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Quality detection of aviation gasoline is critical to flight safety. Gasoline is a critical fuel for aircraft 

engines, and any quality problem may affect the performance of the engine and the safety of the aircraft. 

Regarding the issue of aviation gasoline detection, a RAP method combining Pearson correlation 

coefficient method and Relief-F algorithm is studied for gasoline mass spectrometry feature selection. 

Improved marine predator algorithm (MPA) introduces Logistic chaotic mapping and adaptive t-

distribution operator. It is used to optimize the XGBoost model to construct an aviation gasoline quality 

detection model for gasoline quality detection and model classification. Among them, the RAP method is 

chosen because it effectively removes redundant features from mass spectrometry data while preserving 

the correlation between features. The use of IMPA to optimize XGBoost is because the traditional MPA is 

easy to fall into local optimum. Whereas the improved IMPA can find the optimal hyperparameter 

combination of XGBoost more effectively by enhancing the population diversity and optimizing the search 

strategy, thus improving the model detection performance. The results showed that the area under the 

receiver operating characteristic curve (AUC) of the proposed model was 0.8892, which was significantly 

higher than the AUC values of the particle swarm optimization-XGBoost (PSO-XGBoost) model (0.8384) 

and the sparrow search algorithm-XGBoost (SSA-XGBoost) model (0.8497). In the classification of 

gasoline models, only 4 samples were misclassified, while 122 samples were classified correctly, with an 

accuracy rate of 96.83%. This was a significant improvement compared to the 92.06% of the SSA XGBoost 

model and the 88.10% of the PSO XGBoost model. The improved marine predator and extreme gradient 

boosting model has shown excellent performance in gasoline quality detection. Compared to traditional 

chemical detection methods, such as plasma emission spectroscopy and gas chromatography with an 

oxygen-selective detector, the AI-based detection system proposed in this study has significant advantages 

in terms of detection accuracy and efficiency, and does not require expensive and complex detection 

equipment. This provides a strong support for AI automated system in quality detection of aviation gasoline. 

Povzetek: Študija predstavlja RAP (Relief-F + Pearson) za izbor masnospektrometričnih značilk ter IMPA-

optimiziran XGBoost za zaznavanje kakovosti letalskega bencina. 

 

1 Introduction 
The importance of airplane flight safety has increased with 

the aviation industry's explosive growth. The quality 

detection of aviation gasoline plays a crucial role in flight 

safety. Therefore, it is necessary to adopt effective quality 

detection methods to ensure that the quality of aviation 

gasoline meets the specifications [1]. Traditional gasoline 

detection methods include plasma emission spectrometry, 

gas chromatography oxygen selective detector (GC-OD) 

method and other chemical experimental methods [2]. In 

aviation gasoline, silicon is the residue left behind after 

combustion. This residue accelerates the wear and tear of 

pumps, valves, etc. For this reason, scholars have used 

plasma emission spectrometry to measure silicon content 

in gasoline in an attempt to determine its quality and type. 

Alcohols and other oxygenates can be added to gasoline. 

However, adding too many oxygenates affects the  

 

performance and efficiency of gasoline engines and causes  

environmental pollution. For this reason, GC-OD is used 

to determine the content of C7 ether and other ether 

compounds in gasoline, and then to realize the detection 

and model classification of gasoline quality. However, this 

type of chemical detection method requires high cost of 

detection equipment, difficult operation, and limited 

detection range [3-4]. As a result, numerous researchers 

have begun to seek more efficient and automated detection 

solutions. Advances in artificial intelligence and 

automated systems in recent years have provided new 

ideas for detecting the quality of aerogasoline. Especially 

in the field of machine learning (ML), the eXtreme 

gradient boosting (XGBoost) model has been widely used 

in various data analysis tasks due to its efficient 

performance [5-6]. 
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XGBoost is widely used in detection and prediction in 

various fields. For chiller unit defect diagnosis and 

detection, Zhang et al. integrated a parameter-optimized 

XGBoost model with a mean-drift clustering technique, 

resulting in a multi-region XGBoost model. The findings 

showed that the model outperformed the support vector 

machine model and the XGBoost model without clustering 

in terms of defect diagnosis rate. It was able to detect 

97.26% of faulty samples and was able to detect 99.10% 

of fault-free samples [7]. Chen et al. proposed XGBoost 

model for the study of self-recognition technical debt 

classification in software development. The method 

employed a trained XGBoost classifier to classify each 

comment into the corresponding class. The outcomes 

demonstrated that the average accuracy of the proposed 

method under study was 56.66%, the average recall was 

59.07% and the average F1 value was 55.77%. Its 

improvement was 4.98%, 5.32% and 3.17% compared to 

natural language processing-based methods [8]. Qiu et al. 

proposed an optimized XGBoost model with whale 

optimization algorithm to optimize its hyperparameters in 

order to detect the ground vibration caused by blasting. 

The results demonstrated that the XGBoost model based 

on the whale optimization algorithm had the lowest error 

value compared with the rest of the artificial intelligence 

algorithms. The root mean square error was only 3.0538 

and the mean absolute error was only 2.5032 [9]. Asselman 

et al. proposed a performance factor analysis method based 

on the XGBoost model in order to enhance the prediction 

performance of student performance. The outcomes 

showed that the performance of scalable XGBoost 

proposed by the study had superior predictive performance 

compared to traditional performance factor analysis 

algorithms [10].  

In recent years, the traditional marine predator 

algorithm (MPA) algorithm has been improved in various 

fields to enhance the application. Ramezani et al. found 

that the traditional MPA could not produce diverse initial 

populations with high productivity and optimized it using 

a dyadic-based learning approach with chaotic mapping 

method. The results indicated that the improved MPA 

proposed by the study provided better performance 

compared to particle swarm optimization algorithm, whale 

optimization algorithm, etc. In the real-world optimization 

problem for DC motors [11]. An enhanced MPA based on 

the sine-cosine algorithm was proposed by Abd Elaziz et 

al. for the feature selection problem for high dimensional 

data. To maximize the search capacity, the method used 

the sine-cosine algorithm as a local search of the original 

MPA. According to the findings, the enhanced MPA 

performed noticeably better in terms of categorization 

metrics [12]. To address the issue of resource waste 

brought on by an uneven node distribution in distributed 

network systems, He et al. suggested an enhanced MPA 

method. According to the findings, the enhanced MPA had 

a higher coverage rate than other meta-heuristic algorithms 

when resolving the issue of distributed network system 

coverage optimization [13]. For interdisciplinary data 

analysis, Jia et al. proposed an MPA based on co-

evolutionary cultural mechanisms. The algorithm could 

realize the sharing of knowledge and experience in 

different spaces. The results indicated that the MPA based 

on the co-evolutionary cultural mechanism outperformed 

the remaining advanced data analysis methods in several 

evaluation metrics [14]. 

The study compared the performance of the proposed 

method with that of existing advanced methods, including 

global context-outlier detection (GC-OD), principal 

component analysis+extreme gradient boosting 

(PCA+XGBoost), and whale optimization 

algorithm+extreme gradient boosting (WOA-XGBoost). 

The comparison results are shown in Table 1. Although 

GC-OD has high feature selection robustness, it has a long 

running time and is not suitable for large-scale datasets. 

Although PCA+XGBoost offers dimensionality reduction 

and powerful classification capabilities, its feature 

selection is not precise enough, which can easily result in 

the loss of important information. Although WOA-

XGBoost has strong optimization capabilities, it is prone 

to getting stuck in local optima and has a slow convergence 

speed. In contrast, the proposed IMPA-XGBoost method 

outperforms existing methods in key indicators such as the 

area under the curve (AUC), F1 value, and recall rate. It 

also demonstrates excellent robustness and runtime in 

feature selection.

Table 1: Performance comparison between existing advanced methods and the proposed method 

Method AUC F1 Recall  
Sample 

size 

Feature 

selection 

robustness 

Run 

time 

GC-OD 0.82 88.5% 85.0% 500 Tall  Slow 

PCA+XGBoost 0.85 90.0% 87.0% 300 Centre  Medium  

WOA-XGBoost 0.84 89.5% 86.0% 200 Centre  Medium  

The proposed 

method (IMPA-

XGBoost) 

0.8892 96.83% 94.86% 420 Tall  Fast  

 

In summary, researchers at home and abroad have 

carried out numerous studies on the improvement and 

application of XGBoost model and MPA in various fields. 

However, few studies have applied the combination of the 

two to the detection of aviation gasoline. For this reason, 

the study innovatively applies the two together in the 

quality detection and classification of aviation gasoline, 

using XGBoost classification algorithm for gasoline 

quality detection. Meanwhile, the improved marine 

predator algorithm (IMPA) is proposed on this basis, and 
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a gasoline quality detection model based on IMPA-

XGBoost is developed in order to guarantee aviation 

safety. By proposing this model, the research aims to 

address three key issues. First, it is necessary to clarify 

whether the RAP method can effectively reduce the feature 

dimensions of aviation gasoline mass spectrometry data 

without sacrificing accuracy. Second, it is important to 

determine if the IMPA is more effective than optimization 

algorithms, such as PSO and SSA, at finding the optimal 

hyperparameter combination for XGBoost. Finally, verify 

whether the IMPA-XGBoost-based model can detect 

aviation gasoline quality and classify models more 

accurately and efficiently. Model performance is evaluated 

based on success criteria such as detection accuracy, AUC 

value, and running time. If the model outperforms existing 

methods in these indicators, it is considered that the 

research has achieved the expected goals. The innovation 

of the study is to optimize the improved IMPA to address 

the problem of low detection rate of XGBoost in gasoline 

quality detection. The optimized method can find the best 

parameter combination in a shorter time and can reduce the 

consumption of computational resources, making the 

detection process more efficient and reliable. 

2 Methods and materials 
In quality detection of aviation gasoline, the study begins 

with gasoline mass spectrometry using seven standard 

gasoline samples, followed by feature selection of the mass 

spectrometry data using the Relief-F algorithm-Pearson 

correlation coefficient (RAP). Subsequently, the XGBoost 

algorithm is introduced and the combination of 

hyperparameters for this algorithm is determined using the 

IMPA. Among them, for the optimization of the MPA, 

logistic chaos mapping with adaptive t-distribution 

operator is introduced. Finally, the gasoline quality 

detection model based on IMPA-XGBoost is constructed. 

2.1 RAP-based feature selection for gasoline 

mass spectrometry 

To achieve quality detection of aviation gasoline, seven 

standard gasoline samples are selected for mass 

spectrometry analysis for subsequent quality detection and 

model identification. These include 89.0#, 90.4#, 91.0#, 

92.4#, 93.9#, 95.2#, and 99.4#. The mass spectrometry 

method used is paper spray ionization, which mainly 

analyzes mass spectrometry data in the positive ion mode. 

Each gasoline model contains 60 mass spectrometry data 

with a total of 420 data. The model's ability to identify 

chemical characteristic variations is fully verified by the 

significant differences in octane number, oxygen-

containing compounds, and impurity content among 

different grades of gasoline. Due to the involvement of 

industry standards in aviation fuel data, it is currently not 

possible to fully disclose it. However, the samples used in 

the experiment are purchased from Standard Products, 

which is certified by the China Aviation Fuel Testing 

Center. The testing process strictly followed GB/T 35394-

2017, "General Specifications for Spectral Testing of 

Aviation Fuel," to ensure data traceability and 

standardization. The study takes the 89.0# gasoline model 

as an example, and lists two sets of these mass 

spectrometry data, as shown in Table 2. Mass denotes the 

mass to charge ratio (MCR) of the ion. Relative intensity 

denotes the relative intensity, i.e., the MCR of the ion in 

the sample. The sample numbers "-6" and "-7" represent 

the 6th and 7th independent mass spectrometry samples 

collected from 89.0 # gasoline. 

Table 2: Two sets of mass spectrometry data for 89.0 # gasoline. 

89.0#-6  89.0#-7  

Mass Relative Intensity Mass Relative Intensity 

50.559415 4.286951 50.642162 23.36641 

51.268943 487.6285 51.296954 645.3361 

52.269449 109.3655 52.169842 150.3496 

53.385469 9822.364 53.354994 11392.63 

54.359625 729.6651 54.167274 622.3644 

... ... ... ... 

 

In Table 2, the raw mass spectrometry data has high 

relative intensity values. If left unprocessed, the features 

with lower intensities would be ignored. For this reason, 

the study used the maximum-minimum normalization 

method to normalize the raw data so that the range of 

relative intensity values is controlled between [0, 1]. The 

normalization processing formula is shown in Equation 

(1). 

min

max min

new

q q
q

q q

−
=

−
                             (1) 

In Equation (1), q  denotes the original relative 

intensity value. 
maxq  denotes the original relative intensity 

maximum value. 
minq  denotes the original relative 

intensity minimum value. 
newq  denotes the normalized 

relative intensity value. To make subsequent processing 

more convenient, the normalized data is enlarged tenfold 

to control the relative intensity range between 0 and 100. 

This retains relative differences in features while avoiding 

neglecting small value features. The schematic mass 

spectral images of 89.0 #6 gasoline before and after 

normalization are shown in Fig. 1. 
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Figure 1: Schematic diagram of mass spectrometry images before and after normalization of 89.0 # 6 gasoline. 

The MCR of gasoline mass spectrometry data ranges 

from 50-500 and contains 450 features. If all the features 

are directly used for model training, there will be problems 

such as long running time and low detection accuracy. To 

extract useful characteristics from the data and eliminate 

superfluous features, the study presents the Relief-F 

algorithm. In this case, the main basis for the assignment 

of weights is the contribution of the sample. After 

assigning values to the weights, they need to be ranked. 

The top ranked features are of greater importance and have 

the priority of selection [15-16]. In Relief algorithm, it is 

assumed that a sample is randomly selected and the near 

neighbor samples of this sample can be classified as 

similar samples and dissimilar samples. The weights of 

Relief algorithm are calculated as shown in Equation (2). 

[ ] ( , , ) ( , , )o p o p
p

W B diff B R H diff B R M= − +      (2) 

In Equation (2), B  represents a randomly selected 

sample. oR
 represents the nearest neighbor sample 

belonging to the same class as sample B . pH
 and pM

 

represents the 
p

-th sample belonging to the same class as 

sample B , and the sample belonging to a different class 

from sample B . 
( )diff 

 represents the diversity of the 

sample. All samples in the equation are n-dimensional 

vectors, where n is the total number of features. Since the 

traditional Relief algorithm can only solve the binary 

classification problem, the study further employs the 

improved Relief-F algorithm. This algorithm needs to find 

a number of similar and dissimilar near-neighbor samples 

when weighting a certain sample, which is suitable for 

multiclassification problems. In addition, although the 

Relief-F algorithm has high computational efficiency 

when performing feature screening, it ignores the 

correlation between features and features, which is not 

conducive to feature classification. Meanwhile, there may 

be many repeated information in the screened features. If 

they are not eliminated, the training accuracy of the 

subsequent quality detection model will be affected [17]. 

For this reason, the study further adopts RAP and proposes 

a RAP-based feature selection algorithm for gasoline mass 

spectrometry. Among them, the Pearson correlation 

coefficient (PCC) method has important applications in 

feature selection and data preprocessing. Especially when 

dealing with high-dimensional datasets, it can effectively 

remove redundant features and reduce the 

multicollinearity problem. The computational expression 

of PCC method is shown in Equation (3). 

1
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=
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=

 −  −

             (3) 

In Equation (3), C  denotes the total samples. 
cB  and 

'cB  denote the two samples with serial numbers. B  and 

'B  denote the sample mean. The flowchart of the RAP-

based feature selection algorithm for gasoline mass spectra 

is shown in Fig. 2. The Relief-F algorithm is first used to 

calculate the MCR weights and determine the relative 

importance of each feature. Then the PCC method is used 

to further calculate the relative coefficients of the features 

in the subset. For several features with higher relative 

coefficients, one feature with higher weight is retained. For 

the features with lower relative coefficients, they are all 

retained in the final feature set. 

Input the original mass 

spectrometry dataset

Relief-F algorithm calculates 

feature weights

Retain features greater than the 

specified threshold

Calculate Peason correlation 

parameters between features

Retain high weighted 

features

Generate a new subset of 

features

Output optimized feature 

set
 

Figure 2: Flowchart of RAP based gasoline mass 

spectrometry feature selection algorithm. 

2.2 Gasoline model recognition model based 

on XGBoost 

After normalization of gasolinemass spectrometry data as 

well as feature selection, the study further constructs 

gasoline quality detection model, from which the XGBoost 

classification algorithm is introduced. The algorithm is a 

ML algorithm based on the gradient boosting framework, 

and the base model of the XGBoost classification 

algorithm is assumed to be a CART regression tree. Its 

expression is shown in Equation (4) [18]. 

( )
1

ˆ
L

a al ly f x
=

=                         (4) 
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In Equation (4), ( )l af x  represents the weight value of 

the a th sample of the l th tree. l  represents the index of 

the l -th tree. a  represents the index of sample a . Each 

tree can output predicted values for all samples, and then 

accumulate them to obtain the ensemble prediction result 

of the samples. ˆ
ay  represents the prediction result of the 

base model for the a  th sample. L  denotes the number of 

CART trees. The resulting expression for the objective 

function is shown in Equation (5). 

1

( ) ( , ) ( )ˆ Ω
A

a a l
a

Obj loss y y f
=

=  +               (5) 

In Equation (5), 
ay  represents the true value of the a

th sample. ˆ( , )a aloss y y  represents the loss error and 

Ω( )lf  represents the regularity term. The expression of 

Ω( )lf  is shown in Equation (6). 

21
Ω( )

2
f T w = +                          (6) 

In Equation (6),   and   denote the penalty 

coefficients. T  is the number of nodes. w  denotes the 

corresponding weight value. The resulting objective 

function is shown in Equation (7). 

( )( ) ( )( 1)

1

( ) Ωˆ,
A

a a

t

at t
a

Obj loss y y f x f Const −

=

=  + + +  (7) 

In Equation (7), Const  denotes the constant term. 
( 1)ˆ
a

ty −

 represents the predicted value of the base model for 

the 1t − -th sample during the 1t − -th iteration. After the 

second order Taylor expansion, the computational 

equation is obtained as shown in Equation (8). 

2

1

1
( ) [ ]

2

T

t
t

tObj G w w T  
=

=  + +               (8) 

In Equation (8), 
tG  is calculated as shown in 

Equation (9). 
( 1) ( 1)( )ˆ ˆ,a a

t t

tG y loss y y − −=               (9) 

( 1)ˆ
a

ty −

 is mainly derived from the initial value setting 

and the accumulation of historical information during the 

iteration process. The calculation after derivation of 
tw  is 

shown in Equation (10). 

t

t

G
w


= −                             (10) 

Substituting 
tw  into Equation (10) leads to Equation 

(11). 
2

1

1
( )

2

T

t

tG
Obj T 

=

= −  +                  (11) 

Equation (11) is the final XGBoost algorithm 

objective function. In the XGBoost algorithm, the 

selection of hyperparameters is crucial. The traditional 

grid search method suffers from time-consuming and 

ineffective problems in performing parameter selection 

[19]. For this reason, the study introduces the MPA for 

hyperparameter combination determination to improve the 

recognition accuracy of gasoline quality detection model. 

The MPA simulated the food relationship of different 

marine organisms as a way to solve the optimization 

problem. However, the algorithm is more sensitive to the 

initial value of the problem and is easy to fall into the local 

optimal solution, so it often cannot solve the optimization 

problem alone. In the performance optimization process of 

the population intelligence algorithm, the diversity of the 

population has an important impact on the quality of the 

final results. If the individual positions of the initial 

population are too concentrated, it will cause the algorithm 

to fall into a local optimum and cannot fully explore the 

whole search space [20]. To enhance the diversity of the 

population and to improve the global optimization ability 

of the algorithm, the study introduces Logistic chaotic 

mapping. It is a kind of quadratic polynomial mapping, 

shooting with high randomness and low computational 

cost, which is easy to implement. The approach in 

population optimization can cover the search space more 

thoroughly and prevent an undue concentration of 

population members in the search space [21]. Because of 

this, the study initializes the MPA's population using 

logistic chaotic mapping. Equation (12) displays its 

expression. 

1 (1 )k k kX x x+ = −                        (12) 

In Equation (12), the value range of x  is (0, 1]. k  

denotes the current iteration number.   denotes the 

control parameter. When 


 is in the range of 

(3.5699,4.0), the sequence enters a chaotic state. When 
4 =

, the population becomes more random, which 

allows it to cover the search space more comprehensively, 

avoid getting stuck in local optima, and distribute itself 

more uniformly at the beginning. Therefore, the study set 
4 =

. In the traditional MPA, the relationship between 

predator and prey simulates the predatory behavior in 

nature. The predator represents the solution or individual 

in the algorithm, while the prey is the goal or individual in 

the environment that needs to be optimized. The predator 

searches by following the position of the prey, thus 

gradually approaching the optimal solution. Predator 

positions must be modified in accordance with changes in 

prey positions. To update the solution after the prey's 

position changes, the study introduces an adaptive t-

distribution operator. This operator generates high-quality 

potential positions in the solution space with a high 

probability through its specific probability density 

function. Equation (13) displays the representation of the 

mathematical model. 

• ( )i i iX X X t Iter


= +                   (13) 

In Equation (13), ( )t Iter  is the t-distribution. 
iX  

represents the original prey position. 
iX


 represents the 

updated prey position. In this study, the degree of freedom 

of the adaptive t-distribution operator is set to 3. This value 

is determined through preliminary experiments within the 

range of [1, 10] with a step size of 1. Then, 10-fold cross-

validation is used to evaluate the performance of the 

IMPA-XGBoost-based gasoline quality detection model 

under different degrees of freedom. The steps of the 

improved IMPA are shown in Fig. 3. 
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Figure 3: Complete iterative flowchart of IMPA based on chaotic mapping and adaptive strategy. 

The basic XGBoost algorithm has many 

hyperparameters, once a parameter is set incorrectly, it will 

affect the detection accuracy of the whole model, so the 

hyperparameters of this algorithm need to be adjusted. The 

parameters used in the study include eta, max_depth, 

n_estimators, and gamma. Among them, eta denotes the 

learning rate and is used to control the learning rate. 

max_depth denotes the maximum depth of the tree. Its 

value should not be too large. Otherwise, it will lead to 

overfitting. The n_estimators denotes the trees, and gamma 

is mainly responsible for controlling the minimum loss 

reduction of the leaf nodes of the decision tree. In addition, 

the fitness function of gasoline quality detection model is 

calculated as shown in Equation (14). 
10

1

1

10 e
efitness accuracy

=

=                    (14) 

In Equation (14), accuracy  denotes the average of 

the accuracy of the samples in the validation set. 10 

denotes that the function is 10-fold cross-validation. After 

determining the hyperparameters and ranges to be 

optimized, the gasoline quality detection model based on 

the IMPA-XGBoost algorithm is then constructed. The 

flowchart of the model is shown in Fig. 4. 
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Figure 4: Step by step implementation from mass spectrometry data preprocessing to IMPA-XGBoost model 

evaluation. 
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In Fig. 4, the mass spectrometry data of seven 

standard gasoline samples are first used as the basis, and 

the data range is unified through preprocessing. Then, the 

RAP feature selection algorithm is used to streamline 

features and remove redundancy. Next, according to the 

dataset type, the IMPA is used to search for the optimal 

hyperparameters of XGBoost, and an IMAP XGBoost 

detection model is constructed. Finally, the performance of 

the model is validated through evaluation indicators. 

3 Results 
The study firstly verifies the effectiveness of RAP-based 

feature selection using Relief-F algorithm with blank 

group to compare with it. Then the effectiveness of 

gasoline quality detection model based on IMPA-

XGBoost algorithm is verified. Its accuracy, loss value in 

the training phase is analyzed and area under curve (AUC) 

with gasoline model classification accuracy (CA) during 

testing is verified. 

3.1 Experimental analysis of RAP-based 

feature selection 

The computing environment used in the experiment is Intel 

Xeon Silver 4310 CPU (32GB memory), Ubuntu 20.04 

system, relying on Python 3.9+XGBoost 1.7.6 and other 

libraries. The environment is encapsulated with Docker 

images to ensure reproducibility. The study first adopts the 

Relief-F algorithm to calculate the weights of the 

preprocessed gasoline mass spectrometry data. The feature 

subset is selected to be MCR with a weight value greater 

than 0.14, and a total of 20 MCR features are screened. The 

selection of threshold 0.14 is mainly determined through 

the grid search method of the system. Subsequently, PCC 

method is used to analyze the correlation of the feature 

subset, and the PCC plot with the final feature subset is 

shown in Fig. 5. In Fig. 5(a), if the correlation between the 

horizontal and vertical coordinates of the two features 

tends to 1, they indicate a strong positive correlation. If the 

correlation tends to -1, it shows a sharp negative 

correlation color. Both cases indicate that the two features 

have a strong correlation relationship and one needs to be 

eliminated. If the correlation between the two feature color 

blocks remaining 0, it means that the two do not have 

correlation, both need to be retained. In Fig. 5(a), every 

two features with MCR of 177, 191, 202, 216, 230, 231, 

232, and 244 are strongly correlated. Finally, 221 is 

retained, which has the highest weight value. Every two 

features in the features with MCR of 100, 114, 115, 128, 

168 are strongly correlated. The feature with MCR of 114 

is finally retained. Every two features in the features with 

MCR of 142, 154, 156 are strongly correlated and finally 

the feature with MCR of 154 is retained. The correlation 

coefficient between features with MCR of 69 and 83 is 

greater than 0.9, and 69 is finally retained. In addition, 

features with low correlation are retained, resulting in the 

final subset of features, as shown in Fig. 5(b). 
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Figure 5: Pearson correlation coefficient plot and final feature subset. 

The study then proceeds to perform quality testing on 

gasoline mass spectrometry data, using stratified sampling 

to divide the training set into a 70% training set and a 30% 

testing set. Samples of the same type of gasoline are 

dispersed evenly between the training and testing sets 

rather than being grouped together. Specifically, 60 data 

points are shuffled for each type of gasoline according to 

random seeds. The first 42 points are selected as the 

training set, and the last 18 points are selected as the testing 

set. This avoids model bias caused by uneven sample 

allocation. In addition to the 70-30 segmentation, 10-fold 

stratified cross-validation is introduced during the RAP 

feature selection and IMPA-XGBoost training stages. The 

feature set filtered by RAP will be divided into ten subsets 

by label. The model will then be trained on nine of the 

subsets and validated on the tenth subset, one at a time. 

The average of the 10 validation results will be taken to 

evaluate the stability of the model. To verify the 

effectiveness of the RAP-based feature selection 

algorithm, the study adopts Relief-F algorithm to compare 

with it. Moreover, a blank group without feature algorithm 

is set up to analyze the accuracy, recall and F1 value of 

gasoline quality detection under the three schemes. The 

performance of gasoline quality detection under different 

feature selection schemes is shown in Fig. 6. In Fig. 6(a), 

the accuracy of RAP-based feature selection algorithm is 

97.26% on average, while the accuracy of Relief-F 

algorithm is only 85.16%. The accuracy of the blank group 

without feature selection is only 81.03%. In Fig. 6(b), the 

average recall of the RAP-based feature selection 
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algorithm is as high as 94.86%, which is a 10.81% 

improvement compared to the Relief-F algorithm. In Fig. 

6(c), the average F1 value of RAP-based feature selection 

algorithm is as high as 96.23%, which is improved by 

17.63% compared to the blank group. It indicates that the 

RAP-based feature selection algorithm is beneficial to 

improve the performance of gasoline quality detection. By 

optimizing the feature set, it can reduce the effects of 

redundant information and noise, making the model better 

able to capture important gasoline quality information 

throughout the testing phase. 
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Figure 6: Performance of gasoline quality detection under different feature selection schemes. 

To verify the significant advantages of the RAP 

feature selection algorithm, an independent sample t-test is 

performed to statistically analyze the detection 

performance of RAP and Relief-F. The results are shown 

in Table 3. According to Table 3, the RAP algorithm 

achieves a significantly higher accuracy index 

(97.26%±1.35%) than Relief-F (85.16%±2.47%, 

p<0.001). In terms of F1 score, RAP is as high as 

96.23%±1.12%, while Relief-F is only 87.34%±1.89%, 

with a significant statistical difference between the two 

(p<0.001). On the Matthews correlation coefficient (MCC) 

metric, the RAP algorithm achieves 93.57%±1.28%, 

significantly higher than Relief F's 78.62%±2.35% 

(t=6.12, p<0.001). This indicates that the RAP algorithm 

has a statistically significant advantage in feature selection 

performance. Combining it with the PCC method 

effectively improves model performance by removing 

redundant features.

Table 3: The t-test results of RAP and Relief-F feature selection methods. 

Index  RAP Relief-F t p 

Accuracy  97.26%±1.35% 85.16%±2.47% 5.72 <0.001 

Recall  94.86%±1.52% 84.05%±2.11% 5.36 <0.001 

F1 value 96.23%±1.12% 87.34%±1.89% 4.91 <0.001 

MCC 93.57%±1.28% 78.62%±2.35% 6.12 <0.001 

 

The study proceeds to validate the gasoline quality 

detection runtime of each method and the runtime of each 

algorithm is shown in Fig. 7. The average running time of 

the gasoline detection model is only 386.69ms after feature 

selection using the RAP algorithm, which is 362.81ms 

shorter than that of the Relief-F algorithm. In the blank 

group without feature selection, the average running time 

of the gasoline detection model is as high as 160.38ms. It 

indicates that the feature selection algorithm based on the 

RAP algorithm not only improves the detection accuracy 

of the gasoline detection model, but also reduces the 

detection time of the model. The reason is that the RAP 

algorithm effectively filters out the most discriminative 

features. This reduces the amount of data the model must 

process, thereby reducing the computational burden and 

running time. In addition, the RAP algorithm avoids the 

interference of redundant and irrelevant features by 

optimizing the feature selection process, which enables the 

model to make decisions more quickly at runtime. 
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Figure 7: The running time of gasoline quality testing for various methods. 

3.2 Experimental analysis of gasoline quality 

detection based on IMPA-XGBoost 

algorithm 

To verify the effectiveness of the proposed gasoline 

quality detection model based on IMPA-XGBoost 

algorithm, the study uses particle swarm optimization-

XGBoost algorithm (PSO-XGBoost) and sparrow search 

algorithm-XGBoost algorithm (SSA-XGBoost) are used 

for performance comparison. Among them, the population 

size of the IMPA is 50, the maximum number of iterations 

is 100, the value of μ in the Logistic chaotic map is 4, and 

the degree of freedom of the adaptive t-distribution is 3. 

Based on the outcomes of various algorithms' quality 

detection tests, the gasoline models are grouped. Table 4 

displays the hyperparameter optimization outcomes for 

each algorithm in comparison to the XGBoost algorithm. 

Table 4: The hyperparameter optimization results of various algorithms for XGBoost algorithm. 

Hyperparameters Search scope PSO-XGBoost SSA-XGBoost 
IMPA-

XGBoost 

eta [0.01, 1.0] 0.825 0.751 0.782 

max_depth [3, 15] 9 6 5 

n_estimators [10, 100] 38 27 20 

gamma [0, 1] 0.2 0.1 0 

 

The study substitutes the obtained algorithmic 

hyperparameters into each algorithm and verifies the 

training accuracy and loss rate of each model in the 

gasoline mass spectrometry data training set for analysis. 

The outcomes are shown in Fig. 8. In Fig. 8(a), the gasoline 

quality detection model based on IMPA-XGBoost 

algorithm tends to have an accuracy of 99% at 18 times of 

training. Although the SSA-XGBoost model fluctuates 

significantly during the pre-training period, it stabilizes 

after 50 iterations. Its accuracy then stabilizes at 92.56%. 

When the PSO-XGBoost model is iterated about 65 times, 

its accuracy tends to be 90.21%. In Fig. 8(b), the loss rate 

of the IMPA-XGBoost model tends to be 3.41% when it is 

iterated up to about 8 times, whereas the SSA-XGBoost 

model tends to be stabilized only when it is iterated up to 

about 40 times, and its minimum loss rate is 9.68%. The 

PSO-XGBoost model converged to 5.18% at 36 iterations. 

The proposed IMPA-XGBoost model of the study shows 

higher CA and lower loss rate in the training set with high 

stability and convergence efficiency. 
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Figure 8: Training accuracy and loss rate of each model. 

The study continues to measure the quality detection 

performance of the IMPA-XGBoost models using AUC 

values. The AUC value reflects the model's ability to 

distinguish between different quality categories of 
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gasoline. The closer the value is to 1, the greater the 

model's sensitivity and specificity in identifying positive 

and negative samples under various classification 

thresholds. This indicator is highly consistent with the 

aviation gasoline quality testing target and is key to 

measuring the proposed model's performance. The 

receiver operating characteristic curve (ROC) curves for 

each model are shown in Fig. 9. Among them, the y-axis 

represents the true positive rate, which is the proportion of 

correctly identified positive classes. The x-axis represents 

the false positive rate, which is the proportion of 

incorrectly identified negative classes. The closer the AUC 

is to 1, the better the classification performance. The 

IMPA-XGBoost model has the highest AUC value of all 

of the detection findings, at 0.8892 (95% CI: 0.8721-

0.9035). In contrast, the AUC values of the SSA-XGBoost 

and PSO-XGBoost models are lower, at 0.8497 (95% CI: 

0.8312-0.8659) and 0.8384 (95% CI: 0.8197-0.8543), 

respectively, than the IMPA-XGBoost model. It shows 

that the IMPA-XGBoost model can better distinguish 

different gasoline quality categories in the classification 

task. The high AUC values reflect that the model maintains 

high sensitivity and specificity under various classification 

thresholds, which proves its reliability and effectiveness in 

practical applications. It shows that the proposed IMPA-

XGBoost model of the study has significant performance 

advantages in gasoline quality detection. 

The study further classifies the models based on the 

gasoline quality detection results of the models and 

explores the CA of each model. 
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Figure 9: ROC curves of various models. 

The CA can intuitively reflect the correctness of the 

model's gasoline quality inspection results. The model's 

high accuracy means it can more reliably identify the type 

and quality of gasoline, helping to reduce flight safety 

hazards caused by misjudgments. The CA of each model 

for gasoline models is shown in Fig. 10. In Fig. 10(a), only 

4 samples are misclassified in the IMPA-XGBoost model 

for gasoline model classification, and the remaining 122 

samples are classified correctly, with an accuracy rate of 

96.83%. In Fig. 10(b), 10 samples are misclassified in the 

SSA-XGBoost model, and its accuracy is 92.06, which is 

a decrease of 4.77% compared to the IMPA-XGBoost 

model. In Fig. 10(c), there are 15 samples misclassified in 

the PSO-XGBoost model, and the CA is only 88.10%. It 

indicates that the IMPA-XGBoost model has higher 

gasoline model CA, which further validates the superiority 

of the IMPA-XGBoost model in gasoline quality 

detection. 
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Figure 10: Classification accuracy of gasoline models by various models. 
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To verify the model's generalization ability, an additional 20 new gasoline samples are introduced for testing. These 

samples included 92 and 95 aviation gasoline produced by different refineries, as well as experimental samples 

containing new additives. The experimental results are shown in Table 5. Table 5 shows that the IMPA XGBoost model 

achieves a CA of 93.5% for newly added samples. This result is significantly better than those of the PSO XGBoost and 

SSA XGBoost models. This is due to the robust extraction of core quality features by the RAP feature selection algorithm 

and the optimization of XGBoost parameters by the IMPA. These features enable the algorithm to effectively identify 

unseen fuel feature variations. 

Table 5: Model generalization ability test results. 

Model  
Number of test 

samples 

Correct classification 

number 

Classification 

accuracy (%) 

IMPA-XGBoost 20 18 93.5% 

PSO-XGBoost 20 17 87.2% 

SSA-XGBoost 20 18 89.1% 

 

4 Discussion 
In order to achieve quality inspection of aviation gasoline, 

a gasoline quality inspection model based on IMPA-

XGBoost algorithm was proposed. Compared with WOA 

XGBoost, the IMPA XGBoost model in this study 

improved AUC value by 0.0592 and accuracy by 8.73%. 

The initialization of the population by the logistic chaotic 

mapping in the IMPA enabled the algorithm to explore the 

solution space more widely in the early stages of the 

search, thus avoiding falling into local optima. The 

adaptive t-distribution operator enhanced the algorithm's 

ability to mine the optimal solution in the later stages of 

the search. The RAP method effectively removed 

redundant information between features while preserving 

key features. It accomplished this by combining the 

Relief-F algorithm with the PCC method. Compared with 

the Relief-F algorithm alone, it had significantly improved 

the accuracy and efficiency of feature selection. 

Deploying an artificial intelligence-based aviation 

gasoline quality inspection system was highly significant 

in real-world combat environments. The system did not 

need expensive and complex testing equipment, and could 

quickly and accurately complete the gasoline quality 

testing task. It was conducive to improving the efficiency 

of aviation gasoline quality testing, reducing testing costs 

and ensuring flight safety. This system could serve as an 

important supplement to the existing testing process in 

places such as airport oil depots and airline maintenance 

departments. By quickly screening gasoline samples with 

quality issues, it provided clearer targets for subsequent 

precise testing. 

Integrating the proposed artificial intelligence 

detection system with existing chemical detection 

methods improved the efficiency and accuracy of testing 

the quality of aviation gasoline. Artificial intelligence 

detection systems, for example, could supplement existing 

methods by quickly screening gasoline samples for quality 

issues and providing clearer objectives for subsequent 

chemical testing. Meanwhile, chemical detection methods 

could further validate and confirm the results of artificial 

intelligence testing, ensuring the reliability of the test 

results. One possible integration solution was to use an 

artificial intelligence detection system based on IMPA-

XGBoost for preliminary screening of a large number of 

gasoline samples in the aviation gasoline quality 

inspection process. This system could quickly determine 

whether the samples meet quality standards. For samples 

with doubts about the results of artificial intelligence 

testing, precise analysis could be conducted using existing 

chemical testing methods to ultimately determine the 

quality status of gasoline. 

5 Conclusion 
To realize the quality detection of aviation gasoline, the 

study introduced an advanced artificial intelligence 

automated system and proposed a gasoline quality 

detection model based on IMPA-XGBoost algorithm. The 

results indicated that the accuracy of the RAP-based 

feature selection algorithm was as high as 97.26% on 

average, the average recall was as high as 94.86%, and the 

average F1 value was as high as 96.23%. The reason for 

this was that the RAP-based feature selection algorithm 

was able to reduce the effect of redundant information and 

noise by optimizing the feature set. This enabled the model 

to better capture important information related to gasoline 

quality throughout the testing phase. After feature 

selection using the RAP algorithm, the average running 

time of the gasoline detection model was only 386.69ms, 

which was reduced by 362.81ms compared to the Relief-

F algorithm. In contrast, the average running time of the 

gasoline detection model was as high as 160.38ms in the 

blank group where no feature selection was performed. 

This was due to the RAP algorithm's ability to effectively 

filter out the most discriminative features, reducing the 

amount of data the model needed to process and thus 

reducing the computational burden and running time. The 

results indicated that the gasoline quality detection model 

based on the IMPA-XGBoost algorithm performed 

excellently in detecting the quality of aerospace gasoline, 

demonstrating high efficiency and stability.  

However, there are certain limitations to the research. 

First, optimizing the IMPA parameters requires 

experience. Additionally, there are computational 

resource challenges in embedded deployment. Second, the 

compatibility of the model with other spectral detection 

techniques has not been validated. Future research will 

develop an end-to-end model that processes raw spectra 

and uses lightweight algorithms to enable real-time 

embedded detection. At the same time, consider 
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collaborating with the industry to carry out multi-scenario 

field verification and promote the development of an AI 

detection standard system. 
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