, allowing training to halt at the optimal
epoch. This early stopping strategy is based on validation
loss, which serves as the main indicator for deciding when
to end training. Although both validation loss and
validation accuracy are monitored throughout the process,
only the validation loss is used to trigger early stopping.
This ensures that the model continues to improve in
generalization and avoids overfitting. The method follows
these steps.

1. Monitoring

Validation loss were tracked starting from at least

three epochs.

2. Best checkpoint

e Once the epoch with the lowest validation
loss is identified, training continues for three
additional epochs.

e If no improvement occurs, the model reverts
to the best checkpoint and stops.

o If a better epoch is found, the process resets,
extending evaluation by another three
epochs.

3. Repetition
The cycle repeats until no further improvements
are observed, ensuring optimal performance.
The best-performing model and its corresponding
hyperparameter configuration are stored. Tables 2 and 3
present the hyperparameter attributes, ranges, and optimal
values identified through the tuning process for each
model. The selected hyperparameter ranges, such as the
number of units, dropout rates, and kernel sizes, were
based on common practices reported in some prior studies
across similar domains, ensuring a balanced search space
without overly complicating the tuning process.

Table 2: LSTM hyperparameter tuning results.

Hyperparameter Range Best value
Istm_units [16, 32, 64] 64
Istm_regularizer 0.005 - 0.05 0.015
dropout_rate 0.1-05 0.4
dense_regularizer 0.005 - 0.05 0.01
optimizer [adam, rmsprop] rmsprop
batch_size [32, 64] 32

LSTM and CNN-Based Detection of Al-Generated Classical Music...

Table 3: CNN hyperparameter tuning results.

Hyperparameter Range Best value
filters [16, 32, 64] 64
kernel_size [3, 5] 3
cnn_regularizer 0.005 - 0.05 0.005
dropout_rate 0.1-05 0.2
dense_regularizer 0.005 - 0.05 0.005
optimizer [adam, rmsprop] adam
batch_size [32, 64] 32

5.6 Fine-Tuning

Following the hyperparameter tuning process, the best-
performing model from the optimal trial has been selected
as the base model. Fine-tuning was then performed to
further enhance the model’s generalization performance
on unseen data using the prepared validation set for
monitoring. Unlike hyperparameter tuning, which
explores multiple configurations, fine-tuning focuses on
refining the training of the selected model while
preserving its architecture. The number of epochs was
reduced to 30 based on insights from the tuning stage,
where top-performing models consistently achieved their
best results by around the 30th epoch. This reduction helps
prevent overfitting and streamlines training without
compromising performance. The batch size used matched
the optimal value identified during tuning. Early stopping
was also applied to monitor validation loss and halt
training when no further improvement was observed.
These focused adjustments allowed the model to converge
more effectively using the best available settings,
enhancing performance while minimizing overfitting risk.

5.7 Implementation and replication details

To support reproducibility and ensure that the experiments
can be replicated by other researchers, this section outlines
the software environment, core libraries, dataset sources,
and code availability. All experiments were conducted on
Google Colab’s cloud computing platform, which
provided a 2-core Intel(R) Xeon(R) CPU @ 2.20GHz and
13.61 GB of RAM. This configuration was sufficient for
training and evaluating the deep learning models used in
this study.

The models were implemented using the following
Python libraries and tools.

e NumPyv2.0.2

Informatica 49 (2025) 291-304 297

Pandas v2.2.2
Matplotlib v3.10.0
TensorFlow v2.18.0
Keras v3.8.0

Keras Tuner v1.4.7
Scikit-learn v1.6.1
pretty_midi v0.2.10

The dataset used in this study was compiled from the

following publicly available sources.

e Hugging Face dataset [34]:
https://huggingface.co/datasets/drengskapur/mid
i-classical-music

e JS Fake Chorales dataset
https://github.com/omarperacha/js-fakes

e Bach Doodle dataset by Magenta [36]:
https://magenta.tensorflow.org/datasets/bach-
doodle

All preprocessing scripts, model training pipelines,

and hyperparameter tuning configurations are available in
the accompanying code repository
https://github.com/maecyntha/ai-classical-music-
detector.

[35]:

5.8 Evaluation

In this study, the model was evaluated by using it to make
predictions on the test set that was previously split during
data preparation. A confusion matrix was then used to
further analyze its performance. To validate the model
reliability, it was also further tested on an auxiliary test set
consisting of 1,000 samples from a different dataset. The
confusion matrix for this auxiliary test set was also
examined to assess the model’s generalization ability.

6 Results and analysis

After undergoing multiple stages of processing, the
following section presents a detailed analysis of the
results—beginning with hyperparameter tuning, followed
by fine-tuning, and concluding with the final evaluation.
The performance results are organized into two
subsections, each focusing separately on the LSTM and
CNN models, followed by a final subsection that
compares the performance of both models.

6.1 LSTM model performance

This subsection presents the performance analysis of the
LSTM model, covering hyperparameter tuning, fine-
tuning, and final evaluation.

https://github.com/maecyntha/ai-classical-music-detector
https://github.com/maecyntha/ai-classical-music-detector

298 Informatica 49 (2025) 291-304

Training & Validation Loss

—— Training Loss
0.6 Validation Loss
0.5
0.4
&
|
0.3
0.2 4
AN
H“"-.
Tl _
0.1 A R
“‘\/‘*‘-.___.____ -
T T T T T T T
0 5 10 15 20 25 30
Epochs

M.I. Tantra et al.

Training & Validation Accuracy

1.000 +

7—~<

4%
/_/\/—"ﬂf\/“’\'

0.975 A
0.950 A
0.925 A

0.200 -

Accuracy

0.875 A

0.850 A

—— Training Accuracy

0.825 A Validation Accuracy

10 15 20 25
Epochs

T
30

Figure 4: LSTM-based training & validation loss (left) and accuracy (right) over epochs.

Figure 4 illustrates the patterns in training and
validation accuracy and loss throughout 31 epochs using
LSTM-based model. As can be seen in the left plot, both
curves exhibit a downward trend, indicating that the model
progressively improves its predictions as training
progresses, resulting in a lower loss. Despite minor
fluctuations in validation loss, its close alignment with
training loss suggests minimal overfitting. On the other
hand, the right plot, representing the accuracy trends,
demonstrates a consistent increase in accuracy, with a

Training & Validation Loss (Fine-Tuning)

—— Training Loss
Validation Loss

0.066 -

0.064

0.062 1

0.060

Loss

0.058

0.056

0.054

T
15
Epochs

10 20 25

sharp rise between epochs 5 and 10 before stabilizing
around 97%-98%. This indicates that the model learns
effectively in the early stages and refines its predictions as
training progresses. The overall results confirm that the
chosen hyperparameters facilitate efficient learning, as
reflected in the significant early improvements, stable
high accuracy, and consistent reduction in loss. The lack
of a widening gap between training and validation metrics
suggests the model generalizes well, maintaining robust
performance on unseen validation data.

Training & Validation Accuracy (Fine-Tuning)

0.996 1 —— Training Accuracy
Validation Accuracy
0.995 | \ /\/"\
0.994 - /_\ !
z
g \/\J
o
2 0.993
N
0.992 /
0.991
T T T T T T T
0 5 10 15 20 25 30

Epochs

Figure 5: Fine-tuned LSTM-based training & validation loss (left) and accuracy (right) over epochs.

Figure 5 presents the performance of the fine-tuned
model. In the left plot, which depicts training and
validation loss, both losses continue to decrease steadily
over 30 epochs. However, unlike the previous training
phase during hyperparameter tuning, the two curves are
not always closely aligned, suggesting slight discrepancies
between the model’s performance on training and
validation data. Despite this, the overall downward trend

indicates effective fine-tuning without severe overfitting.
Meanwhile, the right plot, showing training and validation
accuracy, exhibits noticeable fluctuations, particularly in
validation accuracy, which sometimes spikes or drops
significantly. This variability suggests sensitivity to
different validation batches. However, the general trend
remains consistent with the training accuracy, maintaining
a high range between 99.1% and 99.6%. These results

LSTM and CNN-Based Detection of Al-Generated Classical Music...

indicate that while fine-tuning enhances model
performance, it introduces slight instability in validation
accuracy. Nonetheless, the model maintains strong
generalization, as reflected in the stable accuracy levels
and continuous reduction in loss.

Confusion Matrix

human

Actual

i 2 239
< {0.8%) (99.2%)

I
human Al
Predicted

Figure 6: Confusion matrix of the LSTM-based model's
predictions on the test set.

The model was then subsequently assessed using a
specific test set prepared beforehand. The confusion
matrix in Figure 6 illustrates that the model has a
minimum number of false positives and false negatives,
indicating strong predictive accuracy. This is further
supported by the classification report, where the precision
of 99.22% reflects the model's ability to make highly
accurate predictions for both categories. A recall score of
99.01% confirms its effectiveness in minimizing false
negatives. Furthermore, the F1 score and overall accuracy
of 99.00% demonstrate a well-balanced performance
between precision and recall, ensuring reliable
classification of both human and Al-generated
compositions.

To statistically validate this performance, a one-sided
proportion z-test was conducted to evaluate whether the
model's accuracy of 99.00% was significantly better than
random guessing (50%). The resulting z-score was
approximately 69.296, with a p-value of less than 0.00001.
Since the p-value is far below the commonly accepted

Informatica 49 (2025) 291-304 299

significance level of 0.05, we can confidently reject the
null hypothesis and conclude that the model’s accuracy is
statistically and significantly better than random
classification. The entire training and validation process
took approximately 21 minutes to complete.

Confusion Matrix

human

Actual

i 4 496
< {0.8%) (99.2%)

1
human Al
Predicted

Figure 7: Confusion matrix of the LSTM-based model's
predictions on the auxiliary test set.

The model was further validated using an auxiliary
test set of 1,000 samples from a different dataset to assess
its reliability. As shown in Figure 7, the confusion matrix
reveals misclassification rates of 1.8% for human
compositions and 0.8% for Al-generated compositions.
With an overall accuracy of 98.70%, the model also
achieves 98.70% in precision, recall, and F1 score,
indicating a well-balanced performance. These results
confirm that the model generalizes effectively to unseen
data, maintaining high accuracy while minimizing errors,
further reinforcing its reliability in distinguishing between
human and Al-generated classical music.

6.2 CNN model performance

This subsection provides the performance analysis of the
CNN model, following the same evaluation stages as the
LSTM model, from hyperparameter tuning to final
evaluation.

300 Informatica 49 (2025) 291-304

Training & Validation Loss

0.45 4 -
—— Training Loss
Validation Loss
0.40 1
0.35 1
&
g 0.30 1
0.25 1
0.20 1
‘\ﬁ.___“‘__k‘_
-__"“W\f--_/—-._.--.‘/
T T T T T T T
0 5 10 15 20 25 30

Epochs

M.I. Tantra et al.

Training & Validation Accuracy

0.96 v-/____ P a
0.94 /
0.92 1
)
o
z
=
(¥}
£ 0.90
0.88 A
0.86
—— Training Accuracy
Validation Accuracy
0.84 T T T T T T T
0 5 10 15 20 25 30
Epochs

Figure 8: CNN-based training & validation loss (left) and accuracy (right) over epochs.

Figure 8 shows the CNN-based model's training and
validation results across 31 epochs. The left plot shows a
steady decline in training and validation loss, dropping
from approximately 0.45 to below 0.20, indicating
effective learning. Despite minor fluctuations, the
validation loss remains closely aligned with the training
loss, suggesting minimal overfitting. The plot on the right

Training & Validation Loss (Fine-Tuning)

0.1645 4

0.1640 +

0.1635

Loss

0.1630 4

0.1625 4

0.1620 +

—— Training Loss
Validation Loss

0.0 0.5 1.0 15

T
2.0 2.5 3.0 3.5 4.0

Epochs

shows a steady rise in accuracy, improving quickly in the
early epochs before leveling off at about 96% in the later
phases. The consistent gap between training and
validation accuracy further supports the model's strong
generalization. These outcomes demonstrate how well the
selected hyperparameters optimize the CNN model's
learning process.

Training & Validation Accuracy (Fine-Tuning)

0.9680 —— Training Accuracy

Validation Accuracy
0.9675
0.9670

0.9665

0.9660 -

Accuracy

0.9655

0.9650 -

0.9645

0.9640

0.0 0.5 1.0 15

T
2.0 2.5 3.0 3.5 4.0

Epochs

Figure 9: Fine-tuned CNN-based training & validation loss (left) and accuracy (right) over epochs.

Figure 9 illustrates the CNN model's performance
during fine-tuning over five epochs. While validation loss
stays comparatively constant at 0.1645, suggesting little
improvement, training loss varies but tends to decline, as
seen in the left plot.

On the other hand, the right plot reveals significant
accuracy variations, especially in validation accuracy,
which momentarily declines at epoch 2 before leveling off
at about 96.7%. These fluctuations imply that the model is
sensitive to minor tweaks during fine-tuning.

LSTM and CNN-Based Detection of Al-Generated Classical Music...

Confusion Matrix

human

Actual

|
human Al
Predicted

Figure 10: Confusion matrix of the CNN-based model's
predictions on the test set.

Figure 10 displays the confusion matrix of the CNN
model on the primary test set. With a high prediction
accuracy, the model correctly identifies most examples;
however, it misidentifies 14 human compositions as Al-
generated and one Al-generated composition as human.
With a precision of 97.04% and a recall of 97.09%, the
model demonstrates a balanced ability to differentiate the
two groups. The model's durability in maintaining good
classification performance is demonstrated by its 97.00%
overall accuracy and F1 score.

To confirm that the CNN model's 97.00% accuracy
wasn’t due to random chance, we performed a one-sided
proportion z-test against a 50% baseline representing
random guessing. The test returned a z-score of
approximately 66.468 and a p-value far below 0.00001.
Since this p-value is well below the standard threshold of
0.05, we rejected the null hypothesis, showing that the
CNN model’s performance is statistically significant. The
complete model training and validation ran for
approximately six minutes.

The confusion matrix for the CNN model that was
evaluated using the extra dataset is shown in Figure 11.
Despite misclassifying some pieces, the model continues
to exhibit good classification performance. The model
achieves an overall accuracy of 97.10%, with a precision
of 97.18%, a recall score of 97.10%, and an F1 score of
97.10%. These findings support the model's high
reliability in distinguishing compositions created by
humans and Al, as well as its capacity to generalize fresh
data.

6.3 Comparative analysis

To provide a clearer comparison, Table 4 presents the
classification performance of the LSTM and CNN models
on the primary dataset. The LSTM model outperforms
CNN in every metrics, with an accuracy of 99.00% as
opposed to 97.00% for CNN. Additionally, LSTM retains
a higher F1 score due to its superior precision and recall
compared to CNN's.

Informatica 49 (2025) 291-304 301

Confusion Matrix

475
(95.0%)

human

Actual

1
human Al
Predicted

Figure 11: Confusion matrix of the CNN-based model's
predictions on the auxiliary test set.

These results indicate that while both models perform
well, the LSTM model demonstrates superior
classification capability, likely due to its ability to capture
long-term dependencies in sequential data, which is
crucial for distinguishing between Al-generated and
human-generated classical music.

Table 4: Comparison of classification performance
metrics between LSTM and CNN.

Model | Accuracy @ Precision | Recall Fl
Score

LSTM | 99.00% 99.22% | 99.01% | 99.00%

CNN 97.00% 97.04% | 97.09% | 97.00%

7 Discussion

In this study, we achieve higher classification accuracy
compared to previous works. Our first finding reinforces
the effectiveness of LSTM-based models in capturing
sequential dependencies in musical compositions. LSTM-
based models are particularly well-suited for symbolic
music analysis because they are designed to model
temporal dependencies over long sequences. This aligns
with the nature of symbolic music, where patterns unfold
over time and require memory of prior context. In contrast,
CNN primarily focuses on capturing local patterns
through convolutional filters and may struggle to retain
the broader sequential context necessary for interpreting
compositional flow, especially in music where long-range
structure and phrasing are key to stylistic identity.
Previously, Lietal. [23] have also proved that LSTMs
effectively distinguish Al-generated melodies from
human compositions, achieving high classification
performance despite ignoring velocity due to dataset
limitation. On the other hand, our approach includes
velocity alongside pitch and duration, resulting in a more
comprehensive representation of musical expression. This
richer feature set appears to improve the model's ability to

302 Informatica 49 (2025) 291-304

distinguish Al-generated classical music from that
composed by humans.

Other than feature selection, our approach also differs
in the representation of musical structures. Kong et al. [25]
used piano rolls which rely on fixed time grids that divide
time into uniform intervals regardless of the underlying
musical context. This can lead to a misalignment between
the grid and expressive timing in performances, especially
when dealing with tempo changes, or uneven note
spacing. On the other hand, our study uses beat-based
segmentation which groups events based on musical beats
rather than uniform time slices. This approach aligns more
naturally with the timing and phrasing of music, allowing
for a more accurate capture of rhythmic and expressive
characteristics. As a result, it better preserves sequential
dependencies that are important for classification, which
may be blurred in fixed-grid representations.

Furthermore, while studies such as Deepak et al. [24]
have explored deep learning models for symbolic music
classification, our results indicate that temporal modeling
remains crucial when the goal is to detect Al-generated
classical music. The strong performance of our model
emphasizes the significance of capturing long-term
dependencies in musical sequences.

The CNN-based model utilized in this study aligns
with the work of Afchar et al. [22], who used
convolutional ~ networks for Al-generated music
recognition. However, whereas their study focused on
amplitude-related audio features, our study, which focuses
on symbolic music analysis using MIDI data, achieves
higher accuracy. This distinction illustrates an intriguing
difference between the two approaches: audio-based
methods capture performance characteristics and timbral
properties, whereas symbolic music analysis separates
compositional structures, eliminating variations caused by
recording conditions. Despite these differences, our CNN
model produces competitive results, indicating that
convolutional ~ networks can effectively learn
differentiating patterns from structured symbolic
representations.

These findings from both LSTM and CNN models
suggest that other than the choice of model architecture,
the way musical data is structured and represented
significantly impacts the effectiveness of Al-generated
classical music detection.

8 Conclusion

In this study, a detection system made to distinguish Al-
generated and human-generated classical music was
successfully approached using LSTM and CNN
algorithms. Through the experimental analysis, it was
observed that both models demonstrated strong
classification performance by achieving high accuracy,
precision, recall, and F1 scores across multiple test sets.
However, the results shows that LSTM performs better
than CNN with minimal misclassification rates, indicating
that the model is capable of effectively differentiating
between the two composition types. This shows LSTM’s
superior ability to capture sequential dependencies, which
is crucial in this detection task. Further validation on an

M.I. Tantra et al.

auxiliary test set, which maintained a high level of
accuracy, confirmed its robustness, suggesting strong
generalization to unseen data.

Despite these promising results, some limitations
remain. We acknowledge that training the model on a
dataset representing only a single compositional style,
specifically the works of J.S. Bach, may introduce
potential bias and limit the model’s generalizability to
broader musical genres. Additionally, the dataset used in
this study may not fully capture the diversity of musical
styles and compositions, potentially limiting
generalizability to more complex or unconventional
pieces. To address these limitations, future research could
expand the dataset to include compositions from a wider
range of composers or styles. For improved robustness,
incorporating Al-generated music that emulates
contemporary, jazz, or pop artists may help capture cross-
genre characteristics. Furthermore, integrating more
advanced musical attributes, including harmonic, timbral,
and structural features, may also refine classification
performance further. Eventually, these improvements
would enhance the model’s versatility and reliability,
paving the way for more comprehensive Al-driven music
classification. Finally, while ROC curves and AUC scores
were not included in this study due to the absence of
probability outputs, future models with probabilistic
predictions could leverage these tools for more nuanced
performance evaluation.

Acknowledgement

The authors acknowledge the support of Universitas
Multimedia Nusantara for this study and appreciate the
constructive feedback provided by the reviewers and
editors, which significantly contributed to improving the
quality of this paper.

References

[1] M. Civit, J. Civit-Masot, F. Cuadrado, and M. J.
Escalona, “A systematic review of artificial
intelligence-based music generation: Scope,
applications, and future trends,” Expert Syst Appl,
vol. 209, p. 118190, Dec. 2022, doi:
https://doi.org/10.1016/j.eswa.2022.118190.

[2] F. Pachet, P. Roy, and B. Carr¢, “Assisted Music
Creation with Flow Machines: Towards New
Categories of New,” in Handbook of Artificial
Intelligence for Music, Cham: Springer
International Publishing, 2021, pp. 485-520. doi:
10.1007/978-3-030-72116-9_18.

[3] M. Fox, G. Vaidyanathan, and J. Breese, “THE
IMPACT OF ARTIFICIAL INTELLIGENCE
ON MUSICIANS,” Issues In Information
Systems, vol. 25, no. 3, pp. 267-276, 2024, doi:
10.48009/3_iis_2024_121.

[4] P. Jurcys and M. Fenwick, “Originality and the
Future of Copyright in an Age of Generative Al,”
Computer Law & Security Review, Sep. 2023.

[5] N. Lucchi, “ChatGPT: A Case Study on Copyright
Challenges for Generative Artificial Intelligence

LSTM and CNN-Based Detection of Al-Generated Classical Music...

(6]

(7]

(8]

[0l

[10]

[11]

[12]

[13]

[14]

[15]

Systems,” European Journal of Risk Regulation,
vol. 15, no. 3, pp. 602-624, Sep. 2024, doi:
10.1017/err.2023.59.

E. Bonadio and L. Mecdonagh, “Artificial
intelligence as producer and consumer of
copyright works: evaluating the consequences of
algorithmic creativity,” pp. 112-137, Jun. 2020,
[Online]. Available:
https://ssrn.com/abstract=3617197

L. Bellaiche et al., “Humans versus Al: whether
and why we prefer human-created compared to
Al-created artwork,” Cogn Res Princ Implic, vol.
8, no. 1, p. 42, Jul. 2023, doi: 10.1186/s41235-
023-00499-6.

A. M. Elkhatat, K. Elsaid, and S. Almeer,
“Evaluating the efficacy of Al content detection
tools in differentiating between human and Al-
generated text,” International Journal for
Educational Integrity, vol. 19, no. 1, p. 17, Sep.
2023, doi: 10.1007/s40979-023-00140-5.

A. Akram, “An Empirical Study of Al Generated
Text Detection Tools,” Advances in Machine
Learning & Artificial Intelligence, vol. 4, no. 2,
pp. 44-55, Oct. 2023, doi: 10.33140/AMLAI.
R.and S. R. S.and D. G. P. and B. N. and S. S.
Tiwari Shreeji and Sharma, “Detecting Al
Generated Content: A Study of Methods and
Applications,” in Proceedings of International
Conference on Communication and
Computational Technologies, S. and G. R. and P.
S. D. Kumar Sandeep and Hiranwal, Ed.,
Singapore: Springer Nature Singapore, 2024, pp.
161-176. doi: 10.1007/978-981-97-7423-4_13.

J. J. Bird and A. Lotfi, “CIFAKE: Image
Classification and Explainable Identification of
Al-Generated Synthetic Images,” IEEE Access,
vol. 12, pp. 15642-15650, 2024, doi:
10.1109/ACCESS.2024.3356122.

P. Tiwari and S. Jha, “Music Generation with
Long Short-Term Memory Networks from MIDI

Data of Classical Music,” in 2024 IEEE
International Conference on Information
Technology, Electronics and Intelligent

Communication Systems (ICITEICS), 2024, pp.
1-4. doi:
10.1109/ICITEICS61368.2024.10625468.

G.G. N. Sand V. V. P. D, “Generating Creative
Classical Music by Learning and Combining
Existing Styles,” in 2023 4th International
Conference on Communication, Computing and
Industry 6.0 (C216), 2023, pp. 1-7. doi:
10.1109/C21659362.2023.10431294.

M. Zhu, “Research on Chord Generation in
Automated Music Composition Using Deep
Learning Algorithms,” Informatica, vol. 47, no. 8,
Sep. 2023, doi: 10.31449/inf.v47i8.4885.

F. Shah, T. Naik, and N. Vyas, “LSTM Based
Music Generation,” in 2019 International
Conference on Machine Learning and Data
Engineering (iCMLDE), 2019, pp. 48-53. doi:
10.1109/iCMLDE49015.2019.00020.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Informatica 49 (2025) 291-304 303

D. R. Fudholi, D. N. A. Putri, R. B. M. A. A,
Wijaya, J. E. Kusnadi, and J. C. Amarissa, “The
Application of LSTM in the Al-Based
Enhancement of Classical Compositions,”
Journal of Informatics, Information System,
Software Engineering and Applications (INISTA),
vol. 7, no. 1, pp. 107-117, Nov. 2024, doi:
10.20895/INISTA.V711.1628.

M. Ahmad, M. Mazzara, and S. Distefano,
“Regularized CNN Feature Hierarchy for
Hyperspectral Image Classification,” Remote Sens
(Basel), wvol. 13, no. 12, 2021, doi:
10.3390/rs13122275.

E. Dervakos, N. Kotsani, and G. Stamou, “Genre
Recognition from Symbolic Music with CNNs:
Performance and Explainability,” SN Comput Sci,
vol. 4, no. 2, p. 106, 2022, doi: 10.1007/s42979-
022-01490-6.

F. Simonetta, C. E. Cancino-Chacon, S.
Ntalampiras, and G. Widmer, “A Convolutional
Approach to Melody Line Identification in
Symbolic Scores ,” in Proceedings of the 20th
International Society for Music Information
Retrieval Conference , ISMIR, Nov. 2019, pp.
924-931. doi: 10.5281/zen0d0.3527966.

L. Pan and H. Ma, “A Computational CNN-
LSTM-Based Mental Health Consultation System
in a College Environment,” Informatica, vol. 49,
no. 10, Jan. 2025, doi: 10.31449/inf.v49i10.7136.
I. A. Abdulmajeed and I. M. Husien, “MLIDS22-
IDS Design by Applying Hybrid CNN-LSTM
model on Mixed-Datasets,” Informatica, vol. 46,
no. 8, Nov. 2022, doi: 10.31449/inf.v46i8.4348.
D. Afchar, G. Meseguer-Brocal, and R.
Hennequin, “Al-Generated Music Detection and
its Challenges,” in ICASSP 2025 - 2025 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2025, pp. 1-5.
doi: 10.1109/ICASSP49660.2025.10890655.

Y. Li and Z. Lin, “Melody Classifier with
Stacked-LSTM,” Oct. 2020.

S. Deepak and B. G. Prasad, “Music Classification
based on Genre using LSTM,” in 2020 Second
International Conference on Inventive Research
in Computing Applications (ICIRCA), 2020, pp.
985-991. doi:
10.1109/1CIRCA48905.2020.9182850.

Q. Kong, K. Choi, and Y. Wang, “Large-Scale
MIDI-based Composer Classification,” Oct. 2020.
N. Shenvi and H. Virani, “Forecasting of
lonospheric Total Electron Content Data Using
Multivariate Deep LSTM Model for Different
Latitudes and Solar Activity,” Journal of
Electrical and Computer Engineering, vol. 2023,
pp. 1-13, May 2023, doi: 10.1155/2023/2855762.
A. Liu, “Multi-genre Digital Music Based on
Artificial Intelligence Automation Assisted
Composition System,” Informatica, vol. 48, no. 5,
Feb. 2024, doi: 10.31449/inf.v48i5.5474.

X. Jin et al., “Time series forecasting of Valley
fever infection in Maricopa County, AZ using

304

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

Informatica 49 (2025) 291-304

LSTM,” The Lancet Regional Health - Americas,
vol. 43, p. 101010, Mar. 2025, doi:
10.1016/j.lana.2025.101010.

A. Moghar and M. Hamiche, “Stock Market
Prediction Using LSTM Recurrent Neural
Network,” Procedia Comput Sci, vol. 170, pp.
1168-1173, 2020, doi:
10.1016/j.procs.2020.03.049.

H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng, and J.
Jiang, “Comparison of Long Short Term Memory
Networks and the Hydrological Model in Runoff
Simulation,” Water (Basel), vol. 12, no. 1, p. 175,
Jan. 2020, doi: 10.3390/w12010175.

Y. Liu, H. Pu, and D.-W. Sun, “Efficient
extraction of deep image features using
convolutional neural network (CNN) for
applications in detecting and analysing complex
food matrices,” Trends Food Sci Technol, vol.
113, pp. 193-204, Jul. 2021, doi:
10.1016/j.tifs.2021.04.042.

S. Lee, J. Kim, H. Kang, D.-Y. Kang, and J. Park,
“Genetic Algorithm Based Deep Learning Neural
Network Structure and Hyperparameter
Optimization,” Applied Sciences, vol. 11, no. 2,
2021, doi: 10.3390/app11020744.

A. Stamoulakatos et al., “A Comparison of the
Performance of 2D and 3D Convolutional Neural
Networks for ~ Subsea Survey Video
Classification,” in OCEANS 2021: San Diego —
Porto, 2021, pp. 1-10. doi:
10.23919/0CEANS44145.2021.9706125.
Anonymous, “MIDI Classical Music.” Accessed:
Jan. 16, 2025. [Online]. Available:
https://huggingface.co/datasets/drengskapur/midi
-classical-music

O. Peracha, “JS Fake Chorales: a Synthetic
Dataset of Polyphonic Music with Human
Annotation,” in Proceedings of the 2022 Sound
and Music Computing Conference, SMC 2022,
2022. doi: 10.48550/arXiv.2107.10388.

C.-Z. A. Huang, C. Hawthorne, A. R. and M.
Dinculescu, J. Wexler, L. Hong, and J. Howcroft,
“The Bach Doodle: Approachable music
composition with machine learning at scale,” in
International Society for Music Information
Retrieval (ISMIR), 2019. [Online]. Available:
https://goo.gl/magenta/bach-doodle-paper

A. Marmoret, J. E. Cohen, and F. Bimbot,
“Barwise Music Structure Analysis with the
Correlation Block-Matching ~ Segmentation
Algorithm,” Transactions of the International
Society for Music Information Retrieval, vol. 6,
no. 1, pp. 167-185, Nov. 2023, doi:
10.5334/tismir.167.

L. lJing, “Evolutionary Deep Learning for
Sequential Data Processing in Music Education,”
Informatica, vol. 48, no. 8, May 2024, doi:
10.31449/inf.v48i8.5444.

M.I. Tantra et al.

