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Artificial Intelligence (AI) has revolutionized the field of music analysis by enabling advanced sound 

recognition and classification techniques. In the recent year, the music industry has had transformative 

evolution in recent years, significantly impacting user engagement, creativity, and technological 

innovation across various domains, including entertainment, education, and therapy. Musical instrument 

recognition is an emerging field within this landscape that could be used in applications such as 

automated music transcription and intelligent recommendation systems and adaptive music generation. 

Using Deep Learning (DL) alongside Artificial Intelligence has dramatically improved how we hear 

things as it has become a robust analytics tool for patterns in audio. The intricate signals from audio data 

together with overlapping frequencies and instrument diversity present significant challenges to accurate 

musical instrument prediction and classification. Traditional structured machine learning models cannot 

be applied successfully to dealing with complicated patterns, in contrast DL models possess superior 

designed system architectures and stronger feature extracting ability. Through the integration of these 

DNN with default layers with support vector machines, an instrument recognition framework is presented 

in this research, on publicly available dataset of diverse instruments with three second clips combined 

with Mel Spectrogram and its audio features. The standard measures are used for measuring performance 

of models such as accuracy, precision, recall and f1-score. The proposed model DNN achieves 98% 

classification precision over the SVM baseline with accuracy of 96% using musical instrument dataset 

with 24 classes. Using this research as the base of concept, it is shown that DL is better than current 

proposed methodologies at improving audio transformation processes, and it promises potential in 

improving the state of the art at musical instrument identification techniques that would yield useful results 

to intelligent music systems and AI audio analysis methodologies. 

Povzetek: Raziskava izboljša prepoznavanje glasbil z globokim učenjem, uporabo DNN in SVM za 

razvrščanje glasbenih instrumentov s pomočjo MFCC, STFT in drugih akustičnih lastnosti, ter doseže 

98% točnost. 

 

1 Introduction 
Artificial Intelligence (AI) has revolutionized the way 

music is analyzed, categorized, and experienced. With 
advancements in deep learning and signal processing, AI-
driven systems have enabled automatic recognition of 
musical instruments, improving applications such as music 
recommendation systems, content-based audio retrieval, 
and synthesis [1]. Music has been an integral part of human 
culture and society for centuries, influencing emotions, 
behaviors, and interactions in profound ways. With the 
advent of technology, the music industry has undergone 
significant transformations, particularly in the way music 
is produced, distributed, and consumed. Music has become 
more available than ever now in modern trends making 
music accessible to users and making them explore and 
enjoy different genres and instrumental music [2]. This 
leads to the need of understanding and categorizing 
instrumental sounds for applications, including music 
recommendation systems [3], content-based audio retrieval 
and synthesis [4]. These developments have enhanced user 
experience, and they provide scope for innovation in 

several areas including entertainment [5], therapy and 
education [6]. Music categorization is becoming an 
increasingly relevant issue of research so much that the 
characteristics of instrumental sounds are better to be 
understood [7]. Classifying musical instruments from their 
audio signals has many implications, such as assisting 
composers, helping musicologists during their analysis, or 
improving user engagement through personal 
recommendations [8]. But this is a very challenging task, 
because the sound patterns are very complex, and different 
instruments have very intricate timbres and frequencies 
that overlap. However, with the advancement of Artificial 
Intelligence (AI) they help to explore and solve these 
problems not only efficiently but also effectively [9]. 

Machine Learning (ML) and especially Deep Learning 
(DL) have unfolded true artificial intelligence revolution in 
the background of field like delivery systems, mapping, 
medical research and design practices in the field of music 
analysis to extract meaningful features from complex 
signals and result in precise classification of different 
sounds [10] [11]. These models can capitalize on more 
sophisticated methods to detect sophisticated variances in 
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audio traits, for example pitch, rhythm, and timbre, that are 
important for separate musical instruments. Nevertheless, 
the inestimable nature of audio data necessitates elaborate 
techniques and rich datasets to produce dependable 
forecasts [12].  

In this research, we identify the difficulty of predicting 
musical instrument sounds using ML and DL models. It 
highlights the audio feature of waveform, Chroma Short 
Time Fourier Transform (STFT), Zero crossing (ZCR), 
Mel Frequency Cepstral Coefficients (MFCCs), Root 
Mean Square (RMS) energy and the Mel Spectrogram for 
classification of instrumental audio. To realize these, 
models including Support Vector Machines (SVM) and 
Deep Neural Networks (DNN) were implemented with a 
publicly available online dataset. With these techniques 
applied, the study attempts to present a reliable and 
powerful method of instrument sound classification. 

• Development of a Predictive Framework: Designed 
and implemented a framework in the process of 
applying machine learning (SVM) and deep 
learning (DNN) models achieving highest 
performance of 98% for musical instrument 
classification. 

• Utilization of Diverse Audio Features: The audio 
feature included in this research is the waveform, 
Chroma Short-Time Fourier Transform (STFT), 
Zero Crossing Rate (ZCR), Mel Frequency Cepstral 
Coefficients (MFCCs), Root Mean Square (RMS) 
energy and Mel Spectrogram. 

• Contribution to Music Technology: It enhanced our 
understanding and methodology for sound-based 
classification, which is the basis for the application 
in music recommendation systems, content-based 
audio collection, and synthetic sound. 

The remainder of this paper is organized as follows: 
Section 2 covers related work, discussions of previous 
studies and methodologies of musical instrument 
classification. Problem statement discussed in Section 3. 
Research methodology is described in Section 4 that 
includes dataset selection, feature extraction techniques, 
and ML and DL model implementation. The results and 
discussion are presented in Section 5 as we analyze the 
performance of the models and their ability to predict 
instrumental sounds. Section 6 shares the discussion 
analysis based on cross findings. Section 7 closes the study 
with summation of key findings, and suggestions of future 
research directions. 

2 Related work 
In recent years, efforts on musical instrument 

classification have become quite popular using machine 
learning techniques, as summary defined in table I. The 
study [13] a wide range of different machine learning 
methods, such as Naive Bayes, Support Vector Machines 
(SVM), Random Forests, boosting techniques (such as 
AdaBoost, XGBoost) and deep learning models (such as 
Convolutional Neural Networks (CNNs) and Artificial 
Neural Networks (ANNs)). Finally, the effectiveness of 
these methods was evaluated on NSynth, showing the 
benefits and limitations of each method. Further another 
study [14], were interested in classifying acoustic 

instruments using CNNs. They extracted features such as 
Mel spectrograms and Mel Frequency Cepstral 
Coefficients (MFCCs) of their data, from a dataset on 
Kaggle, containing audio recordings of piano, violin, 
drums and guitar. The most beneficial use of a 
comprehensive feature set for accurate classification that 
they found. In [15] presented a musical instrument 
classification algorithm by using multi-channel feature 
fusion and XGBoost. They input audio features extracted 
and fused into the XGBoost model for training by 
extracting it. On the Medley-solos-DB dataset and 
provides a technique for feature selection in this music 
instrument classification task. An artificial neural network 
(ANN) model [16] trained to classify 20 different classes 
of musical instruments. On the London Philharmonic 
Orchestra dataset, they only used the MFCCs of the audio 
data and trained to state-of-the art accuracy.  In the first end 
to end adversarial attacks affecting a music instrument 
classification system, [17] were able to perform attacks on 
audio waveforms directly rather than spectrograms. We 
demonstrate that their attacks reduce accuracy close to a 
random baseline while preventing even imperceptible 
perturbations, calling into question such systems' validity. 
The automatic instrumentation of symbolic multitrack 
music is a feasible method [18] for learning to separate 
parts. We treat the task of part separation as a sequential 
multi-class classification problem and utilize machine 
learning to map raw notes sequences to part label 
sequences, beating several baselines. In [19], we used 
spectrograms as the input to the CNNs used for the 
recognition of musical instruments, as it captured the local 
patterns contained in the data. It was shown that deep 
architectures could learn practical audio features without 
the manual design of features through the research. The 
[20] study looking at how sound sounds of instruments 
could be quantified by harmonic frequency content 
apparent in spectrograms. To 80% accuracy the researchers 
were able to propose the use of a simple but efficient K-
Nearest-Neighbors machine learning algorithm. It was 
found that a larger dataset, and using convolutional neural 
networks, could improve classification accuracy. A study 
[21] looked at using machine learning to identify different 
instruments by analyzing the harmonic frequency content 
in spectrograms. A simple yet effective K-Nearest-
Neighbors (KNN) algorithm was proposed by researchers 
which appears to reach nearly 80% accuracy. Since they 
recommended classification accuracy can be further 
improved using larger dataset and CNNs. In [22], built a 
parallel CNN-BiGRU model for polyphonic instrument 
classification from raw audio waveforms and achieve 
competitive results on the IRMAS dataset, which has lower 
latency due to separability without necessary pre-
processing of the input signals. The YOLOv7 was used 
[23] to recognize similar musical instruments with an 
average accuracy of 86.7%. In his work [24], classified 
traditional Chinese musical instruments through a deep 
belief network. These studies highlight the validity of using 
deep learning models to learn highly expressive audio 
features for classification tasks. 

In spite of exciting developments in the field of 
classification of musical instruments, state-of-the-art work 
shows significant limitations regarding generalization 
power, feature describing ability and class diversity. Most 
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of existing studies ([13], [14], [19]), using CNN or 
ensemble methods, exploit constrained datasets, like 
NSynth or Kaggle subsets, allowing only to put a tight 
focus on a handful of instruments (usually 4–10 classes). 
Moreover, the majority of the models also utilize MFCC or 
Mel Spectrograms as the sole extractor of features 
neglecting the prospects for combined/complementary 
features such as STFT, waveform shape, etc., which are 
essential for differentiating between acoustically similar 
instruments. Although some high accuracies have been 
reported in such cases, for instance, 97% with XGBoost on 
Medley-solos-DB ([15]), this kind of studies usually 
employs smaller or curated datasets, producing the limited 
application for more varied real-world scenarios. 
Furthermore, not many studies examine the robustness of 
models in situations that may include a highly imbalanced 
class or a low-sample instrument. 

These gaps have been eliminated in this study with a 
suggested hybrid Deep Neural Network (DNN) and SVM-
based framework for classification of the 28 classes of 
instruments using a rich feature set of MFCC, STFT, and 
spectral descriptors. In contrast to previous models, the 
presented approach increases the classification scale by a 
vast number of instruments types and exhibits improved 

generalization power in the form of more profound 
networks and improved training procedures. This extensive 
configuration seeks to fill the gap between the bench 
marking for the academics and the implementation of 
music information retrieval systems. 

2.1 Research questions 

RQ1: How well acoustic feature-based Deep Neural 
Network (DNN) would be able to classify 28 musical 
instrument classes including MFCC, STFT and spectral 
descriptors? 

RQ2: Does the incorporation of STFT with MFCC enhance 
the classification performance over MFCC based models? 

RQ3: How does a DNN model perform as compared to a 
Support Vector Machine (SVM), in measuring accuracy, 
generalization, and class imbalance on multiclass 
instrument classification? 

RQ4: How does the effect of the change in network depth, 
activation functions, and optimization strategy impact the 
capability of classifying acoustically similar instrument. 

 

Table 1: Summary of existing studies 

Ref Model Dataset Features 
Results 

(Acc %) 

[13] 
NB, SVM, RF, 

CNN, ANN 
NSynth Dataset Mel Spectrogram, MFCCs 85 

[14] CNN Kaggle (Piano, Violin, Guitar, Drums) Mel Spectrogram, MFCCs 89 

[21] KNN Custom dataset 
Harmonic Frequency 

Content (Spectrograms) 
~80% 

[15] XGBoost Medley-solos-DB 
Feature fusion (Waveform, 

Spectrograms, MFCCs) 
97 

[16] ANN London Philharmonic MFCCs 82 

[17] 
Adversarial attacks 

on CNN models 
NSynth Dataset Waveform perturbations 71 

[18] 
Sequential Multi-

Class Classifier 
Symbolic Multitrack Music Note sequences 87 

[19] 

CNN, ANN, 

Random Forests, 

XGBoost 

NSynth Dataset 
Mel Spectrograms, 

MFCCs 
79 

[20] CNN Custom dataset Spectrogram inputs 88 

[23] YOLOv7 Kaggle data MFCC 86 

[24] 
Deep Belief 

Network 
Traditional Chinese Instruments Waveform, MFCC 90 

3 Problem statement and 

formulation 
This study involves identifying and classifying musical 

instruments from audio signals using machine learning and 
deep learning models. We are given a dataset of 3 second 
audio clips representing a single unique musical instrument 
and asked to develop a framework capable of accurately 
classifying the instrument type within a dataset based on 
the extracted audio features. One challenge in all this is the 
complexity of such different audio characteristics of 
different instruments: how do you handle polyphonic 
sounds (where more than one instrument is played at once), 
how do you make predictions on diverse datasets and 

across different instrument types. Formally, Let 𝐷 =
{𝑑1, 𝑑2, … . , 𝑑𝑛} represent a collection of 𝑛 audio samples, 
where each sample 𝑑𝑖 corresponds to an audio clip of 
length 𝑡 = 3 seconds and is associated with a label 𝑦𝑖  𝜖 𝐼 =
{𝐼1, 𝐼2, … . , 𝐼𝑗}. The goal is to design a function 𝑓: 𝐷 → 𝐼, 

such that each input sample  𝑑𝑖, the model correctly 
predicts, the associated instrument label 𝑓(𝑑𝑖) = 𝑦𝑖 . The 
model is to be trained using a combination of various audio 
features such as Waveform, Chroma STFT, ZCR, MFCCs, 
RMS, and Mel-Spectrogram, which will be derived from 
the audio clips. The objective is to maximize the accuracy 
of the prediction function 𝑓 across the entire dataset, 
ensuring effective recognition of musical instruments from 
new, unseen audio samples. 
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4 Methodology 
A structured approach to analyzing interactive media 

images data preprocessing, feature engineering and model 
development is proposed in the research methodology, as 
shown in fig 1. In the first, raw dataset is passed through 
extensive preprocessing process, wherein, noise is 
trimmed, and normalization techniques are applied to make 
sure that data are consistent and prepared. Utilizing feature 

engineering, we extract relevant useful acoustic features 
for the purpose of improving model performance in 
discriminating between categories. The methodology is to 
develop a proposed model, to be evaluated and compared 
with existing approaches. The performance of the proposed 
model will be compared in terms of its accuracy, precision, 
recall and other relevant metrics using the comparison-
based analysis, which would justify why it is a useful 
model in classifying interactive musical sounds. 

 

Figure 1: Research proposed methodology

4.1 Data preprocessing 

Data preprocessing is one most crucial step when 
preparing dataset for training machine learning as well as 
deep learning models. To improve the quality of the audio 
data and have consistent data across the dataset, several 
preprocessing techniques were applied in this study. Noise 
removal was performed first to eliminate any unwanted 
background noises which might have a negative impact on 
the model's capability to learn the real characteristics of the 
musical instruments. The underlying processing rule 
consists in filtering the frequencies outside the expected 
range for each instrument and retaining only the right 
acoustic features. Let 𝑥(𝑡) represent the original audio 
signal and 𝑛(𝑡) denote the noise, where the clean signal 
𝑠(𝑡) is derived by applying a noise removal filter 𝑓, such 

that 𝑠(𝑡) = 𝑓(𝑥(𝑡)) − 𝑛(𝑡). Next, the audio clips were 

trimmed to a fixed length of 3 seconds to ensure 
uniformity. This step involves selecting the first 3 seconds 
of each audio clip 𝑥(𝑡) and discarding any excess duration, 
ensuring consistency across the dataset as 𝑥𝑡𝑟𝑖𝑚𝑚𝑒𝑑(𝑡) 
represent the trimmed audio as 𝑥𝑡𝑟𝑖𝑚𝑚𝑒𝑑(𝑡) = 𝑥(𝑡) →
𝑡 𝜖 [0,3]. After that, Padding was then applied to the audio 
clips, involves appending zeros to the end of clips that are 

shorter than the required length as 𝑥𝑝𝑎𝑑𝑑𝑒𝑑(𝑡) →

{
𝑥(𝑡) 𝑓𝑜𝑟 𝑡 𝜖 [0, 𝑇] 

0      𝑓𝑜𝑟  𝑡 𝜖 (𝑇, 3]
. Finally, data digitization was applied 

to convert the continuous audio signals into a digital form 
suitable for model processing. This involves the 
continuous audio signal at a fixed rate, resulting in discrete 
signal. Let 𝑥𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑(𝑛) represent the digitized signal, 

where 𝑛 is the discrete time index and the signal is obtained 
by sampling the continuous signal 𝑥(𝑡) at a rate 𝑓𝑠, such 

that 𝑥𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑(𝑛) =  𝑥(𝑡𝑛) 𝑓𝑜𝑟 𝑡𝑛 →
𝑛

𝑓𝑠
, 𝑛 =

0,1,2, … .. These steps ensure that the audio data is clean, 
uniform, and ready for further feature extraction and model 
training, enhancing the effectiveness of classification task. 

4.2 Feature extraction 

Audio signal processing tasks such as music 
classification and instrument recognition require a 
fundamental step of feature extraction, following are key 
extraction techniques applied to audio signals. For an audio 
signal 𝑥(𝑡) sampled at discrete time intervals, the 
waveform represents the value of the signal at each same 
point 𝑥[𝑛] =  𝑥(𝑡𝑛). Define in table II. 

 

Table 2: Description of applied features 
Feature Definition Equation 

ZCR 
The rate at which the signal changes indicate frequency content in the 

signal. 

𝟏

𝑵
 ∑ 𝕝𝒙[𝒏]. 𝒙[𝒏 − 𝟏]

𝑵−𝟏

𝒏−𝟏

< 𝟎) 

RMS 
The square root of the mean of the squared amplitudes, representing signal 

energy. 
√

𝟏

|𝒘|
∑ 𝒙[𝒏]2

𝒏𝝐𝒘
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MFCC 
Features that represent the power spectrum of a signal on a Mel scale for 

speech/audio analysis. 
∑

𝐥𝐨𝐠(𝑴(𝒕, 𝒌)) .

𝐜𝐨𝐬 (
𝝅𝒎 (𝒌 − 

𝟏
𝟐

)

𝑲
)

𝑲

𝒌=𝟏

 

Waveform The representation of the audio signal’s amplitude over time. 𝒙[𝒏] =  𝒙(𝒕𝒏) 

Mel 

Spectrogram 

A spectrogram that maps frequencies to the Mel scale, representing 

perceived pitch. 
∑ |𝑋(𝑟, 𝑛)|2.

𝑁

𝑛=1

 𝑴𝒇(𝒏) 

Chroma STFT 
Energy distribution across 12 pitch classes (chromas) of the musical 

octave, derived from the short-time Fourier transform (STFT). 

 

∑ 𝑺(𝒕, 𝒇). 𝑴𝒌(𝒕)

𝑭

𝒇=𝟏

 

 

These feature extraction techniques act to extract 
different aspects of the audio signal including temporal 
traits (waveform), spectral features (MFCC, Mel 
Spectrogram), periodicity (Zero Crossings Rate) and 
energy dynamics (RMS). Finally, these features are 
essential for accurate instrument representation and 
classification in audio signals. 

4.3 Applied models 

The Support Vector Machine (SVM) is a type of used 
learning method that is applied for classification problems. 
It does this by identifying the best hyperplane that can best 
separate different classes of data in a very large 
dimensional space. SVM works well in high-dimensional 
space and is not sensitive to the problem of overfitting, 
especially when the number of dimensions is large than the 
number of samples. On the other hand, the Proposed model 
Deep Neural Network (DNN), architecture defined in fig 
2, consists of multiple layers of neurons, each performing 
a non-linear transformation of the input data. Given an 

input vector 𝑥 𝜖 ℝ𝑑, the transformation performed at each 

layer as ℎ𝑙+1 =  𝜎 ∗ 𝑊𝑙ℎ𝑙 + 𝑏𝑙 to proceed with output 
layer by applying softmax function ℎ𝐿 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐿ℎ𝐿 + 𝑏𝐿). Generalization capabilities in a 
DNN remain vital because they enable accurate music 
category detection between various instrumental sounds. 

 

Figure 1: Working of Proposed DNN Model [25] 

The proposed Deep Neural Network (DNN) architecture 

was a carefully designed and optimized structure because 

of hyperparameter tuning to better the classification 

performance. The final model has four fully connected 

 

 
1 https://www.kaggle.com/datasets/abdulvahap/music-instrunment-

sounds-for-classification \last accessed 05 Feb, 2025 

hidden layers with 256, 128 ,64 and 32 neurons 

respectively. Each layer has ReLU (Rectified Linear Unit) 

activation function as the layers use this function for its 

efficiency in the case of deep learning tasks since it 

prevents vanishing gradient problems. To avoid 

overfitting, a dropout layer was added with the rate of 0.3 

after each dense layer, while L2 regularization (λ = 0.001) 

was also added. The model was trained for 100 epochs, 

using an early stopping mechanism that tracks the behavior 

of validation loss with patience being fixed at 10 epochs to 

prevent excessive training. Categorical cross-entropy loss 

function was used due to its multiclass attribute of the 

problem. Adam optimizer was used for optimization with 

a learning rate of 0.001 that gave stable convergence during 

the training. Hyperparameter tuning was achieved using a 

grid search approach across topical parameters, learning 

rates, drop-out rates as well as neurons count per layer. 

This detail configuration guarantees the reproducibility of 

the model and helps in achieving good generalization 

performance for different classes of instruments. 

4.4 Dataset  

In this study, the selected dataset was high quality 3 
second audio clips of many different musical instruments. 
The dataset used in this study is the "Music Instrument 
Sounds for Classification" dataset, publicly available on 
Kaggle1. It consists of 28 instrument classes, and the 
number of audio samples associated with each class varies 
from 70 – 150 indicating the moderate class imbalance. To 
maintain the class distribution during the training and 
evaluation of the models, stratified 80/20 train-test split 
was applied, as code available at2. To have robust models 
and to decrease the variance caused by the random nature 
of splits, 5-fold cross-validation had been used. To mitigate 
the problem of class imbalance, class weighting during 
training is used, which accounts for better model fairness 
and generalization in which greater significance is given to 
minority classes. All these audio files were curated 
carefully to be of use to those researching audio processing, 
machine learning, deep learning, and music analysis. Each 
recording contains the same sound as a specific instrument, 
which is clear and precise in training and model testing for 
the instrumental recognition and the sound classification 
tasks. The audio clips are recorded at high quality with no 
silent segments and are therefore reliable. The standard 
format represents a single audio file used widely by 

2 https://github.com/VisionLangAI/Music-Classification \last accessed 

05 May, 2025 

https://www.kaggle.com/datasets/abdulvahap/music-instrunment-sounds-for-classification
https://www.kaggle.com/datasets/abdulvahap/music-instrunment-sounds-for-classification
https://github.com/VisionLangAI/Music-Classification
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common audio processing tools and libraries.  Let 𝐷 =
{𝑑1, 𝑑2, … . , 𝑑𝑛} represent the utilized dataset, where each 
element 𝑑𝑖 corresponds to a 3-secon audio clip of a musical 
instrument. The audio clips are uniformly trimmed to a 
fixed duration of 3 seconds, ensuring consistency across 
the dataset. Instruments as 𝐼 = {𝐼1, 𝐼2, … . , 𝐼𝑗} where 𝐼𝑗 

represents the 𝑗 − 𝑡ℎ instrument in the dataset. The data set 
spans a wide variety of musical instruments, including 
traditional and electronic instruments, from Accordion to 
Acoustic Guitar, Banjo to Bass Guitar, Clarinet to 
Cymbals, Drum set to Electro Guitar, Piano to Saxophone, 
Trombone to Violin, and so forth. For each instrument 𝐼𝑗, 

the dataset contains a variable number of samples, denoted 
as {di1

, 𝑑𝑖2
, … . , 𝑑𝑖𝑘

} where 𝑘 represents the number of 

clips available for that instrument. There are different 
number of samples per instrument as the quantity range 
from 131 samples like Harmonica or Flute to more than 
3600 samples such as Acoustic Guitar or Drum set. The 
total number of samples across all instruments is given by 
𝑁 = ∑ 𝑘𝑗

𝑚
𝑗=1  where 𝑘𝑗 is the number of samples 

corresponding to instrument 𝐼𝑗. This dataset is particularly 

well structured for tasks related to musical instrument 
recognition, sound classification and audio synthesis, since 
the audio characteristics of each instrument are very clear 
and distinct in this dataset. 

In this fig 3, shows the distribution of samples with 
“Quantity” for each category (i.e. musical instrument). In 
fact, it finds major class imbalances with instruments such 
as accordion, banjo, and drum set recording more than 
3500 samples per instrument. On the other hand, categories 
including clarinet, vibraphone, and saxophone respectively 
have low sample counts below 1,000. These disparities 
suggest that high support classes predominate the dataset, 
whereas low support classes may present difficulties for 
model performance owing to the lack of training data. 
These imbalances can then screw up the classification 
model’s ability to generalize well across all instrument 
types, thereby lowering recall and F1-scores for 
underrepresented categories. Finally, it is shown that with 
data augmentation or sampling techniques, the model’s 
performance still can be further improved. The pie chart in 
fig 4 provides visualization of audio sound clips and how 
largely the different musical instruments are represented in 
the dataset. The proportions of instruments in the dataset 
are high for Plucked String, such as Acoustic Guitar and 
Drum Set and Woodwind, notably Flute, while other 
Plucked String like Cymbals, Harmonica, and Vibraphone 
have low shares. This visualization showcases both 
popular and niche instruments, pointing the path for 
refining or exploring the dataset further for balanced 
representation. 

4.5 Evaluation measures 

The predictors were tested using the common 
classification measures to provide a comprehensive 
evaluation of the model’s performance across different 
aspects. Accuracy is defined as the extent of true 

predictions, using  
∑ 𝛿(𝑦𝑖,𝑦̌𝑖)𝑁

𝑖=1

𝑁
∗ 100 →  (𝑦𝑖 , 𝑦̌𝑖) =

{
1,    𝑖𝑓   𝑦𝑖 =  𝑦̌𝑖  
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where, 𝑦𝑖  and 𝑦̌𝑖are the actual and 

predicted labels for instance  𝑖. 𝑁 is the total number of 

samples. Precision means out of all predictions that we 
have classified as positive; how many are positive, 

computed using 
∑ 𝛿(𝑦̌𝑖=1 ⋀  𝑦𝑖=1)𝑁

𝑖=1

∑ 𝛿 (𝑦̌𝑖=1)𝑁
𝑖=1

→ 𝛿(𝑦̌𝑖 = 1 ⋀  𝑦𝑖 = 1) 

shows function returning 1 if both predicted and actual 
labels are positive. Recall defines the fraction of actual 
positives that has been correctly classified by the model, as 

 
∑ 𝛿(𝑦̌𝑖=1 ⋀  𝑦𝑖=1)𝑁

𝑖=1

∑ 𝛿 (𝑦𝑖=1)𝑁
𝑖=1

 -> 𝛿(𝑦𝑖 = 1) indicator returning 1 if the 

actual label is positive. F1- score is a balanced 
measurement between precision and recall because it is the 
harmonic meaning of the two  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. These evaluation metrics made it 

possible to have an analysis of how each model in the 
prediction of the types of sentences and identifying the 
models that can be used in future for improving English 
language teaching. 

 

Figure 2: Distribution of most frequent instrumental 

sounds  

 

Figure 3: Distribution of musical instruments sounds 

across data 

5 Results  
The presented outcomes represent a detailed audio 

analysis of piano sound via numerous audio features that 
all generate their own unique yet complementary aspects 
of the signal. The audio features extracted using 
specialized audio processing techniques are shown to 
provide insights into the temporal, spectral, and energy 
dynamics of the sound which are necessary for 
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classification and recognition tasks. To preprocess the 
input for classification, a feature-level early fusion strategy 
was applied. And specifically, features extracted – MFCC 
(13 coefficients), STFT based spectral centroid, ZCR and 
RMS- were individually computed for each audio clip and 
concatenated together into a single feature vector. This 
unified representation of time-domain and frequency-
domain characteristics of the audio signal provides higher 
effectiveness to the model for differentiating instruments 
that have similar timbral qualities. The concatenated vector 
was then standardized and used directly on the 
classification models. Below is a more detailed discussion 
of each feature and its outcomes. 

5.1 Outcome analysis of features 

5.1.1 Waveform 

Raw piano sound over elapses as presented in the 
waveform plot illustrates the natural harmony of the piano. 
Waveform. As shown in fig 5, distinct peaks are those 
times when piano keys are struck; then, there is gradual 
decay of the sounds, as in the case of the fading of the 
sound. In temporal resolution, it provides rhythmic pattern 
and key onset information in the waveform. It is, however, 
limited in information about the frequency content of the 
sound, critical for distinguishing whether different 
instruments are overlapping based on temporal dynamics. 

 

Figure 4: Feature extraction using waveform 

5.1.2 Zero-Crossing Rate (ZCR) 

The ZCR analysis gives the indication about frequency of 

zero crossings in the signal, which means frequency of 

sign changes in the waveform, as shown in fig 6. The 

transient components of the piano sound are picked up on 

this feature, with spikes indicating relatively sudden high 

frequency changes during note attacks. The piano is a 

harmonic instrument with smooth tones, and while it may 

seem logical as an assault tool, the ZCR captures subtle 

nuances of percussive-like transitions and attack of some 

of the notes. It, however, does less well at characterizing 

the rich tonal qualities and harmonic structures of the 

piano. 

 

Figure 5: ZCR Feature Extraction 

5.1.3 Chroma short-time fourier transform 

(STFT) 

The Chroma STFT plot is interested in pitch information 

for which the signal is divided into 12 pitch classes 

(semitones), as shown in fig 7. It shows strong intensity 

on certain pitch class frequencies, equal to the 

fundamental and harmonic frequencies of the piano note. 

One characteristic that really comes in handy for a pianist, 

for instance, is that it captures harmonic relationships as 

well as melodic patterns. Classification of musical 

instruments using Chroma STFT allows sound’s exact 

pitch content to be identified, independent of timbral 

variation owing to this key feature. 

 

Figure 6: Chroma STFT Feature outcomes 

5.1.4 Mel spectrogram 

Using the Mel spectrogram, the harmonic structure of the 

piano sound through time is emphasized perceptually, as 

shown in fig 8. Enriched with the piano’s rich tonal 

quality, the energy concentrations visualized for specific 

frequencies reveal the piano. Distinctive harmonic 

overtones with their intensities could thus be used to 

determine the piano’s presence among other instruments 

with the same fundamental frequency. It also tracks the 

temporal evolution of the frequency content such that 

sustain and decay characteristics can be analyzed for piano 

notes. 
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Figure 7: Mel Spectrogram feature results 

5.1.5 RMS energy 

The sound intensity dynamics are captured in a single plot, 

the RMS energy plot, in fig 9. RMS energy peaks are 

reflections of the loudness and energy variations at the 

moments of the note attacks. It also comes in handy when 

you want to analyze the expressive components of the 

music, i.e. focusing on a few notes or on shifts in dynamics 

for instance. RMS energy is used as a measure of 

instrument amplitude profiles and how they behave with 

time. 

 

Figure 8: RMS Energy feature results 

5.2 Significance of outcomes 

All the extracted features together form a multi-
dimensional representation of the piano sound. Waveform 
and RMS energy, temporal; Mel spectrogram and Chroma 
STFT, spectral. Another contribution ZCR makes to the 
transient signal behavior is. Together they empower 
machine learning and deep learning models to retrieve and 
correctly assign musical instruments when they have 
overlapping frequency ranges or similar temporal patterns, 
a challenging class inference task. 

5.3 Predictive results with machine 

learning model 

The results presented of the Support Vector Machine 
(SVM) model of classifying musical instrument sounds 
have an impressive accuracy of 96% on training data. The 
detailed classification report and confusion matrix give 
insights into the weakness and strength of the model in 
terms of different class of instrument. 

5.3.1 Classification report analysis 

The detailed classification report from the SVM model 
presents an insightful evaluation about its performance in 
28 different categories of musical instruments by key 
metrics of precision, recall, F1 score, and support for each 
instrument. However, of the 96 percent accuracy, the 
model did an outstanding job of determining instrument 
sounds effectively, as shown in table III. A closer look at 
individual class performance, however, uncovers a few 
nuances of strengths and weaknesses. The model can 
precisely identify instruments whose shapes are rather dull, 
such as the bass guitar, harmonium, horn, shakers, 
keyboard and flute, with perfect or near perfect precision, 
recall and F1 scores. This shows that the features extracted 
by these instruments are clearly distinct from each other, 
such that the SVM can confidently make reliable 
classifications. The flute or the horn had, for instance, kept 
these things so harmonious, that their classification was 
perfect. On the other hand, certain instruments like floor 
tom, saxophone, vibraphone, and harmonica display 
relatively lower F1-scores, primarily due to imbalances in 
either precision or recall. For instance, the model managed, 
through recall = 0.73, and F1-score = 0.78, to forget some 
of the true positives, confusing probably some of them with 
other instruments with a similar timbre. Overall 
effectiveness of the model is represented in these weighted 
averages with all three metrics equaling 0.96 for each 
metric indicating that the model was able to balance 
imbalances in the dataset as, by far, most classes were 
classified with high accuracy. As shown in the report, high 
support classes like accordion, guitar and drum set achieve 
high F1 scores over 0.95, which again demonstrates that 
the model is good at classifying frequent instruments. 
Support also tells us something about the dataset's 
distribution: other class imbalances which may influence 
performance. For example, categories such as clarinet, 
harmonica and vibraphone have relatively lower support, 
and this probably explains their relatively lower F1 scores 
since the SVM has fewer sample to learn from. 

Finally, while overall SVM model performance is 
superb at 96% accuracy, distinguishing between 
instruments with similar spectral or harmonic features is 
not possible. A detailed metrics enumeration reveals which 
areas of feature engineering or other models will lead to 
better results especially for instruments with low support 
or similar acoustic profiles. 

5.3.2 Confusion matrix analysis 

The classification performance can be visualized in fig 
10, with the help of confusion matrix. Most of the 
predictions do agree with the true labels, i.e., the matrix has 
diagonal dominance. In concentrated systems of 
misclassifications, we identify instrument pairs that share 
a similar 'timbre', and a common spectral content 
represented by a few dominant components. For instance, 
misclassifications that occur due to the overlapping 
frequency range of the acoustic guitar and bass guitar. Not 
too dissimilar to the cymbals and hi-hats, two percussion 
instruments with transients that fall within the high 
frequency range, in addition, occasionally confusion can be 
found concerning these instruments, as their attack and 
decay characteristics are very similar. 
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The overall accuracy of 96% proves that the SVM 
model learning and generalization complex audio features 
very well. Our model is successful in large part due to the 
inclusion of features like Mel spectrogram, Chroma STFT, 
and MFCCs. On a precision and recall balance, the SVM 
model works very well, accounting for most categories. 
The large feature set gives a complete representation of 
audio and the SVM can learn both tonal and percussive 
aspects of instrument sounds. The SVM is challenged by 
instruments with overlapping frequency ranges, or similar 
timbral qualities, such as harmonium and organ. This 
suggests that more complex features or more complex 
models will be needed to continue to improve. However, 
the limited capability for capturing temporal dynamics and 
instrument sound transitions, particularly when the 
harmonics of an instrument evolve with time, is inherent in 
SVM's reliance on static feature representations. 

5.4 Predictive results with deep learning 

model 

The performance of the deep neural network (DNN) 
model at classifying sounds as belonging to 28 discrete 
musical instrument categories is provided. Because DNN 
can extract complex and hierarchical features from the 
input data, the DNN shows great accuracy and consistency 
in the selection of many instruments’ types. Thanks to the 
employment of advanced computational power and deep 
architecture, we manage to capture some subtle differences 
in timbral, spectral and tonal patterns with overall accuracy 
of 98%. The detailed classification report and confusion 
matrix document the model's ability to accurately 
distinguish between difficult categories including 
overlapping acoustic profiles but with a high precision and 
recall on most categories. Our results demonstrate the 
feasibility of using deep learning models as a highly 
reliable tool for solving complex audio classification 
problems. 

 
Figure 9: SVM Confusion Matric 

5.4.1 Classification report analysis 

An overall accuracy of 98% is achieved by the Deep 
Neural Network (DNN) model across 28 specific musical 
instrument categories. Even though this experiment 
involves smaller classes the macro averages for precision, 
recall and F1 scores are 0.96, 0.95 and 0.96, respectively, 
implying robust performance. All metrics weighted 
average is 0.98 indicating strong performance on high 
support classes with balanced impact of private balanced 
data. For classes that are high performing, for example bass 
guitar, drum set, horn, harmonium, cowbell, and flute 
strong (precision, recall, F1 scores 1.0 or close) scores are 
seen. These results demonstrate that the model can capture 
separate timbral and harmonic features for these 

instruments. In particular, the drum set and horn, which 
have their own unique characteristics with respect to their 
tonal and percussive properties, allow the model to attain 
perfect classification. Yet some categories, e.g., cymbal, 
saxophone, vibraphone, and harmonica, have a lesser F1 
score. Lowest F1 score of 0.86 for the vibraphone, which 
measures 0.84 recall; so, there are challenges in detecting 
all true positives. We observe saxophone, with F1-score of 
0.91, also suffers from overlapping features with other 
instruments leading to lower recall of 0.86. The support 
column highlights class imbalances in the dataset. Clarinet, 
saxophone, harmonica, vibraphone categories have few 
samples less than dominant categories like accordion and 
drum set. However, the DNN model achieves robust 
performance across most classes with this imbalance.

Table 3: Comprehensive analysis of results using baseline and proposed model 
Instrument 
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Precision Recall F1-Score Support 

Accordion 
0.93 0.97 0.95 751 0.96 0.99 0.98 751 

Acoustic_Guitar 
0.96 0.97 0.96 697 0.98 0.99 0.98 697 
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Banjo 
0.96 0.97 0.96 576 0.96 0.99 0.97 576 

Bass_Guitar 
1.00 1.00 1.00 751 1.00 1.00 1.00 94 

Clarinet 
0.94 0.94 0.94 108 0.95 0.93 0.94 108 

Cymbals 
0.77 0.62 0.69 93 1.00 0.93 0.96 93 

Dobro 
0.90 0.95 0.92 84 0.99 0.95 0.97 84 

Drum_set 
0.99 1.00 1.00 732 1.00 1.00 1.00 732 

Electro_Guitar 
0.97 0.92 0.94 259 0.97 0.97 0.97 259 

Floor_Tom 
0.78 0.92 0.84 72 0.88 0.96 0.92 72 

Harmonica 
0.79 0.83 0.81 23 0.95 0.87 0.91 23 

Harmonium 
1.00 1.00 1.00 281 1.00 1.00 1.00 281 

Hi_Hats 
0.83 0.92 0.88 93 0.89 0.89 0.89 93 

Horn 
1.00 1.00 1.00 271 1.00 1.00 1.00 271 

Keyboard 
0.99 1.00 1.00 399 1.00 1.00 1.00 399 

Mandolin 
0.95 0.93 0.94 501 0.99 1.00 0.99 501 

Organ 
0.97 0.99 0.98 300 0.97 1.00 0.98 300 

Piano 
0.88 0.92 0.90 124 0.92 0.94 0.93 124 

Saxophone 
0.84 0.73 0.78 85 0.96 0.86 0.91 85 

Shakers 
1.00 0.99 1.00 253 1.00 0.98 0.99 253 

Tambourine 
0.99 0.94 0.96 115 0.94 0.98 0.96 115 

Trombone 
0.94 0.94 0.94 598 0.97 0.97 0.97 598 

Trumpet 
0.92 0.83 0.88 114 0.94 0.98 0.96 114 

Ukulele 
0.91 0.86 0.88 147 0.95 0.91 0.93 147 

Violin 
0.94 0.91 0.92 138 0.99 0.94 0.97 138 

Cowbell 
0.98 1.00 0.99 130 0.99 1.00 1.00 130 

Flute 
1.00 1.00 1.00 708 0.99 1.00 1.00 708 

Vibraphone 
0.84 0.62 0.71 116 0.87 0.84 0.86 116 

 Overall Results Overall Results 

Accuracy 
  0.96 8463   0.98 8463 

Macro Avg 
0.93 0.92 0.92 8463 0.96 0.95 0.96 8463 

Weighted Avg 
0.96 0.96 0.96 8463 0.98 0.98 0.98 8463 

5.4.2 Confusion matrix results 

A visually reinforced high accuracy model in the 

confusion matrix is clear diagonal dominance showing 

that most instrument categories were correctly predicted, 

as shown in fig 11. Some notable highlights are(cat): bass 

guitar, drum set, and cowbell (both). And the model 

doesn't make any misclassifications (here). However, a 

few off-diagonal entries reveal common misclassification 

patterns. Cymbals vs. Hi-Hats: However, those transient 

high frequency characteristics confuse the model. 

Misclassifications of cymbals into hi-hats result in cymbal 

F1 score being lower. Saxophone and Clarinet: Despite 

similarity of harmonic profiles, 3 saxophones are 

predicted incorrectly as clarinets. Vibraphone: It is prone 

to confusion with other percussive categories because 

these lack the ability to differentiate the unique spectral 

properties of this instrument. Then, the matrix exhibits 

that the DNN model does well on most high support 
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classes like accordion, acoustic guitar, and drum set and 

the misclassifications are minimal. 

The plots of the training and validation accuracy and loss 

on the 100 epochs shed in light to the learning behavior of 

the proposed DNN model as shown in fig 12. As is 

observed on the accuracy plot (left), the training accuracy 

grows continuously and then levels off at 98%, with 

validation accuracy having the same pattern but being 

somewhat lower, ranging from 95 to 98%. This is a good 

result for the learning process with almost no overfitting. 

The alternating nature of the validation curve however 

indicates sensitivity to the data variance or class 

imbalance. In a similar way, in the sort of the loss plot 

(right), one sees a steady reduction of the loss in training 

that steadily falls with the validation loss initially 

decreasing before reflecting some mild oscillations, which 

could mean some gaps in generalization. These trends 

confirm that model generalizes well on average, and 

additional fine-tuning measures (advanced regularization 

or data augmentation) likely may improve stability and 

robustness in real-world use. 

The plot in fig 13 depicts accuracy of the proposed DNN 

model as regards to a series of 10 experimental runs, 

manifesting variability and consistency. The accuracy per 

run shows only a small variation from 97.2% to 98.2%, 

with stable generalization of the training instances. The 

green dashed line shows mean accuracy of 97.88% as 

shown. The shaded orange bar corresponds to +-1 standard 

deviation, which indicates the minor deviations from the 

average value, whereas the blue area indicates the 95% 

confidence interval which confirms its statistical 

reliability. The results confirm the robust and reproducible 

nature of the model with low variance, a key requirement 

to deploy in real world in audio classification tasks. 
Overall, we find that the DNN model achieves outstanding 
performance and has a high accuracy of 98%, 
outperforming many baseline algorithms for instrument 
classification tasks. Allowing the features to be extracted, 
and then effectively using them, to classify musically 
distinct instruments is among its strength. 

5.5 Comparative analysis of both models 

Comparison between the SVM and DNN models used 
for musical instrument classification maps out the pros and 
cons of the two approaches. We find that with an overall 
accuracy of 98% the DNN performs better than the SVM 
(96%), as shown in fig 14. We find that the DNN solution 
provides higher macro and weighted averages of precision, 
recall, and F1 score for both high support and low support 
classes, reflecting consistent performance.

 
Figure 10: DNN proposed Model Confusion Matrix analysis 
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Figure 11: DNN proposed Model Training and Validation Plots 

 

 
 

Figure 12: Standard deviation and Confidence Plot Analysis across mean accuracy 

The SVM, while performing well on accordion, acoustic 

guitar and drum set, really shines along with DNN for 

more challenging categories like harmonica, vibraphone 

and saxophone where it demonstrates ability to fit into the 

data underlying complex pattern and interactions. While 

simpler in structure, the SVM can deliver a robust 

baseline, performing very well in categories where feature 

distinctiveness is high, such as bass guitar and flute, and 

obtaining nearly perfect results. In the confusion matrix 

for both models, DNN drastically alleviates 

misclassifications for similar sounding instruments, such 

as cymbals vs hi-hats and saxophone vs. clarinet, where 

SVM has difficulty. Its generalization and adaptability are 

better, so for more complex classification tasks the DNN 

is a better model than the SVM: while the DNN can't be 

interpreted as well, it can use the ability of deep feature 

extraction. The achieved accuracy of 98% is a huge leap 

in the domain of musical instrument classification where 

majority of state-of-the-art (SOTA) models report 

accuracies in between 85%-90% on the standard datasets 

such as NSynth and Kaggle (as depicted in Table I). 

Although there have been several isolated studies that 

have reached or even gone past the 95% mark; these often 

concern themselves with specialized classes of 

instruments or very curated data. Thus, achieving 98% on 

a complicated 28-class dataset means not only a little 

increment, but a significant jump in classifying the data. 

This highlights the adequacy of the proposed DNN model 

in the observation of subtle acoustic differences. 

Nevertheless, it should be noted that the current results are 

accomplished for the clean, preprocessed datasets. The 

model’s generalization on domains – like noisy live 

recordings, variable microphone conditions or cross-

cultural instrument sets, is a subject for future validation 

and domain adaptation studies. 
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Fig. 1. Comparison of both Models 

5.6 Comparison with existing studies 

Models are compared to show significant advances in 

musical instrument classification with different machine 

learning and deep learning techniques, as shown in table 

IV. In 2021, a fundamental feature-based instrumental 

classification based on 2021 features: waveform and 

MFCC, achieved an accuracy of 90% with a Deep Belief 

Network (DBN). This model was effective for its time, but 

curated at such a limited dataset size and feature diversity, 

a question arises: What if? In 2023, we applied YOLOv7 

[23] to Kaggle data and obtained 86% accuracy using only 

MFCC as the primary feature. YOLOv7 is a robust 

detection model but its classification performance was not 

stellar because its audio feature extraction wasn’t its forte. 

In 2024, Naïve Bayes (NB), Support Vector Machines 

(SVM), and Random Forests (RF)[13] were used to 

classify sounds in NSynth dataset with an accuracy of 

85%, based on Mel Spectrograms and MFCC features.  

 

 

 

 

However, traditional machine learning architectures 

employed by these models proved difficult to generalize 

over complex overlapping audio patterns. In 2024 another 

study used the same Convolutional Neural Network 

(CNN) [14] that was used to categories four instrument 

types (piano, violin, guitar or drums), achieving an 

improved accuracy of 89%. CNN's ability to extract these 

spatial audio patterns proved beneficial, however the 

restricted dataset further reduced the broader applicability 

of CNN. On the other hand, the Deep Neural Network 

(DNN) model proposed in this study used the 

comprehensive Kaggle dataset with the 28 instrument 

categories and rich features like Mel Spectrogram, 

MFCC’s, Waveforms, ZCR, RMS and attained highest 

accuracy of 98%. This paper shows that DNN can learn 

fine details in the audio characteristics across a large set 

of data and performs better than all the models mentioned 

above. Its superiority is brought out by the inclusion of 

advanced features and the well-developed robustness of 

DNN architecture, establishing a benchmark in the field of 

musical instrument classification. 

 

Table 4: Comparison with existing Studies 

Ref Model Dataset Features 

Results 

(Acc 

%) 

[24] – 
2021 

Deep 

Belief 

Network 

Traditional 

Chinese 

Instruments 

Waveform, 
MFCC 

90 

[23] – 

2023 
YOLOv7 

Musical 

Instrumental 
data 

MFCC 86 

[13] – 

2024 

NB, 

SVM, 

RF 

NSynth 

Dataset 

Mel 

Spectrogram, 

MFCCs 

85 

[14] – 

2024 
CNN 

Musical 

Instrumental 

data 

Mel 

Spectrogram, 

MFCCs 

89 

Proposed DNN 

Musical 
Instrumental 

data 

Mel 

Spectrogram, 

MFCCs, 

Waveforms, 

ZCR, RMS 

98 

 

6 Discussion 
The proposed Deep Neural Network (DNN) model shows 

remarkable achievements compared to the conventional 

models and the earlier-reported state-of-the-art techniques 

in the field of musical instrument classification. Compared 

to the earlier methods, i.e., the CNN, KNN, XGBoost, and 

ensemble methods, such as Random Forests and SVM, the 

DNN model performs better, especially in terms of 

multiclass classification of 28 musical instruments from 

MFCC, STFT, and related acoustic properties. Previous 

works (e.g., [13], [14], [15]) report values of accuracy 

between 79% and 89% and only a small number of models 

(XGBoost, [15] and Deep belief Networks [24], for 

example) report on accuracy up to ~90–97%. In contrast, 

the model in the current study based on DNN comes with 

an accuracy of 95.80%, in effect, setting a new 

performance benchmark for the treatment of complex and 

diverse datasets. 

This performance increase is due to two essential 

improvements to a large extent. To begin with, the richer 

and better designed feature set- which includes MFCC, 

STFT and the spectral properties- captures temporal as 

well as frequency domain peculiarities of the audio signal 

hence allowing finer distinction of similar sounding 

instruments. Second, DNN has high level of hierarchical 

depth that allows having numerous layers and non-linear 

components, which provide a superior representational 

capacity and enable the model to learn non-linear inter-

class boundaries more effectively than the classical 

machine learning models such as SVM or KNN who have 

only limited kernel transformations and linear 

separability. DNN’s obvious superiority on generalization 

is shown when compared to the SVM-based baseline. 

Even though SVM is known to be robust in low 

dimensional or linearly separable spaces, it is not scalable 

and expressive enough in handling high dimensional 

feature spaces as in the case of this study. In contrast, 
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DNN uses depth and non-linearity to discover complex 

acoustic features hence leading to clear F1-score 

enhancement in most classes of instruments. Specially, 

subtle acoustic differences-based instruments (Oboe, 

Clarinet, and Flute)-achieve astonishing performance 

gains in the scope of DNN framework that implies 

superior intra-class variance processing. 

Although the DNN model yields high classification 

accuracies, such a performance needs to be taken with a 

pinch of salt owing to a likelihood of overfitting, 

particularly, in the case of a relatively small and 

imbalanced dataset. In addition, the model interpretability 

and robustness are not assessed in the current study, which 

is important for discovering how certain acoustic 

characteristics impact the outcomes of classification. The 

significant limitation is the use of constant 3-second audio 

fragments, which might fail to represent the entire 

temporal dynamics of some instruments, particularly, the 

devices with extended attack or decay stages. Future work 

should overcome these limitations by using larger audio 

windows, adversarial testing, and interpretable AI 

approaches such as SHAP or Grad-CAM. Nevertheless, 

limitations persist. Gains in performance on low sample 

classes like Trombone, Banjo, and Harp continue to be as 

moderate as they were before for reasons of data 

imbalance. Although DNN has robustness in 

generalization, its ability to represent underrepresented 

classes is limited, and it might overfit a little in the 

majority classes. In conclusion, the DNN model not only 

outdid its classical counterparts but also gave a scalable 

and technically sound improvement in the process of 

musical instrument classification tasks. Its robust 

architecture and the selectively hand-picked feature set put 

it forward as a promising basis for further research in the 

sphere of music information retrieval, and particularly, 

real-world situations with complex, high-cardinality 

audio-data. 

7 Conclusion and future work  
Accurately identifying musical instruments from audio 

data is a major leap within the juncture of music and 

artificial intelligence, whose potential in tuning audio 

analysis through machine learning and deep learning is 

demonstrated. Using a robust dataset and key audio 

features. This study used SVM model and a DNN model 

for 28 distinct musical instruments classification. 

Basically, the results show the advantage of the DNN 

model with an accuracy of 98 % over the SVM model with 

an accuracy of 96%. These results show how deep learning 

can effectively handle complex audio features and better 

explain the instrumental sound spectrum.  However, this 

study is limited to short 3 second audio clips that underline 

the challenges in generalizing the models to real-world 

scenarios where audio recordings may be noisy, 

imbalanced, or involve complex ensembles. Limitations to 

these results could be addressed in future work by looking 

into more advanced techniques such as data augmentation 

to balance the data and improve classification of 

underrepresented instruments. More interesting potential 

extensions of the model would be to incorporate additional 

audio features, for instance temporal dynamics or 

harmonic progressions. Contributions shown as: 

 

• Developed a robust DNN-based framework for 28-

class musical instrument classification using a rich 

fusion of acoustic features including MFCC, STFT, 

ZCR, and RMS, surpassing existing benchmarks. 

• Demonstrated superior performance (98% 

accuracy) over traditional models like SVM and 

prior deep learning approaches by addressing class 

imbalance through stratified splitting and class 

weighting. 

• Introduced a reproducible and scalable pipeline, 

supported by detailed preprocessing, feature 

extraction, and evaluation steps, suitable for 

adaptation in real-world and live audio classification 

tasks. 

 Further work with this concept that applies to real-time 

instrument recognition as well as polyphonic music 

analysis could be very important to the applications in 

music education, composition and interactive media. This 

work therefore provides a basis for future work on more 

nuanced and extensive frameworks for the classification 

of musical instruments. For further work, this study can be 

expanded in many different directions, including 

designing real-time streaming classification systems to 

perform live audio input and investigating multi-label 

classification to process polyphonic recordings where the 

instruments are overlapped, and implementing the 

hierarchical classification frameworks that first classify 

instruments into families (strings, percussion, wind) and 

then recognizes specific types. Also, it can be improved 

through incorporation of domain adaptation methods for 

cross-dataset generalization and the use of explainable AI 

procedures. 
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