
https://doi.org/10.31449/inf.v49i31.8761 Informatica 49 (2025) 195–212 195

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach for
Virtual Machine Resource Allocation in Cloud Data Centers.

Mohanad Yahya Al-hamami1,2, Mohsen Nickray1
1Department of Computer and Information Technology, Faculty of Engineering, University of Qom,Iran
2Information Technology Research and Development Centre, University of Kufa, Iraq
E-mail : mohanad.alhammami@uokufa.edu.iq, m.nickray@qom.ac.ir

Keywords: Cloud computing (CC), cloud data center (CDC), load balancing (LB), a virtual machine (VM), unsupervised
learning clustering (ULC), resource allocation (RA), resource management (RM)

Received:March 30, 2025

Cloud computing(CC) delivers multiple services to users by processing complex tasks through internet con-
nections to serve as a dynamic, dependable, and flexible computing solution. With the increased Internet
speed, the user demands to perform many tasks through computing provided by cloud virtual machines
(VMs) created in heterogeneous servers. The complexity of cloud computing(CC) increases through the
diversity of servers and the increased demand for resources to perform more tasks, which makes the cloud
data center(CDC) unbalanced in load. Therefore, future cloud systems will require more effective resource
management(RM) methods to balance load and improve Quality of Service (QoS). This paper proposes
KMPPVM-DRM, a dynamic clustering and scheduling approach for VM resource allocation(RA) based
on the KMeans++ algorithm. VMs are clustered into three groups (high, medium, low) according to their
real-time normalized CPU and RAM weights, using weighting parameters α = 0.6 and β = 0.4. Tasks are
categorized into three levels based on length and mapped to appropriate VM clusters. Within each clus-
ter, a Utilization-Level Comparator (ULC) dynamically selects the optimal VM for task execution. The
experimental results were conducted using CloudSim, with 5 and 10 VMs and task counts ranging from
1000 to 10000. The proposed model was compared with PSO, ACO, and DBSCAN algorithms using ex-
ecution time, average start time, and average finish time. Results show that with 10 VMs, the proposed
model achieved a harmonic mean execution time of 886.72 ms, compared to 4102.99 ms (PSO), 4672.25
ms (ACO), and 3071.51 ms (DBSCAN). It also attained the lowest harmonic mean start and finish times
of 166.41 ms and 167.19 ms, respectively. Relative reduction in execution time against DBSCAN ranged
from 69.90% to 71.52%, with start and finish time improvements between 52.65% and 81.51%.To ensure
statistical reliability, a paired t-test confirmed that the performance improvements were statistically sig-
nificant (p < 0.05) across all task sizes. The findings confirm that KMPPVM-DRM enhances resource
allocation(RA) efficiency and scheduling effectiveness, maintaining balanced loads even with limited re-
sources (e.g., only 5 VMs) and outperforming PSO, ACO, and DBSCAN in all tested scenarios.

Povzetek: Članek predstavi KMPPVM-DRM, pristop za razporejanje virov v oblačnih podatkovnih centrih.
S pomočjo KMeans++ dinamično razvršča VM-je in izboljšuje porazdelitev nalog, zmanjšuje čas izvajanja
ter povečuje učinkovitost oblačnih sistemov.

1 Introduction
Cloud computing (CC) enables users to access multiple ser-
vices by processing Internet-based tasks while the cloud
maintains a pay-per-use payment structure. CC is a com-
puting model that delivers storage resources alongside de-
vices and applications, extending the capability to scale dis-
tributed computing processes and task execution. The three
cloud models offered by CC are infrastructure as a ser-
vice (IaaS), platform as a service (PaaS), and software as
a service (SaaS) [1]. The Infrastructure as a Service (IaaS)
model is one of the most prominent trends in the world of
(CC) to obtain an efficient and fast computing environment
to perform advanced tasks. A Service Level Agreement
(SLA) is signed between a Cloud Service Provider (CSP)

(such as Amazon Web Service, Salesforce, etc.) and users
who have a clear goal for the system with the required con-
figuration in infrastructure as a service (IaaS) [2]. Figure
1 presents the different cloud service models adapted from
[1].

Their requirements are formulated through QoS param-
eters, including (lowest cost, execution time, etc.). The
cloud computing infrastructure contains cloud data cen-
ters consisting of large numbers of heterogeneous hosts
through which virtualization technology is applied to carry
out the tasks required in the computing process. The het-
erogeneous diversity of servers and the increased demand
for resources to perform more tasks make the cloud data
center(CDC) unbalanced in load [3]. The load balanc-

196 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Figure 1: Presents the different cloud service models.
source: [1]

ing technique improves the system’s overall performance
through high user satisfaction and resource utilization ra-
tio while preventing any single node from becoming over-
whelmed. Proper load balancing(LB) utilization results
in optimal resource utilization, thus minimizing resource
consumption [4]. The mechanism of LB in clouds en-
ables a balanced distribution of dynamic workloads across
cloud nodes. Load management raises the interest in effi-
ciently balancing load with existing infrastructure, mainly
through resource management(RM) through resource allo-
cation(RA) and scheduling accomplished through policy-
based algorithm implementation in the existing infrastruc-
ture [5]. Therefore, researchers have classified the existing
LB algorithms into (static, dynamic, and hybrid). Static al-
gorithms use already-known system information, including
processing power, memory, performance data, and user re-
quirements specifications [6]. The algorithms operate with-
out requiring knowledge about the system’s current state.
A sudden failure of system resources and tasks creates sig-
nificant problems for algorithms of this type. It is also in-
efficient, as user requirements cannot be constant in real
time. Such as (Round Robin, Shortest Job Scheduling,
Min-Min, Max-Min, (OLB + LBMM), CLBVM). [7] Dy-
namic algorithms make LB decisions based on the system
state at a specific time because they operate without requir-
ing any prior knowledge of the system conditions. The sys-
tem drawbacks from static approaches can be eliminated
through this method. The complexity of dynamic algo-
rithms leads to enhanced performance in system operations.
Some of them are (honey bee search, ant colony, biased ran-
dom sampling, and evenly spread current implementation
(ESCE)) [8]. Hybrid algorithms integrate two distinct algo-
rithms to maximize the positive aspects of each procedure.
Multiple researchers utilized machine learning technology
by merging machine learning algorithms with load balanc-
ing algorithms for enhancing cloud performance; they in-
clude:
The research presents a hybrid GA-PSO algorithm that

efficiently solves the task-to-RA problem [9]. The hybrid
GA-ACO algorithm relies on utility-based scheduler out-
put to determine optimization of task allocation through re-
sponse time and throughput measurements with comple-

tion time calculations [10]. Researchers created A sys-
tem by integrating modified Particle Swarm Optimiza-
tion (MPSO) alongside an enhanced Q-learning algorithm
named QMPSO [11]. The various LB algorithms enhance
RM functions by effectively distributing resources. Cloud
resource management requires VM allocation as an es-
sential component that CDC uses to choose proper vir-
tual machines which perform dependent or independent
tasks [12] [13]. Service provider profits rose while av-
erage delays declined, and user satisfaction improved us-
ing TLBO (teaching-learning-based optimization) for dy-
namic RM and scheduling [14]. The research team de-
veloped an NSGA-II optimization framework, which oper-
ates as a multi-objective system to minimize service delay
time and energy use under time restrictions to provide effi-
cient scheduling and RM through optimal task distribution
to achieve better load balancing [15]. The Current Resource
Utilization drives periodic re-evaluations of existing VM
allocation from available resources through dynamic VM
allocation. However, in some scenarios, choosing toomany
virtual machines on a single host may lead to poor load
balancing quality of service and thus increased SLA viola-
tions [16]. A system without intelligent resource schedul-
ing faces significant complications in maintaining balanced
workload execution without regard for the number of tasks
present [17]. Despite developing various algorithms for re-
source allocation (RA) and load balancing (LB) in cloud
computing, current methods such as DBSCAN, ACO, and
PSO still face limitations in dealing with heterogeneous vir-
tual environments. These approaches often struggle to ef-
fectively cluster virtual machines (VMs) based on real-time
attributes such as CPU and memory availability and to as-
sign tasks according to workload demands dynamically. As
a result, they may suffer from increased execution time,
inefficient resource utilization, and imbalanced load distri-
bution across data center nodes, which can negatively im-
pact the quality of service (QoS). This research identifies
a performance gap in dynamic RA strategies, particularly
the need for a more intelligent and adaptive method for
grouping VMs and allocating tasks based on current sys-
tem states. The study proposes a dynamic resource man-
agement (DRM) model named KMPPVM-DRM to address
this gap. This model utilizes the KMeans++ clustering al-
gorithm to dynamically categorize VMs into three groups
(high, medium, and low) based on real-time CPU and RAM
weights. Tasks are then classified according to their lengths
and assigned to the most suitable VM within each cluster
using a Utilization-Level Comparator (ULC). Accordingly,
the study addresses key questions: Does using KMeans++
clustering help reduce the execution time of virtual ma-
chines compared to DBSCAN, ACO and PSO? Does dy-
namic task allocation based on the weight of VMs posi-
tively influence when average jobs start and finish? Can
the new method contribute to better load balancing in cloud
data centres? To achieve this, The main contribution of this
research paper consists of the following points:

– Propose a dynamic weighting mechanism for VMs

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 197

based on the characteristics of the current VMs, such
as processing capacity and memory.

– Propose creating a clustering mechanism for virtual
machines using machine learning (Unsupervised) that
utilizes KMeans++ based on using the dynamically as-
signed weights.

– Propose a mathematical method for selecting the opti-
mal virtual machine in each cluster.

– Construct a new approach named KMPPVM-DRM:
”A KMeans++ - Based Dynamic Clustering Approach
for Virtual Machine Resource Allocation in Cloud
Data Centers”, which dynamically clusters VMs and
assigns tasks in a cloud computing environment to
minimize execution time, the average start time of ex-
ecution, and average finish while balancing the CDC
load.

The proposed method, KMPPVM-DRM, is a hybrid ap-
proach to dynamic load balancing with unsupervised ma-
chine learning for organizing and scaling resources faster
and more efficiently. It groups virtual machines (VMs)
using weights to current details (CPU, RAM). Using
KMeans++ for clustering, the system dynamically groups
VMs and then applies a mathematical selection model to
assign each task to the most suitable VM within its cor-
responding cluster. This strategy integrates the strengths
of dynamic scheduling with intelligent VM grouping, aim-
ing to reduce execution time, minimize task start and finish
times, and achieve improved load balance and quality of
service in cloud data centres. The paper divides its content
into five sections, which include related work discussed in
Section II and the proposed approach in Section III, fol-
lowed by environmental evaluation with results in Section
IV and the conclusion along with future work in Section V.

2 Related work
Managing load efficiency requires finding proper balances
between present infrastructure and customer satisfaction
through enhanced QoS [18]. The main objective of CC
relies on managing resources and balancing loads through
resource allocation(RA) and scheduling, which functions
through its established policies and algorithms [19]. Which
directly affects the quality of service (QoS). Many prior
works have proposed various clustering and optimization
techniques to enhance QoS and improve execution time.
However, several methods lack adaptability to hetero-
geneous and real-time VM environments. This section
presents an overview of key existing methods, identifies
their strengths and weaknesses, and highlights the research
gap that motivates our proposed KMPPVM-DRM model.
Research studies in the literature focus extensively on this
topic:
Q. Shang.[20] The author presented a dynamic RA al-

gorithm built upon workflow and resource cluster ap-
proaches. The workflow represents precedence relations

with subtasks and communication expenses through a di-
rected acyclic graph model. The fuzzy clustering algorithm
organizes nodes according to computing strength in addi-
tion to data transmission power and storage ability price
levels and dependability levels. The cluster resources re-
ceive their assigned subtasks using a multi-objective opti-
mization model. Reduce completion time and cost while
improving resource utilization and load balancing.
S. El Motaki et al.[21] A clustering technique ana-

lyzed virtual machine conduct through resource informa-
tion (CPU usage) and stall event details during workload
execution in system environments. The proposed algorithm
draws its essence from how birds naturally form logical
clusters while in flight. The flight direction of each starling
incorporates both self-sourced information and neighbor-
starling-provided information. Each data item uses as-
signed weights to identify its subsequent feature space po-
sition after considering its existing location and nearby data
values.
J.P.B. Mapetu et al.[22] presented a dynamic load-

balancing framework that uses VM consolidation through
four distribution methods. The proposed system imple-
ments three primary techniques for dynamic load balanc-
ing: VM selection according to imbalance level, BPSO
for power optimization and host shutdown management,
and Pearson correlation for maintaining SLA compliance.
The proposed method decreases energy usage while dimin-
ishing SLA violations and decreasing VM migration fre-
quency.
L. M. Al Qassem et al.[23] Two-state Random Forest

(RF) machine learning models work proactively to predict
future micro service workload requirements of CPU and
memory resources. The predicted values from this process
enable a dual adjustment of the resource pool by modifying
hardware resources vertically while deploying additional
micro-service replicas across horizontal axes.
G. Senthilkumar et al. [24] The authors developed a

virtual machine allocation strategy that combines the ap-
proaches of the RandomForest (RF) andGenetic Algorithm
(GA). Random Forest belongs to supervised machine learn-
ing techniques. This strategy makes Minimized energy us-
age possible by enabling better resource management(RM)
for optimal utilization. A procedure exists for generating
training data that enables random set training. The method
is tested using real-time workload traces from Planet Lab.
The proposed (GA-RF) model demonstrated better perfor-
mance than other data center utilization techniques com-
bined with host RM, power usage, and execution duration.
The presented work uses resource usage, energy consump-
tion, and execution time as performance metrics.
M. S. Al Reshan et al.[25] presented a combined GWO-

PSO approach to improve system efficiency and RA in such
a way that it takes advantage of the benefits of rapid con-
vergence and global optimization. Research demonstrates
that reaction times reached 12% below all competing algo-
rithms in traditional methodology examination.
S. Singh et al. [26] presented a strategy, ”Energy-Aware

198 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Resource Allocation(RA) via MS-SLnO in Cloud Data,”
in which RA is achieved with the help of optimization to
enhance the efficiency of cloud service. The method uti-
lizes k-means clustering for task grouping. It deploys MS-
SLnO as a hybrid bio-inspired optimizer that unites SLnO
with MSA to find optimal resource allocations with PUE,
which is included as a performance factor, execution time,
and CPU usage factored into the decision. Through this ap-
proach, cloud data centers minimize their power consump-
tion and reach maximum resource efficiency.
D. Kavitha et al.[27] Adaptive Deep Belief Network

(ADBN) presents an adaptive deep belief network solution
that incorporates Bayesian Search with Lichtenberg Opti-
mization (BSI-LO) hybrid technique to address hardware
limitations from resources, extended bandwidth delays, and
slow performance of constrained devices. The offload-
ing and RAmethodologies achieved their best performance
through this approach. The method provides an intelligent
task offloading decision while achieving QoS and energy
consumption balance.
Syed Mustapha et al.[28] proposed a method to enhance

RA and task scheduling using (DBSCAN) algorithm, which
is based on grouping virtual resources (VMs) according to
their historical performance. This method reduced execu-
tion time and average start and finish time.
I. Jaya et al.[29] presented an adaptive deep reinforce-

ment learning (DRL)-based method with adaptable capa-
bilities deployed for edge-cloud gaming resource admin-
istration, reducing prices and enhancing allocation perfor-
mance. The solution sought to achieve an equilibrium be-
tween cost expenditure and operational performance. The
DRL-based algorithm reduces cumulative costs, brief allo-
cation time, and large-scale performance capabilities.
H. Lin et al.[30] presented a two-level VM consolidation

(TLHVMC) method that addresses the power mode transi-
tion (PMT) overhead requirements. The RA implemented a
hybrid heuristic placement strategy based on a greedy strat-
egy to achieve efficient resource placement (GSP). Time-
based power mode control approaches are centralized man-
agement systems that control host power states. Wind
power control strategies delivered higher energy efficiency
through idle host suspension while using host state obser-
vations during a period to decrease SLA non-compliance.
Ahmad Raza Khan. [31] implemented dynamic load bal-

ancing through deep learning concepts, which unite CNNs
and RNNs to derive load statistics for each VM. The clus-
tering efficiency improves through the implementation of
the Reinforcement Learning (RL) method together with the
advanced Hybrid Lyrebird Falcon Optimization (HLFO) al-
gorithm. The system dynamically divides VMs between
overloaded and underloaded clusters, which leads to better
resource use and reduced makespan durations.
O. K. J.Mohammad et al.[32] The researchers introduced

Cloud Linear Regression (CLR) as their innovative ma-
chine learning framework, which integrates linear regres-
sion with cloud technology. CLR is a cloud-based enhance-
ment that improves RM capabilities through better schedul-

ing systems, provisioning, and allocation.
J. Ma et al.[33] The proposed study develops a Q-

learning reinforcement learning method as a dynamic rout-
ing approach that adjusts network choices based on real-
time conditions. The method decreases the root mean
square error (RMSE) while enhancing load distribution to
maximize resource usage.
C. Vijaya et al.[34] The proposed optimization method

FCSFFC unites Cuckoo Search and Firefly Colony Opti-
mization under fuzzy logic control for efficient cloud com-
puting virtual machine migration. This technique improves
RM and reduces superfluous migration instances for higher
performance.
Table (1) below shows a summary comparison to high-

light the main Proposed/Used Algorithm, metrics, results,
strengths and weaknesses of the approaches.
From the comparative analysis in Table 1, key in-

sights are observed : Most clustering-based methods
(e.g.,[20],[21],[26],[28],[30]) are either static or rely on his-
torical metrics or fuzzy clustering logic, which limits their
real-time adaptability. For instance, fuzzy clustering[20]
and bird-flocking-inspired clustering[21] yield good group-
ing but suffer from parameter uncertainty and poor adapta-
tion to workload variation. Bio-inspired and deep learn-
ing strategies work well ([22]-[25],[27],[29],[31]-[34])
but often suffer from high resource demand, complex-
ity, or convergence issues. Density-based techniques like
DBSCAN([28]) struggle with high-dimensional resource
heterogeneity and dynamic changes. Few works (e.g.,[26])
use simple K-Mean but lack justification for cluster initial-
ization or adaptation to VM heterogeneity. Given the above
limitations, a clear gap exists in developing a lightweight,
adaptive, and resource-aware clustering mechanism that
balances tasks in heterogeneous cloud environments. To
address this, the proposed method(KMPPVM-DRM) in-
troduces KMeans++, which improves KMean by using a
stronger way to choose centroids, which results in both
faster results and easier separation of clusters. This is es-
pecially beneficial for adaptive load balancing in hetero-
geneous VM environments based on real-time resource at-
tributes (CPU, RAM).

3 The proposed approach

This section explains the proposed approach named A
KMeans++ -Based Dynamic Clustering Approach for Vir-
tual Machine Resource Allocation in Cloud Data Centers
(KMPPVM-DRM) in the CC environment. The main ob-
jective of this approach focuses on delivering quality ser-
vices to clients while decreasing total execution time, start
times, and finishing times and establishing CDC workload
equilibrium through resource allocation(RA) and schedul-
ing mechanisms. The proposed is an advanced model
based on machine learning algorithms for dynamic RA and
scheduling that adapts to the heterogeneous CC environ-
ment. The proposed method (KMPPVM-DRM) consists of

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 199

Table 1: Comparative summary of related works

References, Year Proposed/Used Al-
gorithm

LB Metrics Results Strengths Weaknesses

Q. Shang.[20],
(2021)

Dynamic RA based
on Workflow and
Resource Cluster-
ing

Computing
capability,
cost, reliability

Effective in reducing
completion time and
resource utilization

Balanced alloca-
tion

Parameter uncertainty in
fuzzy clustering leads to
suboptimal results

S. El Motaki et
al.[21], (2021)

Clustering Based on
Bird Flocking Be-
havior

CPU usage,
stall events

Effective clustering, im-
proved resource usage

Fast, nature-
inspired grouping

Reduced adaptation to trans-
action changes

J. P. B. Mapetu et
al.[22], (2021)

Dynamic LB using
VM Consolidation

Power, VM mi-
grations, SLA

Reduced energy, SLA
violations, VM migra-
tions

SLA-aware,
power-efficient

VM migration affects SLA
and stability

L. M. Al Qassem
et al.[23], (2023)

Proactive Autoscal-
ing (Random For-
est)

CPU, memory
usage

Improved RA, reduced
SLA violations

Predictive au-
toscaling

Historical-data based accu-
racy, slow response to work-
load changes

G. Senthilkumar
et al.[24], (2023)

Hybrid Strategy
(RF + GA)

Energy, re-
source usage

Reduced energy, im-
proved utilization

Hybrid optimiza-
tion

GA delays performance
when optimization starts

M. S. Al Reshan et
al.[25], (2023)

Combined GWO-
PSO

Response time Reduced response time
by 12%

Fast convergence Premature convergence
complicates optimization

M. S. Al Reshan et
al.[26], (2023)

Energy-Aware RA
(MS-SLnO)

Power, CPU,
execution time

Reduced power, opti-
mized utilization

Hybrid optimizer Requires calibration, affect-
ing time and efficiency

D. Kavitha et
al.[27], (2023)

Adaptive DBN
(BSI-LO)

QoS, energy
consumption

Improved QoS-energy
balance

Intelligent task of-
floading

High resource demand, com-
plexity, slow convergence

Syed Mustapha et
al.[28], (2023)

DBSCAN-based
Grouping

QoS Improved QoS (13%),
exec. time, start time
(49%)

Effective histori-
cal grouping

Poor adaptation to dynamic
changes

I. Jaya et al.[29],
(2024)

Scalable DRL for
Edge-Cloud Gam-
ing

Cost, perfor-
mance

Lower cost, high scala-
bility

Smart dynamic
learning

Needs large data and high
computation

H. Lin et al.[30],
(2024)

Two-Level VM
Consolidation
(GSP)

Power transi-
tions, SLA

Energy savings, less
SLA violations

Strategic place-
ment

SLA violations due to PMT
overhead

Ahmad Raza
Khan.[31],(2024)

DL(CNNs, RNNs,
RL)

Makespan, uti-
lization

Improved utilization,
lower makespan

Robust hybrid
model

High resource/time cost of
hybrid DL

O. K. J. Mo-
hammad et al.
[32],(2024)

Cloud Linear Re-
gression (CLR)

CPU, Memory,
Disk, Time

CPU: 59.8%, Mem:
72%, Disk: 90%, Time
reduced

Smart VM selec-
tion, scalable

Limited to private settings,
no benchmark

J. Ma et al. [33],
(2025)

Cuckoo Search Al-
gorithm (CA)

Time, Utiliza-
tion, Scalabil-
ity

Time: 2063ms, RR
Time: 43088ms, LB:
95%

Scalable, global
search

Needs tuning, poor under
low resources

C. Vijaya et
al.[34], (2024)

FCSFFC (Fuzzy
Cuckoo + Firefly)

Energy, Migra-
tion, Computa-
tion

Improved energy, migra-
tion, load, computation

Fuzzy + bio-
inspired explo-
ration

Increased real-time com-
plexity, needs fuzzy tuning

the following:

A. Initially, when tasks arrive at the broker, they are clas-
sified based on their length property, assuming a sce-
nario with three different task length levels: high,
medium, and low. Suitable virtual machines (VMs)
are then allocated to them.

B. Assign initial weights to virtual machines based on
their characteristics(CPU, RAM) from heterogeneous
physical machines in a CC environment. The weights
are calculated using the following Equation (1) :

VMw =
(α ∗ Cpuvm) + (β ∗Ramvm)

100
(1)

The VMw refers to the calculated VM weight, and
both symbols(α, β) in Equation (1) represent the rel-
ative impact weights of the virtual machine character-
istics. Where (α) is the relative impact weight of the

CPU and the symbol (β) is memory (RAM) in the cal-
culation.These values (α = 0.6) and (β = 0.4) were
chosen to represent the higher significance of CPU
than RAM in situations related to cloud computing.
Also, (Cpuvm) in Equation (1) refers to the CPU re-
sources available and (Ramvm) refers to the available
RAM resources in the VMs. Weights for the virtual
machines are stored in the weight map containing the
VM number, the current available CPU, RAM, and
the current machine weight. These weights are up-
dated in real time. The calculated weight for the VM
reflects the importance and amount of resources allo-
cated based on the current (CPU, RAM) characteris-
tics and the specified impact factors. These weights
are used to help cluster the VMs.

C. Based on the weights assigned to virtual machines,
these machines are clustered into several levels of

200 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

availability (high, medium, low) so that the clustering
process is done using (unsupervised) machine learning
through the updated KMeans++ algorithm and based
on real-time dynamic weight map data within the data
center of the cloud computing infrastructure. Virtual
machines are divided into k clusters in KMPPVM-
DRMusingKMeans++ as the clusteringmethod. Here
are the essential features of the algorithm:
- Number of Clusters (k): This study sets The number
of clusters fixed to k = 3 since it reflects three distinct
degrees of VM capability. These levels align with the
classification of tasks(long, medium, short).
- Centroid initialization Strategy: Centroids are cho-
sen for KMeans++ using the VM weights in a prob-
abilistic fashion. Thanks to this method, the solu-
tions have a better distribution and reach convergence
faster.
- Distance Metric: The algorithm uses an Euclidean
distance measurement based on the VM weight value,
including CPU and RAM characteristics. It allows for
good grouping according to how many resources are
available.
Then, each virtual machine with the highest
weight(i.e., the VM currently having the highest
available resource capacity based on real-time CPU
and RAM weighted characteristics) each clustering
is assigned to the corresponding tasks, as defined in
Equation (2) :

VMassigned = argmaxvmi∈Cj (Wvmi) (2)

Where (VMassigned) the virtual machine selected for
the next task. (VMi) a virtual machine in the clus-
ter Cj . (Cj) the cluster containing the virtual ma-
chines. WVMi The weight of the virtual machine
VMi, representing its optimal capacity or suitability
for the task. (argmax) The function that returns the ar-
gument (virtual machine) with the maximum weight.
The selection approach ensures that the VM with the
highest weight, reflecting its real-time available CPU
and RAM capacities according to the specified im-
pact factors (α and β), is prioritized for task execu-
tion. This helps to minimize execution time, avoid
overloading less capable VMs, and load balancing in
the heterogeneous cloud computing environment. Af-
tre the calculation of virtual machine weights basedon
Equation(1) and the selection mechanism described in
Equation(2),the notations and parameters involved in
the proposed KMPPVM-DRMmodel are summarized
fro clarity in Table 2.

D. The classified tasks are assigned to the optimal VMs
from each cluster as follows:

(a) The task with the most extended length is di-
rected to the optimal VM in the cluster with
a high weight level of currently available re-
sources.

Table 2: Notation description of the proposed model

Symbol Description
α The relative impact weight of the CPU resource (as-

signed value 0.6)
β The relative impact weight of the RAM resource (as-

signed value 0.4)
VMw The computed weight of a virtual machine
Cpuvm The CPU resource capacity of a virtual machine (in

MIPS)
Ramvm The RAM resource capacity of a virtual machine (in

MB)
VMassigned The virtual machine selected for the incoming task

VMi A specific virtual machine within cluster Cj

Cj The cluster containing the virtual machines
WV Mi The weight value of virtual machine VMi

argmax The function selecting the VM with the maximum
weight value

(b) The task with the medium length is assigned
to the optimal machine in the cluster with the
medium weight level of currently available re-
sources.

(c) The task with the shorter length is assigned to
the optimal machine in the cluster with the low
weight level of currently available resources.

As tasks assigned to the optimal VMs in each clus-
ter start to execute, the weight map of the VMs is dy-
namically updated during the current process. The
KMPPVM-DRM approach is applied based on the
updated weights, and this process is repeated con-
tinuously until all the required tasks are completed,
as shown in the following Figure (2). Overall, the
proposed approach supports dynamic allocation and
scheduling of resources to provide efficient load bal-
ancing in resource utilization and improve overall sys-
tem performance.

Figure 2: Diagram of proposed model approach

Detailed steps in the proposed KMPPVM-DRM schedul-
ing and RA method are shown in Figure 3 (Flowchart).
At the start, each cloudlet is classified by its length into

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 201

three categories: short, medium, and long. Then, the algo-
rithm gives each virtual machine a dynamic weight based
on the weighted values of both its CPU and RAM. All these
weights are placed in a VM Weight Map to represent the
current performance state of each VM. The map classifies
the VMs into three categories (high, medium, and low) us-
ing the KMeans++ algorithm. For every cluster, the VM
with the highest weight is assigned to deal with its group of
cloudlets. Asks are then assigned accordingly to maximize
resource utilization and efficiency. The algorithm for each
part of the job calculates the cloudlet start time, finish time,
and execution time. VM weights are updated during the
scheduling cycle, considering both the state of the system
and the results from execution. Once every task is done, the
average quality of service metrics is calculated. Otherwise,
the process iterates, adjusting the weights to keep the divi-
sion of tasks responsive and balanced even as new demands
appear.

Figure 3: Flowchart of the proposed approach (KMPPVM-
DRM)

The objective behind this approach consists of obtaining
optimal resource allocation and performance enhancement
for the system. The proposed KMPPVM-DRM approach
contains a pseudocode to illustrate the formulas, parame-
ters, and decisions involved in this approach.
The proposed KMPPVM-DRM approach was tested

on two scales (e.g., 5 and 10 VMs and from 1000 to
10000 tasks). Although the current experiments are lim-
ited to these ranges, the clustering and weight-based se-
lection mechanisms are designed to support scalability.
KMeans++ adjusts to the number of virtual machines be-
cause it is an unsupervised algorithm.

Algorithm 1 The proposed approach (KMPPVM-DRM)
Input:

– List of Cloudlets (Tasks)

– List of VMs with characteristics

– Clustering parameterK = 3

Output: Cloudlets assigned to VMs, updated VM resource data, clustering results
1 foreach cloudlet ti in TaskList do
2 Classify ti into {High, Medium, Low} based on task length

3 while not all tasks are executed do
4 foreach VM vj in VMList do
5 Compute VM weight: VM_Weightj = (α · CPUj + β ·

RAMj)/100 Store VM_Weightj in VMWeightMap

6 Apply KMeans++ clustering on VMWeightMap to produce 3 clusters
C1, C2, C3

7 foreach cluster Ck do
8 Select VMwith highest weight: VMmax = arg maxv∈Ck

W (v) Store
VMmax in VMmaxList

9 foreach task ti do
10 Assign ti to appropriate VMmax based on task level (High, Medium,

Low)
11 Execute assigned tasks on selected VMs
12 foreach executed task ti do
13 Record execution time,start and finish time

14 if all tasks completed then
15 Compute and output average QoS(start and finish time) metrics break
16 else
17 Update VM weights dynamically to reflect current loads continue

Theweight calculation formula and dynamic updating al-
low the method to extend to larger numbers of VMs and
handle varied task lengths or multiple user requests. Future
work will involve stress testing with more VMs (e.g., 50–
100), the tasks, and concurrent user simulations. Also, The
KMPPVM-DRM model’s primary emphasis is on cluster-
ing for managing resources, while studies such as [32],[33],
and [34] emphasize that Cloud Linear Regression (CLR)
can help estimate resources and decide on tasks. The meth-
ods mentioned above are not part of this model, but we also
see future work that combining clustering and regression
might help allocate VMs more efficiently.

4 Environment and results
This section presents the experimental testing environment
of the proposed model and provides a comprehensive anal-
ysis of the obtained results.

4.1 Experimental environment
4.1.1 Hardware configuration

The experiments were conducted on a personal computer
with the processor, memory, and operating system spec-
ifications shown in Table(3). The purpose of such a
configuration is to demonstrate the lightweight and cost-
effective nature of the method, which does not require high-
performance computing resources to achieve efficient re-
sults. Although advanced load balancing techniques such
as deep learning often require high-performance GPUs and
extensive memory.

202 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Table 3: Hardware requirements

Component Specification
Operating System Windows(X64 based Processor)64-bit OS

Processor Intel® Core™ i7-CPU@2.6 GHz
RAM 16.0 GB

4.1.2 Software and tools

Researchers who need to evaluate cloud performance and
model cloud solutions use CloudSim as their primary sim-
ulation tool to avoid reliance on computing facilities and
reduce costs. CloudSim is an importable tool that func-
tions within programming platforms, including Eclipse and
NetBeans IDE, and it enables Windows 10 users to create
cloud simulations. Entities and computing resources are
modelled by default to reflect the allocation and schedul-
ing scenario in a cloud environment to evaluate the pro-
posed method. The simulation is performed on Cloudsim
3.0.3. In this work, CloudSim version 3.0.3 was selected
Because of its good performance stability, the ability to use
Java-based add-ons, and the ability to use external Java li-
braries for clustering (for example, Smile). It suits the pro-
posed model, ensuring compatibility with machine learn-
ing and reproducibility across similar research. A single
data center with 2 hosts each and 5 and 10 virtual ma-
chines is used for the simulation. Table 4 lists the con-
figurations of all the submitted tasks (cloudlets), which
are separated by length into three groups. The values
for these simulations were picked to show the same level
of diversity found in other cloud task scheduling studies,
for instance,[28]. Specifically, Short tasks (300) represent
lightweight user requests. Medium tasks (2000–3000) re-
flect average processing needs. Long tasks (4000) simu-
late compute-intensive applications such as data analytics.
Thanks to these classifications, we can see how the evalu-
ation of load-balancing algorithms progresses under mixed
workloads with varying execution complexities.

Table 4: Parameters of user tasks

Parameters Values
Task length 300 , 2000/3000, 4000

Input File Size 200 Byte
Output File Size 400 Byte

PE 1-2

Table 5 lists Small, Medium and Large VM categories
and their MIPS, RAM and PEs. These configuration val-
ues are adopted from Syed Mustapha et al.[28] to main-
tain consistency with existing benchmarks. The proposed
KMPPVM-DRM method makes use of these configura-
tions. In particular, the method splits VMs into low,
medium and high resource categories using KMeans++,
which are based on each VM’s weight for CPU and mem-
ory. Because of this classification, the cloud environment

can assign work by size and required resources, leading to
balanced utilization of all resources in real-time.

Table 5: Type of VMs

Mips, Ram(MB), Pe VM category

VMs
(1000,512,1) Small
(2000,1024,2) Medium
(4000,2156,4) Large

4.2 Performance metrics
For evaluating the proposed KMPPVM-DRM, this paper
relies on different performance metrics to measure its per-
formance through these specific evaluation metrics:

A) Execution Time (ExT): The time needed to perform
tasks within a cloud environment on virtual machines
(VMs) constitutes Execution Time (ExT) [35]. The
VM performance relies on this metric as a primary
computation measure because performance improve-
ment requires lowering this metric value. It uses the
approach outlined in [28] to estimate the execution
time of a task as described by Equation (3) in this for-
mulation.

ExTi =
Tasklength(i)

NO.ofProcessor ∗ VM(MIPS(j))
+NetworkDelayi

(3)

Tasklength(i) indicates the number of instructions
to be executed for Taski while while (No.of Proces-
sor) represents the number of processors(PEs) allo-
cated for each task, VM(MIPSj) measures the pro-
cessing speed of VMj expressed in MIPS – Million
Instructions Per Second, and NetworkDelayi rep-
resents all possible system delays, including depen-
dency, resource, and data transfer times.

B) Start Time (ST) and Finish Time (FT): In cloud com-
puting, a task’s start time and finish time refer to when
the task starts executing and the execution process is
completed, respectively. These points are essential for
scheduling, LB, and RA. ST is when a resource (such
as a virtual machine or container) is allocated to the
task and begins executing. (FT) The moment at which
the task completes its execution, including any data
transfer, computation, or storage operations. The (FT)
or completion time(CT) is measured using the Equa-
tion (4) below:

FTi = STi + ExTi +Di (4)

STi stands for start time, ExTi stands for execution
time, whereas Di represents any delay caused by de-
pendencies, resource queuing, and data transfer. All
measurements are expressed in milliseconds(ms).
In this context, ‘improvement’ reduces the fall of these
metrics: ExT, Average ST, and FT. Lower values for

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 203

all these metrics mean it operates more quickly, ex-
periences fewer delays, and uses its resources better.
Because of these improvements, using load balancing,
QoS in the cloud is now more efficient.

4.3 Overall performance of the proposed
model by varying the task count and
VMs

In this section, the proposed (KMPPVM-DRM) algorithm
performs evaluations against two different test cases: five
VMs containing (1000 to 10000) cloudlets. Second: ten
VMs containing (1000 to 10000) cloudlets. Increasing
these variables can simulate reality and enhance the pro-
cess of allocation and scheduling between different vir-
tual machines for different cloudlets. The comparative
analysis evaluated the proposed KMPPVM-DRM model
against traditional and state-of-the-art algorithms.ACO[36]
and PSO[37] acted as representative traditional metaheuris-
tic optimization techniques because these two algorithms
show broad application in classical resource scheduling
problems. On the other hand, DBSCAN [28], a density-
based clustering algorithm, was chosen for its recognized
status as a state-of-the-art method in unsupervised learning
due to its robustness in detecting clusters of arbitrary shapes
and handling noise. This paper relies on performance met-
rics to measure its performance through these specific eval-
uation metrics:

1. Execution Time (ExT): Table 6 compares the perfor-
mance of different models (PSO, ACO, DBSCAN,
and KMPPVM-DRM) across various task counts and
VMs. In the PSO model, execution time increases
from 1478.47 (1000 tasks) to 13958.07(10000 tasks)
and 10 VMs, indicating a proportional rise in execu-
tion time with an increasing task load. The ACO and
DBSCAN follow similar trends, with execution time
values escalating as the number of tasks grows. No-
tably, the proposed KMPPVM-DRMmodel stands out
with significantly lower execution time values across
all task counts (e.g., 307.75 for 1000 tasks), show-
casing its superior efficiency in task execution time
compared to the other models. Figure(4) shows the
execution time of KMPPVM-DRM compared to the
other models. The KMPPVM-DRM model’s lower
execution time suggests its potential for optimizing
task scheduling and RA, resulting in faster task exe-
cution time and improved overall system efficiency.

Table 6: Shows execution time results while simulating 10
VMs measured in ms

Num of Tasks PSO ACO DBSCAN KMPPVM-DRM
1000 1478.47 1705.68 1080.168 307.75
3000 4177.67 4566.48 3240.378 975.25
5000 6960.87 8038.48 5400.624 1575.24
8000 11418.47 12774.48 8640.978 2475.24
10000 13958.07 16076.88 10801.22 3075.25

Figure 4: Execution time of KMPPVM-DRM compared to
PSO, ACO and DBSCAN with 10 VMs

2. Finish Time : The average finish time values in the
tables(7,8) are the average of moments at which the
task completes its execution by various models (PSO,
ACO, DBSCAN, and KMPPVM-DRM) in executing
tasks across different counts and VMs. For PSO, the
ACO, and the DBSCAN, there is a discernible up-
ward trend in average finish time as the task count
increases, indicating an increased finish time for han-
dling larger workload scenarios, as shown in Figure
(5,6). Specifically, DBSCAN’s average finish time
rises from 313.49 for 1000 tasks to 3103.79 for 10000
tasks with 5 VMs, rises from 219.44 for 1000 tasks
to 2172.65 for 10000 tasks with 10 VMs. In con-
trast, the proposed KMPPVM-DRM model exhibits
lower average finish time values across all task counts
with VMs (5,10 VMs), underscoring its potential for
energy-efficient task execution even with limited re-
sources. For instance, KMPPVM-DRM achieves a
notably lower average finish time of 123.24 for 1000
tasks with 5VMs and 61.93 for 1000 tasks with 10
VMs, positioning it as a promising model for scenar-
ios prioritizing finish time in resource, task schedul-
ing, and optimization.

Table 7: Shows the average finishing time with simulation
5 VMs in ms

Num of Tasks PSO ACO DBSCAN KMPPVM-DRM
1000 699.304 630.304 313.4951 123.24
3000 1926.053 1867.053 911.90058 223.49
5000 3173.058 3129.058 1536.658 499.16
8000 5029.683 4961.683 2413.843 935.47
10000 6321.599 6288.599 3103.799 1230.91

3. Start Time: Tables (9,10) show the average start time
values when a resource (such as a virtual machine or
container) is allocated to the task and begins execut-
ing by various models executing tasks across differ-
ent counts and VMs. In the PSO model, the aver-
age start time increases from 654.315 (1000 tasks) to
6320.839(10000 tasks) for 5 VMs, from 219.44 for

204 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Table 8: Shows the average finishing timewith a simulation
of 10 VMs in ms

Num of Tasks PSO ACO DBSCAN KMPPVM-DRM
1000 489.5128 441.2128 219.4466 61.93
3000 1348.237 1306.937 638.3304 117.98
5000 2221.14 2190.34 1075.66 337.58
8000 3520.778 3473.178 1689.69 742.35
10000 4425.119 4402.019 2172.659 1027.27

Figure 5: The finish time average for tasks performed by 5
VMs

Figure 6: The finish time average for tasks performed by
10 VMs

1000 tasks to 2172.65 for 10000 tasks for 10 VMs, in-
dicating a proportional rise in average start time with
an increasing task load. The ACO and DBSCAN fol-
low similar trends, with start time average values esca-
lating as the number of tasks grows with (5,10)VMs.
Notably, the proposed KMPPVM-DRM model stands
out with significantly lower average start time values
across all task counts (e.g., 122.87 for 1000 tasks with
5VMs and 61.56 for 1000 tasks with 10 VMs), show-
casing its faster task execution response and directly
contributing in early RA and efficient scheduling com-
pared to the other models. Figures (7a and 7b) show
the average start time of KMPPVM-DRM compared
to the other models.

Table 9: Shows the start time average with simulation 5
VMs in ms

Num of Tasks PSO ACO DBSCAN KMPPVM-DRM
1000 654.3151 625.31518 308.1501 122.87
3000 1906.083 1862.083 906.5555 222.95
5000 3135.073 3124.073 1531.313 498.72
8000 5002.0138 4956.013 2408.498 935.09
10000 6320.839 6282.839 3098.454 1230.54

Table 10: Shows the start time average with a simulation of
10 VMs in ms

Num of Tasks PSO ACO DBSCAN KMPPVM-DRM
1000 458.0206 437.72068 215.7051 61.56
3000 1334.258 1303.458 634.5889 117.44
5000 2194.551 2186.851 1071.919 337.13
8000 3501.409 3469.209 1685.949 741.962
10000 4424.587 4397.987 2168.918 1026.9

(a) The start time average for tasks performed by 5 VMs.

(b) The start time average for tasks performed by 10 VMs.

Figure 7: Comparison of the start time average under dif-
ferent VM configurations: (a) 5 VMs, (b) 10 VMs

4.4 Performance analysis
To understand how the proposed algorithm’s performance
is affected by the amount of available resources, a set
of experiments was conducted using two different virtual
machine (VM) configurations: one with 5 VMs and the
other with 10 VMs, with varying task loads (from 1,000
to 10,000 tasks). This analysis aimed to evaluate the al-

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 205

gorithm’s adaptability to environments with limited versus
larger resources and assess the consistency of the improve-
ment in task execution speed compared to the DBSCAN,
ACO, and PSO algorithms. Two analytical techniques were
adopted to measure the performance of the proposed algo-
rithm (KMPPVM-DRM): Relative Reduction to estimate
the percentage of improvement relative to other algorithms
and harmonic mean to find a fair estimate.

4.4.1 Performance analysis with 10 VMs

Table (11) shows the relative reduction in execution time
that the suggested algorithm offers compared to others and
for various tasks of various sizes. It is noted that the pro-
posed algorithm significantly outperformed all other al-
gorithms, the improvement over the DBSCAN algorithm
ranging from 69.90% to 71.52%, compared to the ACO al-
gorithm ranging from 78.64% to 81.95%, and compared to
the PSO algorithm ranging from 76.65% to 79.18%. To

Table 11: Shows relative reduction percentages (%) in ex-
ecution time achieved by KMPPVM-DRM compared to
other algorithms, with 10 VMs

Number of Tasks DBSCAN ACO PSO
1000 71.50 81.95 79.18
3000 69.90 78.64 76.65
5000 70.83 80.40 77.37
8000 71.35 80.62 78.32
10000 71.52 80.87 77.96

have an unbiased analysis of the proposed method’s per-
formance, especially with significantly varying values, the
harmonic mean of the execution time of each method for
various task counts was worked out. The harmonic means
of the results are summarized in the following table(12).

Table 12: Shows the Harmonic mean of each algorithm’s
execution time with 10 VMs

Method Harmonic Mean (ms)
PSO 4102.99
ACO 4672.25

DBSCAN 3071.51
KMPPVM-DRM (Proposed) 886.72

The KMPPVM-DRM algorithm achieved the lowest har-
monic mean, demonstrating more efficient and consistent
performance than the other algorithms, even as the number
of tasks increased. This supports the reliability of the rel-
ative reduction results in reducing the total execution time
and highlights the effectiveness of the proposed method in
managing cloud computing resources. Figure (8) shows the
harmonic means of KMPPVM-DRM compared to the other
models. The results showed that the KMPPVM-DRM al-
gorithm significantly outperformed the other algorithms in
reducing both the average finish time and the average start

Figure 8: Comparison of Harmonic Means of Algorithms
with 10 VMs

time with 10 virtual machines, reflecting the model’s effi-
cient use of available resources. Figures (9,10) illustrate the
comparative performance regarding average finish and start
times, respectively. Furthermore, Tables (13,14) provide
a detailed summary of the relative reduction percentages
of average finish and start times achieved by the proposed
method across different task sizes.

Figure 9: comparative performance for average finish time
of Algorithms with 10 VMs

Figure 10: comparative performance for average start time
of Algorithms with 10 VMs

206 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Table 13: Shows relative reduction percentages (%) in av-
erage finish time achieved by KMPPVM-DRM compared
to other algorithms

Number of Tasks DBSCAN ACO PSO
1000 71.77 85.96 87.34
3000 81.51 90.97 91.24
5000 68.61 84.58 84.80
8000 56.06 78.62 78.91
10000 52.71 76.66 76.78

Table 14: Shows relative reduction percentages (%) in av-
erage start time achieved by KMPPVM-DRM compared to
other algorithms

Number of Tasks DBSCAN ACO PSO
1000 71.46 85.93 86.55
3000 81.49 90.99 91.19
5000 68.54 84.58 84.63
8000 55.99 78.61 78.80
10000 52.65 76.65 76.79

In this table(13), It is noted that the proposed algorithm
significantly outperformed all other algorithms in the rela-
tive reduction percentages for the average finish time, the
improvement over the DBSCAN algorithm ranging from
52.71% to 81.51%, compared to the ACO algorithm rang-
ing from 76.66% to 90.97%, and compared to the PSO al-
gorithm ranging from 76.78% to 91.24%. Table (14) also
presents the relative reduction percentages of the average
start time, clearly highlighting the superiority of the pro-
posed algorithm over the other algorithms. The improve-
ment over the DBSCAN algorithm ranged from 52.65% to
81.49%, compared to the ACO algorithm, which ranged
from 76.65% to 90.99%, and compared to the PSO algo-
rithm, which ranged from 76.79% to 91.19%. Table (15)
presents each algorithm’s harmonic mean of the average
start and finish times. The findings indicate that the pro-
posed KMPPVM-DRM algorithm outperforms the others,
recording the lowest harmonic mean values. It demon-
strates its enhanced capability to reduce task waiting time
and accelerate execution.

Table 15: Shows the harmonic mean of each algorithm’s
average finish and start times with 10 VMs

Method Harmonic Mean
(Start Time)

Harmonic Mean
(Finish Time)

PSO 1282.03 1335.19
ACO 1242.34 1248.98

DBSCAN 609.84 616.88
KMPPVM-DRM 166.41 167.19

The following figures (11,12) show the harmonic mean
of the average times (start and finish times). Figure (11)

shows the harmonic mean of the task start average, while
Figure (12) highlights the harmonic mean of the task finish
average.

Figure 11: Comparison of harmonic means for average start
time of algorithms with 10 VMs

Figure 12: Comparison of harmonic means for average fin-
ish time of algorithms with 10 VMs

4.4.2 Performance analysis with 5 VMs

This table(16) shows that the relative reduction percentages
are still high, albeit slightly lower than in the case where 10
virtual machines were used. This results from limited re-
sources available at the system’s disposal and a lot of pres-
sure on the allocation algorithm to balance it. However, the
proposed algorithm did not lose its superiority compared to
the other algorithms, demonstrating its efficiency in adapt-
ing to the resource-limited environment.

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 207

Table 16: Shows relative reduction percentages (%) in av-
erage finish and start time achieved by KMPPVM-DRM
compared to other algorithms, with 5 VMs

Method Number of
Tasks

Avg. Start
Time (ms)

Avg. Finish
Time (ms)

PSO

1000 81.22 82.37
3000 88.30 88.39
5000 84.09 84.26
8000 81.30 81.40
10000 80.53 80.52

ACO

1000 80.35 80.44
3000 88.01 88.02
5000 84.03 84.04
8000 81.13 81.14
10000 80.41 80.42

DBSCAN

1000 60.12 60.68
3000 75.40 75.49
5000 67.43 67.51
8000 61.17 61.24
10000 60.28 60.34

Table (17) presents each algorithm’s harmonic mean of
the average start and finish times. The findings indicate that
the proposed KMPPVM-DRM algorithm outperforms the
others, recording the lowest harmonic mean values with 5
VMs. It demonstrates its enhanced capability to reduce task
waiting time and accelerate execution.

Table 17: Shows the harmonic mean of each algorithm’s
average finish and start times with 5 VMs

Method Harmonic Mean
(Start Time)

Harmonic Mean
(Finish Time)

PSO 1831.47 1907.41
ACO 1774.77 1784.26

DBSCAN 871.20 881.26
KMPPVM-DRM (Proposed) 302.82 303.52

Compared to the 10-VM use case, the harmonic mean
values for the average start and end times increased for
all algorithms as resources were reduced, increasing the
pressure on the hardware and leading to processing de-
lays. However, the proposed algorithm (KMPPVM-DRM)
maintained the best relative performance with the lowest
harmonic mean value, confirming its high capacity and
flexibility in resource-constrained cloud computing envi-
ronments. The following figures (13,14) show the har-
monic mean of the average times (start and finish times)
with 5VMs. Figure (13) shows the harmonic mean of the
task start average, while Figure (14) highlights the har-
monicmean of the task finish average. The results revealed
that KMPPVM-DRM produces vastly improved perfor-
mance compared to other algorithms in the three metrics of
the total execution time and average finish and start times
while significantly reducing the execution time. The data
also show that such improvements significantly increase
with the increasing number of virtual machines, demon-
strating the model’s effective scalability.

Figure 13: Comparison of harmonicmeans for average start
time of algorithms with 5 VMs

Figure 14: Comparison of harmonic means for average fin-
ish time of algorithms with 5 VMs

4.5 Statistical analysis using paired T-test
(with Multiple VMs)

In this study section, a paired t-test was used to test for the
statistical significance of the performance differences be-
tween the proposed algorithm (KMPPVM-DRM) and the
other algorithms (DBSCAN, ACO, PSO) in two separate
scenarios. The first has 5 virtual machines, and the second
has 10. This analysis determines whether the observed dif-
ferences across various task loads reflect genuine improve-
ments or are simply due to random variation. The t-test
results showed that the difference was significant at 0.05
level in both scenarios while supporting the effectiveness
and flexibility of the suggested algorithm under a resource-
limited environment. Table (18) presents the results of the
conducted statistical analysis with a paired t-test for per-
formance comparisons between the proposed KMPPVM-
DRM algorithm and other algorithms based on three major
performance indicators (execution time, average start, and
finish time) in a computing environment comprising 10 vir-
tual machines (VMs).

208 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

Table 18: Shows paired T-test results (t-statistic, p-value)
for KMPPVM-DRM vs other algorithms on 10 VMs

Metric Comparison t-statistic p-value
KMPPVM-DRM vs DBSCAN -3.28 0.0303

Execution Time KMPPVM-DRM vs ACO -3.27 0.0307
KMPPVM-DRM vs PSO -3.30 0.0297

KMPPVM-DRM vs DBSCAN -4.07 0.0152
Average Start Time KMPPVM-DRM vs ACO -3.56 0.0234

KMPPVM-DRM vs PSO -3.60 0.0227
KMPPVM-DRM vs DBSCAN -4.09 0.0149

Average Finish Time KMPPVM-DRM vs ACO -3.57 0.0233
KMPPVM-DRM vs PSO -3.66 0.0215

The results in Table (18) revealed that all p-values were
smaller than 0.05, thus indicating the statistical signifi-
cance of the successes of KMPPVM-DRM. This indicates
the superiority and stability of the algorithm’s performance
on different metrics. Additionally, all comparisons’ t-
statistic values were negative, indicating that KMPPVM-
DRM consistently outperformed the other algorithms re-
garding reducing time metrics. The figures(15,16,17) be-
low also show the p-values of paired t-test results between
KMPPVM-DRM and the other algorithms across three-
time metrics: execution time, average finish time, and av-
erage start time. All p-values shown in the figures were less
than the statistical significance level of 0.05, confirming the
presence of statistical significance and superiority in favour
of the proposed algorithm.

Figure 15: p-values of paired t-test results between
KMPPVM-DRM and other algorithms for execution time
with 10 VMs

Figure 16: p-values of paired t-test results between
KMPPVM-DRM and other algorithms for Average Start
time with 10 VMs

In order to strengthen the assessment of the efficiency
of the proposed KMPPVM-DRM algorithm, the paired t-

Figure 17: p-values of paired t-test results between
KMPPVM-DRM and other algorithms for Average Finish
time with 10 VMs

tests were performed to compare the algorithm to other al-
gorithms in terms of performance metrics (execution time,
average finish time, and average start time) at resource-
constrained settings (5VMs). The results of the paired t-
tests in Table (19) indicate that the p-values have a signifi-
cance level of less than 0.05, confirming that the observed
improvements are statistically significant. On the other
hand, negative t values show that KMPPVM-DRMhad bet-
ter performance metrics, demonstrating its efficiency and
adaptability even in resource-constrained environments.

Table 19: Shows paired T-test results (t-statistic, p-value)
for KMPPVM-DRM vs other algorithms on 5 VMs

Metric Comparison t-statistic p-value
KMPPVM-DRM vs DBSCAN -3.32 0.0292

Execution Time KMPPVM-DRM vs ACO -3.25 0.0312
KMPPVM-DRM vs PSO -3.29 0.0302

KMPPVM-DRM vs DBSCAN -3.56 0.0235
Average Start Time KMPPVM-DRM vs ACO -3.40 0.0271

KMPPVM-DRM vs PSO -3.43 0.0263
KMPPVM-DRM vs DBSCAN -3.58 0.0231

Average Finish Time KMPPVM-DRM vs ACO -3.41 0.0270
KMPPVM-DRM vs PSO -3.49 0.0250

The figures(18,19) below also show the paired t-test re-
sults between KMPPVM-DRM and the other algorithms,
and All p-values shown in the figures were less than the sta-
tistical significance level of 0.05, confirming the presence
of statistical significance and superiority in favour of the
proposed algorithm even with the environment resource-
constrained (5VMs).

4.6 Discussion and interpretation
Compared to DBSCAN, ACO, and PSO, the KMPPVM-
DRM algorithm ran faster, reduced execution time, and im-
proved the average start and finish time and the distribution
of jobs among processors. The boost in performance comes
from using KMeans++ to cluster VMs, which helps choose
much better centres and facilitates faster convergence. Un-
like DBSCAN, which struggles with irregular cloud work-
loads and requires sensitive parameter tuning, ACO/PSO
is time-consuming. KMPPVM-DRM clustering of VMs
into groups (high, medium, low) and distributes tasks to the
most appropriate VM in each group based on demand. The

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 209

Figure 18: p-values of paired t-test results between
KMPPVM-DRM and other algorithms for execution time
with 5 VMs

(a) p-values of paired t-test to (average start time)

(b) p-values of paired t-test to (Average Finish time).

Figure 19: p-values of paired t-test results between
KMPPVM-DRM and other algorithms: (a) average start
time, (b) average finish time with 5 VMs

method uses KMeans++ to make strong VM groups, which
offers better initialization, computational efficiency, and
stability under real-time VM load variations and dynamic
resource management (DRM) to manage the intelligent al-
location of tasks. VMs are sorted by their capabilities, and
specific tasks are assigned according to these groupings.
Meanwhile, VM weights change in real-time with changes
in the system. This enables improved scheduling decisions.
Because KMPPVM-DRM has a smaller search area and
less to worry about than ACO and PSO, it is more efficient
regarding computational complexity. Nevertheless, han-
dling massive cloud deployments and continually updating
the weights can be difficult. However, these issues might
be handled by parallel clustering techniques or leveraging
distributed computing frameworks in the future. Overhead
Consideration: While the current version does not explic-

itly measure the computation time of KMeans++, sched-
uler response time, or system latency, these aspects are ac-
knowledged as potential overhead sources. Future experi-
ments will include benchmarks for runtime overhead, espe-
cially under large-scale conditions, to quantify the impact
of clustering and dynamic weight updates on overall system
responsiveness.

5 Conclusion and future direction

This paper develops a systemmodel that optimizes dynamic
resource scheduling procedures through efficient cloud re-
source allocation(RA) with support for different cloud in-
frastructure deployments. Tasks are classified based on
their length property, assuming a scenario with three dif-
ferent task length levels: high, medium, and low. For the
allocation, a dynamic clustering mechanism(KMeans++) is
used based on the current load weight of virtual machines
(VMs) in real-time. In a cluster of machines, a ULC is used
to identify themost suitable virtual machine from each clus-
ter to be assigned to execute the task by finding the ma-
chine with the most significant weight of the available re-
sources in the cluster. As shown in the results section, the
proposed model outperforms the existing methods in (DB-
SCAN, ACO, and PSO). The performance evaluation re-
lies on execution time measurements alongside start time
and finish time averages. The result shows that the pro-
posed method performs better than the existing algorithms
in (DBSCAN, ACO, and PSO) for both execution time and
start time and finish time averages for different numbers of
tasks ranging from (1000 to 10000) with (5 and 10) virtual
machines. The results validate the efficiency and adaptabil-
ity of the proposed model for heterogeneous cloud infras-
tructures. Using 10 virtual machines, the proposed model
had the best harmonic execution time of 886.72, outper-
forming PSO at 4102.99, ACO at 4672.25 and DBSCAN
at 3071.51. Similarly, the harmonic means of average start
and finish times were significantly lower at 166.41 and
167.19, respectively, whereas other methods exhibited val-
ues exceeding 600 and 1200. In terms of relative reduc-
tion percentages as an estimate of performance improve-
ment, measured by reducing the execution time, was from
69.90% to 71.52% for the proposedmodel compared toDB-
SCAN, meaning the model is dependable no matter how
many tasks it needs to deal with (up to 10000). Compared
to DBSCAN, the reduction in finish time average was be-
tween 52.71% and 81.51%, and the start time average was
from 52.65% to 81.49%. Moreover, even under limited re-
source conditions (with only 5 virtual machines), the pro-
posed approach demonstrated competitive and stable per-
formance compared to the baseline algorithms, highlighting
its robustness and adaptability.
The proposed model will be extended in future work to

support larger-scale environments with increased numbers
of 100+ VMs, variable task inter-arrival rates, diverse task
types, and VM failure scenarios. In addition, examining the

210 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

use of additional machine learning algorithms (may con-
sider integrating predictive analytics, such as Cloud Linear
Regression (CLR) models as introduced in [32], [33], and
[34], to enhance the accuracy of resource demand forecast-
ing) to optimize RA and load further balancing in cloud data
centres. Finally, sensitivity analysis will be conducted on
the CPU and RAM weight parameters (α , β) to identify
optimal configurations for varying workload types and de-
ployment scenarios.

References
[1] H. S. Malallah, R. Qashi, L. M. Abdulrahman, M. A.

Omer, and A. A. Yazdeen, “Performance analysis of
enterprise cloud computing: a review,” Journal of Ap-
plied Science and Technology Trends, vol. 4, no. 01,
pp. 01–12, 2023. https://doi.org/10.38094/
jastt401139.

[2] S. Paul and M. Adhikari, “Dynamic load balancing
strategy based on resource classification technique in
iaas cloud,” in 2018 International Conference on Ad-
vances in Computing, Communications and Informat-
ics (ICACCI), pp. 2059–2065, IEEE, 2018. https:
//doi.org/10.1109/icacci.2018.8554440.

[3] S. S. Gill and R. Buyya, “Resource provisioning based
scheduling framework for execution of heterogeneous
and clustered workloads in clouds: from fundamental
to autonomic offering,” Journal of Grid Computing,
vol. 17, pp. 385–417, 2019. https://doi.org/10.
1007/s10723-017-9424-0.

[4] A. Shahidinejad, M. Ghobaei-Arani, and M. Mas-
dari, “Resource provisioning using workload clus-
tering in cloud computing environment: a hy-
brid approach,” Cluster Computing, vol. 24, no. 1,
pp. 319–342, 2021. https://doi.org/10.1007/
s10586-020-03107-0.

[5] O. H. Sultan and T. Khaleel, “Challenges of load
balancing techniques in cloud environment: A re-
view,” Al-Rafidain Engineering Journal, vol. 27,
no. 2, pp. 227–235, 2022. https://doi.org/10.
33899/rengj.2022.134056.1179.

[6] R. Tasneem and M. Jabbar, “An insight into load bal-
ancing in cloud computing,” in International Confer-
ence on Wireless Communications, Networking and
Applications, pp. 1125–1140, Springer, 2021. https:
//doi.org/10.1007/978-981-19-2456-9_113.

[7] N. K. Mishra and N. Mishra, “Load balancing tech-
niques: need, objectives and major challenges in
cloud computing-a systematic review,” International
Journal of Computer Applications, vol. 131, no. 18,
pp. 0975–8887, 2015. https://doi.org/10.
5120/ijca2015907523.

[8] Y. Lohumi, D. Gangodkar, P. Srivastava, M. Z. Khan,
A. Alahmadi, and A. H. Alahmadi, “Load balancing
in cloud environment: A state-of-the-art review,” Ieee
Access, vol. 11, pp. 134517–134530, 2023. https:
//doi.org/10.1109/access.2023.3337146.

[9] A. M. Manasrah and H. Ba Ali, “Workflow schedul-
ing using hybrid ga-pso algorithm in cloud comput-
ing,” Wireless Communications and Mobile Comput-
ing, vol. 2018, no. 1, p. 1934784, 2018. https:
//doi.org/10.1155/2018/1934784.

[10] A. Senthil Kumar and M. Venkatesan, “Multi-
objective task scheduling using hybrid genetic-ant
colony optimization algorithm in cloud environ-
ment,” Wireless Personal Communications, vol. 107,
pp. 1835–1848, 2019. https://doi.org/10.
1007/s11277-019-06360-8.

[11] U. K. Jena, P. K. Das, and M. R. Kabat, “Hybridiza-
tion of meta-heuristic algorithm for load balancing
in cloud computing environment,” Journal of King
Saud University-Computer and Information Sciences,
vol. 34, no. 6, pp. 2332–2342, 2022. https://doi.
org/10.1016/j.jksuci.2020.01.012.

[12] F. Davami, S. Adabi, A. Rezaee, and A. M. Rahmani,
“Distributed scheduling method for multiple work-
flows with parallelism prediction and dag prioritiz-
ing for time constrained cloud applications,” Com-
puter networks, vol. 201, p. 108560, 2021. https:
//doi.org/10.1016/j.comnet.2021.108560.

[13] P. Paknejad, R. Khorsand, and M. Ramezanpour,
“Chaotic improved picea-g-based multi-objective op-
timization for workflow scheduling in cloud en-
vironment,” Future Generation Computer Systems,
vol. 117, pp. 12–28, 2021. https://doi.org/10.
1016/j.future.2020.11.002.

[14] Z. Mahmoudi, E. Darbanian, and M. Nickray, “Com-
putational resource allocation in iot fog computing us-
ing teaching–learning-based optimization algorithm,”
Journal of Soft Computing and Information Technol-
ogy, vol. 10, no. 3, pp. 73–85, 2021.

[15] A. Daghayeghi and M. Nickray, “Nsgaii-based task
scheduling model for smart city applications in cloud-
fog environment,” Journal of Soft Computing and In-
formation Technology, vol. 11, no. 3, pp. 64–82, 2022.

[16] S. A. Omranian and M. Goudarzi, “Greedy algorithm
for dynamic allocation of intelligent services in ve-
hicular edge computing,” Cluster Computing, vol. 28,
no. 1, pp. 1–20, 2025. https://doi.org/10.1007/
s10586-024-04817-5.

[17] P. R. Kaveri and P. Lahande, “Reinforcement learning
to improve resource scheduling and load balancing
in cloud computing,” SN Computer Science, vol. 4,

https://doi.org/10.38094/jastt401139
https://doi.org/10.38094/jastt401139
https://doi.org/10.1109/icacci.2018.8554440
https://doi.org/10.1109/icacci.2018.8554440
https://doi.org/10.1007/s10723-017-9424-0
https://doi.org/10.1007/s10723-017-9424-0
https://doi.org/10.1007/s10586-020-03107-0
https://doi.org/10.1007/s10586-020-03107-0
https://doi.org/10.33899/rengj.2022.134056.1179
https://doi.org/10.33899/rengj.2022.134056.1179
https://doi.org/10.1007/978-981-19-2456-9_113
https://doi.org/10.1007/978-981-19-2456-9_113
https://doi.org/10.5120/ijca2015907523
https://doi.org/10.5120/ijca2015907523
https://doi.org/10.1109/access.2023.3337146
https://doi.org/10.1109/access.2023.3337146
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1007/s11277-019-06360-8
https://doi.org/10.1007/s11277-019-06360-8
https://doi.org/10.1016/j.jksuci.2020.01.012
https://doi.org/10.1016/j.jksuci.2020.01.012
https://doi.org/10.1016/j.comnet.2021.108560
https://doi.org/10.1016/j.comnet.2021.108560
https://doi.org/10.1016/j.future.2020.11.002
https://doi.org/10.1016/j.future.2020.11.002
https://doi.org/10.1007/s10586-024-04817-5
https://doi.org/10.1007/s10586-024-04817-5

KMPPVM-DRM: A KMeans++ Based Dynamic Clustering Approach… Informatica 49 (2025) 195–212 211

no. 2, p. 188, 2023. https://doi.org/10.1007/
s42979-022-01609-9.

[18] M. R. Belgaum, S. Musa, M. M. Alam, and M. M.
Su’ud, “A systematic review of load balancing tech-
niques in software-defined networking,” Ieee Access,
vol. 8, pp. 98612–98636, 2020. https://doi.org/
10.1109/access.2020.2995849.

[19] J. Shankar, I. Hussain, S. Zafar, I. R. Khan,
and A. Khalique, “Effective resource allocation
and load balancing in green cloud computing,”
in International Conference on ICT for Digital,
Smart, and Sustainable Development, pp. 423–439,
Springer, 2024. https://doi.org/10.1007/
978-981-97-7831-7_26.

[20] Q. Shang, “A dynamic resource allocation algorithm
in cloud computing based on workflow and resource
clustering,” Journal of Internet Technology, vol. 22,
no. 2, pp. 403–411, 2021.

[21] S. El Motaki, A. Yahyaouy, H. Gualous, and
J. Sabor, “A new weighted fuzzy c-means clus-
tering for workload monitoring in cloud datacen-
ter platforms,” Cluster Computing, vol. 24, no. 4,
pp. 3367–3379, 2021. https://doi.org/10.
1007/s10586-021-03331-2.

[22] J. P. B. Mapetu, L. Kong, and Z. Chen, “A dy-
namic vm consolidation approach based on load
balancing using pearson correlation in cloud com-
puting,” The Journal of Supercomputing, vol. 77,
no. 6, pp. 5840–5881, 2021. https://doi.org/10.
1007/s11227-020-03494-6.

[23] L. M. Al Qassem, T. Stouraitis, E. Damiani, and
I. A. M. Elfadel, “Proactive random-forest autoscaler
for microservice resource allocation,” IEEE Access,
vol. 11, pp. 2570–2585, 2023. https://doi.org/
10.1109/access.2023.3234021.

[24] G. Senthilkumar, K. Tamilarasi, N. Velmurugan, and
J. Periasamy, “Resource allocation in cloud comput-
ing,” Journal of Advances in Information Technol-
ogy, vol. 14, no. 5, pp. 1063–1072, 2023. https:
//doi.org/10.12720/jait.14.5.1063-1072.

[25] M. S. Al Reshan, D. Syed, N. Islam, A. Shaikh,
M. Hamdi, M. A. Elmagzoub, G. Muham-
mad, and K. H. Talpur, “A fast converging
and globally optimized approach for load bal-
ancing in cloud computing,” IEEE Access,
vol. 11, pp. 11390–11404, 2023. https:
//doi.org/10.1109/access.2023.3241279.

[26] S. Singh, P. Singh, and S. Tanwar, “Energy aware re-
source allocation via ms-slno in cloud data center,”
Multimedia Tools and Applications, vol. 82, no. 29,
pp. 45541–45563, 2023. https://doi.org/10.
1007/s11042-023-15521-8.

[27] D. Kavitha, M. Priyadharshini, R. Anitha, S. Suma,
V. Prema, and A. Vidhya, “Adaptive dbn using hy-
brid bayesian lichtenberg optimization for intelligent
task allocation,” Neural Processing Letters, vol. 55,
no. 4, pp. 4907–4931, 2023. https://doi.org/10.
1007/s11063-022-11071-6.

[28] S. D. S. Mustapha and P. Gupta, “Dbscan inspired
task scheduling algorithm for cloud infrastructure,”
Internet of Things and Cyber-Physical Systems, vol. 4,
pp. 32–39, 2024. https://doi.org/10.1016/j.
iotcps.2023.07.001.

[29] I. Jaya, Y. Li, and W. Cai, “Deep reinforcement learn-
ing based resource allocation in edge-cloud gaming,”
Multimedia Tools and Applications, vol. 83, no. 26,
pp. 67903–67926, 2024. https://doi.org/10.
1007/s11042-024-18337-2.

[30] H. Lin, G. Liu, W. Lin, X. Wang, and X. Wang, “A
novel virtual machine consolidation algorithm with
server power mode management for energy-efficient
cloud data centers,”Cluster Computing, vol. 27, no. 8,
pp. 11709–11725, 2024. https://doi.org/10.
1007/s10586-024-04555-8.

[31] A. R. Khan, “Dynamic load balancing in cloud com-
puting: optimized rl-based clustering with multi-
objective optimized task scheduling,” Processes,
vol. 12, no. 3, p. 519, 2024. https://doi.org/10.
3390/pr12030519.

[32] O. K. J. Mohammad, M. E. Seno, and B. N. Dhan-
noon, “Detailed cloud linear regression services in
cloud computing environment,” Informatica, vol. 48,
no. 12, 2024. https://doi.org/10.31449/inf.
v48i12.6771.

[33] J. Ma, C. Zhu, Y. Fu, H. Zhang, and W. Xiong,
“Dynamic routing via reinforcement learning for net-
work traffic optimization,” Informatica, vol. 49, no. 8,
2025. https://doi.org/10.31449/inf.v49i8.
7126.

[34] C. Vijaya and P. Srinivasan, “Hybrid fuzzy meta-
heuristic technique for efficient vm selection and mi-
gration in cloud data centers,” Informatica, vol. 48,
no. 20, 2024. https://doi.org/10.31449/inf.
v48i20.6549.

[35] M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, A. B.
Darem, et al., “An improved sjf scheduling algorithm
in cloud computing environment,” in 2016 Interna-
tional Conference on Electrical, Electronics, Com-
munication, Computer and Optimization Techniques
(ICEECCOT), pp. 208–212, IEEE, 2016. https:
//doi.org/10.1109/iceeccot.2016.7955216.

[36] P. Gupta and S. P. Ghrera, “Trust and dead-
line aware scheduling algorithm for cloud infras-
tructure using ant colony optimization,” in 2016

https://doi.org/10.1007/s42979-022-01609-9
https://doi.org/10.1007/s42979-022-01609-9
https://doi.org/10.1109/access.2020.2995849
https://doi.org/10.1109/access.2020.2995849
https://doi.org/10.1007/978-981-97-7831-7_26
https://doi.org/10.1007/978-981-97-7831-7_26
https://doi.org/10.1007/s10586-021-03331-2
https://doi.org/10.1007/s10586-021-03331-2
https://doi.org/10.1007/s11227-020-03494-6
https://doi.org/10.1007/s11227-020-03494-6
https://doi.org/10.1109/access.2023.3234021
https://doi.org/10.1109/access.2023.3234021
https://doi.org/10.12720/jait.14.5.1063-1072
https://doi.org/10.12720/jait.14.5.1063-1072
https://doi.org/10.1109/access.2023.3241279
https://doi.org/10.1109/access.2023.3241279
https://doi.org/10.1007/s11042-023-15521-8
https://doi.org/10.1007/s11042-023-15521-8
https://doi.org/10.1007/s11063-022-11071-6
https://doi.org/10.1007/s11063-022-11071-6
https://doi.org/10.1016/j.iotcps.2023.07.001
https://doi.org/10.1016/j.iotcps.2023.07.001
https://doi.org/10.1007/s11042-024-18337-2
https://doi.org/10.1007/s11042-024-18337-2
https://doi.org/10.1007/s10586-024-04555-8
https://doi.org/10.1007/s10586-024-04555-8
https://doi.org/10.3390/pr12030519
https://doi.org/10.3390/pr12030519
https://doi.org/10.31449/inf.v48i12.6771
https://doi.org/10.31449/inf.v48i12.6771
https://doi.org/10.31449/inf.v49i8.7126
https://doi.org/10.31449/inf.v49i8.7126
https://doi.org/10.31449/inf.v48i20.6549
https://doi.org/10.31449/inf.v48i20.6549
https://doi.org/10.1109/iceeccot.2016.7955216
https://doi.org/10.1109/iceeccot.2016.7955216

212 Informatica 49 (2025) 195–212 M.Y. Al-hamami et al.

International conference on innovation and chal-
lenges in cyber security (ICICCS-INBUSH), pp. 187–
191, IEEE, 2016. https://doi.org/10.1109/
iciccs.2016.7542337.

[37] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learn-
ing pso-based deadline constrained task scheduling
for hybrid iaas cloud,” IEEE Transactions on Au-
tomation Science and Engineering, vol. 11, no. 2,
pp. 564–573, 2013. https://doi.org/10.1109/
tase.2013.2272758.

https://doi.org/10.1109/iciccs.2016.7542337
https://doi.org/10.1109/iciccs.2016.7542337
https://doi.org/10.1109/tase.2013.2272758
https://doi.org/10.1109/tase.2013.2272758

	 Introduction
	Related work
	The proposed approach
	 Environment and results
	 Experimental environment
	Hardware configuration
	Software and tools

	Performance metrics
	Overall performance of the proposed model by varying the task count and VMs
	Performance analysis
	Performance analysis with 10 VMs
	Performance analysis with 5 VMs

	Statistical analysis using paired T-test (with Multiple VMs)
	Discussion and interpretation

	Conclusion and future direction

