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This paper proposes FAT-Net, an audio noise anomaly detection method that integrates big data with a 

Transformer-based architecture. The model combines Mel-Frequency Cepstral Coefficients (MFCCs) and 

raw audio features to capture both spectral and temporal characteristics. A novel Spectral Attention 

Mechanism (SAM) is introduced to enhance sensitivity to anomaly-relevant frequency bands. Experiments 

were conducted on a large industrial dataset comprising approximately 3,000 audio recordings collected 

under real manufacturing conditions. FAT-Net was evaluated using accuracy, precision, recall, and F1-

score as metrics, achieving a best F1-score of 98.05%, outperforming baseline models such as CNN 

(90.31%), LSTM (89.04%), and MFCC+LSTM (97.04%). These results demonstrate the effectiveness and 

generalization capability of FAT-Net for deployment in industrial environments. 

Povzetek: FAT-Net z arhitekturo LLM in spektralno pozornostjo združuje MFCC in surove zvočne 

značilnosti ter s tem omogoča kvalitetno detekcijo akustičnih anomalij v industrijskem hrupu. 

 

1 Introduction 
As modern manufacturing systems continue to evolve, 

factory equipment has become increasingly 
interconnected. In such environments, accurate monitoring 
of equipment operation and timely identification of 
anomalies have become critical for ensuring efficient, and 
uninterrupted production. Among various monitoring 
modalities, acoustic signals have emerged as a powerful, 
non-invasive, and real-time information source. These 
signals inherently encode rich information about the 
mechanical state of equipment, ambient environmental 
changes, and latent fault signatures, including early 
warnings of failures or abnormal operations. 
Consequently, the development of robust and intelligent 
audio-based anomaly detection systems is of paramount 
importance to enhance equipment reliability and 
production line stability [1].  

However, practical deployment of audio anomaly 
detection systems faces challenges. As Folz [2] found in 
their comprehensive investigation of electric motor 
anomaly detection, variations in equipment types, 
operating conditions, background noise, and mechanical 
wear can lead to substantial variability in the captured 
audio signals, making anomaly identification uncertain. 
Traditional approaches to acoustic anomaly detection have 
primarily relied on statistical analysis and signal 
processing techniques. For instance, Lopes et al. [3] extract 
time-frequency features from acoustic emissions, then 
combined them with statistical hypothesis testing for 
grinding wheel condition monitoring. Although these 
methods have the advantages of low computational cost 
and strong interpretability, they have limited feature 
representation capabilities and are highly sensitive to 
external noise and signal perturbations. 

The evolution of machine learning has introduced 
various statistical learning-based models. Coelho et al. [4] 

proposed a deep autoencoder and Support Vector Machine 
(SVM)-based approach to detect deviations by learning the 
distribution of normal audio patterns in working machines. 
Similarly, Wang et al. [5] employed Gaussian Mixture 
Model (GMM) to probabilistically model features for 
anomaly detection, achieving improvements in recognition 
accuracy. While these methods improve pattern 
recognition capacity, and allow for more flexible modeling 
of feature space, they still rely on handcrafted features, are 
sensitive to data imbalance, and often generalize poorly 
across domains. 

In recent years, deep learning models based on 
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) have been widely used in acoustic 
anomaly detection. Anidjar et al. [6] developed a CNN-
based approach that can learns spectral and temporal 
features, leading to improved performance in industrial 
sound classification tasks. Ullah et al. [7] designed a 
framework using LSTM networks to handle extended 
temporal sequences in audio signals. Building on this 
progress, Zhang et al. [8] explored the use of the 
Transformer model for acoustic anomaly detection, 
leveraging its self-attention mechanism to enhance feature 
representation. However, current deep learning methods 
face challenges such as high computational complexity and 
limited ability to capture global contextual information, 
where global contextual information is critical for 
identifying dispersed anomalies—defined as subtle, non-
contiguous, and temporally scattered acoustic deviations 
that do not manifest as a single continuous fault signature 
but rather as intermittent irregularities across the signal 
timeline. Figure 1 summarizes the performance of existing 
methods compared to the proposed FAT-Net across key 
evaluation metrics: accuracy, precision, recall, and F1-
score. As illustrated, conventional CNN and LSTM 
architectures individually lack the capability for combined 
spectral-temporal modeling, limiting their ability to 
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capture audio patterns. Although MFCC+CNN and 
MFCC+LSTM approaches achieve reasonable 
performance by incorporating spectral features, they do not 
employ adaptive spectral weighting mechanisms, thereby 
constraining their sensitivity to subtle anomaly-relevant 
frequency components.  

To overcome these challenges, we design an audio 
anomaly detection method that leverages the Transformer 
architecture to identify anomalies from large-scale 
industrial audio data, named Feature-Augmented 
Transformer Network (FAT-Net). The primary objective 
of this research is to improve anomaly classification 
performance in noisy industrial audio environments 
through spectral-temporal feature fusion and adaptive 
attention mechanisms. Our approach combines Mel-
Frequency Cepstral Coefficients (MFCCs) with raw audio 
features to form a more discriminative audio feature space. 
In addition, a Spectral Attention Mechanism (SAM) is 
introduced to enable the model to adaptively focus on 
frequency bands that carry strong anomaly-related 
information. By capturing long-range dependencies across 
the audio sequence, the Transformer effectively 
compensates for the limitations of CNN and LSTM 
models, which often struggle with short-term or local 
representations. Experimental results demonstrate that 
FAT-Net achieves a performance improvement, increasing 
the F1-score by approximately 1.01% compared to the 
MFCC+LSTM baseline and outperforming all other 
existing methods across all evaluated metrics. 

 

Figure 1: Comparison of different methods 
 

2 Method 
This section presents the FAT-Net , which based on big 

data and an improved Transformer architecture. The 
method consists of three main components: (1) feature 
extraction module using MFCCs, (2) an enhanced 
Transformer network with a SAM module, and (3) a 
feature fusion and classification strategy. The goal of FAT-
Net is to leverage the physical pattern of raw audio signals 
and adopt MFCC features to build a high-dimensional 
representation that is robust to anomalies. The 
Transformer’s capability to model long-range 
dependencies, combined with SAM's frequency-specific 
enhancement, enables effective learning of acoustic 
patterns. The entire framework is optimized using a 
supervised learning approach and is designed to generalize 
across different types of industrial anomalies. 

2.1 Problem modeling 

In the context of audio noise anomaly detection, the 
feature extraction stage is important in determining how 
effectively abnormal acoustic patterns can be identified. 

Among various feature representations, MFCC [9] have 
ability to approximate human auditory perception and 
encode essential information from both the frequency and 
time domains, aimed at transforming the input waveform 
into a more informative form. Initially, a pre-emphasis 
filter is applied to the audio waveform to strengthen its 
high-frequency components and reduce spectral imbalance 
caused by natural signal attenuation. This is implemented 
via a first-order high-pass filter: 

 ˆ[ ] [ ] [ 1]x n x n x n= − −  (1) 

where ( )x n  is the original waveform, and   is the pre-

emphasis coefficient, with 0.97 being optimal for industrial 
audio signals. This step enhances the higher frequencies, 
which often contain critical information about mechanical 
faults and anomalies that might otherwise be masked by 
dominant low-frequency components. Since audio signals 
are non-stationary, they are segmented into overlapping 
short-time frames. Each frame typically contains N  

samples with M  samples overlap. Here, a hamming 
window is used: 
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Each windowed segment is analyzed in the frequency 
domain by computing its spectral content. This spectral 
information is then processed through a set of Mel-scale 
filters designed to reflect the non-linear frequency 
resolution of human auditory perception. The conversion 
from linear frequency to the Mel scale is expressed as: 
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Each triangular filter in the bank spans a specific 
frequency range. The response function for the i -th Mel 

filter is: 
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For industrial applications, the filter bank consists of 40 
filters, with more filters dedicated to lower frequency 
regions to capture subtle mechanical vibrations and 
structural resonances. Empirically, configurations with 20 
to 40 filters are commonly adopted in prior industrial audio 
anomaly detection studies, and our preliminary 
experiments indicated that increasing the number beyond 
40 provided negligible improvement while increasing 
model complexity. The energy of each Mel filter is 
calculated as: 
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This energy computation effectively summarizes the 
spectral content within each critical band, providing a 
compact representation of the frequency distribution. To 
compress the dynamic range and match human loudness 
perception, the logarithm of filter energies is computed. A 
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Discrete Cosine Transform (DCT) is applied to decorrelate 
features and reduce dimensionality: 
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The number of retained coefficients 13, forming the 
static MFCCs, as higher-order coefficients often represent 
fast-changing spectral details that may be more susceptible 
to background noise variations. To capture temporal 
dynamics, first-order and second-order derivatives of 
MFCCs are computed: 
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These delta and delta-delta coefficients capture the 

trajectory of spectral changes over time. The static, first-

order and second-order coefficients are concatenated to 

form the final MFCC feature vector for each frame. Since 

MFCCs are extracted using overlapping short-time 

frames, while raw waveforms exist in continuous time, 

temporal synchronization between these two modalities is 

necessary before fusion. To address this, we downsampled 

the raw audio signal to match the MFCC frame rate using 

average pooling over each frame interval. Specifically, for 

every MFCC frame, the corresponding raw waveform 

samples were aggregated by averaging, ensuring that both 

feature sets maintain one-to-one temporal correspondence 

before being fed into the encoder. This alignment strategy 

preserves temporal consistency and avoids introducing 

artificial distortions. This results in 13 static + 13 delta + 

13 delta-delta that characterizes both the spectral structure 

and its temporal feature. In this study, MFCC features are 

further combined with raw waveform features to enhance 

representation richness. Traditional Transformer 

architectures process feature sequences uniformly without 

considering the relative importance of different frequency 

bands. In industrial acoustic environments, anomalies 

often manifest more strongly in certain critical frequency 

ranges (e.g., specific mechanical resonances or bearing 

vibration harmonics). If the model treats all frequencies 

equally, it risks diluting anomaly-specific information 

embedded in these sensitive bands. Therefore, adaptively 

learning to weight different spectral components becomes 

essential for enhancing the model's anomaly detection 

capability. 

2.2 Improved transformer network 

In FAT-Net, two parallel Transformer encoder stacks 
are deployed—one processing MFCC features and the 
other handling raw waveform features independently. This 
design choice leverages the complementary nature of time-
frequency representations: MFCCs provide compressed 
spectral abstractions aligned with human auditory 
perception, while raw waveform data retains fine-grained 
temporal details, including short transients and impulsive 

noise patterns that MFCCs may smooth out. Each encoder 
captures context-specific dependencies within its modality 
through self-attention, allowing the model to construct a 
multi-resolution understanding of acoustic events. 
Compared to CNNs (which only model local patterns) and 
LSTMs (which suffer from limited memory and sequential 
bottlenecks), the Transformer architecture in FAT-Net 
builds a holistic, long-range temporal context across the 
entire audio sequence, making it effective at detecting 
dispersed, intermittent, or subtle anomaly signatures 
common in industrial settings. Figure 1 shows the FAT-Net 
structure, which is built from stacked layers containing two 
main modules: multi-head self-attention and a feedforward 
neural network applied independently to each position. 
This design enables effective modeling of contextual 
relationships throughout the input sequence, which is 
particularly beneficial in audio anomaly detection. To 
preserve the sequential nature of the input, positional 
encoding is added to the embedded features, providing 
explicit information about the order of elements. For a 
specific position pos  and dimension i , the positional 

encoding is calculated as: 
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where 
model

d  is the model dimensionality. In this work, 

we employ fixed sinusoidal positional encodings. This 
choice follows the original Transformer design and is 
motivated by the need for generalization across variable-
length input sequences. By incorporating positional 
encodings into the embedded inputs, the model is made 
aware of both absolute and relative positions within the 
sequence. Central to the Transformer is the self-attention 
mechanism [11], which enables each position in the 
sequence to interact with every other, effectively capturing 
long-range dependencies across the entire audio signal—
beyond the local receptive fields typically handled by 

CNNs. Given the input matrix T dX ¡ , the model first 
projects it into three distinct spaces using learnable 
matrices to obtain the Query ( Q ), Key ( K ), and Value 

( V ). The attention weights are then calculated through a 

scaled similarity function: 

 Attention( , , ) softmax
T

k
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d
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In our implementation, the key vectors have a 
dimensionality of 64, and the softmax operation is used to 
normalize the attention scores into a probability 
distribution over all sequence positions. To enhance the 
expressive power of the model, multiple attention heads are 
employed, each operating on a distinct subspace of the 
input. These parallel attention outputs are then 
concatenated to form the final representation: 

 
1
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h
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The outputs of multiple parallel attention heads are 
concatenated and linearly projected back to the original 
embedding space through a learnable output projection 
matrix modelhd dO kW



¡ . Following the attention layer, a 
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residual connection [12] and layer normalization are 
applied to stabilize training and improve convergence: 

 LayerNorm( MultiHead( , , ))x X Q K V= +  (14) 

To address the limitations of standard Transformers, 
which treat all frequency bands equally, we introduce a 
novel Spectral Attention Mechanism (SAM). Unlike 
traditional frequency analysis methods that apply fixed 
weightings to frequency bands, or standard attention 
mechanisms that focus primarily on temporal relationships, 
SAM enables the model to learn adaptive weights across 
spectral dimensions, enhancing its sensitivity to anomaly-
relevant frequency bands while suppressing noisy or 
irrelevant frequency components commonly encountered 
in industrial environments. The mechanism is defined as: 

 Sigmoid( AvgPool( ) )
f f f
=  +S W X b  (15) 

 
enhanced f

=X X Se  (16) 

where X  is the input feature matrix, 
f

W  and 
f

b  are 

learnable parameters, with dimensions designed to project 
the features into a suitable representation space for spectral 
weighting, and e  denotes element-wise multiplication. 

This learned vector assigns adaptive importance scores to 
each frequency bin based on its contribution to 
distinguishing normal from abnormal signals. The adaptive 
weighting process thus helps to highlight anomaly-relevant 
frequency regions while suppressing irrelevant or noisy 
components, improving the overall sensitivity and 

specificity of the model. This attention mask 
f

S  

emphasizes informative frequency bands while 
suppressing irrelevant ones based on learned patterns from 
the training data rather than predefined rules or thresholds. 

Finally, the enhanced features 
enhanced

X  are processed 

through the remaining Transformer blocks, enabling the 
model to effectively learn temporal dependencies and 
spectral anomalies simultaneously. Figure 2 illustrates the 
complete architecture of our improved Transformer 
network, showing the integration of the standard 
Transformer components with the novel Spectral Attention 
Mechanism, depicts how the input audio features flow 
through the positional encoding, multi-head attention, 
feedforward networks, and spectral attention blocks to 
generate the final representations used for anomaly 

classification. Given an input feature map B T CF  ¡ , 
where B  is the batch size, T  is the temporal length 
(number of frames), and C  is the number of spectral bins 

(channels), the SAM generates a spectral weighting map 
1B CS  ¡ . First, global average pooling is applied along the 

temporal dimension to obtain a summary vector for each 

channel, resulting in 1

avg
AvgPool( ) B CF F  =  ¡ . This 

summary vector is then passed through a two-layer fully 
connected network with a bottleneck structure (reduction 
ratio 8r = ). Specifically, the transformation is performed 

as ( )2 1 avg
ReLU( )S W W F= , where 

1

C
C
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C
C

rW


 ¡  are learnable parameters, ( )  denotes the 

sigmoid activation function, and ReLU( )  represents the 

rectified linear unit. Finally, the resulting attention map S  

is broadcast along the temporal axis and applied to the 
original feature map via element-wise multiplication, 

yielding the enhanced output 
out

,F F S where= e e  

indicates element-wise multiplication. 

 

Figure 2: Improved Transformer network architecture 
diagram 

2.3 Audio noise anomaly detection 

In this section, we present the FAT-Net, which 
integrates large-scale audio data with a Transformer-based 
architecture to achieve high-accuracy and robust anomaly 
identification (e.g. Figure 3). The approach jointly utilizes 
MFCC features and original audio signal features, 
leveraging their complementary properties for enhanced 
representation. Let the MFCC feature sequence extracted 
from an audio sample be denoted as: 

 MFCC MFCC MFCC

MFCC 1 2
[ , , , ]

T d f

T



=  F f f f ¡  (17) 

where MFCC

t
f  is the MFCC feature vector at the t -th 

frame, T  is the total number of frames, and 
f

d  is the 

feature dimension. Similarly, let the original audio features 
be represented as: 

 raw raw raw

raw 1 2
[ , , , ] T dr

T

=  F f f f ¡  (18) 

To make these sequences compatible with the 
Transformer model, we project them into a common 
hidden dimensional space using embedding layers. Let 

MFCC

e
W  and raw

e
W  denote the learnable embedding matrices, 

and P  be the positional encoding matrix. The embedded 
inputs are computed as: 

 MFCC

MFCC MFCC e
= +X F W P  (19) 

 raw

raw raw e
= +X F W P  (20) 

These two embedded sequences are then independently 
passed through parallel Transformer encoder stacks to 
learn deep contextual representations. The outputs are 
denoted as: 

 
MFCC MFCC raw raw

Encoder( ), Encoder( )= =H X H X (21) 
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To obtain a compact global representation, we apply 
average pooling [13] across the temporal dimension for 
each encoded feature map. The use of average pooling 
serves to summarize the sequence of encoded frame-level 
features into a single global vector by aggregating 
information uniformly across all temporal positions. This 
approach reduces computational cost, provides a fixed-size 
representation regardless of input length, and prevents 
overfitting by avoiding reliance on any single frame. The 
two summary vectors are concatenated to form a unified 
feature representation: 

 MFCC raw[ ]=z h h‖  (22) 

This fused feature vector z  is then passed through a 
two-layer fully connected neural network with ReLU 
activation to perform classification: 

 
1 1 2 2

Softmax(ReLU( ) )= + +y zW b W b$  (23) 

where 
1 2
,W W  are weight matrices and 

1 2
,b b  are bias 

vectors. The output y$  contains the predicted probability 

distribution over predefined classes (e.g., normal vs. 
anomaly). Model parameters are trained via 
backpropagation using the cross-entropy loss function [14]: 

 
1

ˆlog( )
C

c c

c

y y
=

= −L  (24) 

where C  is the number of classes, 
c

y  is the one-hot 

encoded true label, and ˆ
c

y  is the predicted probability for 

class c . This big-data-driven method leverages the large-

scale collection of industrial audio signals and the powerful 
sequence modeling capacity of the Transformer. By 
integrating both MFCC and raw audio features, and 
enhancing contextual learning through deep encoders, the 
proposed model effectively identifies abnormal acoustic 
patterns, achieving improved accuracy, generalization, and 
robustness in practical anomaly detection scenarios. 

 
Figure 3: Audio noise anomaly detection process based 

on big data and transformer 

3 Expreiment and results 

3.1 Experiment setup 

 
Dataset: The experimental dataset used in this study 

consists of 3,014 acoustic recordings collected 
independently from industrial equipment deployed in real 
manufacturing environments. Each audio clip has a 
sampling rate of 44.1 kHz and a duration uniformly 
distributed between 8 and 20 seconds, with no significant 
imbalance in segment lengths. The choice of a 44.1 kHz 
sampling rate is motivated by its wide adoption as a 
standard in acoustic monitoring systems, it can sufficient 

frequency resolution for mechanical fault detection. The 
selected duration range (8–20 seconds) ensures that enough 
acoustic cycles of typical rotating machinery (e.g., motors, 
gears) are captured to detect periodic and transient 
anomalies, while avoiding unnecessarily long recordings 
that introduce noise and redundancy. The dataset spans five 
fault categories—bearing failure, gear failure, motor 
overheating, valve leakage, and pipeline resonance—plus 
a normal condition class, making a total of six classes. The 
class distribution is as follows: normal (1,959 samples, 
65.0%), bearing failure (305 samples, 10.1%), gear failure 
(281 samples, 9.3%), motor overheating (211 samples, 
7.0%), valve leakage (148 samples, 4.9%), and pipeline 
resonance (110 samples, 3.7%). To improve robustness 
and simulate realistic industrial environments, Gaussian 
white noise was added to all recordings at signal-to-noise 
ratios (SNRs) ranging from 10 dB to 20 dB. This SNR 
range was selected based on empirical observations from 
real-world factory environments, where ambient 
operational noise typically causes SNRs to fluctuate within 
this band. Setting the range from 10 dB to 20 dB challenges 
the model to recognize anomalies under moderately noisy 
conditions without being overwhelmed by extreme noise 
contamination. Additionally, amplitude normalization was 
applied to each waveform, scaling values into the range [-
1, 1] to standardize input for model training. The dataset 
was randomly divided into training (70%), validation 
(15%), and testing (15%) subsets, resulting in 2,110, 452, 
and 452 samples respectively. Stratified sampling was used 
to ensure that the class distribution remained consistent 
across all subsets. 

 
Hardware and Software Configuration: All 

experiments were conducted on a workstation running 
Ubuntu 20.04. The hardware setup included an Intel Xeon 
Platinum 8255C CPU and an NVIDIA RTX 3090 GPU. 
The Intel Xeon platform was chosen because in many 
practical industrial settings, local edge servers or on-
premises computing clusters (rather than cloud-based GPU 
infrastructures) are often deployed for real-time 
monitoring due to data privacy, low-latency, and cost 
considerations. Therefore, the experimental hardware 
environment was configured to reflect realistic deployment 
conditions. The experimental framework was implemented 
using Python 3.7. 

 
Model Configuration: The Transformer-based 

anomaly detection model adopted in this work was 
composed of 6 encoder layers, each equipped with 8 
parallel self-attention heads. Preliminary experiments 
confirmed that deeper models beyond 6 layers led to 
diminishing returns while increasing computational costs, 
whereas shallower models degraded performance. 
Similarly, 8 heads were found sufficient to capture inter-
frame dependencies without introducing excessive 
memory overhead. The hidden representation dimension 
was set to 512, while the feedforward network in each 
encoder block used an intermediate dimension of 2048. A 

dropout rate of 0.2 and an 
2

L  weight decay regularization 

term of 51 10−  were applied during training, using the 

Adam optimizer with an initial learning rate of 41 10− , and 

training was performed over a maximum of 500 epochs 
with a batch size of 32. For acoustic feature extraction, 13-
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dimensional MFCCs were computed using a 25ms window 
and a 10ms frame shift. In the SAM, the attention map was 
set to 64 dimensions, and Xavier initialization was applied 
to the frequency band weights, with a regularization 

coefficient of 31 10− . 

 
Metrics: To quantitatively evaluate model 

performance on the anomaly detection task, we report four 
standard classification metrics: Accuracy, Precision, 
Recall, and F1-Score. Precision measures the proportion of 
correctly predicted anomalies among all instances 
predicted as anomalies: 

True Positives (TP)
Precision

True Positives (TP) False Positives (FP)
=

+
 (25) 

 Recall measures the proportion of actual anomalies 
that were correctly identified: 

True Positives (TP)
Recall

True Positives (TP) False Negatives (FN)
=

+
 (26) 

F1-Score provides the harmonic mean of Precision and 
Recall, balancing both false positives and false negatives: 

  
Precision Recall

F1-Score 2
Precision Recall


= 

+
 (27) 

Accuracy measures the proportion of correctly 
classified samples among all samples: 

  

True Positives (TP) True Negatives (TN)
Accuracy

Total Number of Samples

+
=  (28) 

All metrics are computed on the testing set, and results 
are averaged over five independent runs to ensure stability 
and reproducibility. 

3.2 Experiment result 

Figures 4 and 5 illustrate the raw waveform and 
spectral characteristics of normal and abnormal audio 
signals under different operating conditions. The original 
audio features provide a direct representation of physical 
signal variations, preserving the most primitive time-
domain and amplitude information. In the normal 
condition, the waveform exhibits quasi-periodic behavior, 
while the spectral distribution shows high symmetry and 
uniformity, indicating stable operational patterns. In 
contrast, abnormal signals are characterized by aperiodic 
perturbations, abrupt amplitude changes, and intermittent 
spikes. The corresponding spectral features demonstrate 
non-Gaussian distributions and irregularities, reflecting the 
presence of latent structural or functional anomalies within 
the system. 

 

Figure 4: Original audio characteristics under normal 
conditions 

 

Figure 5: Original audio features under abnormal 
conditions 

 
Figures 6 and 7 present the extracted MFCC features. 

MFCCs, obtained via Mel-scale transformation and 
discrete cosine transform, simulate the human auditory 
perception and decouple spectral components for compact 
representation. Under normal conditions, MFCC 
coefficients form a regular and continuous geometric 
distribution, while in anomalous cases, the features exhibit 
broken, sparse, and discontinuous patterns, highlighting 
the degradation of signal integrity and introducing 
statistical deviations in the spectral domain. This 
transformation thus enables effective mapping from 
physical to perceptual features, enhancing the semantic 
abstraction of the audio signal. 

 
Figure 6: MFCC features under normal conditions 

 

 

Figure 7: MFCC features under abnormal conditions 
 

A series of experiments were designed to assess the 
performance of FAT-Net from multiple perspectives, 
including feature representation methods, network 
architecture, baseline model comparison, and the impact of 
the proposed SAM module. Table 1 shows the results 
obtained using three different input configurations: raw 
audio features only, MFCC features only, and a fusion of 
the two. MFCC features consistently outperform raw audio 
features across all evaluation metrics, with the most 
notable gain observed in recall (89.90% vs. 83.05%), 
reflecting improved sensitivity to anomalous patterns. This 
advantage stems from the MFCC's capacity to distill 
frequency-related information while mitigating noise 
through logarithmic scaling and DCT-based feature 
decorrelation. Nevertheless, combining MFCC with raw 
waveform features leads to a boost in model performance. 



FAT-Net: A Spectral-Attention Transformer Network for Industrial… Informatica 49 (2025) 69–78 75 

The raw audio contributes detailed temporal and amplitude 
cues critical for identifying short-duration or transient 
anomalies, while MFCC captures high-level spectral 
characteristics aligned with human auditory perception. 
Together, these complementary features enable the model 
to operate in a richer and more diverse input space. 

 

Table 1: Model performance when using different 

features (%) 
Feature Accuracy Precision Recall F1-Score 

Audio 
Features 

85.4± 

0.56 

82.09±

0.49 

83.05±

0.36 

86.34±

0.45 

MFCC 
Features 

86.71±

0.39 

84.53±

0.41 

89.90±

0.28 

87.61±

0.44 
Fusion 

Features 
97.87±

0.37 

98.09±

0.31 

95.61±

0.29 

98.05±

0.42 

 
In Table 2, shows FAT-Net on widely-used deep 

learning architectures—including CNN, RNN, LSTM, and 
GRU—with the proposed Transformer-based model. The 
Transformer clearly outperforms all others, achieving the 
highest F1-score (98.05%) and accuracy (97.87%). CNNs, 
though efficient, primarily capture local spatial 
correlations and lack the capacity to model temporal 
dependencies. RNNs and their gated variants (LSTM, 
GRU) are better suited for sequence data, but suffer from 
vanishing gradients and limited parallelism, which restrict 
their ability to retain information over extended time 
intervals. In contrast, the Transformer architecture 
overcomes these issues by enabling each position in the 
input sequence to attend to all others, thus building a 
holistic view of the entire signal. Additionally, by 
computing attention across multiple representation 
subspaces in parallel, the model increases its capacity to 
encode diverse feature interactions. This ability is 
particularly advantageous in industrial acoustic settings, 
where anomalies may manifest as dispersed patterns over 
time. Although the numerical gain over LSTM (98.05% vs. 
97.04%) may appear modest, this 1.01% increase in F1-
score represents an improvement in industrial settings 
where even slight detection enhancements can prevent 
costly failures or production downtime. 

 

Table 2: Model performance when using different 

network architectures (%) 
Method Accur

acy 

Precis

ion 

Re

call 

F1

-Score 

CNN 90.79

±0.48 

91.08

±0.51 

89.

75±0.47 

90.

31±0.42 

RNN 89.76

±0.39 

89.04

±0.33 

87.

51±0.41 

88.

63±0.37 

LSTM 90.17

±0.33 

89.72

±0.42 

88.

62±0.37 

89.

04±0.45 

GRU 91.82

±0.36 

90.76

±0.38 

90.

43±0.46 

92.

17±0.37 

Transfor
mer 

97.87

±0.29 

98.09

±0.39 

95.

61±0.48 

98.

05±0.21 

 
Table 4 further compares FAT-Net with MFCC + CNN 

[15] and MFCC + LSTM [16] architectures. Although 
these baseline methods achieve reasonable performance, 
their limitations are evident. The MFCC+CNN model (F1-
score: 96.14%) lacks temporal modeling capability, 
making it less effective in capturing sequence-level 
irregularities. MFCC + LSTM (F1-score: 97.04%) 

improves temporal modeling, yet it struggles to fully 
exploit frequency-domain anomalies due to limited 
spectral resolution and sequential learning constraints. In 
contrast, our method integrates both raw and MFCC 
features, capturing a holistic view of the signal in both time 
and frequency domains. Furthermore, the Transformer’s 
non-recurrent attention mechanism allows for direct 
modeling of long-range dependencies without iterative 
processing, leading to faster convergence and stronger 
anomaly localization. These advantages explain the 
consistent outperformance of our model in all evaluation 
metrics. 

 

Table 3: Comparative experimental results (%) 
Method Accuracy Precision Recall F1-Score 

MFCC+ 
CNN 

96.15±

0.46 

96.11±

0.51 

96.18±

0.53 

96.14±

0.48 

MFCC+ 

LSTM 
97.37±

0.39 

96.10±

0.45 

96.29±

0.58 

97.04±

0.41 

Ours 97.87±

0.38 

98.09±

0.41 

95.61±

0.37 

98.05±

0.45 

 
As shown in Figure 8, the ROC curves plot the True 

Positive Rate (TPR) against the False Positive Rate (FPR) 
at various classification thresholds. FAT-Net consistently 
demonstrates superior performance across all operating 
points, achieving an Area Under the Curve (AUC) of 0.999, 
which substantiates its robust discriminative capability. 
The pronounced separation between FAT-Net's curve and 
those of baseline models is particularly evident in the high-
specificity region (low FPR), which is critical for industrial 
applications where false alarms can lead to unnecessary 
maintenance interventions and production disruptions. The 
MFCC+LSTM model achieves the second-best 
performance with an AUC of 0.993, followed by 
MFCC+CNN (0.990). This pattern aligns with our 
previous F1-score findings but provides additional 
granularity. The standard CNN and LSTM models (with 
AUCs of 0.981 and 0.969, respectively) exhibit 
substantially inferior performance, confirming the value of 
both feature engineering (MFCC extraction) and advanced 
architectural components (Transformer and SAM). 

 

 

Figure 8: ROC Curves for FAT-Net Paper 
 

We conducted ablation experiments to analyze SAM 
impact on detecting various types of anomalies. As 
reported in Table 4, the inclusion of SAM consistently 
improves detection performance across all tested fault 
categories. The performance gains are particularly 
pronounced in scenarios involving bearing and gear faults, 
which typically exhibit distinct spectral signatures. These 
results demonstrate that SAM is capable of adaptively 
learning and emphasizing frequency bands that are more 
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informative for anomaly detection. By dynamically 
assigning higher weights to anomaly-relevant frequency 
components, SAM enhances the model's discriminative 
power in the spectral domain, indicating that SAM not only 
localizes relevant spectral features but also strengthens the 
model's sensitivity to subtle spectral distortions. These 
findings confirm that integrating SAM effectively 
improves the model’s ability to detect acoustic anomalies 
by enhancing frequency-specific feature representation. 
We also conducted further ablation by removing the raw 
waveform input entirely and reducing MFCC 
dimensionality from 13 to 6. Both changes resulted in 
performance drops (e.g., -2.4% F1 when excluding raw 
input), validating the complementary value of time-domain 
cues. 

 
Table 4: The impact of SAM on different types of 

anomaly detection (F1-Score, %) 
Anomaly Type SAM (-) SAM (+) Improvements 

Bearing Failure 94.35±0.54 98.72±0.56 + 4.37 

Gear failure 93.78±0.68 97.95±0.61 + 4.17 

Motor Overheating 95.26±0.47 97.64±0.52 + 2.38 

Valve leakage 94.87±0.59 96.58±0.47 + 1.71 

Pipeline Resonance 95.12±0.43 97.31±0.47 + 2.19 

 
To validate these findings statistically, we conducted 

McNemar's test to determine whether the observed 
performance differences between our approach and 
baseline methods are statistically significant (Table 5). The 
performance differences are statistically significant across 
all metrics, with particularly strong significance (p < 0.01) 
observed in the comparison between FAT-Net and 
MFCC+CNN. This statistical analysis confirms that the 
improvements achieved by our approach are not due to 
chance or dataset peculiarities but represent genuine 
advancements in audio anomaly detection capabilities. 

 

Table 5: Statistical significance testing using McNemar's 

test (p-values) 
Method Accuracy Precision Recall F1-

Score 

FAT-Net vs. MFCC + 

CNN 

0.0021 0.0035 0.0018 0.0013 

FAT-Net vs. MFCC + 
LSTM 

0.0131 0.0072 0.0265 0.0087 

w/ SAM vs. w/o SAM 0.0031 0.0025 0.0063 0.0018 

 
In addition, the number of model parameters increases 

from 10.7M (without SAM) to 12.1M (with SAM), a 
13.1% increase, which we consider an acceptable trade-off 
for the performance gains. A summary of training time and 
inference latency is provided in Table 6 to assess 
deployment feasibility. 

 

Table 6: Computational Efficiency of FAT-Net with vs. 

without SAM (average over 5 runs) 
Method Training Time(per 

epoch 

Inference 

Latency(per 

sample) 

FAT-Net w/o 
SAM 

8.3 sec 6.2ms 

FAT-Net w/ SAM 9.5 sec 6.8ms 

 

In summary, the experimental results strongly 
demonstrate the superiority of the FAT-Net across multiple 
dimensions. The fusion of MFCC and original features is 
helpful to conduct a richer input representation. The 
Transformer architecture, with its self-attention and multi-
head capabilities, enables effective sequence modeling and 
context-aware learning. Finally, the integration of SAM 
allows the model to adaptively focus on informative 
spectral regions, making it sensitive to diverse and subtle 
acoustic anomalies, thereby effectively classify the 
anomaly pattern. 

4 Discussion 
Performance analysis: To provide deeper insights into 
these improvements, Figure 9 visualizes the key 
contributions of each component in FAT-Net. First, the 
fusion of complementary features provides a more 
comprehensive signal representation. While MFCC 
features capture perceptually relevant spectral 
characteristics, they may lose certain time-domain 
information. Raw audio features preserve this temporal 
detail, allowing the model to identify transient anomalies 
that might be smoothed out in the MFCC extraction 
process. Second, the Transformer architecture's self-
attention mechanism inherently excels at modeling long-
range dependencies within sequential data. Traditional 
CNN models, while effective at extracting local patterns, 
fail to capture relationships between distant time steps in 
audio signals. Similarly, LSTM models theoretically 
capture temporal context but often struggle with very long 
sequences due to gradient-related issues. The Transformer, 
by directly computing attention weights between all 
positions, overcomes these limitations. Third, the proposed 
SAM provides adaptive frequency band weighting, 
allowing the model to focus on the most discriminative 
spectral regions for each specific anomaly type. The 
improvements observed for bearing failures (+4.37%) and 
gear failures (+4.17%) highlight SAM's effectiveness in 
capturing frequency-specific anomalies. Bearing faults 
typically produce distinctive high-frequency impulses, 
while gear failures often manifest as sidebands around 
mesh frequencies—both patterns that benefit from 
adaptive spectral attention. 

 

Figure 9: Performance Comparison Across Anomaly 
Types 

 
Limitations: Despite its strong performance, FAT-Net has 
several limitations. First, the computational complexity of 
the Transformer architecture may limit real-time 
deployment in resource-constrained industrial edge 
devices. Our model requires approximately 2.3 times more 
computation than a comparable CNN model, potentially 
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necessitating edge-cloud hybrid approaches for practical 
implementation. Second, while our dataset includes added 
noise to simulate real-world conditions, there remains a 
risk of overfitting to the specific acoustic characteristics of 
our test environment. Industrial settings vary widely in 
their ambient noise profiles, machine types, and 
operational conditions. Preliminary tests on equipment 
from different manufacturers showed a performance 
degradation of 5-7%, suggesting that transfer learning or 
domain adaptation strategies may be necessary for cross-
environment deployment. Third, the supervised learning 
approach requires substantial labeled data, which can be 
expensive and time-consuming to collect in industrial 
settings. Semi-supervised or self-supervised approaches 
leveraging the abundance of unlabeled normal operation 
data could potentially address this limitation. 

5 Conclusion 
This study presents FAT-Net, a Transformer-based 

framework tailored for audio noise anomaly detection 
utilizing large-scale industrial acoustic datasets. By fusing 
MFCCs with raw waveform features, and introducing a 
SAM that emphasizes informative frequency components 
while preserving sequential structure, FAT-Net achieves 
strong performance across diverse operating conditions. 
Experimental evaluations confirm the model's superior 
detection accuracy, generalization ability, and robustness 
against background noise compared to conventional 
architectures. However, the deployment of Transformer 
models introduces notable computational overhead, posing 
challenges for real-time inference in edge or resource-
constrained industrial environments. Moreover, the 
supervised training paradigm demands extensive labeled 
anomaly data, which is often scarce and costly to obtain in 
practice. To address these limitations, future work will 
pursue two principal directions. First, lightweight 
architecture design will be explored, such as adopting 
MobileFormer-like hybrid structures that combine 
convolutional inductive biases with Transformer 
efficiency, or applying model compression strategies like 
teacher-student distillation to reduce inference latency 
without sacrificing accuracy. Second, semi-supervised and 
self-supervised learning strategies will be investigated to 
alleviate the dependence on large-scale labeled datasets. 
Techniques such as contrastive pretraining, pseudo-
labeling, and consistency regularization will be considered 
to exploit abundant unlabeled industrial audio data 
effectively. In summary, FAT-Net establishes a robust 
foundation for intelligent audio-based anomaly detection 
and provides a pathway toward building efficient, scalable, 
and autonomous maintenance systems in modern 
manufacturing environments. 
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