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Quality detection of aviation gasoline is critical to flight safety. Gasoline is a critical fuel for aircraft
engines, and any quality problem may affect the performance of the engine and the safety of the aircraft.
Regarding the issue of aviation gasoline detection, a RAP method combining Pearson correlation
coefficient method and Relief-F algorithm is studied for gasoline mass spectrometry feature selection.
Improved marine predator algorithm (MPA) introduces Logistic chaotic mapping and adaptive t-
distribution operator. It is used to optimize the XGBoost model to construct an aviation gasoline quality
detection model for gasoline quality detection and model classification. Among them, the RAP method is
chosen because it effectively removes redundant features from mass spectrometry data while preserving
the correlation between features. The use of IMPA to optimize XGBoost is because the traditional MPA is
easy to fall into local optimum. Whereas the improved IMPA can find the optimal hyperparameter
combination of XGBoost more effectively by enhancing the population diversity and optimizing the search
strategy, thus improving the model detection performance. The results showed that the area under the
receiver operating characteristic curve (AUC) of the proposed model was 0.8892, which was significantly
higher than the AUC values of the particle swarm optimization-XGBoost (PSO-XGBoost) model (0.8384)
and the sparrow search algorithm-XGBoost (SSA-XGBoost) model (0.8497). In the classification of
gasoline models, only 4 samples were misclassified, while 122 samples were classified correctly, with an
accuracy rate of 96.83%. This was a significant improvement compared to the 92.06% of the SSA XGBoost
model and the 88.10% of the PSO XGBoost model. The improved marine predator and extreme gradient
boosting model has shown excellent performance in gasoline quality detection. Compared to traditional
chemical detection methods, such as plasma emission spectroscopy and gas chromatography with an
oxygen-selective detector, the Al-based detection system proposed in this study has significant advantages
in terms of detection accuracy and efficiency, and does not require expensive and complex detection
equipment. This provides a strong support for Al automated system in quality detection of aviation gasoline.

Povzetek: Studija predstavija RAP (Relief-F + Pearson) za izbor masnospektrometricnih znacilk ter IMPA-

optimiziran XGBoost za zaznavanje kakovosti letalskega bencina.

1 Introduction

The importance of airplane flight safety has increased with
the aviation industry's explosive growth. The quality
detection of aviation gasoline plays a crucial role in flight
safety. Therefore, it is necessary to adopt effective quality
detection methods to ensure that the quality of aviation
gasoline meets the specifications [1]. Traditional gasoline
detection methods include plasma emission spectrometry,
gas chromatography oxygen selective detector (GC-OD)
method and other chemical experimental methods [2]. In
aviation gasoline, silicon is the residue left behind after
combustion. This residue accelerates the wear and tear of
pumps, valves, etc. For this reason, scholars have used
plasma emission spectrometry to measure silicon content
in gasoline in an attempt to determine its quality and type.
Alcohols and other oxygenates can be added to gasoline.
However, adding too many oxygenates affects the

performance and efficiency of gasoline engines and causes
environmental pollution. For this reason, GC-OD is used
to determine the content of C7 ether and other ether
compounds in gasoline, and then to realize the detection
and model classification of gasoline quality. However, this
type of chemical detection method requires high cost of
detection equipment, difficult operation, and limited
detection range [3-4]. As a result, numerous researchers
have begun to seek more efficient and automated detection
solutions. Advances in artificial intelligence and
automated systems in recent years have provided new
ideas for detecting the quality of aerogasoline. Especially
in the field of machine learning (ML), the eXtreme
gradient boosting (XGBoost) model has been widely used
in various data analysis tasks due to its efficient
performance [5-6].
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XGBoost is widely used in detection and prediction in
various fields. For chiller unit defect diagnosis and
detection, Zhang et al. integrated a parameter-optimized
XGBoost model with a mean-drift clustering technique,
resulting in a multi-region XGBoost model. The findings
showed that the model outperformed the support vector
machine model and the XGBoost model without clustering
in terms of defect diagnosis rate. It was able to detect
97.26% of faulty samples and was able to detect 99.10%
of fault-free samples [7]. Chen et al. proposed XGBoost
model for the study of self-recognition technical debt
classification in software development. The method
employed a trained XGBoost classifier to classify each
comment into the corresponding class. The outcomes
demonstrated that the average accuracy of the proposed
method under study was 56.66%, the average recall was
59.07% and the average F1 value was 55.77%. Its
improvement was 4.98%, 5.32% and 3.17% compared to
natural language processing-based methods [8]. Qiu et al.
proposed an optimized XGBoost model with whale
optimization algorithm to optimize its hyperparameters in
order to detect the ground vibration caused by blasting.
The results demonstrated that the XGBoost model based
on the whale optimization algorithm had the lowest error
value compared with the rest of the artificial intelligence
algorithms. The root mean square error was only 3.0538
and the mean absolute error was only 2.5032 [9]. Asselman
etal. proposed a performance factor analysis method based
on the XGBoost model in order to enhance the prediction
performance of student performance. The outcomes
showed that the performance of scalable XGBoost
proposed by the study had superior predictive performance
compared to traditional performance factor analysis
algorithms [10].

In recent years, the traditional marine predator
algorithm (MPA) algorithm has been improved in various
fields to enhance the application. Ramezani et al. found
that the traditional MPA could not produce diverse initial
populations with high productivity and optimized it using
a dyadic-based learning approach with chaotic mapping
method. The results indicated that the improved MPA
proposed by the study provided better performance
compared to particle swarm optimization algorithm, whale
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optimization algorithm, etc. In the real-world optimization
problem for DC motors [11]. An enhanced MPA based on
the sine-cosine algorithm was proposed by Abd Elaziz et
al. for the feature selection problem for high dimensional
data. To maximize the search capacity, the method used
the sine-cosine algorithm as a local search of the original
MPA. According to the findings, the enhanced MPA
performed noticeably better in terms of categorization
metrics [12]. To address the issue of resource waste
brought on by an uneven node distribution in distributed
network systems, He et al. suggested an enhanced MPA
method. According to the findings, the enhanced MPA had
a higher coverage rate than other meta-heuristic algorithms
when resolving the issue of distributed network system
coverage optimization [13]. For interdisciplinary data
analysis, Jia et al. proposed an MPA based on co-
evolutionary cultural mechanisms. The algorithm could
realize the sharing of knowledge and experience in
different spaces. The results indicated that the MPA based
on the co-evolutionary cultural mechanism outperformed
the remaining advanced data analysis methods in several
evaluation metrics [14].

The study compared the performance of the proposed
method with that of existing advanced methods, including

global context-outlier detection (GC-OD), principal
component  analysistextreme  gradient  boosting
(PCA+XGBoost), and whale optimization

algorithm+extreme gradient boosting (WOA-XGBoost).
The comparison results are shown in Table 1. Although
GC-OD has high feature selection robustness, it has a long
running time and is not suitable for large-scale datasets.
Although PCA+XGBoost offers dimensionality reduction
and powerful classification capabilities, its feature
selection is not precise enough, which can easily result in
the loss of important information. Although WOA-
XGBoost has strong optimization capabilities, it is prone
to getting stuck in local optima and has a slow convergence
speed. In contrast, the proposed IMPA-XGBoost method
outperforms existing methods in key indicators such as the
area under the curve (AUC), F1 value, and recall rate. It
also demonstrates excellent robustness and runtime in
feature selection.

Table 1: Performance comparison between existing advanced methods and the proposed method

Sample F_eatu re Run
Method AUC F1 Recall . selection .
Size time
robustness
GC-0OD 0.82 88.5% 85.0% 500 Tall Slow
PCA+XGBoost 0.85 90.0% 87.0% 300 Centre Medium
WOA-XGBoost 0.84 89.5% 86.0% 200 Centre Medium
The proposed
method (IMPA- 0.8892 96.83% 94.86% 420 Tall Fast
XGBoost)

In summary, researchers at home and abroad have
carried out numerous studies on the improvement and
application of XGBoost model and MPA in various fields.
However, few studies have applied the combination of the
two to the detection of aviation gasoline. For this reason,

the study innovatively applies the two together in the
quality detection and classification of aviation gasoline,
using XGBoost classification algorithm for gasoline
quality detection. Meanwhile, the improved marine
predator algorithm (IMPA) is proposed on this basis, and
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a gasoline quality detection model based on IMPA-
XGBoost is developed in order to guarantee aviation
safety. By proposing this model, the research aims to
address three key issues. First, it is necessary to clarify
whether the RAP method can effectively reduce the feature
dimensions of aviation gasoline mass spectrometry data
without sacrificing accuracy. Second, it is important to
determine if the IMPA is more effective than optimization
algorithms, such as PSO and SSA, at finding the optimal
hyperparameter combination for XGBoost. Finally, verify
whether the IMPA-XGBoost-based model can detect
aviation gasoline quality and classify models more
accurately and efficiently. Model performance is evaluated
based on success criteria such as detection accuracy, AUC
value, and running time. If the model outperforms existing
methods in these indicators, it is considered that the
research has achieved the expected goals. The innovation
of the study is to optimize the improved IMPA to address
the problem of low detection rate of XGBoost in gasoline
quality detection. The optimized method can find the best
parameter combination in a shorter time and can reduce the
consumption of computational resources, making the
detection process more efficient and reliable.

2 Methods and materials

In quality detection of aviation gasoline, the study begins
with gasoline mass spectrometry using seven standard
gasoline samples, followed by feature selection of the mass
spectrometry data using the Relief-F algorithm-Pearson
correlation coefficient (RAP). Subsequently, the XGBoost
algorithm is introduced and the combination of
hyperparameters for this algorithm is determined using the
IMPA. Among them, for the optimization of the MPA,
logistic chaos mapping with adaptive t-distribution
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operator is introduced. Finally, the gasoline quality
detection model based on IMPA-XGBoost is constructed.

2.1 RAP-based feature selection for gasoline
mass spectrometry

To achieve quality detection of aviation gasoline, seven
standard gasoline samples are selected for mass
spectrometry analysis for subsequent quality detection and
model identification. These include 89.0#, 90.4#, 91.0#,
92.4#, 93.9#, 95.2#, and 99.4#. The mass spectrometry
method used is paper spray ionization, which mainly
analyzes mass spectrometry data in the positive ion mode.
Each gasoline model contains 60 mass spectrometry data
with a total of 420 data. The model's ability to identify
chemical characteristic variations is fully verified by the
significant differences in octane number, oxygen-
containing compounds, and impurity content among
different grades of gasoline. Due to the involvement of
industry standards in aviation fuel data, it is currently not
possible to fully disclose it. However, the samples used in
the experiment are purchased from Standard Products,
which is certified by the China Aviation Fuel Testing
Center. The testing process strictly followed GB/T 35394-
2017, "General Specifications for Spectral Testing of
Aviation Fuel," to ensure data traceability and
standardization. The study takes the 89.0# gasoline model
as an example, and lists two sets of these mass
spectrometry data, as shown in Table 2. Mass denotes the
mass to charge ratio (MCR) of the ion. Relative intensity
denotes the relative intensity, i.e., the MCR of the ion in
the sample. The sample numbers "-6" and "-7" represent
the 6th and 7th independent mass spectrometry samples
collected from 89.0 # gasoline.

Table 2: Two sets of mass spectrometry data for 89.0 # gasoline.

89.0#-6 89.0#-7

Mass Relative Intensity Mass Relative Intensity
50.559415 4.286951 50.642162 23.36641
51.268943 487.6285 51.296954 645.3361
52.269449 109.3655 52.169842 150.3496
53.385469 9822.364 53.354994 11392.63
54.359625 729.6651 54.167274 622.3644

In Table 2, the raw mass spectrometry data has high
relative intensity values. If left unprocessed, the features
with lower intensities would be ignored. For this reason,
the study used the maximum-minimum normalization
method to normalize the raw data so that the range of
relative intensity values is controlled between [0, 1]. The
normalization processing formula is shown in Equation
Q).

9O
— min 1
qnew qmax _qmin ( )

In Equation (1), q denotes the original relative
intensity value. g, denotes the original relative intensity
maximum value. ¢, denotes the original relative
intensity minimum value. g, denotes the normalized

relative intensity value. To make subsequent processing
more convenient, the normalized data is enlarged tenfold
to control the relative intensity range between 0 and 100.
This retains relative differences in features while avoiding
neglecting small value features. The schematic mass
spectral images of 89.0 #6 gasoline before and after
normalization are shown in Fig. 1.
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Figure 1: Schematic diagram of mass spectrometry images before and after normalization of 89.0 # 6 gasoline.

The MCR of gasoline mass spectrometry data ranges
from 50-500 and contains 450 features. If all the features
are directly used for model training, there will be problems
such as long running time and low detection accuracy. To
extract useful characteristics from the data and eliminate
superfluous features, the study presents the Relief-F
algorithm. In this case, the main basis for the assignment
of weights is the contribution of the sample. After
assigning values to the weights, they need to be ranked.
The top ranked features are of greater importance and have
the priority of selection [15-16]. In Relief algorithm, it is
assumed that a sample is randomly selected and the near
neighbor samples of this sample can be classified as
similar samples and dissimilar samples. The weights of
Relief algorithm are calculated as shown in Equation (2).

WI[B] = %—diff (B,R,,H,)+diff (B,R,,M ) (2)

In Equation (2), B represents a randomly selected

R

sample. "o represents the nearest neighbor sample

belonging to the same class as sample B. H, and M,

represents the P _th sample belonging to the same class as
sample B, and the sample belonging to a different class

from sample B . diff () represents the diversity of the
sample. All samples in the equation are n-dimensional
vectors, where n is the total number of features. Since the
traditional Relief algorithm can only solve the binary
classification problem, the study further employs the
improved Relief-F algorithm. This algorithm needs to find
a number of similar and dissimilar near-neighbor samples
when weighting a certain sample, which is suitable for
multiclassification problems. In addition, although the
Relief-F algorithm has high computational efficiency
when performing feature screening, it ignores the
correlation between features and features, which is not
conducive to feature classification. Meanwhile, there may
be many repeated information in the screened features. If
they are not eliminated, the training accuracy of the
subsequent quality detection model will be affected [17].
For this reason, the study further adopts RAP and proposes
a RAP-based feature selection algorithm for gasoline mass
spectrometry. Among them, the Pearson correlation
coefficient (PCC) method has important applications in
feature selection and data preprocessing. Especially when
dealing with high-dimensional datasets, it can effectively
remove redundant features and reduce the

multicollinearity problem. The computational expression
of PCC method is shown in Equation (3).

A _ —
Zl(Ba -B)(B',—-B")
s = A = "
\/Z(Ba - E)2 \/Z(Bla_ E')2
a=1 a=1
In Equation (3), C denotes the total samples. B, and

®

B', denote the two samples with serial numbers. B and

B' denote the sample mean. The flowchart of the RAP-
based feature selection algorithm for gasoline mass spectra
is shown in Fig. 2. The Relief-F algorithm is first used to
calculate the MCR weights and determine the relative
importance of each feature. Then the PCC method is used
to further calculate the relative coefficients of the features
in the subset. For several features with higher relative
coefficients, one feature with higher weight is retained. For
the features with lower relative coefficients, they are all
retained in the final feature set.

Input the original mass
spectrometry dataset

Relief-F algorithm calculates Retain high weighted
feature weights features

! !

Retain features greater than the Generate a new subset of
specified threshold features

|

Calculate Peason correlation | | Gutput optimized featur?
parameters between features set

A 4

Figure 2: Flowchart of RAP based gasoline mass
spectrometry feature selection algorithm.

2.2 Gasoline model recognition model based
on XGBoost

After normalization of gasolinemass spectrometry data as
well as feature selection, the study further constructs
gasoline quality detection model, from which the XGBoost
classification algorithm is introduced. The algorithm is a
ML algorithm based on the gradient boosting framework,
and the base model of the XGBoost classification
algorithm is assumed to be a CART regression tree. Its
expression is shown in Equation (4) [18].

ya :z:;lfl (Xa) (4)
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In Equation (4), f,(x,) represents the weight value of

the ath sample of the | th tree. | represents the index of

the | -th tree. @ represents the index of sample . Each
tree can output predicted values for all samples, and then
accumulate them to obtain the ensemble prediction result
of the samples. ¥, represents the prediction result of the

base model for the a th sample. L denotes the number of
CART trees. The resulting expression for the objective
function is shown in Equation (5).

A
Obj(6) = Xloss(Y,, y,) +2X(f) ()
In Equation (5), y, represents the true value of the a
th sample. loss(y,,y,) represents the loss error and

Q(f,) represents the regularity term. The expression of
Q(f,) is shown in Equation (6).

Q(f):yT+%/1w2 (6)

In Equation (6), » and A denote the penalty

coefficients. T is the number of nodes. w denotes the
corresponding weight value. The resulting objective
function is shown in Equation (7).

Obj(6) = a%loss(ya, §ED 1 1, (x,))+Q( f,)+ Const (7)

In Equation (7), Const denotes the constant term.
oy (t-1)
Ya represents the predicted value of the base model for
the t=1-th sample during the T —1-th iteration. After the
second order Taylor expansion, the computational
equation is obtained as shown in Equation (8).

Obj(8) = é[Gtw+%/lwf]+ T (8)

In Equation (8), G, is calculated as shown in
Equation (9).
G, = >, 09“Ploss(y,, i ™) 9)

o(t-1)
Ya s mainly derived from the initial value setting
and the accumulation of historical information during the

iteration process. The calculation after derivation of w, is
shown in Equation (10).

G

W =——

A

Substituting w, into Equation (10) leads to Equation

(11).

(10)

. 11LG!

Obj(0) = 251 + AT

Equation (11) is the final XGBoost algorithm
objective function. In the XGBoost algorithm, the
selection of hyperparameters is crucial. The traditional
grid search method suffers from time-consuming and
ineffective problems in performing parameter selection
[19]. For this reason, the study introduces the MPA for
hyperparameter combination determination to improve the
recognition accuracy of gasoline quality detection model.
The MPA simulated the food relationship of different

(11)
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marine organisms as a way to solve the optimization
problem. However, the algorithm is more sensitive to the
initial value of the problem and is easy to fall into the local
optimal solution, so it often cannot solve the optimization
problem alone. In the performance optimization process of
the population intelligence algorithm, the diversity of the
population has an important impact on the quality of the
final results. If the individual positions of the initial
population are too concentrated, it will cause the algorithm
to fall into a local optimum and cannot fully explore the
whole search space [20]. To enhance the diversity of the
population and to improve the global optimization ability
of the algorithm, the study introduces Logistic chaotic
mapping. It is a kind of quadratic polynomial mapping,
shooting with high randomness and low computational
cost, which is easy to implement. The approach in
population optimization can cover the search space more
thoroughly and prevent an undue concentration of
population members in the search space [21]. Because of
this, the study initializes the MPA's population using
logistic chaotic mapping. Equation (12) displays its
expression.
Xiwa = % (1=X,) (12)
In Equation (12), the value range of x is (0, 1]. k
denotes the current iteration number. x denotes the

control parameter. When # is in the range of
(3.5699,4.0), the sequence enters a chaotic state. When

”:4, the population becomes more random, which
allows it to cover the search space more comprehensively,
avoid getting stuck in local optima, and distribute itself
more uniformly at the beginning. Therefore, the study set

M= 4. In the traditional MPA, the relationship between
predator and prey simulates the predatory behavior in
nature. The predator represents the solution or individual
in the algorithm, while the prey is the goal or individual in
the environment that needs to be optimized. The predator
searches by following the position of the prey, thus
gradually approaching the optimal solution. Predator
positions must be modified in accordance with changes in
prey positions. To update the solution after the prey's
position changes, the study introduces an adaptive t-
distribution operator. This operator generates high-quality
potential positions in the solution space with a high
probability through its specific probability density
function. Equation (13) displays the representation of the
mathematical model.

X, = X, + X, *t(Iter) (13)
In Equation (13), t(lter) is the t-distribution. X,

represents the original prey position. Xiy represents the

updated prey position. In this study, the degree of freedom
of the adaptive t-distribution operator is set to 3. This value
is determined through preliminary experiments within the
range of [1, 10] with a step size of 1. Then, 10-fold cross-
validation is used to evaluate the performance of the
IMPA-XGBoost-based gasoline quality detection model
under different degrees of freedom. The steps of the
improved IMPA are shown in Fig. 3.
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Figure 3: Complete iterative flowchart of IMPA based on chaotic mapping and adaptive strategy.

The basic XGBoost algorithm has many
hyperparameters, once a parameter is set incorrectly, it will
affect the detection accuracy of the whole model, so the
hyperparameters of this algorithm need to be adjusted. The
parameters used in the study include eta, max_depth,
n_estimators, and gamma. Among them, eta denotes the
learning rate and is used to control the learning rate.
max_depth denotes the maximum depth of the tree. Its
value should not be too large. Otherwise, it will lead to
overfitting. The n_estimators denotes the trees, and gamma
is mainly responsible for controlling the minimum loss
reduction of the leaf nodes of the decision tree. In addition,

Gasoline mass
spectrometry data

Data preprocessing

RAP feature
selection algorithm

<<

the fitness function of gasoline quality detection model is
calculated as shown in Equation (14).

10
fitness = % 2.accuracy, (14)

e=1
In Equation (14), accuracy denotes the average of

the accuracy of the samples in the validation set. 10
denotes that the function is 10-fold cross-validation. After
determining the hyperparameters and ranges to be
optimized, the gasoline quality detection model based on
the IMPA-XGBoost algorithm is then constructed. The
flowchart of the model is shown in Fig. 4.
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Figure 4: Step by step implementation from mass spectrometry data preprocessing to IMPA-XGBoost model
evaluation.
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In Fig. 4, the mass spectrometry data of seven
standard gasoline samples are first used as the basis, and
the data range is unified through preprocessing. Then, the
RAP feature selection algorithm is used to streamline
features and remove redundancy. Next, according to the
dataset type, the IMPA is used to search for the optimal
hyperparameters of XGBoost, and an IMAP XGBoost
detection model is constructed. Finally, the performance of
the model is validated through evaluation indicators.

3 Results

The study firstly verifies the effectiveness of RAP-based
feature selection using Relief-F algorithm with blank
group to compare with it. Then the effectiveness of
gasoline quality detection model based on IMPA-
XGBoost algorithm is verified. Its accuracy, loss value in
the training phase is analyzed and area under curve (AUC)
with gasoline model classification accuracy (CA) during
testing is verified.

3.1 Experimental analysis of RAP-based
feature selection

The computing environment used in the experiment is Intel
Xeon Silver 4310 CPU (32GB memory), Ubuntu 20.04
system, relying on Python 3.9+XGBoost 1.7.6 and other
libraries. The environment is encapsulated with Docker
images to ensure reproducibility. The study first adopts the
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Relief-F algorithm to calculate the weights of the
preprocessed gasoline mass spectrometry data. The feature
subset is selected to be MCR with a weight value greater
than 0.14, and a total of 20 MCR features are screened. The
selection of threshold 0.14 is mainly determined through
the grid search method of the system. Subsequently, PCC
method is used to analyze the correlation of the feature
subset, and the PCC plot with the final feature subset is
shown in Fig. 5. In Fig. 5(a), if the correlation between the
horizontal and vertical coordinates of the two features
tends to 1, they indicate a strong positive correlation. If the
correlation tends to -1, it shows a sharp negative
correlation color. Both cases indicate that the two features
have a strong correlation relationship and one needs to be
eliminated. If the correlation between the two feature color
blocks remaining 0, it means that the two do not have
correlation, both need to be retained. In Fig. 5(a), every
two features with MCR of 177, 191, 202, 216, 230, 231,
232, and 244 are strongly correlated. Finally, 221 is
retained, which has the highest weight value. Every two
features in the features with MCR of 100, 114, 115, 128,
168 are strongly correlated. The feature with MCR of 114
is finally retained. Every two features in the features with
MCR of 142, 154, 156 are strongly correlated and finally
the feature with MCR of 154 is retained. The correlation
coefficient between features with MCR of 69 and 83 is
greater than 0.9, and 69 is finally retained. In addition,
features with low correlation are retained, resulting in the
final subset of features, as shown in Fig. 5(b).
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Figure 5: Pearson correlation coefficient plot and final feature subset.

The study then proceeds to perform quality testing on
gasoline mass spectrometry data, using stratified sampling
to divide the training set into a 70% training set and a 30%
testing set. Samples of the same type of gasoline are
dispersed evenly between the training and testing sets
rather than being grouped together. Specifically, 60 data
points are shuffled for each type of gasoline according to
random seeds. The first 42 points are selected as the
training set, and the last 18 points are selected as the testing
set. This avoids model bias caused by uneven sample
allocation. In addition to the 70-30 segmentation, 10-fold
stratified cross-validation is introduced during the RAP
feature selection and IMPA-XGBoost training stages. The
feature set filtered by RAP will be divided into ten subsets
by label. The model will then be trained on nine of the

subsets and validated on the tenth subset, one at a time.
The average of the 10 validation results will be taken to
evaluate the stability of the model. To verify the
effectiveness of the RAP-based feature selection
algorithm, the study adopts Relief-F algorithm to compare
with it. Moreover, a blank group without feature algorithm
is set up to analyze the accuracy, recall and F1 value of
gasoline quality detection under the three schemes. The
performance of gasoline quality detection under different
feature selection schemes is shown in Fig. 6. In Fig. 6(a),
the accuracy of RAP-based feature selection algorithm is
97.26% on average, while the accuracy of Relief-F
algorithm is only 85.16%. The accuracy of the blank group
without feature selection is only 81.03%. In Fig. 6(b), the
average recall of the RAP-based feature selection



304  Informatica 49 (2025) 297-310

algorithm is as high as 94.86%, which is a 10.81%
improvement compared to the Relief-F algorithm. In Fig.
6(c), the average F1 value of RAP-based feature selection
algorithm is as high as 96.23%, which is improved by
17.63% compared to the blank group. It indicates that the
RAP-based feature selection algorithm is beneficial to

Y. Zhang et al.

improve the performance of gasoline quality detection. By
optimizing the feature set, it can reduce the effects of
redundant information and noise, making the model better
able to capture important gasoline quality information
throughout the testing phase.
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Figure 6: Performance of gasoline quality detection under different feature selection schemes.

To verify the significant advantages of the RAP
feature selection algorithm, an independent sample t-test is
performed to statistically analyze the detection
performance of RAP and Relief-F. The results are shown
in Table 3. According to Table 3, the RAP algorithm

achieves a significantly higher accuracy index
(97.26%+1.35%) than  Relief-F  (85.16%+2.47%,
p<0.001). In terms of F1 score, RAP is as high as

96.23%+1.12%, while Relief-F is only 87.34%z+1.89%,

with a significant statistical difference between the two
(p<0.001). On the Matthews correlation coefficient (MCC)
metric, the RAP algorithm achieves 93.57%+1.28%,
significantly higher than Relief F's 78.62%+2.35%
(t=6.12, p<0.001). This indicates that the RAP algorithm
has a statistically significant advantage in feature selection
performance. Combining it with the PCC method
effectively improves model performance by removing
redundant features.

Table 3: The t-test results of RAP and Relief-F feature selection methods.

Index RAP Relief-F t p

Accuracy 97.26%+1.35% 85.16%+2.47% 5.72 <0.001
Recall 94.86%=1.52% 84.05%+2.11% 5.36 <0.001
F1 value 96.23%+1.12% 87.34%+1.89% 491 <0.001
MCC 93.57%=+1.28% 78.62%+2.35% 6.12 <0.001

The study proceeds to validate the gasoline quality
detection runtime of each method and the runtime of each
algorithm is shown in Fig. 7. The average running time of
the gasoline detection model is only 386.69ms after feature
selection using the RAP algorithm, which is 362.81ms
shorter than that of the Relief-F algorithm. In the blank
group without feature selection, the average running time
of the gasoline detection model is as high as 160.38ms. It
indicates that the feature selection algorithm based on the
RAP algorithm not only improves the detection accuracy

of the gasoline detection model, but also reduces the
detection time of the model. The reason is that the RAP
algorithm effectively filters out the most discriminative
features. This reduces the amount of data the model must
process, thereby reducing the computational burden and
running time. In addition, the RAP algorithm avoids the
interference of redundant and irrelevant features by
optimizing the feature selection process, which enables the
model to make decisions more quickly at runtime.
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Figure 7: The running time of gasoline quality testing for various methods.

3.2 Experimental analysis of gasoline quality
detection based on IMPA-XGBoost
algorithm

To verify the effectiveness of the proposed gasoline
quality detection model based on IMPA-XGBoost
algorithm, the study uses particle swarm optimization-
XGBoost algorithm (PSO-XGBoost) and sparrow search
algorithm-XGBoost algorithm (SSA-XGBoost) are used

for performance comparison. Among them, the population
size of the IMPA is 50, the maximum number of iterations
is 100, the value of p in the Logistic chaotic map is 4, and
the degree of freedom of the adaptive t-distribution is 3.
Based on the outcomes of various algorithms' quality
detection tests, the gasoline models are grouped. Table 4
displays the hyperparameter optimization outcomes for
each algorithm in comparison to the XGBoost algorithm.

Table 4: The hyperparameter optimization results of various algorithms for XGBoost algorithm.

IMPA-
Hyperparameters Search scope PSO-XGBoost SSA-XGBoost XGBoost
eta [0.01,1.0] 0.825 0.751 0.782
max_depth [3, 15] 9 6 5
n_estimators [10, 100] 38 27 20
gamma [0, 1] 0.2 0.1 0

The study substitutes the obtained algorithmic
hyperparameters into each algorithm and verifies the
training accuracy and loss rate of each model in the
gasoline mass spectrometry data training set for analysis.
The outcomes are shown in Fig. 8. In Fig. 8(a), the gasoline
quality detection model based on IMPA-XGBoost
algorithm tends to have an accuracy of 99% at 18 times of
training. Although the SSA-XGBoost model fluctuates
significantly during the pre-training period, it stabilizes
after 50 iterations. Its accuracy then stabilizes at 92.56%.
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(a) Accuracy of different algorithms

When the PSO-XGBoost model is iterated about 65 times,
its accuracy tends to be 90.21%. In Fig. 8(b), the loss rate
of the IMPA-XGBoost model tends to be 3.41% when it is
iterated up to about 8 times, whereas the SSA-XGBoost
model tends to be stabilized only when it is iterated up to
about 40 times, and its minimum loss rate is 9.68%. The
PSO-XGBoost model converged to 5.18% at 36 iterations.
The proposed IMPA-XGBoost model of the study shows
higher CA and lower loss rate in the training set with high
stability and convergence efficiency.
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Figure 8: Training accuracy and loss rate of each model.

The study continues to measure the quality detection
performance of the IMPA-XGBoost models using AUC

values. The AUC value reflects the model's ability to
distinguish between different quality categories of
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gasoline. The closer the value is to 1, the greater the
model's sensitivity and specificity in identifying positive
and negative samples under various classification
thresholds. This indicator is highly consistent with the
aviation gasoline quality testing target and is key to
measuring the proposed model's performance. The
receiver operating characteristic curve (ROC) curves for
each model are shown in Fig. 9. Among them, the y-axis
represents the true positive rate, which is the proportion of
correctly identified positive classes. The x-axis represents
the false positive rate, which is the proportion of
incorrectly identified negative classes. The closer the AUC
is to 1, the better the classification performance. The
IMPA-XGBoost model has the highest AUC value of all
of the detection findings, at 0.8892 (95% CI: 0.8721-
0.9035). In contrast, the AUC values of the SSA-XGBoost
and PSO-XGBoost models are lower, at 0.8497 (95% CI:
0.8312-0.8659) and 0.8384 (95% CI: 0.8197-0.8543),
respectively, than the IMPA-XGBoost model. It shows
that the IMPA-XGBoost model can better distinguish
different gasoline quality categories in the classification
task. The high AUC values reflect that the model maintains
high sensitivity and specificity under various classification
thresholds, which proves its reliability and effectiveness in
practical applications. It shows that the proposed IMPA-
XGBoost model of the study has significant performance
advantages in gasoline quality detection.

The study further classifies the models based on the
gasoline quality detection results of the models and
explores the CA of each model.
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Figure 9: ROC curves of various models.

The CA can intuitively reflect the correctness of the
model's gasoline quality inspection results. The model's
high accuracy means it can more reliably identify the type
and quality of gasoline, helping to reduce flight safety
hazards caused by misjudgments. The CA of each model
for gasoline models is shown in Fig. 10. In Fig. 10(a), only
4 samples are misclassified in the IMPA-XGBoost model
for gasoline model classification, and the remaining 122
samples are classified correctly, with an accuracy rate of
96.83%. In Fig. 10(b), 10 samples are misclassified in the
SSA-XGBoost model, and its accuracy is 92.06, which is
a decrease of 4.77% compared to the IMPA-XGBoost
model. In Fig. 10(c), there are 15 samples misclassified in
the PSO-XGBoost model, and the CA is only 88.10%. It
indicates that the IMPA-XGBoost model has higher
gasoline model CA, which further validates the superiority
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Figure 10: Classification accuracy of gasoline models by various models.
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To verify the model's generalization ability, an additional 20 new gasoline samples are introduced for testing. These
samples included 92 and 95 aviation gasoline produced by different refineries, as well as experimental samples
containing new additives. The experimental results are shown in Table 5. Table 5 shows that the IMPA XGBoost model
achieves a CA of 93.5% for newly added samples. This result is significantly better than those of the PSO XGBoost and
SSA XGBoost models. This is due to the robust extraction of core quality features by the RAP feature selection algorithm
and the optimization of XGBoost parameters by the IMPA. These features enable the algorithm to effectively identify

unseen fuel feature variations.

Table 5: Model generalization ability test results.

Number of test Correct classification Classification
Model
samples number accuracy (%)
IMPA-XGBoost 20 18 93.5%
PSO-XGBoost 20 17 87.2%
SSA-XGBoost 20 18 89.1%

4 Discussion

In order to achieve quality inspection of aviation gasoline,
a gasoline quality inspection model based on IMPA-
XGBoost algorithm was proposed. Compared with WOA
XGBoost, the IMPA XGBoost model in this study
improved AUC value by 0.0592 and accuracy by 8.73%.
The initialization of the population by the logistic chaotic
mapping in the IMPA enabled the algorithm to explore the
solution space more widely in the early stages of the
search, thus avoiding falling into local optima. The
adaptive t-distribution operator enhanced the algorithm's
ability to mine the optimal solution in the later stages of
the search. The RAP method effectively removed
redundant information between features while preserving
key features. It accomplished this by combining the
Relief-F algorithm with the PCC method. Compared with
the Relief-F algorithm alone, it had significantly improved
the accuracy and efficiency of feature selection.
Deploying an artificial intelligence-based aviation
gasoline quality inspection system was highly significant
in real-world combat environments. The system did not
need expensive and complex testing equipment, and could
quickly and accurately complete the gasoline quality
testing task. It was conducive to improving the efficiency
of aviation gasoline quality testing, reducing testing costs
and ensuring flight safety. This system could serve as an
important supplement to the existing testing process in
places such as airport oil depots and airline maintenance
departments. By quickly screening gasoline samples with
quality issues, it provided clearer targets for subsequent
precise testing.

Integrating the proposed artificial intelligence
detection system with existing chemical detection
methods improved the efficiency and accuracy of testing
the quality of aviation gasoline. Artificial intelligence
detection systems, for example, could supplement existing
methods by quickly screening gasoline samples for quality
issues and providing clearer objectives for subsequent
chemical testing. Meanwhile, chemical detection methods
could further validate and confirm the results of artificial
intelligence testing, ensuring the reliability of the test
results. One possible integration solution was to use an
artificial intelligence detection system based on IMPA-
XGBoost for preliminary screening of a large number of

gasoline samples in the aviation gasoline quality
inspection process. This system could quickly determine
whether the samples meet quality standards. For samples
with doubts about the results of artificial intelligence
testing, precise analysis could be conducted using existing
chemical testing methods to ultimately determine the
quality status of gasoline.

5 Conclusion

To realize the quality detection of aviation gasoline, the
study introduced an advanced artificial intelligence
automated system and proposed a gasoline quality
detection model based on IMPA-XGBoost algorithm. The
results indicated that the accuracy of the RAP-based
feature selection algorithm was as high as 97.26% on
average, the average recall was as high as 94.86%, and the
average F1 value was as high as 96.23%. The reason for
this was that the RAP-based feature selection algorithm
was able to reduce the effect of redundant information and
noise by optimizing the feature set. This enabled the model
to better capture important information related to gasoline
quality throughout the testing phase. After feature
selection using the RAP algorithm, the average running
time of the gasoline detection model was only 386.69ms,
which was reduced by 362.81ms compared to the Relief-
F algorithm. In contrast, the average running time of the
gasoline detection model was as high as 160.38ms in the
blank group where no feature selection was performed.
This was due to the RAP algorithm's ability to effectively
filter out the most discriminative features, reducing the
amount of data the model needed to process and thus
reducing the computational burden and running time. The
results indicated that the gasoline quality detection model
based on the IMPA-XGBoost algorithm performed
excellently in detecting the quality of aerospace gasoline,
demonstrating high efficiency and stability.

However, there are certain limitations to the research.
First, optimizing the IMPA parameters requires
experience. Additionally, there are computational
resource challenges in embedded deployment. Second, the
compatibility of the model with other spectral detection
techniques has not been validated. Future research will
develop an end-to-end model that processes raw spectra
and uses lightweight algorithms to enable real-time
embedded detection. At the same time, consider
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collaborating with the industry to carry out multi-scenario
field verification and promote the development of an Al
detection standard system.
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