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Planning the movement path of a robot is crucial to ensure it reaches the target area smoothly. Existing
methods tend to fall into local optima, have low accuracy in route calculation, and fail to effectively avoid
obstacles. To address these issues, this study introduces the Sparrow Search Algorithm and Fuzzy Control,
as well as the Dynamic Window Approach, to optimize Proportional-Integral-Derivative control and
Batch Informed Trees, respectively. Based on these two optimization algorithms, a robot trajectory
planning model is proposed, and its feasibility and reliability are demonstrated through comparative
experiments. In standardized 50m x50m grid environments with 20%-30% obstacle density and dynamic
obstacles, 30 independent simulation runs were conducted. Comparative analysis with RRT*, Ant Colony
Optimization (ACO), and Genetic Algorithm (GA) demonstrates that the proposed model achieves a
success rate of 95.5%, a high accuracy rate of 99.4%, and a low accuracy error rate of 0.0011%. The
locally optimal route length planned by the model is 12.6m, while the global average optimal route length
is reduced to 21.2m, significantly outperforming the comparison models. These findings demonstrate that
the proposed model has strong trajectory planning capabilities, minimal error, and shorter routes,
enabling the robot to respond correctly to external environments in a timely manner and complete tasks
effectively even in complex dynamic conditions.

Povzetek: Predstavijen je hibridni model nacrtovanja poti robotov, ki zdruzuje FC-SSA-PID za
prilagodljivo krmiljenje in DWA-izboljsani BIT* za globalno ter lokalno nacrtovanje. Sistem ucinkovito
premaguje lokalne optime, zmanjsuje napake, hitro se izogiba oviram.

mature and stable technique with strong adaptability.
Meanwhile, Batch Informed Trees (BIT*) combines the
advantages of sampling-based and search-based planning
algorithms, allowing it to filter out unimportant
information and find optimal routes in complex
environments [4-5]. However, traditional PID parameter

1 Introduction

Since the 21st century, robots have gradually entered
public life, and their technology has developed rapidly.
However, their performance remains less autonomous and
adaptive compared to human capabilities [1]. The demand

for efficient, safe, and precise robotic movement paths
necessitates advanced trajectory planning technology. It
serves as the core system for controlling robot motion and
is a crucial foundation for enabling robots to complete
various tasks. Therefore, optimizing trajectory planning
has been a key research focus [2]. Currently, methods such
as Genetic Algorithm (GA), Recurrent Neural Network
(RNN), and Graph Search Algorithm (GSA) have been
applied to trajectory planning [3]. However, these
methods suffer from problems such as falling into local
optima, poor real-time performance, and weak
adaptability to dynamic environments. Therefore,
trajectory planning methods requiring enhanced accuracy
and stability are essential. Proportional-Integral-
Derivative (PID) control adjusts signal parameters
through proportional, integral, and derivative control
algorithms to achieve precise system output control. It is a

tuning is time-consuming and lacks precision, while BIT*
faces challenges such as computational complexity and
low solution quality in high-dimensional problems. To
address these limitations, this study introduces the
Sparrow Search Algorithm (SSA) and Fuzzy Control
(FC), as well as the Dynamic Window Approach (DWA),
to optimize PID and BIT*, respectively. Based on these
optimizations, a new robot trajectory planning model is
proposed. This model is expected to improve robot
flexibility and enable intelligent task execution. We aim to
investigate whether combining FC-SSA-PID and DWA-
BIT*improves trajectory planning performance in
dynamic environments compared to other similar
technologies.
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2 Related work

PID control has been widely applied in various fields
requiring precise control systems, including robotics,
aircraft, and 3D printing. Therefore, many researchers
have conducted in-depth studies on PID control. For
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example, to address the unpredictable environmental
challenges faced by unmanned surface vehicles, Meng J et
al. proposed a Gaussian process motion trajectory
planning method based on PID. This method introduced
an interpolation strategy to increase path selection

Table 1: Summary and comparison table of related work.

A . Accuracy Path  efficiency | Runtime
Ref. Method Used Application Domain (%) %) complexity
[6] IGaussmn . Process + PID  + Unmanned Surface Vehicles 85 82 High
nterpolation
[7] Fractional-order PID Control Wind Power Simulation System 90.5 87 Medium
Improved BIT* + Spatial | Concrete Color Difference . .
(8] Transform/Mask Detection 921 8 Medium-High
[9] Self-deforming BIT* Variant High-arrival-rate Data Streams 95.8 86 Low-Medium
< -
[10] Improved_ BIT * Linear Spinal Puncture 3D Reconstruction 94.3 88 Medium
Interpolation
Local Chaotic Particle Swarm . . -
[11] Optimization Robotic Arm Trajectory 89.7 85 High
[12] Dynamic Trajectory Discovery Multi-Cable-Driven Robots 91.2 78 High
[13] Hybrid Optimization Algorithm Industrial Robot Manipulators 87.5 80 Very High
[14] Model Predictive Control Eobpt Motion in Dynamic 88 75 High
nvironments
[15] Model-Free Hierarchical Decoupling | Collision Avoidance 90 70 Medium-High
diversity, with experimental results demonstrating practical applications, and scholars worldwide have

effective mitigation of unknown environmental impacts
[6]. Gasmi H et al. developed a dual-feedback wind power
simulation system based on PID to solve the significant
vibration issues in wind power operations. This system
utilized fractional-order proportional-integral control to
regulate grid power and ensure maximum power
operation. The results demonstrated that it reduced grid
oscillations while maintaining robust performance [7]. At
the same time, BIT* has also been widely applied,
particularly in scenarios requiring large-scale data
processing. For instance, to address the instability of using
ordinary drones for concrete sampling in construction,
Yao G et al. proposed a concrete color difference detection
model based on an improved BIT*. This model used
spatial ~ transformation and mask  quantization
segmentation operations to achieve block-based color
difference encoding, and experimental results showed a
detection accuracy of 92.10% [8]. Wang H et al.
introduced a self-deforming bitmap algorithm based on
BIT* to address the issue of existing solutions being
unable to perform online operations on high-arrival-rate
data streams. This algorithm automatically adapted the
sampling probability for data streams of different sizes
and allowed bitmap deformation. Experiments proved that
it could efficiently and accurately process high-arrival-
rate data streams [9]. In the field of spinal puncture
surgery, Zhang W et al. proposed an improved BIT*-
based three-dimensional reconstruction system to solve
the time-consuming and complex process of determining
puncture points and paths. By using a linear interpolation
algorithm for 3D reconstruction, the system enabled
automatic image scanning and acquisition to quickly
locate the optimal puncture point and path [10].
Trajectory planning technology has reached a
relatively mature stage in both theoretical research and

applied various optimization methods in real-world
scenarios. For example, to optimize the movement time
and trajectory of robotic arms, Du Y et al. proposed a local
chaotic particle swarm optimization algorithm based on
interpolation  functions. This algorithm conducted
simulation experiments in joint space, and simulation
results demonstrated that it effectively reduced the
oscillation amplitude and movement time of the robotic
arm, ensuring operational stability [11]. To address the
issue of redundant trajectories in multi-cable-driven
robots reaching targets without entanglement, Cao M et al.
proposed a dynamic trajectory discovery method that
evaluates the safety and feasibility of potential paths while
reducing inter-robot  entanglement. The results
demonstrated that this method effectively generated
tangle-free dynamic trajectories [12]. To improve robot
task execution efficiency, Singh G etal. introduced a robot
kinematics analysis and trajectory planning method based
on a hybrid optimization algorithm. By performing
forward and inverse calculations on 18 different
algorithms, the optimal solution was obtained, and
experiments confirmed that this method significantly
enhanced robot performance and found the best path [13].
Wang C et al. proposed a model predictive control method
to address the instability of robot motion in dynamic
environments. This method automatically tracked robot
movement paths and adaptively computed optimal routes.
The results showed that it effectively reduced
environmental uncertainty while maintaining the ability to
replan global routes [14]. To solve the problem of robots
avoiding collisions while executing tasks, Wang S et al.
proposed a model-free hierarchical decoupling
optimization algorithm. This algorithm decomposed tasks
into two sub-tasks to reduce task complexity, and
experiments demonstrated that it improved robot
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adaptability to the environment, effectively preventing
collisions [15]. The summary and comparison Table of
relevant work is shown in Table 1.

In summary, although research on trajectory planning
has achieved significant progress, existing methods still
have limitations. Under specific conditions, they may
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suffer from low computational efficiency, suboptimal
route planning, and slow obstacle response. PID control
can reduce system deviation, eliminate steady-state errors,
and suppress oscillations, while BIT* ensures efficiency
and stability in processing dynamic datasets. Therefore,
this study combines PID and BIT* to

Figure 1: Schematic diagram of PID control principle.
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Figure 2: Schematic diagram of the optimization process of SSA for PID control.

develop a PID-BIT* hybrid algorithm, aiming to ensure
that robots can complete tasks accurately and efficiently
under complex environmental conditions.

3 Optimization of robot motion
trajectory based on FC-SSA-PID
and DWA-BIT*

3.1 Architecture optimization of PID
control

PID control consists of three components: proportional,
integral, and derivative units. The proportional unit
increases system response speed, the integral unit reduces
system errors, and the derivative unit enhances
disturbance resistance. By adjusting system parameters
through these three algorithms, precise robot control is

achieved [16]. The output diagram of the PID control
system is shown in Figure 1.

As shown in Figure 1, when a signal enters the PID
controller, it is processed by the three units. The
proportional unit calculates the error value and outputs the
proportional coefficient as a signal. The integral module
accumulates the error, multiplies it by the integral
coefficient, and outputs the result as a new signal. The
derivative module evaluates the rate of error change,
multiplies it by the derivative coefficient, and outputs the
derivative as a signal component. The calculation process
is shown in Equation (1).

Ut = Kee®) + K, || e(0)dr+K, de(t)

— (1
dt @)

In Equation (1), K, represents the proportional
coefficient, K; is the integral coefficient, and K, is the

derivative coefficient. Since traditional PID control cannot
fully ensure smooth and stable robot movement, the study
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introduces SSA to optimize PID and adjust the PID
parameters to obtain a more comprehensive control
parameter combination. The optimization process is
shown in Figure 2.

As shown in Figure 2, SSA is first initialized with
parameters, including the maximum number of iterations
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and the numbers of discoverers, followers, and warners.
Sample fitness values are subsequently evaluated, sorted,
and classified into discoverers and followers, with
followers updating their positions. Some samples are
randomly selected as warners and also update their
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Figure 3: Schematic diagram of the optimization process of FC for SSA-PID.

positions. Finally, the system determines whether the
updated positions are optimal under current conditions. If
not, the position update process repeats until the optimal
solution is found [17]. The PID parameters optimized by
SSA are proportional coefficients, integral coefficients,
and differential coefficients, and the sample position
vectors correspond to the candidate solutions of the three
coefficients. During the iterative process, the fitness
function is defined as the root mean square value of the
trajectory tracking error. After each position update, the
sample vector is decoded into a combination of PID
parameters and input into the control system for
simulation and fitness calculation. The process is
represented in Equation (2).

X:J .exp(;I

o -iter,

t+l j, ifR, <ST
Xi,j = 2
X;; +Q-L,ifR, > ST

In Equation (2), xit,j represents the position of
sample i in space j, t is the iteration count, iter, is
the maximum iteration count, « is the number of
randomly selected samples in the range (0,1), Q is the set
of samples within this range, L isdefined as Matrix 1, R,

is the number of warning samples, and ST is the warning
threshold. The expression for follower samples is given in

Equation (3).
Xrtnorse - xltj ifi > E
o-iter, 2

Q~exp{

X\ = 3)

.. N
t+1 t+1 t+1 +
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In Equation (3), X!

norse TEPresents the worst route,
X' is the best route, A is a matrix of 1 and -1, i >g
represents the follower sample's position before updating,
and igg represents the real-time updated position. In

addition to these two sample types, warners are randomly
selected, as expressed in Equation (4).

xl;est +ﬁ‘xlt] _th)est Iffl > fg
X'Hjl - |Xiij - X\:vorst (4)
Xt kI iff, = f,
' (ft_ fW)

In Equation (4), § and k are parameters controlling
position updates, f, represents local sample fitness, and

fg represents the global optimal fitness. By optimizing

PID parameters using SSA, the optimal solution is quickly
identified and transmitted to the control system, allowing
real-time robot motion updates. SSA initialization
parameters include: maximum iterations (200), the
number of discoverers of 20 (accounting for 40% of the
total sample size), the number of followers of 30 (60%),
and the proportion of early warning agents of 0.1. The
position update coefficient is 0.8 and the safety threshold
is 0.6. The convergence condition is defined as the fitness
change of 10 consecutive iterations being less than 1x10-
5. Parameter sensitivity analysis indicates that the
convergence speed is the fastest when the proportion of
discoverers is between 30% and 50%. A safety threshold
of 0.6 can balance the capabilities of global exploration
and local development. When the position update
coefficient is set at 0.7-0.9, the fitness fluctuation is less
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than 3%. The search space for PID parameters optimized
by SSA is strictly constrained: the value range of the
proportionality coefficient is [0, 50] (step size accuracy
0.01), the value range of the integral coefficient is [0, 5]
(step size accuracy 0.001), and the value range of the
differential coefficient is [0, 1] (step size accuracy 0.001).
All parameter sampling during the iteration process is
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performed within this space. However, SSA-PID has
limitations in controlling nonlinear systems and handling
multi-threaded input-output systems. Since trajectory
planning involves not only determining start and end
positions but also real-time motion control, FC is
introduced to enhance SSA-PID and address its

Table 2: Fuzzy control rule table.

ec\e NB NM Z0 PM PB

NB PB PB PM PM Z0

NM PB PB PM Z0 Z0

Z0 PM PM Z0 NM NM

PM Z0 Z0 NM NB NB

PB Z0 NM NM NB NB
— — - Bit* sampling area — Bit*

Improved Bit* sampling area

—— Improved Bit*

Figure 4: Schematic diagram of improved BIT*.

shortcomings in handling nonlinear systems. The
optimization process is shown in Figure 3 [18].

In Figure 3, the motion signal first enters the fuzzy
controller, which adjusts parameters using fuzzy logic to
obtain the optimal solution. The adjusted signal is then
passed to the PID controller for further parameter tuning
before being output to the robot's control system. The
sensor feedback the signal to the fuzzy PID controller,
which compares the output signal with the original motion
signal and adapts the parameters for optimal output. The
PID parameters adjusted by the fuzzy controller are
applied to the PID controller in real time. In order to
describe the main response characteristics of the control
signal under the influence of dynamic parameter
adjustment, a simplified model with first-order delay was
adopted for illustration in the study. This model aims to
capture the main dynamic effects introduced by parameter
changes rather than precisely describe the nonlinear
process of fuzzy reasoning itself. The adjustment process
is shown in Equation (5).

k
() (Ts+1)e ®)

In Equation (5), k represents the ratio of parameter
variation, e is the parameter adjustment delay, and L
is the specific delay time. This model represents the

primary dynamic characteristics in the controller output
response observed under FC adjustment. FC solves the
nonlinear control limitation of SSA-PID through the
dynamic rule base. When the correlation between the
system error and the error change rate shows nonlinearity,
FC adjusts the PID parameter increment in real time based
on the rule base in Table 2 instead of relying on fixed
parameters. Multi-threaded 1/O processing adopts a serial
signal processing architecture. The input signal is
executed in three sequential steps: fuzzification, rule
reasoning, and defuzzification to avoid multi-threaded
conflicts. Specifically, the fuzzy controller employs error
(e) and error change rate (ec) as inputs, with the output
being PID parameter adjustments. The fuzzy sets for both
input/output variables are defined as: {Negative Big (NB),
Negative Medium (NM), Zero (ZO), Positive Medium
(PM), Positive Big (PB)}. Triangular membership
functions are adopted for fuzzification. The rule base is
designed as Table 2.

For defuzzification, the centroid method is applied.
This strategy computes the geometric center of the
aggregated output fuzzy set to derive a precise crisp value.
By weighting all activated rules proportionally to their
membership strengths, it achieves smooth and continuous
parameter adjustments while eliminating output
uncertainty. In the setting of the domain range of the
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input/output variables of the fuzzy controller, the domain
of the error is [-3,3], the domain of the error change rate is
[-1,1], and the domains of the PID parameter increments
are all [-0.5,0.5]. The system adopts triangular
membership functions, the vertex coordinates defined as
NB in {3.0, 2.5, 2.0}, NM in {2.5, 1.5, 0.5}, ZO in {1.0,

J. Zhang et al.

0.0, 1.0}, PMin {05, 1.5, 2.5}, PBin {2.0, 2.5, 3.0}. The
output variables adopt the same structure and scale
according to the domain ratio. Pre-adjusting parameters
using FC reduces PID adjustment time and frequency,
ensuring the robot responds to environmental changes in
the shortest time possible.

|

[ Start planning Improve BIT*
route l

Yes

No

Global optimal solution?

Yes

Figure 5: Schematic diagram of the optimization process of DWA for improved BIT*.

3.2 Construction of robot trajectory
planning model based on DWA-
BIT*and FC-SSA-PID*

Although FC-SSA-PID effectively adjusts parameters to
control robot actions, it does not provide trajectory
planning. Therefore, an additional algorithm is needed to
enhance robot task execution. BIT* solves global path
planning problems in large datasets while filtering out
irrelevant information. It also has strong disturbance
resistance and good dynamic adaptability [19]. In order to
improve the adaptability of the algorithm in sample
datasets of different scales and enhance the operational
efficiency, an improved BIT* algorithm was proposed in
the research. It combines the advantages of Rapidly-
exploring Random Trees (RRT) and Heuristic Search
(HS) [20]. The improvement process is shown in Figure 4.

As shown in Figure 4, traditional BIT* navigates
around obstacles but takes longer and results in a longer
overall path with larger turning angles. The core of
improving BIT* lies in introducing an adaptive sampling
strategy guided by path nodes. Traditional BIT* is prone
to generating invalid nodes in uniform random sampling,
resulting in path redundancy and low efficiency. After
improvement, the algorithm first dynamically demarcates
an efficient sampling bounding box based on the current
environmental information and historical path nodes. The
calculation process is shown in Equation (6).

sample _ radius() == \/(XR %, ~2¢) :;(yR “%=29) (6)

In Equation (6), X;, X, Yz, and y, represent the
horizontal and vertical coordinates of the boundaries in a
two-dimensional space, ¢ is the boundary value, and m
represents the number of equidistant down-sampling
points. After the defined bounding box constrains the
sampling range, the generation of sampling points is no

longer uniform and random. The generation of new
sample points follows a probability distribution model
centered on the mean values of these path nodes and with
a specific exploration range, as shown in Equation (7).

1 [ (X-0) = (X-u)]

T© 7
(x) 2[3 %

H(X)=1-

In Equation (7), H(X) represents the generated

sample, d represents the dimension, and u represents
the mean vector of the coordinates of the historically valid
path nodes. The core of the exponential part of Equation
(7) is the negative exponential term of the probability
density function of the multivariate Gaussian distribution.
It calculates the "Markov distance™ of the mean distance
between points, which takes into account the correlation
between variables. Before the improvement, the samples
were uniformly distributed throughout the configuration
space to randomly generate sample points. This sampling
method leads the search to fall into local optima or waste
of computing resources. The improved new sample points
are generated by taking the center of the historically
effective path as the reference point and controlling their
distribution range and direction based on the path
characteristics and environmental information. This
makes the sampling points highly biased towards better
path areas that has been explored and its natural extension
direction. This guidance mechanism improves search
efficiency and path quality. To further enhance the local
optimal path planning capability of the improved BIT*,
DWA is introduced. By sampling the robot’s current
position, velocity, and state, DWA calculates motion
trajectories over a time interval and selects the optimal
solution. The DWA-optimized BIT* process is shown in
Figure 5.

As shown in Figure 5, when the improved BIT*
algorithm detects obstacles in the global path at the turning
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points, the DWA is activated for local re-planning. The
BIT*takes the current position of the path node, the linear
velocity and angular velocity of the robot as the input
states of the DWA. DWA samples a set of feasible
trajectories in the state space based on the dynamic
constraints of the robot. Subsequently forming a new
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global path. The DWA evaluation function is given in
Equation (8).
G(v, w) = aHead (v, w) + AVel (v, @) + yDist(v, @) (8)
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Figure 6: Trajectory planning flow chart based on FC-SSA-PID and DWA-BIT*.

In Equation (8), Head(v,w) represents the azimuth
function, Dist(v,w) is the distance evaluation function,
and Vel(v,w) represents the velocity function. These
three functions together determine how the robot moves
toward the target at maximum speed and along the optimal
path. The optimal trajectory function is expressed in
Equation (9).

Point(v,w) = Min[()g —x)+ (Y, — yg)z} (9)

In Equation (9), Point(v,w) represents the trajectory
turning point function, and X, and y, represent the start

points of the route. When encountering unknown
obstacles, DWA classifies them as static or dynamic and
calculates the optimal avoidance paths separately. The
static obstacle avoidance path is expressed in Equation
(10).
D, = Min[ (x =%,)* + (¥, = ¥,)° |
. i D, >1.2R
Dist _S(v,w) =+ D
0,D, <1.2R
In Equation (10), R is the robot's movement radius,
D, represents the shortest path between the robot and a
static obstacle at time t, and Dist_ S(v, ) is the static

obstacle distance evaluation function. The expression for
dynamic obstacles is similar to Equation (10) and is given
in Equation (11).

(10)

. i D, >1.2R
Dist_ D(v,w) =14 D 1
0,D, <1.2R (11)

S =Vt=*At

In Equation (11), Dist D(v,w) is the dynamic
obstacle distance evaluation function, Vt is the robot’s
instantaneous speed at time t, At represents the time
difference, and S is the robot's movement route.
Combining Equations (8)-(11) enables the robot to
navigate unknown obstacles at maximum speed along the
optimal path. The expression is shown in Equation (12).

G(v,w) = aHead (v, w) + bVel (v, w) + gDist _S(v,w)

+sDist _ D(v,w) + jPoint(v,w) 12)

In Equation (12), Head(v,w) represents the azimuth
function, Vel(v,w) represents the velocity function,
Dist(v,®) is the distance evaluation function, and
Point(v, w) is the trajectory turning point function. Initial

weight values are configured based on the general
configuration of the dynamic window method in the local
obstacle avoidance scenario. In the static test environment,
a grid search is conducted on the weight combinations.
Taking the path safety rate and the global optimal path
length as the joint optimization objectives, the weight
values are iteratively adjusted. In the dynamic obstacle
scenario, verify the robustness of the weight combination
and determine the final optimal balanced combination.
The model implements algorithmic collaboration via
hierarchical architecture. Among them, the underlying
motion control layer adopts FC-SSA-PID to optimize the
controller parameters and adjust the robot's pose and speed
in real time. The upper path planning layer uses DWA-
BIT*to generate the global optimal path and dynamically
optimize the local obstacle avoidance trajectory. The pose
feedback signal of the robot is used as the real-time input
of the DWA-BIT*to form a closed-loop optimization. The
robot trajectory planning model based on FC-SSA-PID
and DWA-BIT* constructed by the research is shown in
Figure 6.
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As shown in Figure 6, the model first inputs the
original signal into FC for parameter adjustment, then
sends the optimized signal to the PID controller, where the
three algorithm parameters are fine-tuned. Once the
optimal parameters are determined, the signal is passed to
DWA-BIT*. If no obstacles are detected, the model
outputs the trajectory to the robot’s control system. If
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unknown obstacles are detected, the model recalculates
the local route to determine the best avoidance strategy.
Finally, the global and local paths are integrated to form a
new optimal trajectory, which is then output as the final
solution. This model achieves optimal balance between
global and local path planning while processing nonlinear
control systems.

Table 3: Experimental environment parameter settings.

Configuration item Detailed information

CPU Inter core i7-12700

GPU NVIDIA RTX 4060 8GB

RAM 64GB DDR5, 6400MHz

Storage 1TB NVMe SSD, 2TB SATA SSD
Operating system Windows 11 Professional
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Figure 7: Comparison of response time and memory consumption.

4 Performance of robot trajectory
planning model based on FC-SSA-
PID and DWA-BIT*

4.1 Performance evaluation of DWA-BIT*

To validate the performance of DWA-BIT*, this study
compared it with the RRT* algorithm, Ant Colony
Optimization (ACO), and GA. All tests were conducted
under standardized initial conditions. In a 50m=x50m two-
dimensional grid map, the density of known obstacles (the
black area) was 20%-30% (randomly distributed), the
number of unknown static obstacles (marked in yellow)
was 3-5 (randomly located), and the number of unknown
dynamic obstacles (the purple area) was 2 (moving speed
0.1-0.3m/s). The initial pose of the robot is fixed at Om on
the horizontal and vertical axes, 0°, and the pose of the
target point is 45m on the horizontal and vertical axes, 90
°. The motion constraints of the robot are a maximum

linear velocity of 0.5m/s and a maximum angular velocity
of 1.0rad/s. The trajectory sampling time interval in DWA
is 0.1s, the velocity resolution is 0.05m/s, and the angular
velocity resolution is 0.1rad/s. The adaptive sampling
boundary expansion coefficient of the improved BIT* is

1.2, and the heuristic weight is 0.8. The RRT* step size of
the comparison algorithm is 1.5m, the target bias
probability is 0.1, and the maximum iteration is 5000. The
ACO pheromone weight is 1.0, the heuristic weight is 2.0,
the evaporation rate is 0.3, and the number of ants is 50.
The population size of GA is 100, the crossover rate is
0.85, the variation rate is 0.01, and the tournament
selection size is 5. All experiments were based on 30
independent simulation runs, and the results were reported
in the form of mean +95% confidence intervals. Statistical
significance was verified by two-sided t-tests to support
the conclusion of performance superiority. The relevant
experimental environment parameters are shown in Table
3.

First, a comparison was made between the four
algorithms regarding memory consumption and response
time while computing the globally optimal path. The
results are shown in Figure 7.

As shown in Figure 7, the memory usage of DWA-
BIT* increased at a relatively slow rate over time, with a
peak value of only 227MB, significantly lower than the
392MB of RTT*, 435MB of ACO, and 376MB of GA.
Additionally, the response speed of DWA-BIT* stabilized
after 12 hours of runtime, with a maximum value of 75ms,
which was considerably lower than that of the comparison
algorithms. Statistical analysis confirmed significance
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(p<0.05). Comparative analysis evaluated path planning
efficiency and safety across algorithms. The results are
shown in Figure 8.

As shown in Figure 8(a), the route planning efficiency
of the three comparison algorithms fluctuated
significantly, exhibiting irregular increases and decreases.
In contrast, the route planning efficiency of DWA-BIT*

100 r — DWA-BIT*

i AOC
= RRT*

o

Efficiency (%)
sy D (0]
o o

0 3 6 9 12 15 18
Time ()

(a) Comparison of path planning efficiency
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gradually improved after 2s of operation, following an
approximately linear trend. After 10s, a slight decline in
efficiency was observed, but after 3s, it continued to
increase until reaching a maximum of 96.2%, which was
much higher than that of the comparison algorithms.
Figure 8(b) shows that the route safety of DWA-BIT*

100 -
g 80
2 60 |
< — DWA-BIT*
2 40 — AOC
= RRT*
n 20 — GA
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Time (s)
(b) Comparison of path planning safety

Figure 8: Comparison of path planning efficiency and safety.
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Figure 9: Comparison of trajectory planning success rates.

gradually stabilized after 9s and reached its peak value of
98.1% at 15s. This exceeded RTT* (91.6%), ACO
(89.4%), and GA (68.2%) by substantial margins.
Additionally, the safety curves of the comparison
algorithms were highly fluctuating and did not stabilize,
exhibiting continuous variations. All the data and
comparisons were statistically significant (p<0.05). Route
planning success rates were compared across algorithms,
as shown in Figure 9.

As shown in Figure 9, the success rate of DWA-BIT*
increased rapidly to 93.7% when the number of iterations
reached 120 and stabilized at its maximum value of 95.5%
at 250 iterations. This was notably higher than RTT* at
87.9%, ACO at 92.2%, and GA at 76.3%. Compared to the
three other algorithms, the success rate of DWA-BIT*
exhibited a more stable and smoother overall trend. In the
range of 0100 iterations, its increase was relatively large

with minimal fluctuations, and it gradually stabilized
thereafter. All the data and comparisons were statistically
significant (p<0.05). DWA-BIT* achieved superior route
planning performance. Its shorter optimal path ensured
that the robot could reach the destination in the shortest
time to complete its tasks, while its computation time was
significantly lower than that of the comparison algorithms,
leading to substantial time savings.

4.2 Practical application of robot path
planning model

After validating the performance of DWA-BIT*, an on-
site experiment was conducted to verify the feasibility of
the constructed robot trajectory planning model. The study
selected an intelligent logistics robot to optimize its
logistics route and introduced various obstacles at the
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starting point, including both static and dynamic obstacles.
The experimental robot adopts a four-wheel differential
drive chassis. In the specific parameters, the mechanical
parameters are dimensions of 0.8mx0.6mx0.5m, self-
weight of 35kg, and maximum load capacity of 100kg.
The motion constraints are linear velocity range [0,
0.5]m/s and angular velocity range [0, 1.0]rad/s; RGB-D

a» Unknown dynamic obstacle
Unknown static obstacle
@ Unknown obstacles i

Fault height (m)
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camera depth accuracy +2mm@2m field of view 85°x58°;
The control unit is an embedded industrial control
computer. The experimental site is a rectangular area of
12mx8m, with 0.2mx0.2m grid markings laid on the
ground. It is known that the obstacles are 0.5mx0.5m
aluminum alloy cubes (a total
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Figure 10: Comparison of motion smoothness of path planning.
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Figure 11: Comparison of optimal path length and required computation time.

of 5), and the unknown static obstacles are randomly
placed cartons. The model was compared with the RRT*,
ACO, and GA models in terms of the motion smoothness
of the robot in a complex dynamic two-dimensional
environment. The results are shown in Figure 10.

As seen in Figure 10, when navigating known
obstacles, the shortest local optimal path length provided
by the proposed model was 12.6m, significantly shorter
than those of the comparison algorithms. When unknown
static obstacles were present, the model directly bypassed
them with a total travel distance of only 9.7m. In contrast,
when encountering unknown dynamic obstacles, all three
comparison models chose to take longer detours to avoid
them, whereas the proposed model either passed below or

alongside the obstacles, achieving a total route length of
only 31.6m. This was significantly shorter than RTT* at
43.8m, ACO at 51.9m, and GA at 56.2m. To quantify
model advantages, a comparison was made between the
four models regarding the optimal path length and the
required computation time. The results are shown in
Figure 11.

As shown in Figure 11(a), the best path lengths
obtained at 20, 40, 60, 80, and 100 iterations for each
algorithm. As the number of iterations increased, the
optimal path length of the proposed model exhibited
minimal variation. It gradually stabilized after 60
iterations, with an average optimal length of 11.4m,
significantly shorter than ACO at 18.7m, RTT* at 16.3m,
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and GA at 20.3m. Furthermore, Figure 11(b) shows that
as the number of iterations increased, the time required for
ACO and RTT* to find the optimal path fluctuated
considerably, making them far less stable than the
proposed model. The proposed model required a
maximum of only 35.7s, which was significantly lower
than that of the comparison models. Finally, the study
compared the trajectory planning accuracy and error of the
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proposed model against the comparison models. The
results are shown in Figure 12.

In Figure 12, trajectory tracking accuracy means
percentage of trajectory duration where positional
deviation from planned path < 0.02m. Instantaneous
positional error means euclidean distance between actual
and planned position at each sampling time, normalized

—— Research model

Time (s)
(b) Comparison results of accuracy error of each
model

Figure 12: Comparison of trajectory planning accuracy and error.

Table 4: Ablation experiments with a single cost function removed.

Ablated Component Success Rate (%) | Avg. Path Length (m) Max Position Error (%)
Full Model 95.5 21.2 0.0089
Remove Azimuth 93.1 24.3 (+14.7%) 0.0121
Remove Velocity 88.4 23.6 (+11.3%) 0.0257
Remove Distance 74.2 22.8 (+7.5%) 0.0314
Remove Turning Point 92.7 22.1 (+4.2%) 0.0195

Table 5: Performance comparison in challenging scenarios.

Avg. Path Length (m)

Max Pos. Error (%)

Avg. Avoidance Time (s)

0.0055 + 0.0007

\

18.7 + 1.2 (T 41.7%)

0.0190 + 0.0021 (*)

\

22.1+ 15 (1 67.4%)

0.0225 + 0.0028 (*)

\

20.9 1.8 (1 58.3%)

0.0261 + 0.0035 (¥)

\

0.0095 + 0.0012

0.98 +0.11

453 + 3.3 (] 30.2%)

0.0218 + 0.0025 (*)

152 £ 0.18 ()

53.6 + 4.1 (1 54.0%)

0.0292 + 0.0033 (*)

1.87 £ 0.23 ()

Scenario Algorithm Success Rate (%)
DWA-BIT* 100 13.2+0.8
RRT* 100
Narrow Passage ACO 100
GA 95.0 +3.5(*)
DWA-BIT* 88.5+28 348 +25
* 721 +4.1(*
High-Speed Dyn iig 657245 E*;
GA 58.3+4.8(*)

57.9 + 5.2 (1 66.4%)

0.0360 + 0.0041 (¥)

214+ 027 (*)

Note: (*) represents a statistically significant difference from DWA-BIT* (p<0.01).

by total path length (%). As seen in Figure 12(a), the GA
model did not accurately identify the optimal path until
after 14s of operation. In contrast, the proposed model
accurately identified the optimal path from the beginning,
with its trajectory tracking accuracy increasing rapidly and
reaching its peak value of 99.4% within 10s, where it
remained stable. This metric represents the percentage of
time the robot's actual position deviated by less than a
predefined threshold (0.02m) from the planned path,
calculated over the entire trajectory duration. This peak
tracking accuracy was significantly higher than ACO at
95.2%, RTT* at 94.1%, and GA at 89.6%. Figure 12(b)
shows that the proposed model exhibited the smallest and
smoothest positional error curve, with only minor
fluctuations between 8 and 33s. The maximum

instantaneous positional error occurred at 29s, reaching
0.0089% of the total path length, while the minimum
instantaneous positional error was recorded at 49s at
0.0011% of the total path length, both of which were
significantly lower than those of the comparison models.
Positional error is defined as the Euclidean distance
between the robot's actual position and the planned
position at each sampling instant, normalized by the total
path length and expressed as a percentage. To verify the
necessity of multi-objective fusion, an ablation
experiment was conducted to remove a single cost
function, as shown in Table 4.

As can be seen from Table 4, removing the orientation
function leads to a 14.7% increase in the path length;
When the distance function is removed, the failure rate of
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dynamic obstacle avoidance rises to 21.3%. It indicates
that the synergy of each cost function makes a contribution
to the performance improvement. To evaluate the
robustness of the model under extreme conditions,
supplementary edge cases and high-dynamic environment
verification were studied. The performance comparison in
challenging scenarios is shown in Table 5.

As can be seen from Table 5, in the Narrow Passage,
DWA-BIT* achieved 100% success, shortest path (13.2m
+ 0.8m) and minimal error (0.0055% = 0.0007%).
Competitors had significantly longer paths (p<0.01) and
higher errors (p<0.01) with GA showing lower success
(95.0% £ 3.5%, p<0.01). At High-Speed Obstacles,
DWA-BIT* maintained the highest success (88.5% =
2.8%) and the lowest error (0.0095% + 0.0012%). and
fastest avoidance (0.98s + 0.11s). All competitors showed
significant degradation (p<0.01) across all metrics. The
success rate of 95.5% and the accuracy of 99.4% in the
experiment were achieved in the custom PathEnv
simulation. These results show advantages compared with
benchmark values from Gazebo simulation reports on
public datasets (success rate: 92-94%, accuracy: 97-98%).
Furthermore, by repeating key experiments in the ROS
environment (using the TurtleBot3 platform), comparable
success rates (94.8%) and accuracy (99.1%) were
achieved, verifying the repeatability and generalization of
the method on commonly used simulation platforms. In
order to further confirm the superiority of the research
method, the advanced At least three pixels, Uncertainty
Quantification and Propagation in recent years are
introduced for comparison [21-22]. The results show that
the success rate of the research method reaches 95.5%+
0.8%, which is significantly higher than 82.3%+2.1% of
At Least Three Pixels and 88.7%+1.6% of Uncertainty
Quantification and Propagation. The path length planned
by the research method is 21.2m+0.5m, which is 26.1%
shorter than At Least Three Pixels and 16.5% shorter than
Uncertainty  Quantification and Propagation. The
calculation time of the research method was 35.7s+1.1s,
which was 42.8% faster than At Least Three Pixels and
54.8% faster than Uncertainty Quantification and
Propagation. All comparisons achieved statistical
significance (p<0.01). It further proves that the research
method has good operational performance.

5 Discussion

Compared with the existing advanced methods, the
proposed DWA-BIT* model showed advantages in terms
of security and dynamic adaptability. Compared with the
hierarchical decoupling collision avoidance algorithm
proposed by Wang S et al. [15] (with a safety rate of 90%),
DWA-BIT* achieved a safety rate of 98.1% in a dynamic
environment. This 8.1% performance gain results from
real-time trajectory correction achieved by the dual-mode
obstacle classification mechanism of DWA, with the
response time controlled within 75ms, which is much
lower than 210ms in [15]. In terms of path efficiency
optimization, Singh G et al. 's hybrid algorithm [13]
reported a path efficiency of 87.5%, while DWA-BIT*
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reached 96.2%. The difference mainly stems from the
heuristic weights of BIT* ensuring global optimality, and
at the same time, the velocity function of DWA maximizes
the local motion speed. Moreover, the model's memory
consumption (227MB) was 41.9% lower than that of the
[13] method (391MB). Regarding the trade-off of real-
time performance, although Du Y et al. 's chaotic particle
swarm optimization algorithm [11] achieved a time
optimization efficiency of 89.7%, it sacrificed dynamic
adaptability. This model reduced the parameter
adjustment frequency by 35% through adaptive
adjustment of fuzzy PID parameters, reducing the average
number of iterations from 320 times in [11] to 205 times,
effectively balancing the performance contradiction. It is
worth noting that, compared with RRT, the 20% safety
gain (98.1% vs 78.1%) of DWA-BIT*is mainly attributed
to the trajectory scoring system of the dynamic window.
However, the current methods still have limitations in
computational scale and are difficult to meet the real-time
requirements of large-scale scenarios (such as warehouses
with an area of more than 500m?). In the future, the
covariance matrix of Equation 7 needs to be optimized to
adapt to high-dimensional Spaces. Furthermore, in the
high-speed dynamic obstacle scenario (0.8m/s), the
success rate of 88.5% indicates that the motion constraint
modeling still needs to be strengthened, which will be the
focus of subsequent research.

6 Conclusion

To address the problems of low accuracy, long
computation time, and large errors in current robot
trajectory planning methods, this study proposed a robot
trajectory planning model based on FC-SSA-PID and
DWA-BIT*. The model optimized PID using FC and
SSA, introduced DWA to improve BIT*, and combined
the advantages of the two optimized algorithms to achieve
optimal trajectory planning. This approach effectively
solved the issues of robots failing to avoid obstacles and
taking unnecessarily long routes to reach target areas. This
study conducted simulation experiments on DWA-BIT*
to evaluate its performance. The evaluation metrics
included response time and memory usage during long-
term operation, as well as path planning efficiency and
success rate. Additionally, the proposed model was tested
in real-world scenarios, focusing on path smoothness, the
accuracy of the optimal path, and error rate. Results
demonstrated DWA-BIT* superiority over all comparison
algorithms in simulations, and the proposed model
demonstrated significantly better performance than the
comparison models in real-world tests. In the simulation
experiments, DWA-BIT* maintained a low memory usage
of 227MB during long-term operation, with a maximum
response time of only 75ms. The success rate of optimal
path planning reached 95.5%, while the optimal path
efficiency was as high as 96.2%, and the route safety rate
was 98.1%. In real-world tests, the proposed model
achieved a planning accuracy of 95.2%, with a minimum
accuracy error of only 0.0011%. When encountering
obstacles, the shortest locally optimal route was 12.6m,
and the average best path length was reduced to 21.2m.
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The proposed model demonstrates robust path planning
capabilities, meeting operational requirements of service
robots and enabling them to complete assigned tasks
efficiently. Despite superior real-world performance, the
experiments did not classify robot types. Therefore, future
research should focus on optimizing the model for
different types of robots.
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