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Planning the movement path of a robot is crucial to ensure it reaches the target area smoothly. Existing 

methods tend to fall into local optima, have low accuracy in route calculation, and fail to effectively avoid 

obstacles. To address these issues, this study introduces the Sparrow Search Algorithm and Fuzzy Control, 

as well as the Dynamic Window Approach, to optimize Proportional-Integral-Derivative control and 

Batch Informed Trees, respectively. Based on these two optimization algorithms, a robot trajectory 

planning model is proposed, and its feasibility and reliability are demonstrated through comparative 

experiments. In standardized 50m×50m grid environments with 20%-30% obstacle density and dynamic 

obstacles, 30 independent simulation runs were conducted. Comparative analysis with RRT*, Ant Colony 

Optimization (ACO), and Genetic Algorithm (GA) demonstrates that the proposed model achieves a 

success rate of 95.5%, a high accuracy rate of 99.4%, and a low accuracy error rate of 0.0011%. The 

locally optimal route length planned by the model is 12.6m, while the global average optimal route length 

is reduced to 21.2m, significantly outperforming the comparison models. These findings demonstrate that 

the proposed model has strong trajectory planning capabilities, minimal error, and shorter routes, 

enabling the robot to respond correctly to external environments in a timely manner and complete tasks 

effectively even in complex dynamic conditions. 

Povzetek: Predstavljen je hibridni model načrtovanja poti robotov, ki združuje FC-SSA-PID za 

prilagodljivo krmiljenje in DWA-izboljšani BIT* za globalno ter lokalno načrtovanje. Sistem učinkovito 

premaguje lokalne optime, zmanjšuje napake, hitro se izogiba oviram. 

 

1 Introduction 
Since the 21st century, robots have gradually entered 

public life, and their technology has developed rapidly. 

However, their performance remains less autonomous and 

adaptive compared to human capabilities [1]. The demand 

for efficient, safe, and precise robotic movement paths 

necessitates advanced trajectory planning technology. It 

serves as the core system for controlling robot motion and 

is a crucial foundation for enabling robots to complete 

various tasks. Therefore, optimizing trajectory planning 

has been a key research focus [2]. Currently, methods such 

as Genetic Algorithm (GA), Recurrent Neural Network 

(RNN), and Graph Search Algorithm (GSA) have been 

applied to trajectory planning [3]. However, these 

methods suffer from problems such as falling into local 

optima, poor real-time performance, and weak 

adaptability to dynamic environments. Therefore, 

trajectory planning methods requiring enhanced accuracy 

and stability are essential. Proportional-Integral-

Derivative (PID) control adjusts signal parameters 

through proportional, integral, and derivative control 

algorithms to achieve precise system output control. It is a  

 

mature and stable technique with strong adaptability. 

Meanwhile, Batch Informed Trees (BIT*) combines the  

advantages of sampling-based and search-based planning 

algorithms, allowing it to filter out unimportant 

information and find optimal routes in complex 

environments [4-5]. However, traditional PID parameter 

tuning is time-consuming and lacks precision, while BIT* 

faces challenges such as computational complexity and 

low solution quality in high-dimensional problems. To 

address these limitations, this study introduces the 

Sparrow Search Algorithm (SSA) and Fuzzy Control 

(FC), as well as the Dynamic Window Approach (DWA), 

to optimize PID and BIT*, respectively. Based on these 

optimizations, a new robot trajectory planning model is 

proposed. This model is expected to improve robot 

flexibility and enable intelligent task execution. We aim to 

investigate whether combining FC-SSA-PID and DWA-

BIT*improves trajectory planning performance in 

dynamic environments compared to other similar 

technologies. 
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2 Related work 
PID control has been widely applied in various fields 

requiring precise control systems, including robotics, 

aircraft, and 3D printing. Therefore, many researchers 

have conducted in-depth studies on PID control. For 

example, to address the unpredictable environmental 

challenges faced by unmanned surface vehicles, Meng J et 

al. proposed a Gaussian process motion trajectory 

planning method based on PID. This method introduced 

an interpolation strategy to increase path selection  

Table 1: Summary and comparison table of related work. 

Ref. Method Used Application Domain 
Accuracy 

(%) 

Path efficiency 

(%) 

Runtime 

complexity 

[6] 
Gaussian Process + PID + 
Interpolation 

Unmanned Surface Vehicles 85 82 High 

[7] Fractional-order PID Control Wind Power Simulation System 90.5 87 Medium 

[8] 
Improved BIT* + Spatial 
Transform/Mask 

Concrete Color Difference 
Detection 

92.1 85 Medium-High 

[9] Self-deforming BIT* Variant High-arrival-rate Data Streams 95.8 86 Low-Medium 

[10] 
Improved BIT* + Linear 

Interpolation 
Spinal Puncture 3D Reconstruction 94.3 88 Medium 

[11] 
Local Chaotic Particle Swarm 

Optimization 
Robotic Arm Trajectory 89.7 85 High 

[12] Dynamic Trajectory Discovery Multi-Cable-Driven Robots 91.2 78 High 

[13] Hybrid Optimization Algorithm Industrial Robot Manipulators 87.5 80 Very High 

[14] Model Predictive Control 
Robot Motion in Dynamic 

Environments 
88 75 High 

[15] Model-Free Hierarchical Decoupling Collision Avoidance 90 70 Medium-High 

 

diversity, with experimental results demonstrating 

effective mitigation of unknown environmental impacts 

[6]. Gasmi H et al. developed a dual-feedback wind power 

simulation system based on PID to solve the significant 

vibration issues in wind power operations. This system 

utilized fractional-order proportional-integral control to 

regulate grid power and ensure maximum power 

operation. The results demonstrated that it reduced grid 

oscillations while maintaining robust performance [7]. At 

the same time, BIT* has also been widely applied, 

particularly in scenarios requiring large-scale data 

processing. For instance, to address the instability of using 

ordinary drones for concrete sampling in construction, 

Yao G et al. proposed a concrete color difference detection 

model based on an improved BIT*. This model used 

spatial transformation and mask quantization 

segmentation operations to achieve block-based color 

difference encoding, and experimental results showed a 

detection accuracy of 92.10% [8]. Wang H et al. 

introduced a self-deforming bitmap algorithm based on 

BIT* to address the issue of existing solutions being 

unable to perform online operations on high-arrival-rate 

data streams. This algorithm automatically adapted the 

sampling probability for data streams of different sizes 

and allowed bitmap deformation. Experiments proved that 

it could efficiently and accurately process high-arrival-

rate data streams [9]. In the field of spinal puncture 

surgery, Zhang W et al. proposed an improved BIT*-

based three-dimensional reconstruction system to solve 

the time-consuming and complex process of determining 

puncture points and paths. By using a linear interpolation 

algorithm for 3D reconstruction, the system enabled 

automatic image scanning and acquisition to quickly 

locate the optimal puncture point and path [10]. 

Trajectory planning technology has reached a 

relatively mature stage in both theoretical research and 

practical applications, and scholars worldwide have 

applied various optimization methods in real-world 

scenarios. For example, to optimize the movement time 

and trajectory of robotic arms, Du Y et al. proposed a local 

chaotic particle swarm optimization algorithm based on 

interpolation functions. This algorithm conducted 

simulation experiments in joint space, and simulation 

results demonstrated that it effectively reduced the 

oscillation amplitude and movement time of the robotic 

arm, ensuring operational stability [11]. To address the 

issue of redundant trajectories in multi-cable-driven 

robots reaching targets without entanglement, Cao M et al. 

proposed a dynamic trajectory discovery method that 

evaluates the safety and feasibility of potential paths while 

reducing inter-robot entanglement. The results 

demonstrated that this method effectively generated 

tangle-free dynamic trajectories [12]. To improve robot 

task execution efficiency, Singh G et al. introduced a robot 

kinematics analysis and trajectory planning method based 

on a hybrid optimization algorithm. By performing 

forward and inverse calculations on 18 different 

algorithms, the optimal solution was obtained, and 

experiments confirmed that this method significantly 

enhanced robot performance and found the best path [13]. 

Wang C et al. proposed a model predictive control method 

to address the instability of robot motion in dynamic 

environments. This method automatically tracked robot 

movement paths and adaptively computed optimal routes. 

The results showed that it effectively reduced 

environmental uncertainty while maintaining the ability to 

replan global routes [14]. To solve the problem of robots 

avoiding collisions while executing tasks, Wang S et al. 

proposed a model-free hierarchical decoupling 

optimization algorithm. This algorithm decomposed tasks 

into two sub-tasks to reduce task complexity, and 

experiments demonstrated that it improved robot 
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adaptability to the environment, effectively preventing 

collisions [15]. The summary and comparison Table of 

relevant work is shown in Table 1. 

In summary, although research on trajectory planning 

has achieved significant progress, existing methods still 

have limitations. Under specific conditions, they may 

suffer from low computational efficiency, suboptimal 

route planning, and slow obstacle response. PID control 

can reduce system deviation, eliminate steady-state errors, 

and suppress oscillations, while BIT* ensures efficiency 

and stability in processing dynamic datasets. Therefore, 

this study combines PID and BIT* to  
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Figure 1: Schematic diagram of PID control principle. 
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Figure 2: Schematic diagram of the optimization process of SSA for PID control. 

develop a PID-BIT* hybrid algorithm, aiming to ensure 

that robots can complete tasks accurately and efficiently 

under complex environmental conditions. 

3 Optimization of robot motion 

trajectory based on FC-SSA-PID 

and DWA-BIT* 

3.1 Architecture optimization of PID 

control 

PID control consists of three components: proportional, 

integral, and derivative units. The proportional unit 

increases system response speed, the integral unit reduces 

system errors, and the derivative unit enhances 

disturbance resistance. By adjusting system parameters 

through these three algorithms, precise robot control is 

achieved [16]. The output diagram of the PID control 

system is shown in Figure 1. 

As shown in Figure 1, when a signal enters the PID 

controller, it is processed by the three units. The 

proportional unit calculates the error value and outputs the 

proportional coefficient as a signal. The integral module 

accumulates the error, multiplies it by the integral 

coefficient, and outputs the result as a new signal. The 

derivative module evaluates the rate of error change, 

multiplies it by the derivative coefficient, and outputs the 

derivative as a signal component. The calculation process 

is shown in Equation (1). 

0

( )
( ) ( ) ( )

t

P i d

de t
u t K e t K e d K

dt
 = + +  (1) 

In Equation (1), 
PK  represents the proportional 

coefficient, 
iK  is the integral coefficient, and 

dK  is the 

derivative coefficient. Since traditional PID control cannot 

fully ensure smooth and stable robot movement, the study 
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introduces SSA to optimize PID and adjust the PID 

parameters to obtain a more comprehensive control 

parameter combination. The optimization process is 

shown in Figure 2. 

As shown in Figure 2, SSA is first initialized with 

parameters, including the maximum number of iterations 

and the numbers of discoverers, followers, and warners. 

Sample fitness values are subsequently evaluated, sorted, 

and classified into discoverers and followers, with 

followers updating their positions. Some samples are 

randomly selected as warners and also update their  
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Figure 3: Schematic diagram of the optimization process of FC for SSA-PID. 

positions. Finally, the system determines whether the 

updated positions are optimal under current conditions. If 

not, the position update process repeats until the optimal 

solution is found [17]. The PID parameters optimized by 

SSA are proportional coefficients, integral coefficients, 

and differential coefficients, and the sample position 

vectors correspond to the candidate solutions of the three 

coefficients. During the iterative process, the fitness 

function is defined as the root mean square value of the 

trajectory tracking error. After each position update, the 

sample vector is decoded into a combination of PID 

parameters and input into the control system for 

simulation and fitness calculation. The process is 

represented in Equation (2). 
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In Equation (2), ,

t

i jX  represents the position of 

sample i  in space j , t  is the iteration count, 
maxiter  is 

the maximum iteration count,   is the number of 

randomly selected samples in the range (0,1), Q  is the set 

of samples within this range, L  is defined as Matrix 1, 
2R  

is the number of warning samples, and ST  is the warning 

threshold. The expression for follower samples is given in 

Equation (3). 
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In Equation (3), 
t

morseX  represents the worst route, 

1

,

t

i jX +
 is the best route, A  is a matrix of 1 and -1, 

2

n
i   

represents the follower sample's position before updating, 

and 
2

n
i   represents the real-time updated position. In 

addition to these two sample types, warners are randomly 

selected, as expressed in Equation (4). 
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In Equation (4),   and k  are parameters controlling 

position updates, 
if  represents local sample fitness, and 

gf  represents the global optimal fitness. By optimizing 

PID parameters using SSA, the optimal solution is quickly 

identified and transmitted to the control system, allowing 

real-time robot motion updates. SSA initialization 

parameters include: maximum iterations (200), the 

number of discoverers of 20 (accounting for 40% of the 

total sample size), the number of followers of 30 (60%), 

and the proportion of early warning agents of 0.1. The 

position update coefficient is 0.8 and the safety threshold 

is 0.6. The convergence condition is defined as the fitness 

change of 10 consecutive iterations being less than 1×10-

5. Parameter sensitivity analysis indicates that the 

convergence speed is the fastest when the proportion of 

discoverers is between 30% and 50%. A safety threshold 

of 0.6 can balance the capabilities of global exploration 

and local development. When the position update 

coefficient is set at 0.7-0.9, the fitness fluctuation is less 
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than 3%. The search space for PID parameters optimized 

by SSA is strictly constrained: the value range of the 

proportionality coefficient is [0, 50] (step size accuracy 

0.01), the value range of the integral coefficient is [0, 5] 

(step size accuracy 0.001), and the value range of the 

differential coefficient is [0, 1] (step size accuracy 0.001). 

All parameter sampling during the iteration process is 

performed within this space. However, SSA-PID has 

limitations in controlling nonlinear systems and handling 

multi-threaded input-output systems. Since trajectory 

planning involves not only determining start and end 

positions but also real-time motion control, FC is 

introduced to enhance SSA-PID and address its  

Table 2: Fuzzy control rule table. 

ec \ e NB NM ZO PM PB 

NB PB PB PM PM ZO 

NM PB PB PM ZO ZO 

ZO PM PM ZO NM NM 

PM ZO ZO NM NB NB 

PB ZO NM NM NB NB 
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Figure 4: Schematic diagram of improved BIT*. 

shortcomings in handling nonlinear systems. The 

optimization process is shown in Figure 3 [18]. 

In Figure 3, the motion signal first enters the fuzzy 

controller, which adjusts parameters using fuzzy logic to 

obtain the optimal solution. The adjusted signal is then 

passed to the PID controller for further parameter tuning 

before being output to the robot's control system. The 

sensor feedback the signal to the fuzzy PID controller, 

which compares the output signal with the original motion 

signal and adapts the parameters for optimal output. The 

PID parameters adjusted by the fuzzy controller are 

applied to the PID controller in real time. In order to 

describe the main response characteristics of the control 

signal under the influence of dynamic parameter 

adjustment, a simplified model with first-order delay was 

adopted for illustration in the study. This model aims to 

capture the main dynamic effects introduced by parameter 

changes rather than precisely describe the nonlinear 

process of fuzzy reasoning itself. The adjustment process 

is shown in Equation (5). 

( )
( 1)

Lsk
G s e

Ts

−=
+

  (5) 

In Equation (5), k  represents the ratio of parameter 

variation, 
Lse−

 is the parameter adjustment delay, and L  

is the specific delay time. This model represents the 

primary dynamic characteristics in the controller output 

response observed under FC adjustment. FC solves the 

nonlinear control limitation of SSA-PID through the 

dynamic rule base. When the correlation between the 

system error and the error change rate shows nonlinearity, 

FC adjusts the PID parameter increment in real time based 

on the rule base in Table 2 instead of relying on fixed 

parameters. Multi-threaded I/O processing adopts a serial 

signal processing architecture. The input signal is 

executed in three sequential steps: fuzzification, rule 

reasoning, and defuzzification to avoid multi-threaded 

conflicts. Specifically, the fuzzy controller employs error 

(e) and error change rate (ec) as inputs, with the output 

being PID parameter adjustments. The fuzzy sets for both 

input/output variables are defined as: {Negative Big (NB), 

Negative Medium (NM), Zero (ZO), Positive Medium 

(PM), Positive Big (PB)}. Triangular membership 

functions are adopted for fuzzification. The rule base is 

designed as Table 2. 

For defuzzification, the centroid method is applied. 

This strategy computes the geometric center of the 

aggregated output fuzzy set to derive a precise crisp value. 

By weighting all activated rules proportionally to their 

membership strengths, it achieves smooth and continuous 

parameter adjustments while eliminating output 

uncertainty. In the setting of the domain range of the 
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input/output variables of the fuzzy controller, the domain 

of the error is [-3,3], the domain of the error change rate is 

[-1,1], and the domains of the PID parameter increments 

are all [-0.5,0.5]. The system adopts triangular 

membership functions, the vertex coordinates defined as 

NB in {3.0, 2.5, 2.0}, NM in {2.5, 1.5, 0.5}, ZO in {1.0, 

0.0, 1.0}, PM in {0.5, 1.5, 2.5}, PB in {2.0, 2.5, 3.0}. The 

output variables adopt the same structure and scale 

according to the domain ratio. Pre-adjusting parameters 

using FC reduces PID adjustment time and frequency, 

ensuring the robot responds to environmental changes in 

the shortest time possible. 
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Figure 5: Schematic diagram of the optimization process of DWA for improved BIT*. 

3.2 Construction of robot trajectory 

planning model based on DWA-

BIT*and FC-SSA-PID* 

Although FC-SSA-PID effectively adjusts parameters to 

control robot actions, it does not provide trajectory 

planning. Therefore, an additional algorithm is needed to 

enhance robot task execution. BIT* solves global path 

planning problems in large datasets while filtering out 

irrelevant information. It also has strong disturbance 

resistance and good dynamic adaptability [19]. In order to 

improve the adaptability of the algorithm in sample 

datasets of different scales and enhance the operational 

efficiency, an improved BIT* algorithm was proposed in 

the research. It combines the advantages of Rapidly-

exploring Random Trees (RRT) and Heuristic Search 

(HS) [20]. The improvement process is shown in Figure 4. 

As shown in Figure 4, traditional BIT* navigates 

around obstacles but takes longer and results in a longer 

overall path with larger turning angles. The core of 

improving BIT* lies in introducing an adaptive sampling 

strategy guided by path nodes. Traditional BIT* is prone 

to generating invalid nodes in uniform random sampling, 

resulting in path redundancy and low efficiency. After 

improvement, the algorithm first dynamically demarcates 

an efficient sampling bounding box based on the current 

environmental information and historical path nodes. The 

calculation process is shown in Equation (6). 

( 2 ) ( 2 )
_ () : R L R Lx x y y

sample radius
m

 − −  − −
=   (6) 

In Equation (6), 
Rx , 

Lx , 
Ry , and 

Ly  represent the 

horizontal and vertical coordinates of the boundaries in a 

two-dimensional space,   is the boundary value, and m  

represents the number of equidistant down-sampling 

points. After the defined bounding box constrains the 

sampling range, the generation of sampling points is no 

longer uniform and random. The generation of new 

sample points follows a probability distribution model 

centered on the mean values of these path nodes and with 

a specific exploration range, as shown in Equation (7). 
11

[ ( ) ( )]
2

1

2

1
( ) 1

(2 )
2

TX u X u

H X e
d



−− −  −

= −


  (7) 

In Equation (7), ( )H X  represents the generated 

sample, d  represents the dimension, and u  represents 

the mean vector of the coordinates of the historically valid 

path nodes. The core of the exponential part of Equation 

(7) is the negative exponential term of the probability 

density function of the multivariate Gaussian distribution. 

It calculates the "Markov distance" of the mean distance 

between points, which takes into account the correlation 

between variables. Before the improvement, the samples 

were uniformly distributed throughout the configuration 

space to randomly generate sample points. This sampling 

method leads the search to fall into local optima or waste 

of computing resources. The improved new sample points 

are generated by taking the center of the historically 

effective path as the reference point and controlling their 

distribution range and direction based on the path 

characteristics and environmental information. This 

makes the sampling points highly biased towards better 

path areas that has been explored and its natural extension 

direction. This guidance mechanism improves search 

efficiency and path quality. To further enhance the local 

optimal path planning capability of the improved BIT*, 

DWA is introduced. By sampling the robot’s current 

position, velocity, and state, DWA calculates motion 

trajectories over a time interval and selects the optimal 

solution. The DWA-optimized BIT* process is shown in 

Figure 5. 

As shown in Figure 5, when the improved BIT* 

algorithm detects obstacles in the global path at the turning 
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points, the DWA is activated for local re-planning. The 

BIT*takes the current position of the path node, the linear 

velocity and angular velocity of the robot as the input 

states of the DWA. DWA samples a set of feasible 

trajectories in the state space based on the dynamic 

constraints of the robot. Subsequently forming a new 

global path. The DWA evaluation function is given in 

Equation (8). 
( , ) ( , ) ( , ) ( , )G v Head v Vel v Dist v      = + +   (8) 
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Figure 6: Trajectory planning flow chart based on FC-SSA-PID and DWA-BIT*. 

In Equation (8), ( , )Head v   represents the azimuth 

function, ( , )Dist v   is the distance evaluation function, 

and ( , )Vel v   represents the velocity function. These 

three functions together determine how the robot moves 

toward the target at maximum speed and along the optimal 

path. The optimal trajectory function is expressed in 

Equation (9). 
2 2int( , ) ( ) ( )t g t gPo v Min x x y y  = − + −    (9) 

In Equation (9), int( , )Po v   represents the trajectory 

turning point function, and gx  and gy  represent the start 

points of the route. When encountering unknown 

obstacles, DWA classifies them as static or dynamic and 

calculates the optimal avoidance paths separately. The 

static obstacle avoidance path is expressed in Equation 

(10). 
2 2( ) ( )

1
, 1.2

_ ( , )

0, 1.2

s t g t g

s

s

s

D Min x x y y
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 
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  

  (10) 

In Equation (10), R  is the robot's movement radius, 

sD  represents the shortest path between the robot and a 

static obstacle at time t , and _ ( , )Dist S v   is the static 

obstacle distance evaluation function. The expression for 

dynamic obstacles is similar to Equation (10) and is given 

in Equation (11). 

1
, 1.2

_ ( , )

0, 1.2

s

s

s

D R
DDist D v

D R

S Vt t



 


= 
  
 = 

  (11) 

In Equation (11), _ ( , )Dist D v   is the dynamic 

obstacle distance evaluation function, Vt  is the robot’s 

instantaneous speed at time t , t  represents the time 

difference, and S  is the robot's movement route. 

Combining Equations (8)-(11) enables the robot to 

navigate unknown obstacles at maximum speed along the 

optimal path. The expression is shown in Equation (12). 
( , ) ( , ) ( , ) _ ( , )

_ ( , ) int( , )

G v w aHead v w bVel v w gDist S v w

sDist D v w jPo v w

= + +

+ +
  (12) 

In Equation (12), ( , )Head v   represents the azimuth 

function, ( , )Vel v   represents the velocity function, 

( , )Dist v   is the distance evaluation function, and 

int( , )Po v   is the trajectory turning point function. Initial 

weight values are configured based on the general 

configuration of the dynamic window method in the local 

obstacle avoidance scenario. In the static test environment, 

a grid search is conducted on the weight combinations. 

Taking the path safety rate and the global optimal path 

length as the joint optimization objectives, the weight 

values are iteratively adjusted. In the dynamic obstacle 

scenario, verify the robustness of the weight combination 

and determine the final optimal balanced combination. 

The model implements algorithmic collaboration via 

hierarchical architecture. Among them, the underlying 

motion control layer adopts FC-SSA-PID to optimize the 

controller parameters and adjust the robot's pose and speed 

in real time. The upper path planning layer uses DWA-

BIT*to generate the global optimal path and dynamically 

optimize the local obstacle avoidance trajectory. The pose 

feedback signal of the robot is used as the real-time input 

of the DWA-BIT*to form a closed-loop optimization. The 

robot trajectory planning model based on FC-SSA-PID 

and DWA-BIT* constructed by the research is shown in 

Figure 6. 



312 Informatica 49 (2025) 305–318 J. Zhang et al. 

As shown in Figure 6, the model first inputs the 

original signal into FC for parameter adjustment, then 

sends the optimized signal to the PID controller, where the 

three algorithm parameters are fine-tuned. Once the 

optimal parameters are determined, the signal is passed to 

DWA-BIT*. If no obstacles are detected, the model 

outputs the trajectory to the robot’s control system. If 

unknown obstacles are detected, the model recalculates 

the local route to determine the best avoidance strategy. 

Finally, the global and local paths are integrated to form a 

new optimal trajectory, which is then output as the final 

solution. This model achieves optimal balance between 

global and local path planning while processing nonlinear 

control systems. 

Table 3: Experimental environment parameter settings. 

Configuration item Detailed information 

CPU Inter core i7-12700 

GPU NVIDIA RTX 4060 8GB 

RAM 64GB DDR5, 6400MHz 

Storage 1TB NVMe SSD, 2TB SATA SSD 

Operating system Windows 11 Professional 
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Figure 7: Comparison of response time and memory consumption. 

4 Performance of robot trajectory 

planning model based on FC-SSA-

PID and DWA-BIT* 

4.1 Performance evaluation of DWA-BIT* 

To validate the performance of DWA-BIT*, this study 

compared it with the RRT* algorithm, Ant Colony 

Optimization (ACO), and GA. All tests were conducted 

under standardized initial conditions. In a 50m×50m two-

dimensional grid map, the density of known obstacles (the 

black area) was 20%-30% (randomly distributed), the 

number of unknown static obstacles (marked in yellow) 

was 3-5 (randomly located), and the number of unknown 

dynamic obstacles (the purple area) was 2 (moving speed 

0.1-0.3m/s). The initial pose of the robot is fixed at 0m on 

the horizontal and vertical axes, 0°, and the pose of the 

target point is 45m on the horizontal and vertical axes, 90

°. The motion constraints of the robot are a maximum 

linear velocity of 0.5m/s and a maximum angular velocity 

of 1.0rad/s. The trajectory sampling time interval in DWA 

is 0.1s, the velocity resolution is 0.05m/s, and the angular 

velocity resolution is 0.1rad/s. The adaptive sampling 

boundary expansion coefficient of the improved BIT* is 

1.2, and the heuristic weight is 0.8. The RRT* step size of 

the comparison algorithm is 1.5m, the target bias 

probability is 0.1, and the maximum iteration is 5000. The 

ACO pheromone weight is 1.0, the heuristic weight is 2.0, 

the evaporation rate is 0.3, and the number of ants is 50. 

The population size of GA is 100, the crossover rate is 

0.85, the variation rate is 0.01, and the tournament 

selection size is 5. All experiments were based on 30 

independent simulation runs, and the results were reported 

in the form of mean ±95% confidence intervals. Statistical 

significance was verified by two-sided t-tests to support 

the conclusion of performance superiority. The relevant 

experimental environment parameters are shown in Table 

3. 

First, a comparison was made between the four 

algorithms regarding memory consumption and response 

time while computing the globally optimal path. The 

results are shown in Figure 7. 

As shown in Figure 7, the memory usage of DWA-

BIT* increased at a relatively slow rate over time, with a 

peak value of only 227MB, significantly lower than the 

392MB of RTT*, 435MB of ACO, and 376MB of GA. 

Additionally, the response speed of DWA-BIT* stabilized 

after 12 hours of runtime, with a maximum value of 75ms, 

which was considerably lower than that of the comparison 

algorithms. Statistical analysis confirmed significance 



Enter short title in File/Properties/Summary Informatica 49 (2025) 305–318 313 

(p<0.05). Comparative analysis evaluated path planning 

efficiency and safety across algorithms. The results are 

shown in Figure 8. 

As shown in Figure 8(a), the route planning efficiency 

of the three comparison algorithms fluctuated 

significantly, exhibiting irregular increases and decreases. 

In contrast, the route planning efficiency of DWA-BIT* 

gradually improved after 2s of operation, following an 

approximately linear trend. After 10s, a slight decline in 

efficiency was observed, but after 3s, it continued to 

increase until reaching a maximum of 96.2%, which was 

much higher than that of the comparison algorithms. 

Figure 8(b) shows that the route safety of DWA-BIT*  
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Figure 8: Comparison of path planning efficiency and safety. 
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Figure 9: Comparison of trajectory planning success rates. 

gradually stabilized after 9s and reached its peak value of 

98.1% at 15s. This exceeded RTT* (91.6%), ACO 

(89.4%), and GA (68.2%) by substantial margins. 

Additionally, the safety curves of the comparison 

algorithms were highly fluctuating and did not stabilize, 

exhibiting continuous variations. All the data and 

comparisons were statistically significant (p<0.05). Route 

planning success rates were compared across algorithms, 

as shown in Figure 9. 

As shown in Figure 9, the success rate of DWA-BIT* 

increased rapidly to 93.7% when the number of iterations 

reached 120 and stabilized at its maximum value of 95.5% 

at 250 iterations. This was notably higher than RTT* at 

87.9%, ACO at 92.2%, and GA at 76.3%. Compared to the 

three other algorithms, the success rate of DWA-BIT* 

exhibited a more stable and smoother overall trend. In the 

range of 0–100 iterations, its increase was relatively large 

with minimal fluctuations, and it gradually stabilized 

thereafter. All the data and comparisons were statistically 

significant (p<0.05). DWA-BIT* achieved superior route 

planning performance. Its shorter optimal path ensured 

that the robot could reach the destination in the shortest 

time to complete its tasks, while its computation time was 

significantly lower than that of the comparison algorithms, 

leading to substantial time savings. 

4.2 Practical application of robot path 

planning model 

After validating the performance of DWA-BIT*, an on-

site experiment was conducted to verify the feasibility of 

the constructed robot trajectory planning model. The study 

selected an intelligent logistics robot to optimize its 

logistics route and introduced various obstacles at the 
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starting point, including both static and dynamic obstacles. 

The experimental robot adopts a four-wheel differential 

drive chassis. In the specific parameters, the mechanical 

parameters are dimensions of 0.8m×0.6m×0.5m, self-

weight of 35kg, and maximum load capacity of 100kg. 

The motion constraints are linear velocity range [0, 

0.5]m/s and angular velocity range [0, 1.0]rad/s; RGB-D 

camera depth accuracy ±2mm@2m field of view 85°×58°; 

The control unit is an embedded industrial control 

computer. The experimental site is a rectangular area of 

12m×8m, with 0.2m×0.2m grid markings laid on the 

ground. It is known that the obstacles are 0.5m×0.5m 

aluminum alloy cubes (a total  
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Figure 10: Comparison of motion smoothness of path planning. 
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Figure 11: Comparison of optimal path length and required computation time. 

of 5), and the unknown static obstacles are randomly 

placed cartons. The model was compared with the RRT*, 

ACO, and GA models in terms of the motion smoothness 

of the robot in a complex dynamic two-dimensional 

environment. The results are shown in Figure 10. 

As seen in Figure 10, when navigating known 

obstacles, the shortest local optimal path length provided 

by the proposed model was 12.6m, significantly shorter 

than those of the comparison algorithms. When unknown 

static obstacles were present, the model directly bypassed 

them with a total travel distance of only 9.7m. In contrast, 

when encountering unknown dynamic obstacles, all three 

comparison models chose to take longer detours to avoid 

them, whereas the proposed model either passed below or 

alongside the obstacles, achieving a total route length of 

only 31.6m. This was significantly shorter than RTT* at 

43.8m, ACO at 51.9m, and GA at 56.2m. To quantify 

model advantages, a comparison was made between the 

four models regarding the optimal path length and the 

required computation time. The results are shown in 

Figure 11. 

As shown in Figure 11(a), the best path lengths 

obtained at 20, 40, 60, 80, and 100 iterations for each 

algorithm. As the number of iterations increased, the 

optimal path length of the proposed model exhibited 

minimal variation. It gradually stabilized after 60 

iterations, with an average optimal length of 11.4m, 

significantly shorter than ACO at 18.7m, RTT* at 16.3m, 
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and GA at 20.3m. Furthermore, Figure 11(b) shows that 

as the number of iterations increased, the time required for 

ACO and RTT* to find the optimal path fluctuated 

considerably, making them far less stable than the 

proposed model. The proposed model required a 

maximum of only 35.7s, which was significantly lower 

than that of the comparison models. Finally, the study 

compared the trajectory planning accuracy and error of the 

proposed model against the comparison models. The 

results are shown in Figure 12. 

In Figure 12, trajectory tracking accuracy means 

percentage of trajectory duration where positional 

deviation from planned path < 0.02m. Instantaneous 

positional error means euclidean distance between actual 

and planned position at each sampling time, normalized  
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Figure 12: Comparison of trajectory planning accuracy and error. 

Table 4: Ablation experiments with a single cost function removed. 

Ablated Component Success Rate (%) Avg. Path Length (m) Max Position Error (%) 

Full Model 95.5 21.2 0.0089 

Remove Azimuth 93.1 24.3 (+14.7%) 0.0121 

Remove Velocity 88.4 23.6 (+11.3%) 0.0257 

Remove Distance 74.2 22.8 (+7.5%) 0.0314 

Remove Turning Point 92.7 22.1 (+4.2%) 0.0195 

Table 5: Performance comparison in challenging scenarios. 

Scenario Algorithm Success Rate (%) Avg. Path Length (m) Max Pos. Error (%) Avg. Avoidance Time (s) 

Narrow Passage 

DWA-BIT* 100 13.2 ± 0.8 0.0055 ± 0.0007 \ 

RRT* 100 18.7 ± 1.2 (↑41.7%) 0.0190 ± 0.0021 (*) \ 

ACO 100 22.1 ± 1.5 (↑67.4%) 0.0225 ± 0.0028 (*) \ 

GA 95.0 ± 3.5 (*) 20.9 ± 1.8 (↑58.3%) 0.0261 ± 0.0035 (*) \ 

High-Speed Dyn 

DWA-BIT* 88.5 ± 2.8 34.8 ± 2.5 0.0095 ± 0.0012 0.98 ± 0.11 

RRT* 72.1 ± 4.1 (*) 45.3 ± 3.3 (↑30.2%) 0.0218 ± 0.0025 (*) 1.52 ± 0.18 (*) 

ACO 65.7 ± 4.5 (*) 53.6 ± 4.1 (↑54.0%) 0.0292 ± 0.0033 (*) 1.87 ± 0.23 (*) 

GA 58.3 ± 4.8 (*) 57.9 ± 5.2 (↑66.4%) 0.0360 ± 0.0041 (*) 2.14 ± 0.27 (*) 

Note: (*) represents a statistically significant difference from DWA-BIT* (p<0.01). 

by total path length (%). As seen in Figure 12(a), the GA 

model did not accurately identify the optimal path until 

after 14s of operation. In contrast, the proposed model 

accurately identified the optimal path from the beginning, 

with its trajectory tracking accuracy increasing rapidly and 

reaching its peak value of 99.4% within 10s, where it 

remained stable. This metric represents the percentage of 

time the robot's actual position deviated by less than a 

predefined threshold (0.02m) from the planned path, 

calculated over the entire trajectory duration. This peak 

tracking accuracy was significantly higher than ACO at 

95.2%, RTT* at 94.1%, and GA at 89.6%. Figure 12(b) 

shows that the proposed model exhibited the smallest and 

smoothest positional error curve, with only minor 

fluctuations between 8 and 33s. The maximum 

instantaneous positional error occurred at 29s, reaching 

0.0089% of the total path length, while the minimum 

instantaneous positional error was recorded at 49s at 

0.0011% of the total path length, both of which were 

significantly lower than those of the comparison models. 

Positional error is defined as the Euclidean distance 

between the robot's actual position and the planned 

position at each sampling instant, normalized by the total 

path length and expressed as a percentage. To verify the 

necessity of multi-objective fusion, an ablation 

experiment was conducted to remove a single cost 

function, as shown in Table 4. 

As can be seen from Table 4, removing the orientation 

function leads to a 14.7% increase in the path length; 

When the distance function is removed, the failure rate of 
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dynamic obstacle avoidance rises to 21.3%. It indicates 

that the synergy of each cost function makes a contribution 

to the performance improvement. To evaluate the 

robustness of the model under extreme conditions, 

supplementary edge cases and high-dynamic environment 

verification were studied. The performance comparison in 

challenging scenarios is shown in Table 5. 

As can be seen from Table 5, in the Narrow Passage, 

DWA-BIT* achieved 100% success, shortest path (13.2m 

± 0.8m) and minimal error (0.0055% ± 0.0007%). 

Competitors had significantly longer paths (p<0.01) and 

higher errors (p<0.01) with GA showing lower success 

(95.0% ± 3.5%, p<0.01). At High-Speed Obstacles, 

DWA-BIT* maintained the highest success (88.5% ± 

2.8%) and the lowest error (0.0095% ± 0.0012%). and 

fastest avoidance (0.98s ± 0.11s). All competitors showed 

significant degradation (p<0.01) across all metrics. The 

success rate of 95.5% and the accuracy of 99.4% in the 

experiment were achieved in the custom PathEnv 

simulation. These results show advantages compared with 

benchmark values from Gazebo simulation reports on 

public datasets (success rate: 92-94%, accuracy: 97-98%). 

Furthermore, by repeating key experiments in the ROS 

environment (using the TurtleBot3 platform), comparable 

success rates (94.8%) and accuracy (99.1%) were 

achieved, verifying the repeatability and generalization of 

the method on commonly used simulation platforms. In 

order to further confirm the superiority of the research 

method, the advanced At least three pixels, Uncertainty 

Quantification and Propagation in recent years are 

introduced for comparison [21-22]. The results show that 

the success rate of the research method reaches 95.5%±

0.8%, which is significantly higher than 82.3%±2.1% of 

At Least Three Pixels and 88.7%±1.6% of Uncertainty 

Quantification and Propagation. The path length planned 

by the research method is 21.2m±0.5m, which is 26.1% 

shorter than At Least Three Pixels and 16.5% shorter than 

Uncertainty Quantification and Propagation. The 

calculation time of the research method was 35.7s±1.1s, 

which was 42.8% faster than At Least Three Pixels and 

54.8% faster than Uncertainty Quantification and 

Propagation. All comparisons achieved statistical 

significance (p<0.01). It further proves that the research 

method has good operational performance. 

5 Discussion 
Compared with the existing advanced methods, the 

proposed DWA-BIT* model showed advantages in terms 

of security and dynamic adaptability. Compared with the 

hierarchical decoupling collision avoidance algorithm 

proposed by Wang S et al. [15] (with a safety rate of 90%), 

DWA-BIT* achieved a safety rate of 98.1% in a dynamic 

environment. This 8.1% performance gain results from 

real-time trajectory correction achieved by the dual-mode 

obstacle classification mechanism of DWA, with the 

response time controlled within 75ms, which is much 

lower than 210ms in [15]. In terms of path efficiency 

optimization, Singh G et al. 's hybrid algorithm [13] 

reported a path efficiency of 87.5%, while DWA-BIT* 

reached 96.2%. The difference mainly stems from the 

heuristic weights of BIT* ensuring global optimality, and 

at the same time, the velocity function of DWA maximizes 

the local motion speed. Moreover, the model's memory 

consumption (227MB) was 41.9% lower than that of the 

[13] method (391MB). Regarding the trade-off of real-

time performance, although Du Y et al. 's chaotic particle 

swarm optimization algorithm [11] achieved a time 

optimization efficiency of 89.7%, it sacrificed dynamic 

adaptability. This model reduced the parameter 

adjustment frequency by 35% through adaptive 

adjustment of fuzzy PID parameters, reducing the average 

number of iterations from 320 times in [11] to 205 times, 

effectively balancing the performance contradiction. It is 

worth noting that, compared with RRT, the 20% safety 

gain (98.1% vs 78.1%) of DWA-BIT*is mainly attributed 

to the trajectory scoring system of the dynamic window. 

However, the current methods still have limitations in 

computational scale and are difficult to meet the real-time 

requirements of large-scale scenarios (such as warehouses 

with an area of more than 500m2). In the future, the 

covariance matrix of Equation 7 needs to be optimized to 

adapt to high-dimensional Spaces. Furthermore, in the 

high-speed dynamic obstacle scenario (0.8m/s), the 

success rate of 88.5% indicates that the motion constraint 

modeling still needs to be strengthened, which will be the 

focus of subsequent research. 

6 Conclusion 
To address the problems of low accuracy, long 

computation time, and large errors in current robot 

trajectory planning methods, this study proposed a robot 

trajectory planning model based on FC-SSA-PID and 

DWA-BIT*. The model optimized PID using FC and 

SSA, introduced DWA to improve BIT*, and combined 

the advantages of the two optimized algorithms to achieve 

optimal trajectory planning. This approach effectively 

solved the issues of robots failing to avoid obstacles and 

taking unnecessarily long routes to reach target areas. This 

study conducted simulation experiments on DWA-BIT* 

to evaluate its performance. The evaluation metrics 

included response time and memory usage during long-

term operation, as well as path planning efficiency and 

success rate. Additionally, the proposed model was tested 

in real-world scenarios, focusing on path smoothness, the 

accuracy of the optimal path, and error rate. Results 

demonstrated DWA-BIT* superiority over all comparison 

algorithms in simulations, and the proposed model 

demonstrated significantly better performance than the 

comparison models in real-world tests. In the simulation 

experiments, DWA-BIT* maintained a low memory usage 

of 227MB during long-term operation, with a maximum 

response time of only 75ms. The success rate of optimal 

path planning reached 95.5%, while the optimal path 

efficiency was as high as 96.2%, and the route safety rate 

was 98.1%. In real-world tests, the proposed model 

achieved a planning accuracy of 95.2%, with a minimum 

accuracy error of only 0.0011%. When encountering 

obstacles, the shortest locally optimal route was 12.6m, 

and the average best path length was reduced to 21.2m. 
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The proposed model demonstrates robust path planning 

capabilities, meeting operational requirements of service 

robots and enabling them to complete assigned tasks 

efficiently. Despite superior real-world performance, the 

experiments did not classify robot types. Therefore, future 

research should focus on optimizing the model for 

different types of robots. 
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